Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // $Id: G4ANuElNucleusNcModel.cc 91806 2015-08 26 // $Id: G4ANuElNucleusNcModel.cc 91806 2015-08-06 12:20:45Z gcosmo $ 27 // 27 // 28 // Geant4 Header : G4ANuElNucleusNcModel 28 // Geant4 Header : G4ANuElNucleusNcModel 29 // 29 // 30 // Author : V.Grichine 12.2.19 30 // Author : V.Grichine 12.2.19 31 // 31 // 32 32 33 #include "G4ANuElNucleusNcModel.hh" 33 #include "G4ANuElNucleusNcModel.hh" 34 #include "G4NeutrinoNucleusModel.hh" 34 #include "G4NeutrinoNucleusModel.hh" 35 35 36 // #include "G4NuMuResQX.hh" 36 // #include "G4NuMuResQX.hh" 37 37 38 #include "G4SystemOfUnits.hh" 38 #include "G4SystemOfUnits.hh" 39 #include "G4ParticleTable.hh" 39 #include "G4ParticleTable.hh" 40 #include "G4ParticleDefinition.hh" 40 #include "G4ParticleDefinition.hh" 41 #include "G4IonTable.hh" 41 #include "G4IonTable.hh" 42 #include "Randomize.hh" 42 #include "Randomize.hh" 43 #include "G4RandomDirection.hh" 43 #include "G4RandomDirection.hh" 44 44 45 // #include "G4Integrator.hh" 45 // #include "G4Integrator.hh" 46 #include "G4DataVector.hh" 46 #include "G4DataVector.hh" 47 #include "G4PhysicsTable.hh" 47 #include "G4PhysicsTable.hh" 48 #include "G4KineticTrack.hh" 48 #include "G4KineticTrack.hh" 49 #include "G4DecayKineticTracks.hh" 49 #include "G4DecayKineticTracks.hh" 50 #include "G4KineticTrackVector.hh" 50 #include "G4KineticTrackVector.hh" 51 #include "G4Fragment.hh" 51 #include "G4Fragment.hh" 52 #include "G4ReactionProductVector.hh" 52 #include "G4ReactionProductVector.hh" 53 53 54 54 55 #include "G4NeutrinoE.hh" 55 #include "G4NeutrinoE.hh" 56 // #include "G4AntiNeutrinoMu.hh" 56 // #include "G4AntiNeutrinoMu.hh" 57 #include "G4Nucleus.hh" 57 #include "G4Nucleus.hh" 58 #include "G4LorentzVector.hh" 58 #include "G4LorentzVector.hh" 59 59 60 using namespace std; 60 using namespace std; 61 using namespace CLHEP; 61 using namespace CLHEP; 62 62 63 #ifdef G4MULTITHREADED 63 #ifdef G4MULTITHREADED 64 G4Mutex G4ANuElNucleusNcModel::numuNucleus 64 G4Mutex G4ANuElNucleusNcModel::numuNucleusModel = G4MUTEX_INITIALIZER; 65 #endif 65 #endif 66 66 67 67 68 G4ANuElNucleusNcModel::G4ANuElNucleusNcModel(c 68 G4ANuElNucleusNcModel::G4ANuElNucleusNcModel(const G4String& name) 69 : G4NeutrinoNucleusModel(name) 69 : G4NeutrinoNucleusModel(name) 70 { 70 { 71 SetMinEnergy( 0.0*GeV ); 71 SetMinEnergy( 0.0*GeV ); 72 SetMaxEnergy( 100.*TeV ); 72 SetMaxEnergy( 100.*TeV ); 73 SetMinEnergy(1.e-6*eV); 73 SetMinEnergy(1.e-6*eV); 74 74 75 theNuE = G4NeutrinoE::NeutrinoE(); 75 theNuE = G4NeutrinoE::NeutrinoE(); 76 76 77 fMnumu = 0.; 77 fMnumu = 0.; 78 fData = fMaster = false; 78 fData = fMaster = false; 79 InitialiseModel(); 79 InitialiseModel(); 80 80 81 } 81 } 82 82 83 83 84 G4ANuElNucleusNcModel::~G4ANuElNucleusNcModel( 84 G4ANuElNucleusNcModel::~G4ANuElNucleusNcModel() 85 {} 85 {} 86 86 87 87 88 void G4ANuElNucleusNcModel::ModelDescription(s 88 void G4ANuElNucleusNcModel::ModelDescription(std::ostream& outFile) const 89 { 89 { 90 90 91 outFile << "G4ANuElNucleusNcModel is a neu 91 outFile << "G4ANuElNucleusNcModel is a neutrino-nucleus (neutral current) scattering\n" 92 << "model which uses the standard 92 << "model which uses the standard model \n" 93 << "transfer parameterization. Th 93 << "transfer parameterization. The model is fully relativistic\n"; 94 94 95 } 95 } 96 96 97 ////////////////////////////////////////////// 97 ///////////////////////////////////////////////////////// 98 // 98 // 99 // Read data from G4PARTICLEXSDATA (locally PA 99 // Read data from G4PARTICLEXSDATA (locally PARTICLEXSDATA) 100 100 101 void G4ANuElNucleusNcModel::InitialiseModel() 101 void G4ANuElNucleusNcModel::InitialiseModel() 102 { 102 { 103 G4String pName = "anti_nu_e"; 103 G4String pName = "anti_nu_e"; 104 104 105 G4int nSize(0), i(0), j(0), k(0); 105 G4int nSize(0), i(0), j(0), k(0); 106 106 107 if(!fData) 107 if(!fData) 108 { 108 { 109 #ifdef G4MULTITHREADED 109 #ifdef