Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/lepto_nuclear/src/G4ANuElNucleusNcModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/lepto_nuclear/src/G4ANuElNucleusNcModel.cc (Version 11.3.0) and /processes/hadronic/models/lepto_nuclear/src/G4ANuElNucleusNcModel.cc (Version 8.2)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 // $Id: G4ANuElNucleusNcModel.cc 91806 2015-08    
 27 //                                                
 28 // Geant4 Header : G4ANuElNucleusNcModel          
 29 //                                                
 30 // Author : V.Grichine 12.2.19                    
 31 //                                                
 32                                                   
 33 #include "G4ANuElNucleusNcModel.hh"               
 34 #include "G4NeutrinoNucleusModel.hh"              
 35                                                   
 36 // #include "G4NuMuResQX.hh"                      
 37                                                   
 38 #include "G4SystemOfUnits.hh"                     
 39 #include "G4ParticleTable.hh"                     
 40 #include "G4ParticleDefinition.hh"                
 41 #include "G4IonTable.hh"                          
 42 #include "Randomize.hh"                           
 43 #include "G4RandomDirection.hh"                   
 44                                                   
 45 // #include "G4Integrator.hh"                     
 46 #include "G4DataVector.hh"                        
 47 #include "G4PhysicsTable.hh"                      
 48 #include "G4KineticTrack.hh"                      
 49 #include "G4DecayKineticTracks.hh"                
 50 #include "G4KineticTrackVector.hh"                
 51 #include "G4Fragment.hh"                          
 52 #include "G4ReactionProductVector.hh"             
 53                                                   
 54                                                   
 55 #include "G4NeutrinoE.hh"                         
 56 // #include "G4AntiNeutrinoMu.hh"                 
 57 #include "G4Nucleus.hh"                           
 58 #include "G4LorentzVector.hh"                     
 59                                                   
 60 using namespace std;                              
 61 using namespace CLHEP;                            
 62                                                   
 63 #ifdef G4MULTITHREADED                            
 64     G4Mutex G4ANuElNucleusNcModel::numuNucleus    
 65 #endif                                            
 66                                                   
 67                                                   
 68 G4ANuElNucleusNcModel::G4ANuElNucleusNcModel(c    
 69   : G4NeutrinoNucleusModel(name)                  
 70 {                                                 
 71   SetMinEnergy( 0.0*GeV );                        
 72   SetMaxEnergy( 100.*TeV );                       
 73   SetMinEnergy(1.e-6*eV);                         
 74                                                   
 75   theNuE =  G4NeutrinoE::NeutrinoE();             
 76                                                   
 77   fMnumu = 0.;                                    
 78   fData = fMaster = false;                        
 79   InitialiseModel();                              
 80                                                   
 81 }                                                 
 82                                                   
 83                                                   
 84 G4ANuElNucleusNcModel::~G4ANuElNucleusNcModel(    
 85 {}                                                
 86                                                   
 87                                                   
 88 void G4ANuElNucleusNcModel::ModelDescription(s    
 89 {                                                 
 90                                                   
 91     outFile << "G4ANuElNucleusNcModel is a neu    
 92             << "model which uses the standard     
 93             << "transfer parameterization.  Th    
 94                                                   
 95 }                                                 
 96                                                   
 97 //////////////////////////////////////////////    
 98 //                                                
 99 // Read data from G4PARTICLEXSDATA (locally PA    
100                                                   
101 void G4ANuElNucleusNcModel::InitialiseModel()     
102 {                                                 
103   G4String pName  = "anti_nu_e";                  
104                                                   
105   G4int nSize(0), i(0), j(0), k(0);               
106                                                   
107   if(!fData)                                      
108   {                                               
109 #ifdef G4MULTITHREADED                            
110     G4MUTEXLOCK(&numuNucleusModel);               
111     if(!fData)                                    
112     {                                             
113 #endif                                            
114       fMaster = true;                             
115 #ifdef G4MULTITHREADED                            
116     }                                             
117     G4MUTEXUNLOCK(&numuNucleusModel);             
118 #endif                                            
119   }                                               
120                                                   
121   if(fMaster)                                     
122   {                                               
123     const char* path = G4FindDataDir("G4PARTIC    
124     std::ostringstream ost1, ost2, ost3, ost4;    
125     ost1 << path << "/" << "neutrino" << "/" <    
126                                                   
127     std::ifstream filein1( ost1.str().c_str()     
128                                                   
129     // filein.open("$PARTICLEXSDATA/");           
130                                                   
131     filein1>>nSize;                               
