Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4VTwistedFaceted implementation << 26 // $Id: G4VTwistedFaceted.cc,v 1.13 2006/06/29 18:49:36 gunter Exp $ >> 27 // GEANT4 tag $Name: geant4-08-01 $ >> 28 // >> 29 // >> 30 // -------------------------------------------------------------------- >> 31 // GEANT 4 class source file >> 32 // >> 33 // >> 34 // G4VTwistedFaceted.cc >> 35 // >> 36 // Author: >> 37 // >> 38 // 04-Nov-2004 - O.Link (Oliver.Link@cern.ch) 27 // 39 // 28 // Author: 04-Nov-2004 - O.Link (Oliver.Link@c << 29 // ------------------------------------------- 40 // -------------------------------------------------------------------- 30 41 31 #include "G4VTwistedFaceted.hh" 42 #include "G4VTwistedFaceted.hh" 32 43 33 #include "G4PhysicalConstants.hh" << 34 #include "G4SystemOfUnits.hh" << 35 #include "G4VoxelLimits.hh" 44 #include "G4VoxelLimits.hh" 36 #include "G4AffineTransform.hh" 45 #include "G4AffineTransform.hh" 37 #include "G4BoundingEnvelope.hh" << 38 #include "G4SolidExtentList.hh" 46 #include "G4SolidExtentList.hh" 39 #include "G4ClippablePolygon.hh" 47 #include "G4ClippablePolygon.hh" 40 #include "G4VPVParameterisation.hh" 48 #include "G4VPVParameterisation.hh" 41 #include "G4GeometryTolerance.hh" << 42 #include "meshdefs.hh" 49 #include "meshdefs.hh" 43 50 44 #include "G4VGraphicsScene.hh" 51 #include "G4VGraphicsScene.hh" 45 #include "G4Polyhedron.hh" 52 #include "G4Polyhedron.hh" 46 #include "G4VisExtent.hh" 53 #include "G4VisExtent.hh" >> 54 #include "G4NURBS.hh" >> 55 #include "G4NURBStube.hh" >> 56 #include "G4NURBScylinder.hh" >> 57 #include "G4NURBStubesector.hh" 47 58 48 #include "Randomize.hh" 59 #include "Randomize.hh" 49 60 50 #include "G4AutoLock.hh" << 51 << 52 namespace << 53 { << 54 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZE << 55 } << 56 << 57 << 58 //============================================ 61 //===================================================================== 59 //* constructors ----------------------------- 62 //* constructors ------------------------------------------------------ 60 63 61 G4VTwistedFaceted:: 64 G4VTwistedFaceted:: 62 G4VTwistedFaceted( const G4String& pname, << 65 G4VTwistedFaceted( const G4String &pname, // Name of instance 63 G4double PhiTwist, 66 G4double PhiTwist, // twist angle 64 G4double pDz, 67 G4double pDz, // half z length 65 G4double pTheta, // 68 G4double pTheta, // direction between end planes 66 G4double pPhi, // 69 G4double pPhi, // defined by polar and azim. angles 67 G4double pDy1, // 70 G4double pDy1, // half y length at -pDz 68 G4double pDx1, // 71 G4double pDx1, // half x length at -pDz,-pDy 69 G4double pDx2, // 72 G4double pDx2, // half x length at -pDz,+pDy 70 G4double pDy2, // 73 G4double pDy2, // half