G4MULTITHREADED 110 G4MUTEXLOCK(&numuNucleusModel); 110 G4MUTEXLOCK(&numuNucleusModel); 111 if(!fData) 111 if(!fData) 112 { 112 { 113 #endif 113 #endif 114 fMaster = true; 114 fMaster = true; 115 #ifdef G4MULTITHREADED 115 #ifdef G4MULTITHREADED 116 } 116 } 117 G4MUTEXUNLOCK(&numuNucleusModel); 117 G4MUTEXUNLOCK(&numuNucleusModel); 118 #endif 118 #endif 119 } 119 } 120 120 121 if(fMaster) 121 if(fMaster) 122 { 122 { 123 const char* path = G4FindDataDir("G4PARTIC << 123 char* path = getenv("G4PARTICLEXSDATA"); 124 std::ostringstream ost1, ost2, ost3, ost4; 124 std::ostringstream ost1, ost2, ost3, ost4; 125 ost1 << path << "/" << "neutrino" << "/" < 125 ost1 << path << "/" << "neutrino" << "/" << pName << "/xarraynckr"; 126 126 127 std::ifstream filein1( ost1.str().c_str() 127 std::ifstream filein1( ost1.str().c_str() ); 128 128 129 // filein.open("$PARTICLEXSDATA/"); 129 // filein.open("$PARTICLEXSDATA/"); 130 130 131 filein1>>nSize; 131 filein1>>nSize; 132 132 133 for( k = 0; k < fNbin; ++k ) 133 for( k = 0; k < fNbin; ++k ) 134 { 134 { 135 for( i = 0; i <= fNbin; ++i ) 135 for( i = 0; i <= fNbin; ++i ) 136 { 136 { 137 filein1 >> fNuMuXarrayKR[k][i]; 137 filein1 >> fNuMuXarrayKR[k][i]; 138 // G4cout<< fNuMuXarrayKR[k][i] << " 138 // G4cout<< fNuMuXarrayKR[k][i] << " "; 139 } 139 } 140 } 140 } 141 // G4cout<<G4endl<<G4endl; 141 // G4cout<<G4endl<<G4endl; 142 142 143 ost2 << path << "/" << "neutrino" << "/" < 143 ost2 << path << "/" << "neutrino" << "/" << pName << "/xdistrnckr"; 144 std::ifstream filein2( ost2.str().c_str() 144 std::ifstream filein2( ost2.str().c_str() ); 145 145 146 filein2>>nSize; 146 filein2>>nSize; 147 147 148 for( k = 0; k < fNbin; ++k ) 148 for( k = 0; k < fNbin; ++k ) 149 { 149 { 150 for( i = 0; i < fNbin; ++i ) 150 for( i = 0; i < fNbin; ++i ) 151 { 151 { 152 filein2 >> fNuMuXdistrKR[k][i]; 152 filein2 >> fNuMuXdistrKR[k][i]; 153 // G4cout<< fNuMuXdistrKR[k][i] << " 153 // G4cout<< fNuMuXdistrKR[k][i] << " "; 154 } 154 } 155 } 155 } 156 // G4cout<<G4endl<<G4endl; 156 // G4cout<<G4endl<<G4endl; 157 157 158 ost3 << path << "/" << "neutrino" << "/" < 158 ost3 << path << "/" << "neutrino" << "/" << pName << "/q2arraynckr"; 159 std::ifstream filein3( ost3.str().c_str() 159 std::ifstream filein3( ost3.str().c_str() ); 160 160 161 filein3>>nSize; 161 filein3>>nSize; 162 162 163 for( k = 0; k < fNbin; ++k ) 163 for( k = 0; k < fNbin; ++k ) 164 { 164 { 165 for( i = 0; i <= fNbin; ++i ) 165 for( i = 0; i <= fNbin; ++i ) 166 { 166 { 167 for( j = 0; j <= fNbin; ++j ) 167 for( j = 0; j <= fNbin; ++j ) 168 { 168 { 169 filein3 >> fNuMuQarrayKR[k][i][j]; 169 filein3 >> fNuMuQarrayKR[k][i][j]; 170 // G4cout<< fNuMuQarrayKR[k][i][j] < 170 // G4cout<< fNuMuQarrayKR[k][i][j] << " "; 171 } 171 } 172 } 172 } 173 } 173 } 174 // G4cout<<G4endl<<G4endl; 174 // G4cout<<G4endl<<G4endl; 175 175 176 ost4 << path << "/" << "neutrino" << "/" < 176 ost4 << path << "/" << "neutrino" << "/" << pName << "/q2distrnckr"; 177 std::ifstream filein4( ost4.str().c_str() 177 std::ifstream filein4( ost4.str().c_str() ); 178 178 179 filein4>>nSize; 179 filein4>>nSize; 180 180 181 for( k = 0; k < fNbin; ++k ) 181 for( k = 0; k < fNbin; ++k ) 182 { 182 { 183 for( i = 0; i <= fNbin; ++i ) 183 for( i = 0; i <= fNbin; ++i ) 184 { 184 { 185 for( j = 0; j < fNbin; ++j ) 185 for( j = 0; j < fNbin; ++j ) 186 { 186 { 187 filein4 >> fNuMuQdistrKR[k][i][j]; 187 filein4 >> fNuMuQdistrKR[k][i][j]; 188 // G4cout<< fNuMuQdistrKR[k][i][j] < 188 // G4cout<< fNuMuQdistrKR[k][i][j] << " "; 189 } 189 } 190 } 190 } 191 } 191 } 192 fData = true; 192 fData = true; 193 } 193 } 194 } 194 } 195 195 196 ////////////////////////////////////////////// 196 ///////////////////////////////////////////////////////// 197 197 198 G4bool G4ANuElNucleusNcModel::IsApplicable(con 198 G4bool G4ANuElNucleusNcModel::IsApplicable(const G4HadProjectile & aPart, 199 G4Nucleus & ) << 199 G4Nucleus & targetNucleus) 200 { 200 { 201 G4bool result = false; 