132                                                   
133     for( k = 0; k < fNbin; ++k )                  
134     {                                             
135       for( i = 0; i <= fNbin; ++i )               
136       {                                           
137         filein1 >> fNuMuXarrayKR[k][i];           
138         // G4cout<< fNuMuXarrayKR[k][i] << "      
139       }                                           
140     }                                             
141     // G4cout<<G4endl<<G4endl;                    
142                                                   
143     ost2 << path << "/" << "neutrino" << "/" <    
144     std::ifstream  filein2( ost2.str().c_str()    
145                                                   
146     filein2>>nSize;                               
147                                                   
148     for( k = 0; k < fNbin; ++k )                  
149     {                                             
150       for( i = 0; i < fNbin; ++i )                
151       {                                           
152         filein2 >> fNuMuXdistrKR[k][i];           
153         // G4cout<< fNuMuXdistrKR[k][i] << "      
154       }                                           
155     }                                             
156     // G4cout<<G4endl<<G4endl;                    
157                                                   
158     ost3 << path << "/" << "neutrino" << "/" <    
159     std::ifstream  filein3( ost3.str().c_str()    
160                                                   
161     filein3>>nSize;                               
162                                                   
163     for( k = 0; k < fNbin; ++k )                  
164     {                                             
165       for( i = 0; i <= fNbin; ++i )               
166       {                                           
167         for( j = 0; j <= fNbin; ++j )             
168         {                                         
169           filein3 >> fNuMuQarrayKR[k][i][j];      
170           // G4cout<< fNuMuQarrayKR[k][i][j] <    
171         }                                         
172       }                                           
173     }                                             
174     // G4cout<<G4endl<<G4endl;                    
175                                                   
176     ost4 << path << "/" << "neutrino" << "/" <    
177     std::ifstream  filein4( ost4.str().c_str()    
178                                                   
179     filein4>>nSize;                               
180                                                   
181     for( k = 0; k < fNbin; ++k )                  
182     {                                             
183       for( i = 0; i <= fNbin; ++i )               
184       {                                           
185         for( j = 0; j < fNbin; ++j )              
186         {                                         
187           filein4 >> fNuMuQdistrKR[k][i][j];      
188           // G4cout<< fNuMuQdistrKR[k][i][j] <    
189         }                                         
190       }                                           
191     }                                             
192     fData = true;                                 
193   }                                               
194 }                                                 
195                                                   
196 //////////////////////////////////////////////    
197                                                   
198 G4bool G4ANuElNucleusNcModel::IsApplicable(con    
199                    G4Nucleus & )                  
200 {                                                 
201   G4bool result  = false;                         
202   G4String pName = aPart.GetDefinition()->GetP    
203   G4double energy = aPart.GetTotalEnergy();       
204   fMinNuEnergy = GetMinNuElEnergy();              
205                                                   
206   if(  pName == "anti_nu_e"                       
207         &&                                        
208         energy > fMinNuEnergy                     
209   {                                               
210     result = true;                                
211   }                                               
212                                                   
213   return result;                                  
214 }                                                 
215                                                   
216 /////////////////////////////////////////// Cl    
217 //                                                
218 //                                                
219                                                   
220 G4HadFinalState* G4ANuElNucleusNcModel::ApplyY    
221      const G4HadProjectile& aTrack, G4Nucleus&    
222 {                                                 
223   theParticleChange.Clear();                      
224   fProton = f2p2h = fBreak = false;               
225   const G4HadProjectile* aParticle = &aTrack;     
226   G4double energy = aParticle->GetTotalEnergy(    
227                                                   
228   G4String pName  = aParticle->GetDefinition()    
229                                                   
230   if( energy < fMinNuEnergy )                     
231   {                                               
232     theParticleChange.SetEnergyChange(energy);    
233     theParticleChange.SetMomentumChange(aTrack    
234     return &theParticleChange;                    
235   }                                               
236   SampleLVkr( aTrack, targetNucleus);             
237                                                   
238   if( fBreak == true || fEmu < fMnumu ) // ~5*    
239   {                                               
240     // G4cout<<"ni, ";                            
241     theParticleChange.SetEnergyChange(energy);    
242     theParticleChange.SetMomentumChange(aTrack    
243     return &theParticleChange;                    