y length at +pDz 71 G4double pDx3, // 74 G4double pDx3, // half x length at +pDz,-pDy 72 G4double pDx4, // 75 G4double pDx4, // half x length at +pDz,+pDy 73 G4double pAlph ) // << 76 G4double pAlph // tilt angle 74 : G4VSolid(pname), << 77 ) 75 fLowerEndcap(nullptr), fUpperEndcap(nullpt << 78 : G4VSolid(pname), 76 fSide90(nullptr), fSide180(nullptr), fSide << 79 fLowerEndcap(0), fUpperEndcap(0), fSide0(0), >> 80 fSide90(0), fSide180(0), fSide270(0), >> 81 fpPolyhedron(0) 77 { 82 { 78 83 79 G4double pDytmp ; 84 G4double pDytmp ; 80 G4double fDxUp ; 85 G4double fDxUp ; 81 G4double fDxDown ; 86 G4double fDxDown ; 82 87 83 fDx1 = pDx1 ; 88 fDx1 = pDx1 ; 84 fDx2 = pDx2 ; 89 fDx2 = pDx2 ; 85 fDx3 = pDx3 ; 90 fDx3 = pDx3 ; 86 fDx4 = pDx4 ; 91 fDx4 = pDx4 ; 87 fDy1 = pDy1 ; 92 fDy1 = pDy1 ; 88 fDy2 = pDy2 ; 93 fDy2 = pDy2 ; 89 fDz = pDz ; 94 fDz = pDz ; 90 95 91 G4double kAngTolerance << 92 = G4GeometryTolerance::GetInstance()->GetA << 93 << 94 // maximum values 96 // maximum values 95 // 97 // 96 fDxDown = ( fDx1 > fDx2 ? fDx1 : fDx2 ) ; 98 fDxDown = ( fDx1 > fDx2 ? fDx1 : fDx2 ) ; 97 fDxUp = ( fDx3 > fDx4 ? fDx3 : fDx4 ) ; 99 fDxUp = ( fDx3 > fDx4 ? fDx3 : fDx4 ) ; 98 fDx = ( fDxUp > fDxDown ? fDxUp : fDxDow 100 fDx = ( fDxUp > fDxDown ? fDxUp : fDxDown ) ; 99 fDy = ( fDy1 > fDy2 ? fDy1 : fDy2 ) ; 101 fDy = ( fDy1 > fDy2 ? fDy1 : fDy2 ) ; 100 102 101 // planarity check 103 // planarity check 102 // 104 // 103 if ( fDx1 != fDx2 && fDx3 != fDx4 ) 105 if ( fDx1 != fDx2 && fDx3 != fDx4 ) 104 { 106 { 105 pDytmp = fDy1 * ( fDx3 - fDx4 ) / ( fDx1 - 107 pDytmp = fDy1 * ( fDx3 - fDx4 ) / ( fDx1 - fDx2 ) ; 106 if ( std::fabs(pDytmp - fDy2) > kCarTolera 108 if ( std::fabs(pDytmp - fDy2) > kCarTolerance ) 107 { 109 { 108 std::ostringstream message; << 110 G4cerr << "ERROR - G4VTwistedFaceted::G4VTwistedFaceted(): " 109 message << "Not planar surface in untwis << 111 << GetName() << G4endl 110 << GetName() << G4endl << 112 << " Not planar ! - " << G4endl 111 << "fDy2 is " << fDy2 << " but s << 113 << "fDy2 is " << fDy2 << " but should be " 112 << pDytmp << "."; << 114 << pDytmp << "." << G4endl ; 113 G4Exception("G4VTwistedFaceted::G4VTwist << 115 G4Exception("G4VTwistedFaceted::G4VTwistedFaceted()", "InvalidSetup", 114 FatalErrorInArgument, messag << 116 FatalException, "Not planar surface in untwisted Trapezoid."); 115 } 117 } 116 } 118 } 117 119 118 #ifdef G4TWISTDEBUG << 120 #ifdef G4SPECSDEBUG 119 if ( fDx1 == fDx2 && fDx3 == fDx4 ) 121 if ( fDx1 == fDx2 && fDx3 == fDx4 ) 120 { 122 { 121 G4cout << "Trapezoid is a box" << G4endl 123 G4cout << "Trapezoid is a box" << G4endl ; 122 } 124 } 123 125 124 #endif 126 #endif 125 127 126 if ( ( fDx1 == fDx2 && fDx3 != fDx4 ) || ( 128 if ( ( fDx1 == fDx2 && fDx3 != fDx4 ) || ( fDx1 != fDx2 && fDx3 == fDx4 ) ) 127 { 129 { 128 std::ostringstream message; << 130 G4cerr << "ERROR - G4VTwistedFaceted::G4VTwistedFaceted(): " 129 message << "Not planar surface in untwiste << 131 << GetName() << G4endl 130 << GetName() << G4endl << 132 << " Not planar ! - " << G4endl 131 << "One endcap is rectangular, the << 133 << "One endcap is rectengular, the other is a trapezoid." << G4endl 132 << "For planarity reasons they hav << 134 << "For planarity reasons they have to be rectangles or trapezoids " 133 << "on both sides."; << 135 << G4endl 134 G4Exception("G4VTwistedFaceted::G4VTwisted << 136 << "on both sides." 135 FatalErrorInArgument, message) << 137 << G4endl ; >> 138 G4Exception("G4VTwistedFaceted::G4VTwistedFaceted()", "InvalidSetup", >> 139 FatalException, "Not planar surface in untwisted Trapezoid."); 136 } 140 } 137 141 138 // twist angle 142 // twist angle 139 // 143 // 140 fPhiTwist = PhiTwist ; 144 fPhiTwist = PhiTwist ; 141 145 142 // tilt angle 146 // tilt angle 143 // 147 // 144 fAlph = pAlph ; 148 fAlph = pAlph ; 145 fTAlph = std::tan(fAlph) ; 149 fTAlph = std::tan(fAlph) ; 146 150 147 fTheta = pTheta ; 151 fTheta = pTheta ; 148 fPhi = pPhi ; 152 fPhi = pPhi ; 149 153 150 // dx in surface equation 154 // dx in surface equation 151 // 155 // 152 fdeltaX = 2 * fDz * std::tan(fTheta) * std:: 156 fdeltaX = 2 * fDz * std::tan(fTheta) * std::cos(fPhi) ; 153 157 154 // dy in surface equation 158 // dy in surface equation 155 // 159 // 156 fdeltaY = 2 * fDz * std::tan(fTheta) * std:: 160 fdeltaY = 2 * fDz * std::tan(fTheta) * std::sin(fPhi) ; 157 161 158 if ( ( fDx1 <= 2*kCarTolerance) << 162 if ( ! ( ( fDx1 > 2*kCarTolerance) 159 || ( fDx2 <= 2*kCarTolerance) << 163 && ( fDx2 > 2*kCarTolerance) 160 || ( fDx3 <= 2*kCarTolerance) << 164 && ( fDx3 > 2*kCarTolerance) 161 || ( fDx4 <= 2*kCarTolerance) << 165 && ( fDx4 > 2*kCarTolerance) 162 || ( fDy1 <= 2*kCarTolerance) << 166 && ( fDy1 > 2*kCarTolerance) 163 || ( fDy2 <= 2*kCarTolerance) << 167 && ( fDy2 > 2*kCarTolerance) 164 || ( fDz <= 2*kCarTolerance) << 168 && ( fDz > 2*kCarTolerance) 165 || ( std::fabs(fPhiTwist) <= 2*kAngTo << 169 && ( std::fabs(fPhiTwist) > 2*kAngTolerance ) 166 || ( std::fabs(fPhiTwist) >= pi/2 ) << 170 && ( std::fabs(fPhiTwist) < pi/2 ) 167 || ( std::fabs(fAlph) >= pi/2 ) << 171 && ( std::fabs(fAlph) < pi/2 ) 168 || fTheta >= pi/2 || fTheta < 0 << 172 && ( fTheta < pi/2 && fTheta >= 0 ) ) 169 ) 173 ) 170 { 174 { 171 std::ostringstream message; << 175 G4cerr << "ERROR - G4VTwistedFaceted()::G4VTwistedFaceted(): " 172 message << "Invalid dimensions. Too small, << 176 << GetName() << G4endl 173 << GetName() << G4endl << 177 << " Dimensions too small or too big! - " << G4endl 174 << "fDx 1-4 = " << fDx1/cm << ", " << 178 << "fDx 1-4 = " << fDx1/cm << ", " << fDx2/cm << ", " 175 << fDx3/cm << ", " << fDx4/cm << " << 179 << fDx3/cm << ", " << fDx4/cm << " cm" << G4endl 176 << "fDy 1-2 = " << fDy1/cm << ", " << 180 << "fDy 1-2 = " << fDy1/cm << ", " << fDy2/cm << ", " 177 << " cm" << G4endl << 181 << " cm" << G4endl 178 << "fDz = " << fDz/cm << " cm" << << 182 << "fDz = " << fDz/cm << " cm" << G4endl 179 << " twistangle " << fPhiTwist/deg << 183 << " twistangle " << fPhiTwist/deg << " deg" << G4endl 180 << " phi,theta = " << fPhi/deg << << 184 << " phi,theta = " << fPhi/deg << ", " << fTheta/deg >> 185 << " deg" << G4endl ; 181 G4Exception("G4TwistedTrap::G4VTwistedFace 186 G4Exception("G4TwistedTrap::G4VTwistedFaceted()", 182 "GeomSolids0002", FatalErrorIn << 187 "InvalidSetup", FatalException, >> 188 "Invalid dimensions. Too small, or twist angle too big."); 183 } 189 } 184 CreateSurfaces(); 190 CreateSurfaces(); >> 191 fCubicVolume = 2 * fDz * ( ( fDx1 + fDx2 ) * fDy1 + ( fDx3 + fDx4 ) * fDy2 ); 185 } 192 } 186 193 187 194 188 //============================================ 195 //===================================================================== 189 //* Fake default constructor ----------------- 196 //* Fake default constructor ------------------------------------------ 190 197 191 G4VTwistedFaceted::G4VTwistedFaceted( __void__ 198 G4VTwistedFaceted::G4VTwistedFaceted( __void__& a ) 192 : G4VSolid(a), << 199 : G4VSolid(a), 193 fLowerEndcap(nullptr), fUpperEndcap(nullpt << 200 fLowerEndcap(0), fUpperEndcap(0), fSide0(0), 194 fSide0(nullptr), fSide90(nullptr), fSide18 << 201 fSide90(0), fSide180(0), fSide270(0), >> 202 fCubicVolume(0.), fpPolyhedron(0) 195 { 203 { 196 } 204 } 197 205 198 << 199 //============================================ 206 //===================================================================== 200 //* destructor ------------------------------- 207 //* destructor -------------------------------------------------------- 201 208 202 G4VTwistedFaceted::~G4VTwistedFaceted() 209 G4VTwistedFaceted::~G4VTwistedFaceted() 203 { 210 { 204 delete fLowerEndcap ; << 211 if (fLowerEndcap) delete fLowerEndcap ; 205 delete fUpperEndcap ; << 212 if (fUpperEndcap) delete fUpperEndcap ; 206 213 207 delete fSide0 ; << 214 if (fSide0) delete fSide0 ; 208 delete fSide90 ; << 215 if (fSide90) delete fSide90 ; 209 delete fSide180 ; << 216 if (fSide180) delete fSide180 ; 210 delete fSide270 ; << 217 if (fSide270) delete fSide270 ; 211 delete fpPolyhedron; fpPolyhedron = nullptr; << 218 if (fpPolyhedron) delete fpPolyhedron; 212 } 219 } 213 220 214 << 215 //============================================ 221 //===================================================================== 216 //* Copy constructor ------------------------- << 