201 G4bool result = false; 202 G4String pName = aPart.GetDefinition()->GetP 202 G4String pName = aPart.GetDefinition()->GetParticleName(); 203 G4double energy = aPart.GetTotalEnergy(); 203 G4double energy = aPart.GetTotalEnergy(); 204 fMinNuEnergy = GetMinNuElEnergy(); 204 fMinNuEnergy = GetMinNuElEnergy(); 205 205 206 if( pName == "anti_nu_e" 206 if( pName == "anti_nu_e" 207 && 207 && 208 energy > fMinNuEnergy 208 energy > fMinNuEnergy ) 209 { 209 { 210 result = true; 210 result = true; 211 } 211 } >> 212 G4int Z = targetNucleus.GetZ_asInt(); >> 213 Z *= 1; 212 214 213 return result; 215 return result; 214 } 216 } 215 217 216 /////////////////////////////////////////// Cl 218 /////////////////////////////////////////// ClusterDecay //////////////////////////////////////////////////////////// 217 // 219 // 218 // 220 // 219 221 220 G4HadFinalState* G4ANuElNucleusNcModel::ApplyY 222 G4HadFinalState* G4ANuElNucleusNcModel::ApplyYourself( 221 const G4HadProjectile& aTrack, G4Nucleus& 223 const G4HadProjectile& aTrack, G4Nucleus& targetNucleus) 222 { 224 { 223 theParticleChange.Clear(); 225 theParticleChange.Clear(); 224 fProton = f2p2h = fBreak = false; 226 fProton = f2p2h = fBreak = false; 225 const G4HadProjectile* aParticle = &aTrack; 227 const G4HadProjectile* aParticle = &aTrack; 226 G4double energy = aParticle->GetTotalEnergy( 228 G4double energy = aParticle->GetTotalEnergy(); 227 229 228 G4String pName = aParticle->GetDefinition() 230 G4String pName = aParticle->GetDefinition()->GetParticleName(); 229 231 230 if( energy < fMinNuEnergy ) 232 if( energy < fMinNuEnergy ) 231 { 233 { 232 theParticleChange.SetEnergyChange(energy); 234 theParticleChange.SetEnergyChange(energy); 233 theParticleChange.SetMomentumChange(aTrack 235 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 234 return &theParticleChange; 236 return &theParticleChange; 235 } 237 } 236 SampleLVkr( aTrack, targetNucleus); 238 SampleLVkr( aTrack, targetNucleus); 237 239 238 if( fBreak == true || fEmu < fMnumu ) // ~5* 240 if( fBreak == true || fEmu < fMnumu ) // ~5*10^-6 239 { 241 { 240 // G4cout<<"ni, "; 242 // G4cout<<"ni, "; 241 theParticleChange.SetEnergyChange(energy); 243 theParticleChange.SetEnergyChange(energy); 242 theParticleChange.SetMomentumChange(aTrack 244 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 243 return &theParticleChange; 245 return &theParticleChange; 244 } 246 } 245 247 246 // LVs of initial state 248 // LVs of initial state 247 249 248 G4LorentzVector lvp1 = aParticle->Get4Moment 250 G4LorentzVector lvp1 = aParticle->Get4Momentum(); 249 G4LorentzVector lvt1( 0., 0., 0., fM1 ); 251 G4LorentzVector lvt1( 0., 0., 0., fM1 ); 250 G4double mPip = G4ParticleTable::GetParticle 252 G4double mPip = G4ParticleTable::GetParticleTable()->FindParticle(211)->GetPDGMass(); 251 253 252 // 1-pi by fQtransfer && nu-energy 254 // 1-pi by fQtransfer && nu-energy 253 G4LorentzVector lvpip1( 0., 0., 0., mPip ); 255 G4LorentzVector lvpip1( 0., 0., 0., mPip ); 254 G4LorentzVector lvsum, lv2, lvX; 256 G4LorentzVector lvsum, lv2, lvX; 255 G4ThreeVector eP; 257 G4ThreeVector eP; 256 G4double cost(1.), sint(0.), phi(0.), muMom( 258 G4double cost(1.), sint(0.), phi(0.), muMom(0.), massX2(0.); 257 G4DynamicParticle* aLept = nullptr; // lepto 259 G4DynamicParticle* aLept = nullptr; // lepton lv 258 260 259 G4int Z = targetNucleus.GetZ_asInt(); 261 G4int Z = targetNucleus.GetZ_asInt(); 260 G4int A = targetNucleus.GetA_asInt(); 262 G4int A = targetNucleus.GetA_asInt(); 261 G4double mTarg = targetNucleus.AtomicMass(A 263 G4double mTarg = targetNucleus.AtomicMass(A,Z); 262 G4int pdgP(0), qB(0); 264 G4int pdgP(0), qB(0); 263 // G4double mSum = G4ParticleTable::GetParti 265 // G4double mSum = G4ParticleTable::GetParticleTable()->FindParticle(2212)->GetPDGMass() + mPip; 264 266 265 G4int iPi = GetOnePionIndex(energy); 267 G4int iPi = GetOnePionIndex(energy); 266 G4double p1pi = GetNuMuOnePionProb( iPi, ene 268 G4double p1pi = GetNuMuOnePionProb( iPi, energy); 267 269 268 if( p1pi > G4UniformRand() && fCosTheta > 0. 