244   }                                               
245                                                   
246   // LVs of initial state                         
247                                                   
248   G4LorentzVector lvp1 = aParticle->Get4Moment    
249   G4LorentzVector lvt1( 0., 0., 0., fM1 );        
250   G4double mPip = G4ParticleTable::GetParticle    
251                                                   
252   // 1-pi by fQtransfer && nu-energy              
253   G4LorentzVector lvpip1( 0., 0., 0., mPip );     
254   G4LorentzVector lvsum, lv2, lvX;                
255   G4ThreeVector eP;                               
256   G4double cost(1.), sint(0.), phi(0.), muMom(    
257   G4DynamicParticle* aLept = nullptr; // lepto    
258                                                   
259   G4int Z = targetNucleus.GetZ_asInt();           
260   G4int A = targetNucleus.GetA_asInt();           
261   G4double  mTarg = targetNucleus.AtomicMass(A    
262   G4int pdgP(0), qB(0);                           
263   // G4double mSum = G4ParticleTable::GetParti    
264                                                   
265   G4int iPi     = GetOnePionIndex(energy);        
266   G4double p1pi = GetNuMuOnePionProb( iPi, ene    
267                                                   
268   if( p1pi > G4UniformRand() && fCosTheta > 0.    
269   {                                               
270     // lvsum = lvp1 + lvpip1;                     
271     lvsum = lvp1 + lvt1;                          
272     // cost = fCosThetaPi;                        
273     cost = fCosTheta;                             
274     sint = std::sqrt( (1.0 - cost)*(1.0 + cost    
275     phi  = G4UniformRand()*CLHEP::twopi;          
276     eP   = G4ThreeVector( sint*std::cos(phi),     
277                                                   
278     // muMom = sqrt(fEmuPi*fEmuPi-fMnumu*fMnum    
279     muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu);        
280                                                   
281     eP *= muMom;                                  
282                                                   
283     // lv2 = G4LorentzVector( eP, fEmuPi );       
284     lv2 = G4LorentzVector( eP, fEmu );            
285     lv2 = fLVl;                                   
286                                                   
287     lvX = lvsum - lv2;                            
288     lvX = fLVh;                                   
289     massX2 = lvX.m2();                            
290     G4double massX = lvX.m();                     
291     G4double massR = fLVt.m();                    
292                                                   
293     // if ( massX2 <= 0. ) // vmg: very rarely    
294     if ( massX2 <= fM1*fM1 ) // 9-3-20 vmg: ve    
295       if ( lvX.e() <= fM1 ) // 9-3-20 vmg: ver    
296     {                                             
297       theParticleChange.SetEnergyChange(energy    
298       theParticleChange.SetMomentumChange(aTra    
299       return &theParticleChange;                  
300     }                                             
301     fW2 = massX2;                                 
302                                                   
303     if(  pName == "anti_nu_e" )         aLept     
304     // else if( pName == "anti_nu_mu") aLept =    
305     else                                          
306     {                                             
307       theParticleChange.SetEnergyChange(energy    
308       theParticleChange.SetMomentumChange(aTra    
309       return &theParticleChange;                  
310     }                                             
311                                                   
312     pdgP = 111;                                   
313                                                   
314     G4double eCut; // = fMpi + 0.5*(fMpi*fMpi     
315                                                   
316     if( A > 1 )                                   
317     {                                             
318       eCut = (fMpi + mTarg)*(fMpi + mTarg) - (    
319       eCut /= 2.*massR;                           
320       eCut += massX;                              
321     }                                             
322     else  eCut = fM1 + fMpi;                      
323                                                   
324     if ( lvX.e() > eCut ) // && sqrt( GetW2()     
325     {                                             
326       CoherentPion( lvX, pdgP, targetNucleus);    
327     }                                             
328     else                                          
329     {                                             
330       theParticleChange.SetEnergyChange(energy    
331       theParticleChange.SetMomentumChange(aTra    
332       return &theParticleChange;                  
333     }                                             
334     theParticleChange.AddSecondary( aLept, fSe    
335                                                   
336     return &theParticleChange;                    
337   }                                               
338   else // lepton part in lab                      
339   {                                               
340     lvsum = lvp1 + lvt1;                          
341     cost = fCosTheta;                             
342     sint = std::sqrt( (1.0 - cost)*(1.0 + cost    
343     phi  = G4UniformRand()*CLHEP::twopi;          
344     eP   = G4ThreeVector( sint*std::cos(phi),     
345                                                   
346     muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu);        
347                                                   
348     eP *= muMom;                                  
349                                                   
350     lv2 = G4LorentzVector( eP, fEmu );            
351                                                   
352     lvX = lvsum - lv2;                            
353                                                   
354     massX2 = lvX.m2();                            
355                                                   