222 //* ComputeDimensions ------------------------------------------------- 217 223 218 G4VTwistedFaceted::G4VTwistedFaceted(const G4V << 224 void G4VTwistedFaceted::ComputeDimensions(G4VPVParameterisation* , 219 : G4VSolid(rhs), << 225 const G4int , 220 fCubicVolume(rhs.fCubicVolume), fSurfaceAr << 226 const G4VPhysicalVolume* ) 221 fTheta(rhs.fTheta), fPhi(rhs.fPhi), << 222 fDy1(rhs.fDy1), fDx1(rhs.fDx1), fDx2(rhs.f << 223 fDx3(rhs.fDx3), fDx4(rhs.fDx4), fDz(rhs.fD << 224 fAlph(rhs.fAlph), fTAlph(rhs.fTAlph), fdel << 225 fdeltaY(rhs.fdeltaY), fPhiTwist(rhs.fPhiTw << 226 fUpperEndcap(nullptr), fSide0(nullptr), fS << 227 { 227 { 228 CreateSurfaces(); << 228 G4Exception("G4VTwistedFaceted::ComputeDimensions()", >> 229 "NotSupported", FatalException, >> 230 "G4VTwistedFaceted does not support Parameterisation."); 229 } 231 } 230 232 231 << 232 //============================================ 233 //===================================================================== 233 //* Assignment operator ---------------------- << 234 //* CalculateExtent --------------------------------------------------- 234 235 235 G4VTwistedFaceted& G4VTwistedFaceted::operator << 236 G4bool >> 237 G4VTwistedFaceted::CalculateExtent( const EAxis pAxis, >> 238 const G4VoxelLimits &pVoxelLimit, >> 239 const G4AffineTransform &pTransform, >> 240 G4double &pMin, >> 241 G4double &pMax ) const 236 { 242 { 237 // Check assignment to self << 243 G4double maxRad = std::sqrt( fDx*fDx + fDy*fDy); 238 // << 239 if (this == &rhs) { return *this; } << 240 244 241 // Copy base class data << 245 if (!pTransform.IsRotated()) 242 // << 246 { 243 G4VSolid::operator=(rhs); << 247 // Special case handling for unrotated boxes >> 248 // Compute x/y/z mins and maxs respecting limits, with early returns >> 249 // if outside limits. Then switch() on pAxis >> 250 >> 251 G4double xoffset,xMin,xMax; >> 252 G4double yoffset,yMin,yMax; >> 253 G4double zoffset,zMin,zMax; >> 254 >> 255 xoffset = pTransform.NetTranslation().x() ; >> 256 xMin = xoffset - maxRad ; >> 257 xMax = xoffset + maxRad ; 244 258 245 // Copy data << 259 if (pVoxelLimit.IsXLimited()) 246 // << 260 { 247 fTheta = rhs.fTheta; fPhi = rhs.fPhi; << 261 if ( xMin > pVoxelLimit.GetMaxXExtent()+kCarTolerance || 248 fDy1= rhs.fDy1; fDx1= rhs.fDx1; fDx2= rhs.f << 262 xMax < pVoxelLimit.GetMinXExtent()-kCarTolerance ) return false; 249 fDx3= rhs.fDx3; fDx4= rhs.fDx4; fDz= rhs.fD << 263 else 250 fAlph= rhs.fAlph; fTAlph= rhs.fTAlph; fdelt << 264 { 251 fdeltaY= rhs.fdeltaY; fPhiTwist= rhs.fPhiTw << 265 if (xMin < pVoxelLimit.GetMinXExtent()) 252 fUpperEndcap= nullptr; fSide0= nullptr; fSi << 266 { 253 fCubicVolume= rhs.fCubicVolume; fSurfaceAre << 267 xMin = pVoxelLimit.GetMinXExtent() ; 254 