270 if( p1pi > G4UniformRand() && fCosTheta > 0.9 ) // && fQtransfer < 0.95*GeV ) // mu- & coherent pion + nucleus 269 { 271 { 270 // lvsum = lvp1 + lvpip1; 272 // lvsum = lvp1 + lvpip1; 271 lvsum = lvp1 + lvt1; 273 lvsum = lvp1 + lvt1; 272 // cost = fCosThetaPi; 274 // cost = fCosThetaPi; 273 cost = fCosTheta; 275 cost = fCosTheta; 274 sint = std::sqrt( (1.0 - cost)*(1.0 + cost 276 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) ); 275 phi = G4UniformRand()*CLHEP::twopi; 277 phi = G4UniformRand()*CLHEP::twopi; 276 eP = G4ThreeVector( sint*std::cos(phi), 278 eP = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost ); 277 279 278 // muMom = sqrt(fEmuPi*fEmuPi-fMnumu*fMnum 280 // muMom = sqrt(fEmuPi*fEmuPi-fMnumu*fMnumu); 279 muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu); 281 muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu); 280 282 281 eP *= muMom; 283 eP *= muMom; 282 284 283 // lv2 = G4LorentzVector( eP, fEmuPi ); 285 // lv2 = G4LorentzVector( eP, fEmuPi ); 284 lv2 = G4LorentzVector( eP, fEmu ); 286 lv2 = G4LorentzVector( eP, fEmu ); 285 lv2 = fLVl; 287 lv2 = fLVl; 286 288 287 lvX = lvsum - lv2; 289 lvX = lvsum - lv2; 288 lvX = fLVh; 290 lvX = fLVh; 289 massX2 = lvX.m2(); 291 massX2 = lvX.m2(); 290 G4double massX = lvX.m(); 292 G4double massX = lvX.m(); 291 G4double massR = fLVt.m(); 293 G4double massR = fLVt.m(); 292 294 293 // if ( massX2 <= 0. ) // vmg: very rarely 295 // if ( massX2 <= 0. ) // vmg: very rarely ~ (1-4)e-6 due to big Q2/x, to be improved 294 if ( massX2 <= fM1*fM1 ) // 9-3-20 vmg: ve 296 if ( massX2 <= fM1*fM1 ) // 9-3-20 vmg: very rarely ~ (1-4)e-6 due to big Q2/x, to be improved 295 if ( lvX.e() <= fM1 ) // 9-3-20 vmg: ver 297 if ( lvX.e() <= fM1 ) // 9-3-20 vmg: very rarely ~ (1-4)e-6 due to big Q2/x, to be improved 296 { 298 { 297 theParticleChange.SetEnergyChange(energy 299 theParticleChange.SetEnergyChange(energy); 298 theParticleChange.SetMomentumChange(aTra 300 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 299 return &theParticleChange; 301 return &theParticleChange; 300 } 302 } 301 fW2 = massX2; 303 fW2 = massX2; 302 304 303 if( pName == "anti_nu_e" ) aLept 305 if( pName == "anti_nu_e" ) aLept = new G4DynamicParticle( theNuE, lv2 ); 304 // else if( pName == "anti_nu_mu") aLept = 306 // else if( pName == "anti_nu_mu") aLept = new G4DynamicParticle( theANuMu, lv2 ); 305 else 307 else 306 { 308 { 307 theParticleChange.SetEnergyChange(energy 309 theParticleChange.SetEnergyChange(energy); 308 theParticleChange.SetMomentumChange(aTra 310 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 309 return &theParticleChange; 311 return &theParticleChange; 310 } 312 } 311 313 312 pdgP = 111; 314 pdgP = 111; 313 315 314 G4double eCut; // = fMpi + 0.5*(fMpi*fMpi 316 G4double eCut; // = fMpi + 0.5*(fMpi*fMpi - massX2)/mTarg; // massX -> fMpi 315 317 316 if( A > 1 ) 318 if( A > 1 ) 317 { 319 { 318 eCut = (fMpi + mTarg)*(fMpi + mTarg) - ( 320 eCut = (fMpi + mTarg)*(fMpi + mTarg) - (massX + massR)*(massX + massR); 319 eCut /= 2.*massR; 321 eCut /= 2.*massR; 320 eCut += massX; 322 eCut += massX; 321 } 323 } 322 else eCut = fM1 + fMpi; 324 else eCut = fM1 + fMpi; 323 325 324 if ( lvX.e() > eCut ) // && sqrt( GetW2() 326 if ( lvX.e() > eCut ) // && sqrt( GetW2() ) < 1.4*GeV ) // 325 { 327 { 326 CoherentPion( lvX, pdgP, targetNucleus); 328 CoherentPion( lvX, pdgP, targetNucleus); 327 } 329 } 328 else 330 else 329 { 331 { 330 theParticleChange.SetEnergyChange(energy 332 theParticleChange.SetEnergyChange(energy); 331 theParticleChange.SetMomentumChange(aTra 333 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 332 return &theParticleChange; 334 return &theParticleChange; 333 } 335 } 334 theParticleChange.AddSecondary( aLept, fSe << 336 theParticleChange.AddSecondary( aLept ); 335 337 336 return &theParticleChange; 338 return &theParticleChange; 337 } 339 } 338 else // lepton part in lab 340 else // lepton part in lab 339 { 341 { 340 lvsum = lvp1 + lvt1; 342 lvsum = lvp1 + lvt1; 341 cost = fCosTheta; 343 cost = fCosTheta; 342 sint = std::sqrt( (1.0 - cost)*(1.0 + cost 344 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) ); 343 phi = G4UniformRand()*CLHEP::twopi; 345 phi = G4UniformRand()*CLHEP::twopi; 344 eP = G4ThreeVector( sint*std::cos(phi), 346 eP = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost ); 345 347 346 muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu); 348 muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu); 347 349 348 eP *= muMom; 350 eP *= muMom; 349 351 350 lv2 = G4LorentzVector( eP, fEmu ); 352 lv2 = G4LorentzVector( eP, fEmu ); 351 353 352 lvX = lvsum - lv2; 354 lvX = lvsum - lv2; 353 355 354 massX2 = lvX.m2(); 356 massX2 = lvX.m2(); 355 357 356 if ( massX2 <= 0. ) // vmg: very rarely ~ 358 if ( massX2 <= 0. ) // vmg: very rarely ~ (1-4)e-6 due to big Q2/x, to be improved 357 { 359 { 358 theParticleChange.SetEnergyChange(energy 360 theParticleChange.SetEnergyChange(energy); 359 theParticleChange.SetMomentumChange(aTra 361 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 360 return &theParticleChange; 362 return &theParticleChange; 361 } 363 } 362 fW2 = massX2; 364 fW2 = massX2; 363 365 364 aLept = new G4DynamicParticle( theNuE, lv2 366 aLept = new G4DynamicParticle( theNuE, lv2 ); 365 367 366 theParticleChange.AddSecondary( aLept, fSe << 368 theParticleChange.AddSecondary( aLept ); 367 } 369 } 368 370 369 // hadron part 371 // hadron part 370 372 371 fRecoil = nullptr; 373 fRecoil = nullptr; 372 fCascade = false; 374 fCascade = false; 373 fString = false; 375 fString = false; 374 376 375 if( A == 1 ) 377 if( A == 1 ) 376 { 378 { 377 qB = 1; 379 qB = 1; 378 380 379 // if( G4UniformRand() > 0.1 ) // > 0.999 381 // if( G4UniformRand() > 0.1 ) // > 0.9999 ) // > 0.0001 ) // 380 { 382 { 381 ClusterDecay( lvX, qB ); 383 ClusterDecay( lvX, qB ); 382 } 384 } 383 return &theParticleChange; 385 return &theParticleChange; 384 } 386 } 385 G4Nucleus recoil; 387 G4Nucleus recoil; 386 G4double ratio = G4double(Z)/G4double(A); << 388 G4double rM(0.), ratio = G4double(Z)/G4double(A); 387 389 388 if( ratio > G4UniformRand() ) // proton is e 390 if( ratio > G4UniformRand() ) // proton is excited 389 { 391 { 390 fProton = true; 392 fProton = true; 391 recoil = G4Nucleus(A-1,Z-1); 393 recoil = G4Nucleus(A-1,Z-1); 392 fRecoil = &recoil; 394 fRecoil = &recoil; >> 395 rM = recoil.AtomicMass(A-1,Z-1); >> 396 393 fMt = G4ParticleTable::GetParticleTable()- 397 fMt = G4ParticleTable::GetParticleTable()->FindParticle(2212)->GetPDGMass() 394 + G4ParticleTable::GetParticleTable( 398 + G4ParticleTable::GetParticleTable()->FindParticle(111)->GetPDGMass(); 395 } 399 } 396 else // excited neutron 400 else // excited neutron 397 { 401 { 398 fProton = false; 402 fProton = false; 399 recoil = G4Nucleus(A-1,Z); 403 recoil = G4Nucleus(A-1,Z); 400 fRecoil = &recoil; 404 fRecoil = &recoil; >> 405 rM = recoil.AtomicMass(A-1,Z); >> 406 401 fMt = G4ParticleTable::GetParticleTable()- 407 fMt = G4ParticleTable::GetParticleTable()->FindParticle(2112)->GetPDGMass() 402 + G4ParticleTable::GetParticleTable( 408 + G4ParticleTable::GetParticleTable()->FindParticle(111)->GetPDGMass(); 403 } 409 } 404 // G4int index = GetEnergyIndex(energy << 410 G4int index = GetEnergyIndex(energy); 405 G4int nepdg = aParticle->GetDefinition()->Ge << 411 G4double qeTotRat = GetNuMuQeTotRat(index, energy); 406 << 407 G4double qeTotRat; // = GetNuMuQeTotRat(ind << 408 qeTotRat = CalculateQEratioA( Z, A, energy, << 409 412 410 G4ThreeVector dX = (lvX.vect()).unit(); 413 G4ThreeVector dX = (lvX.vect()).unit(); 411 G4double eX = lvX.e(); // excited nucleon 414 G4double eX = lvX.e(); // excited nucleon 412 G4double mX = sqrt(massX2); 415 G4double mX = sqrt(massX2); 413 416 414 if( qeTotRat > G4UniformRand() || mX <= fMt 417 if( qeTotRat > G4UniformRand() || mX <= fMt ) // || eX <= 1232.