356     if ( massX2 <= 0. ) // vmg: very rarely ~     
357     {                                             
358       theParticleChange.SetEnergyChange(energy    
359       theParticleChange.SetMomentumChange(aTra    
360       return &theParticleChange;                  
361     }                                             
362     fW2 = massX2;                                 
363                                                   
364     aLept = new G4DynamicParticle( theNuE, lv2    
365                                                   
366     theParticleChange.AddSecondary( aLept, fSe    
367   }                                               
368                                                   
369   // hadron part                                  
370                                                   
371   fRecoil  = nullptr;                             
372   fCascade = false;                               
373   fString  = false;                               
374                                                   
375   if( A == 1 )                                    
376   {                                               
377     qB = 1;                                       
378                                                   
379     // if( G4UniformRand() > 0.1 ) //  > 0.999    
380     {                                             
381       ClusterDecay( lvX, qB );                    
382     }                                             
383     return &theParticleChange;                    
384   }                                               
385   G4Nucleus recoil;                               
386   G4double ratio = G4double(Z)/G4double(A);       
387                                                   
388   if( ratio > G4UniformRand() ) // proton is e    
389   {                                               
390     fProton = true;                               
391     recoil = G4Nucleus(A-1,Z-1);                  
392     fRecoil = &recoil;                            
393     fMt = G4ParticleTable::GetParticleTable()-    
394           + G4ParticleTable::GetParticleTable(    
395   }                                               
396   else // excited neutron                         
397   {                                               
398     fProton = false;                              
399     recoil = G4Nucleus(A-1,Z);                    
400     fRecoil = &recoil;                            
401     fMt = G4ParticleTable::GetParticleTable()-    
402           + G4ParticleTable::GetParticleTable(    
403   }                                               
404   // G4int       index = GetEnergyIndex(energy    
405   G4int nepdg = aParticle->GetDefinition()->Ge    
406                                                   
407   G4double qeTotRat; //  = GetNuMuQeTotRat(ind    
408   qeTotRat = CalculateQEratioA( Z, A, energy,     
409                                                   
410   G4ThreeVector dX = (lvX.vect()).unit();         
411   G4double eX   = lvX.e();  // excited nucleon    
412   G4double mX   = sqrt(massX2);                   
413                                                   
414   if( qeTotRat > G4UniformRand() || mX <= fMt     
415   {                                               
416     fString = false;                              
417                                                   
418     G4double rM;                                  
419     if( fProton )                                 
420     {                                             
421       fPDGencoding = 2212;                        
422       fMr =  proton_mass_c2;                      
423       recoil = G4Nucleus(A-1,Z-1);                
424       fRecoil = &recoil;                          
425       rM = recoil.AtomicMass(A-1,Z-1);            
426     }                                             
427     else                                          
428     {                                             
429       fPDGencoding = 2112;                        
430       fMr =   G4ParticleTable::GetParticleTabl    
431   FindParticle(fPDGencoding)->GetPDGMass(); //    
432       recoil = G4Nucleus(A-1,Z);                  
433       fRecoil = &recoil;                          
434       rM = recoil.AtomicMass(A-1,Z);              
435     }                                             
436     G4double eTh = fMr+0.5*(fMr*fMr-mX*mX)/rM;    
437                                                   
438     if(eX <= eTh) // vmg, very rarely out of k    
439     {                                             
440       theParticleChange.SetEnergyChange(energy    
441       theParticleChange.SetMomentumChange(aTra    
442       return &theParticleChange;                  
443     }                                             
444     FinalBarion( lvX, 0, fPDGencoding ); // p(    
445   }                                               
446   else // if ( eX < 9500000.*GeV ) // < 25.*Ge    
447   {                                               
448     if     (  fProton && pName == "anti_nu_e"     
449     else if( !fProton && pName == "anti_nu_e"     
450                                                   
451     ClusterDecay( lvX, qB );                      
452   }                                               
453   return &theParticleChange;                      
454 }                                                 
455                                                   
456                                                   
457 //////////////////////////////////////////////    
458 //////////////////////////////////////////////    
459 //////////////////////////////////////////////    
460                                                   
461 //////////////////////////////////////////////    
462 //                                                
463 // sample x, then Q2                              
464                                                   
465 void G4ANuElNucleusNcModel::SampleLVkr(const G    
466 {                                                 
467   fBreak = false;                                 