*MeV) // QE 415 { 418 { 416 fString = false; 419 fString = false; 417 420 418 G4double rM; << 419 if( fProton ) 421 if( fProton ) 420 { 422 { 421 fPDGencoding = 2212; 423 fPDGencoding = 2212; 422 fMr = proton_mass_c2; 424 fMr = proton_mass_c2; 423 recoil = G4Nucleus(A-1,Z-1); 425 recoil = G4Nucleus(A-1,Z-1); 424 fRecoil = &recoil; 426 fRecoil = &recoil; 425 rM = recoil.AtomicMass(A-1,Z-1); 427 rM = recoil.AtomicMass(A-1,Z-1); 426 } 428 } 427 else 429 else 428 { 430 { 429 fPDGencoding = 2112; 431 fPDGencoding = 2112; 430 fMr = G4ParticleTable::GetParticleTabl 432 fMr = G4ParticleTable::GetParticleTable()-> 431 FindParticle(fPDGencoding)->GetPDGMass(); // 433 FindParticle(fPDGencoding)->GetPDGMass(); // 939.5654133*MeV; 432 recoil = G4Nucleus(A-1,Z); 434 recoil = G4Nucleus(A-1,Z); 433 fRecoil = &recoil; 435 fRecoil = &recoil; 434 rM = recoil.AtomicMass(A-1,Z); 436 rM = recoil.AtomicMass(A-1,Z); 435 } 437 } 436 G4double eTh = fMr+0.5*(fMr*fMr-mX*mX)/rM; 438 G4double eTh = fMr+0.5*(fMr*fMr-mX*mX)/rM; 437 439 438 if(eX <= eTh) // vmg, very rarely out of k 440 if(eX <= eTh) // vmg, very rarely out of kinematics 439 { 441 { 440 theParticleChange.SetEnergyChange(energy 442 theParticleChange.SetEnergyChange(energy); 441 theParticleChange.SetMomentumChange(aTra 443 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 442 return &theParticleChange; 444 return &theParticleChange; 443 } 445 } 444 FinalBarion( lvX, 0, fPDGencoding ); // p( 446 FinalBarion( lvX, 0, fPDGencoding ); // p(n)+deexcited recoil 445 } 447 } 446 else // if ( eX < 9500000.*GeV ) // < 25.*Ge 448 else // if ( eX < 9500000.*GeV ) // < 25.*GeV) // < 95.*GeV ) // < 2.5*GeV ) //cluster decay 447 { 449 { 448 if ( fProton && pName == "anti_nu_e" 450 if ( fProton && pName == "anti_nu_e" ) qB = 1; 449 else if( !fProton && pName == "anti_nu_e" 451 else if( !fProton && pName == "anti_nu_e" ) qB = 0; 450 452 451 ClusterDecay( lvX, qB ); 453 ClusterDecay( lvX, qB ); 452 } 454 } 453 return &theParticleChange; 455 return &theParticleChange; 454 } 456 } 455 457 456 458 457 ////////////////////////////////////////////// 459 ///////////////////////////////////////////////////////////////////// 458 ////////////////////////////////////////////// 460 //////////////////////////////////////////////////////////////////// 459 ////////////////////////////////////////////// 461 /////////////////////////////////////////////////////////////////// 460 462 461 ////////////////////////////////////////////// 463 ///////////////////////////////////////////////// 462 // 464 // 463 // sample x, then Q2 465 // sample x, then Q2 464 466 465 void G4ANuElNucleusNcModel::SampleLVkr(const G 467 void G4ANuElNucleusNcModel::SampleLVkr(const G4HadProjectile & aTrack, G4Nucleus& targetNucleus) 466 { 468 { 467 fBreak = false; 469 fBreak = false; 468 G4int A = targetNucleus.GetA_asInt(), iTer(0 470 G4int A = targetNucleus.GetA_asInt(), iTer(0), iTerMax(100); 469 G4int Z = targetNucleus.GetZ_asInt(); 471 G4int Z = targetNucleus.GetZ_asInt(); 470 G4double e3(0.), pMu2(0.), pX2(0.), nMom(0.) 472 G4double e3(0.), pMu2(0.), pX2(0.), nMom(0.), rM(0.), hM(0.), tM = targetNucleus.AtomicMass(A,Z); 471 G4double cost(1.), sint(0.), phi(0.), muMom( 473 G4double cost(1.), sint(0.), phi(0.), muMom(0.); 472 G4ThreeVector eP, bst; 474 G4ThreeVector eP, bst; 473 const G4HadProjectile* aParticle = &aTrack; 475 const G4HadProjectile* aParticle = &aTrack; 474 G4LorentzVector lvp1 = aParticle->Get4Moment 476 G4LorentzVector lvp1 = aParticle->Get4Momentum(); 475 nMom = NucleonMomentum( targetNucleus ); 477 nMom = NucleonMomentum( targetNucleus ); 476 478 477 if( A == 1 || nMom == 0. ) // hydrogen, no F 479 if( A == 1 || nMom == 0. ) // hydrogen, no Fermi motion ??? 