468   G4int A = targetNucleus.GetA_asInt(), iTer(0    
469   G4int Z = targetNucleus.GetZ_asInt();           
470   G4double e3(0.), pMu2(0.), pX2(0.), nMom(0.)    
471   G4double cost(1.), sint(0.), phi(0.), muMom(    
472   G4ThreeVector eP, bst;                          
473   const G4HadProjectile* aParticle = &aTrack;     
474   G4LorentzVector lvp1 = aParticle->Get4Moment    
475   nMom = NucleonMomentum( targetNucleus );        
476                                                   
477   if( A == 1 || nMom == 0. ) // hydrogen, no F    
478   {                                               
479     fNuEnergy = aParticle->GetTotalEnergy();      
480     iTer = 0;                                     
481                                                   
482     do                                            
483     {                                             
484       fXsample = SampleXkr(fNuEnergy);            
485       fQtransfer = SampleQkr(fNuEnergy, fXsamp    
486       fQ2 = fQtransfer*fQtransfer;                
487                                                   
488      if( fXsample > 0. )                          
489       {                                           
490         fW2 = fM1*fM1 - fQ2 + fQ2/fXsample; //    
491         fEmu = fNuEnergy - fQ2/2./fM1/fXsample    
492       }                                           
493       else                                        
494       {                                           
495         fW2 = fM1*fM1;                            
496         fEmu = fNuEnergy;                         
497       }                                           
498       e3 = fNuEnergy + fM1 - fEmu;                
499                                                   
500       // if( e3 < sqrt(fW2) )  G4cout<<"energy    
501                                                   
502       pMu2 = fEmu*fEmu - fMnumu*fMnumu;           
503       pX2  = e3*e3 - fW2;                         
504                                                   
505       fCosTheta  = fNuEnergy*fNuEnergy  + pMu2    
506       fCosTheta /= 2.*fNuEnergy*sqrt(pMu2);       
507       iTer++;                                     
508     }                                             
509     while( ( abs(fCosTheta) > 1. || fEmu < fMn    
510                                                   
511     if( iTer >= iTerMax ) { fBreak = true; ret    
512                                                   
513     if( abs(fCosTheta) > 1.) // vmg: due to bi    
514     {                                             
515       G4cout<<"H2: fCosTheta = "<<fCosTheta<<"    
516       // fCosTheta = -1. + 2.*G4UniformRand();    
517       if(fCosTheta < -1.) fCosTheta = -1.;        
518       if(fCosTheta >  1.) fCosTheta =  1.;        
519     }                                             
520     // LVs                                        
521                                                   
522     G4LorentzVector lvt1  = G4LorentzVector( 0    
523     G4LorentzVector lvsum = lvp1 + lvt1;          
524                                                   
525     cost = fCosTheta;                             
526     sint = std::sqrt( (1.0 - cost)*(1.0 + cost    
527     phi  = G4UniformRand()*CLHEP::twopi;          
528     eP   = G4ThreeVector( sint*std::cos(phi),     
529     muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu);        
530     eP *= muMom;                                  
531     fLVl = G4LorentzVector( eP, fEmu );           
532                                                   
533     fLVh = lvsum - fLVl;                          
534     fLVt = G4LorentzVector( 0., 0., 0., 0. );     
535   }                                               
536   else // Fermi motion, Q2 in nucleon rest fra    
537   {                                               
538     G4ThreeVector nMomDir = nMom*G4RandomDirec    
539                                                   
540     if( !f2p2h ) // 1p1h                          
541     {                                             
542       G4Nucleus recoil(A-1,Z);                    
543       rM = sqrt( recoil.AtomicMass(A-1,Z)*reco    
544       hM = tM - rM;                               
545                                                   
546       fLVt = G4LorentzVector( nMomDir, sqrt( r    
547       fLVh = G4LorentzVector(-nMomDir, sqrt( h    
548     }                                             