478 { 480 { 479 fNuEnergy = aParticle->GetTotalEnergy(); 481 fNuEnergy = aParticle->GetTotalEnergy(); 480 iTer = 0; 482 iTer = 0; 481 483 482 do 484 do 483 { 485 { 484 fXsample = SampleXkr(fNuEnergy); 486 fXsample = SampleXkr(fNuEnergy); 485 fQtransfer = SampleQkr(fNuEnergy, fXsamp 487 fQtransfer = SampleQkr(fNuEnergy, fXsample); 486 fQ2 = fQtransfer*fQtransfer; 488 fQ2 = fQtransfer*fQtransfer; 487 489 488 if( fXsample > 0. ) 490 if( fXsample > 0. ) 489 { 491 { 490 fW2 = fM1*fM1 - fQ2 + fQ2/fXsample; // 492 fW2 = fM1*fM1 - fQ2 + fQ2/fXsample; // sample excited hadron mass 491 fEmu = fNuEnergy - fQ2/2./fM1/fXsample 493 fEmu = fNuEnergy - fQ2/2./fM1/fXsample; 492 } 494 } 493 else 495 else 494 { 496 { 495 fW2 = fM1*fM1; 497 fW2 = fM1*fM1; 496 fEmu = fNuEnergy; 498 fEmu = fNuEnergy; 497 } 499 } 498 e3 = fNuEnergy + fM1 - fEmu; 500 e3 = fNuEnergy + fM1 - fEmu; 499 501 500 // if( e3 < sqrt(fW2) ) G4cout<<"energy 502 // if( e3 < sqrt(fW2) ) G4cout<<"energyX = "<<e3/GeV<<", fW = "<<sqrt(fW2)/GeV<<G4endl; // vmg ~10^-5 for NC 501 503 502 pMu2 = fEmu*fEmu - fMnumu*fMnumu; 504 pMu2 = fEmu*fEmu - fMnumu*fMnumu; 503 pX2 = e3*e3 - fW2; 505 pX2 = e3*e3 - fW2; 504 506 505 fCosTheta = fNuEnergy*fNuEnergy + pMu2 507 fCosTheta = fNuEnergy*fNuEnergy + pMu2 - pX2; 506 fCosTheta /= 2.*fNuEnergy*sqrt(pMu2); 508 fCosTheta /= 2.*fNuEnergy*sqrt(pMu2); 507 iTer++; 509 iTer++; 508 } 510 } 509 while( ( abs(fCosTheta) > 1. || fEmu < fMn 511 while( ( abs(fCosTheta) > 1. || fEmu < fMnumu ) && iTer < iTerMax ); 510 512 511 if( iTer >= iTerMax ) { fBreak = true; ret 513 if( iTer >= iTerMax ) { fBreak = true; return; } 512 514 513 if( abs(fCosTheta) > 1.) // vmg: due to bi 515 if( abs(fCosTheta) > 1.) // vmg: due to big Q2/x values. To be improved ... 514 { 516 { 515 G4cout<<"H2: fCosTheta = "<<fCosTheta<<" 517 G4cout<<"H2: fCosTheta = "<<fCosTheta<<", fEmu = "<<fEmu<<G4endl; 516 // fCosTheta = -1. + 2.*G4UniformRand(); 518 // fCosTheta = -1. + 2.*G4UniformRand(); 517 if(fCosTheta < -1.) fCosTheta = -1.; 519 if(fCosTheta < -1.) fCosTheta = -1.; 518 if(fCosTheta > 1.) fCosTheta = 1.; 520 if(fCosTheta > 1.) fCosTheta = 1.; 519 } 521 } 520 // LVs 522 // LVs 521 523 522 G4LorentzVector lvt1 = G4LorentzVector( 0 524 G4LorentzVector lvt1 = G4LorentzVector( 0., 0., 0., fM1 ); 523 G4LorentzVector lvsum = lvp1 + lvt1; 525 G4LorentzVector lvsum = lvp1 + lvt1; 524 526 525 cost = fCosTheta; 527 cost = fCosTheta; 526 sint = std::sqrt( (1.0 - cost)*(1.0 + cost 528 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) ); 527 phi = G4UniformRand()*CLHEP::twopi; 529 phi = G4UniformRand()*CLHEP::twopi; 528 eP = G4ThreeVector( sint*std::cos(phi), 530 eP = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost ); 529 muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu); 531 muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu); 530 eP *= muMom; 532 eP *= muMom; 531 fLVl = G4LorentzVector( eP, fEmu ); 533 fLVl = G4LorentzVector( eP, fEmu ); 532 534 533 fLVh = lvsum - fLVl; 535 fLVh = lvsum - fLVl; 534 fLVt = G4LorentzVector( 0., 0., 0., 0. ); 536 fLVt = G4LorentzVector( 0., 0., 0., 0. ); // no recoil 535 } 537 } 536 else // Fermi motion, Q2 in nucleon rest fra 538 else // Fermi motion, Q2 in nucleon rest frame 537 { 539 { 538 G4ThreeVector nMomDir = nMom*G4RandomDirec 540 G4ThreeVector nMomDir = nMom*G4RandomDirection(); 539 541 540 if( !f2p2h ) // 1p1h 542 if( !f2p2h ) // 1p1h 541 { 543 { 542 G4Nucleus recoil(A-1,Z); 544 G4Nucleus recoil(A-1,Z); 543 rM = sqrt( recoil.AtomicMass(A-1,Z)*reco 545 rM = sqrt( recoil.AtomicMass(A-1,Z)*recoil.AtomicMass(A-1,Z) + nMom*nMom ); 544 hM = tM - rM; 546 hM = tM - rM; 545 547 546 fLVt = G4LorentzVector( nMomDir, sqrt( r 548 fLVt = G4LorentzVector( nMomDir, sqrt( rM*rM+nMom*nMom ) ); 547 fLVh = G4LorentzVector(-nMomDir, sqrt( h 549 fLVh = G4LorentzVector(-nMomDir, sqrt( hM*hM+nMom*nMom ) ); 548 } 550 } 549 else // 2p2h 551 else // 2p2h 550 { 552 { 551 G4Nucleus recoil(A-2,Z-1); 553 G4Nucleus recoil(A-2,Z-1); 552 rM = recoil.AtomicMass(A-2,Z-1)+sqrt(nMo 554 rM = recoil.AtomicMass(A-2,Z-1)+sqrt(nMom*nMom+fM1*fM1); 553 hM = tM - rM; 555 hM = tM - rM; 554 556 555 fLVt = G4LorentzVector( nMomDir, sqrt( r 557 fLVt = G4LorentzVector( nMomDir, sqrt( rM*rM+nMom*nMom ) ); 556 fLVh = G4LorentzVector(-nMomDir, sqrt( h 558 fLVh = G4LorentzVector(-nMomDir, sqrt( hM*hM+nMom*nMom ) ); 557 } 559 } 558 // G4cout<<hM<<", "; 560 // G4cout<<hM<<", "; 559 // bst = fLVh.boostVector(); // 9-3-20 561 // bst = fLVh.boostVector(); // 9-3-20 560 562 561 // lvp1.boost(-bst); // 9-3-20 -> nucleon 563 // lvp1.boost(-bst); // 9-3-20 -> nucleon rest system, where Q2 transfer is ??? 