549     else // 2p2h                                  
550     {                                             
551       G4Nucleus recoil(A-2,Z-1);                  
552       rM = recoil.AtomicMass(A-2,Z-1)+sqrt(nMo    
553       hM = tM - rM;                               
554                                                   
555       fLVt = G4LorentzVector( nMomDir, sqrt( r    
556       fLVh = G4LorentzVector(-nMomDir, sqrt( h    
557     }                                             
558     // G4cout<<hM<<", ";                          
559     // bst = fLVh.boostVector(); // 9-3-20        
560                                                   
561     // lvp1.boost(-bst); // 9-3-20 -> nucleon     
562                                                   
563     fNuEnergy  = lvp1.e();                        
564     iTer = 0;                                     
565                                                   
566     do                                            
567     {                                             
568       fXsample = SampleXkr(fNuEnergy);            
569       fQtransfer = SampleQkr(fNuEnergy, fXsamp    
570       fQ2 = fQtransfer*fQtransfer;                
571                                                   
572       if( fXsample > 0. )                         
573       {                                           
574         fW2 = fM1*fM1 - fQ2 + fQ2/fXsample; //    
575         fEmu = fNuEnergy - fQ2/2./fM1/fXsample    
576       }                                           
577       else                                        
578       {                                           
579         fW2 = fM1*fM1;                            
580         fEmu = fNuEnergy;                         
581       }                                           
582                                                   
583       // if(fEmu < 0.) G4cout<<"fEmu = "<<fEmu    
584                                                   
585       e3 = fNuEnergy + fM1 - fEmu;                
586                                                   
587       // if( e3 < sqrt(fW2) )  G4cout<<"energy    
588                                                   
589       pMu2 = fEmu*fEmu - fMnumu*fMnumu;           
590       pX2  = e3*e3 - fW2;                         
591                                                   
592       fCosTheta  = fNuEnergy*fNuEnergy  + pMu2    
593       fCosTheta /= 2.*fNuEnergy*sqrt(pMu2);       
594       iTer++;                                     
595     }                                             
596     while( ( abs(fCosTheta) > 1. || fEmu < fMn    
597                                                   
598     if( iTer >= iTerMax ) { fBreak = true; ret    
599                                                   
600     if( abs(fCosTheta) > 1.) // vmg: due to bi    
601     {                                             
602       G4cout<<"FM: fCosTheta = "<<fCosTheta<<"    
603       // fCosTheta = -1. + 2.*G4UniformRand();    
604       if(fCosTheta < -1.) fCosTheta = -1.;        
605       if(fCosTheta >  1.) fCosTheta =  1.;        
606     }                                             
607     // LVs                                        
608     G4LorentzVector lvt1  = G4LorentzVector( 0    
609     G4LorentzVector lvsum = lvp1 + lvt1;          
610                                                   
611     cost = fCosTheta;                             
612     sint = std::sqrt( (1.0 - cost)*(1.0 + cost    
613     phi  = G4UniformRand()*CLHEP::twopi;          
614     eP   = G4ThreeVector( sint*std::cos(phi),     
615     muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu);        
616     eP *= muMom;                                  
617     fLVl = G4LorentzVector( eP, fEmu );           
618     fLVh = lvsum - fLVl;                          
619     // back to lab system                         
620     // fLVl.boost(bst); // 9-3-20                 
621     // fLVh.boost(bst); // 9-3-20                 
622   }                                               
623   //G4cout<<iTer<<", "<<fBreak<<"; ";             
624 }                                                 
625                                                   
626 //                                                
627 //                                                
628 ///////////////////////////                       
629