562 564 563 fNuEnergy = lvp1.e(); 565 fNuEnergy = lvp1.e(); 564 iTer = 0; 566 iTer = 0; 565 567 566 do 568 do 567 { 569 { 568 fXsample = SampleXkr(fNuEnergy); 570 fXsample = SampleXkr(fNuEnergy); 569 fQtransfer = SampleQkr(fNuEnergy, fXsamp 571 fQtransfer = SampleQkr(fNuEnergy, fXsample); 570 fQ2 = fQtransfer*fQtransfer; 572 fQ2 = fQtransfer*fQtransfer; 571 573 572 if( fXsample > 0. ) 574 if( fXsample > 0. ) 573 { 575 { 574 fW2 = fM1*fM1 - fQ2 + fQ2/fXsample; // 576 fW2 = fM1*fM1 - fQ2 + fQ2/fXsample; // sample excited hadron mass 575 fEmu = fNuEnergy - fQ2/2./fM1/fXsample 577 fEmu = fNuEnergy - fQ2/2./fM1/fXsample; 576 } 578 } 577 else 579 else 578 { 580 { 579 fW2 = fM1*fM1; 581 fW2 = fM1*fM1; 580 fEmu = fNuEnergy; 582 fEmu = fNuEnergy; 581 } 583 } 582 584 583 // if(fEmu < 0.) G4cout<<"fEmu = "<<fEmu 585 // if(fEmu < 0.) G4cout<<"fEmu = "<<fEmu<<" hM = "<<hM<<G4endl; 584 586 585 e3 = fNuEnergy + fM1 - fEmu; 587 e3 = fNuEnergy + fM1 - fEmu; 586 588 587 // if( e3 < sqrt(fW2) ) G4cout<<"energy 589 // if( e3 < sqrt(fW2) ) G4cout<<"energyX = "<<e3/GeV<<", fW = "<<sqrt(fW2)/GeV<<G4endl; 588 590 589 pMu2 = fEmu*fEmu - fMnumu*fMnumu; 591 pMu2 = fEmu*fEmu - fMnumu*fMnumu; 590 pX2 = e3*e3 - fW2; 592 pX2 = e3*e3 - fW2; 591 593 592 fCosTheta = fNuEnergy*fNuEnergy + pMu2 594 fCosTheta = fNuEnergy*fNuEnergy + pMu2 - pX2; 593 fCosTheta /= 2.*fNuEnergy*sqrt(pMu2); 595 fCosTheta /= 2.*fNuEnergy*sqrt(pMu2); 594 iTer++; 596 iTer++; 595 } 597 } 596 while( ( abs(fCosTheta) > 1. || fEmu < fMn 598 while( ( abs(fCosTheta) > 1. || fEmu < fMnumu ) && iTer < iTerMax ); 597 599 598 if( iTer >= iTerMax ) { fBreak = true; ret 600 if( iTer >= iTerMax ) { fBreak = true; return; } 599 601 600 if( abs(fCosTheta) > 1.) // vmg: due to bi 602 if( abs(fCosTheta) > 1.) // vmg: due to big Q2/x values. To be improved ... 601 { 603 { 602 G4cout<<"FM: fCosTheta = "<<fCosTheta<<" 604 G4cout<<"FM: fCosTheta = "<<fCosTheta<<", fEmu = "<<fEmu<<G4endl; 603 // fCosTheta = -1. + 2.*G4UniformRand(); 605 // fCosTheta = -1. + 2.*G4UniformRand(); 604 if(fCosTheta < -1.) fCosTheta = -1.; 606 if(fCosTheta < -1.) fCosTheta = -1.; 605 if(fCosTheta > 1.) fCosTheta = 1.; 607 if(fCosTheta > 1.) fCosTheta = 1.; 606 } 608 } 607 // LVs 609 // LVs 608 G4LorentzVector lvt1 = G4LorentzVector( 0 610 G4LorentzVector lvt1 = G4LorentzVector( 0., 0., 0., fM1 ); 609 G4LorentzVector lvsum = lvp1 + lvt1; 611 G4LorentzVector lvsum = lvp1 + lvt1; 610 612 611 cost = fCosTheta; 613 cost = fCosTheta; 612 sint = std::sqrt( (1.0 - cost)*(1.0 + cost 614 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) ); 613 phi = G4UniformRand()*CLHEP::twopi; 615 phi = G4UniformRand()*CLHEP::twopi; 614 eP = G4ThreeVector( sint*std::cos(phi), 616 eP = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost ); 615 muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu); 617 muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu); 616 eP *= muMom; 618 eP *= muMom; 617 fLVl = G4LorentzVector( eP, fEmu ); 619 fLVl = G4LorentzVector( eP, fEmu ); 618 fLVh = lvsum - fLVl; 620 fLVh = lvsum - fLVl; 619 // back to lab system 621 // back to lab system 620 // fLVl.boost(bst); // 9-3-20 622 // fLVl.boost(bst); // 9-3-20 621 // fLVh.boost(bst); // 9-3-20 623 // fLVh.boost(bst); // 9-3-20 622 } 624 } 623 //G4cout<<iTer<<", "<<fBreak<<"; "; 625 //G4cout<<iTer<<", "<<fBreak<<"; "; 624 } 626 } 625 627 626 // 628 // 627 // 629 // 628 /////////////////////////// 630 /////////////////////////// 629 631