fRebuildPolyhedron = false; << 268 } 255 delete fpPolyhedron; fpPolyhedron = nullptr << 269 if (xMax > pVoxelLimit.GetMaxXExtent()) 256 << 270 { 257 CreateSurfaces(); << 271 xMax = pVoxelLimit.GetMaxXExtent() ; >> 272 } >> 273 } >> 274 } >> 275 yoffset = pTransform.NetTranslation().y() ; >> 276 yMin = yoffset - maxRad ; >> 277 yMax = yoffset + maxRad ; >> 278 >> 279 if (pVoxelLimit.IsYLimited()) >> 280 { >> 281 if ( yMin > pVoxelLimit.GetMaxYExtent()+kCarTolerance || >> 282 yMax < pVoxelLimit.GetMinYExtent()-kCarTolerance ) return false; >> 283 else >> 284 { >> 285 if (yMin < pVoxelLimit.GetMinYExtent()) >> 286 { >> 287 yMin = pVoxelLimit.GetMinYExtent() ; >> 288 } >> 289 if (yMax > pVoxelLimit.GetMaxYExtent()) >> 290 { >> 291 yMax = pVoxelLimit.GetMaxYExtent() ; >> 292 } >> 293 } >> 294 } >> 295 zoffset = pTransform.NetTranslation().z() ; >> 296 zMin = zoffset - fDz ; >> 297 zMax = zoffset + fDz ; >> 298 >> 299 if (pVoxelLimit.IsZLimited()) >> 300 { >> 301 if ( zMin > pVoxelLimit.GetMaxZExtent()+kCarTolerance || >> 302 zMax < pVoxelLimit.GetMinZExtent()-kCarTolerance ) return false; >> 303 else >> 304 { >> 305 if (zMin < pVoxelLimit.GetMinZExtent()) >> 306 { >> 307 zMin = pVoxelLimit.GetMinZExtent() ; >> 308 } >> 309 if (zMax > pVoxelLimit.GetMaxZExtent()) >> 310 { >> 311 zMax = pVoxelLimit.GetMaxZExtent() ; >> 312 } >> 313 } >> 314 } >> 315 switch (pAxis) >> 316 { >> 317 case kXAxis: >> 318 pMin = xMin ; >> 319 pMax = xMax ; >> 320 break ; >> 321 case kYAxis: >> 322 pMin=yMin; >> 323 pMax=yMax; >> 324 break; >> 325 case kZAxis: >> 326 pMin=zMin; >> 327 pMax=zMax; >> 328 break; >> 329 default: >> 330 break; >> 331 } >> 332 pMin -= kCarTolerance ; >> 333 pMax += kCarTolerance ; >> 334 >> 335 return true; >> 336 } >> 337 else // General rotated case - create and clip mesh to boundaries >> 338 { >> 339 G4bool existsAfterClip = false ; >> 340 G4ThreeVectorList* vertices ; 258 341 259 return *this; << 342 pMin = +kInfinity ; 260 } << 343 pMax = -kInfinity ; >> 344 >> 345 // Calculate rotated vertex coordinates >> 346 >> 347 vertices = CreateRotatedVertices(pTransform) ; >> 348 ClipCrossSection(vertices,0,pVoxelLimit,pAxis,pMin,pMax) ; >> 349 ClipCrossSection(vertices,4,pVoxelLimit,pAxis,pMin,pMax) ; >> 350 ClipBetweenSections(vertices,0,pVoxelLimit,pAxis,pMin,pMax) ; >> 351 >> 352 if (pVoxelLimit.IsLimited(pAxis) == false) >> 353 { >> 354 if ( pMin != kInfinity || pMax != -kInfinity ) >> 355 { >> 356 existsAfterClip = true ; 261 357 >> 358 // Add 2*tolerance to avoid precision troubles 262 359 263 //============================================ << 360 pMin -= kCarTolerance; 264 //* ComputeDimensions ------------------------ << 361 pMax += kCarTolerance; 265 << 362 } 266 void G4VTwistedFaceted::ComputeDimensions(G4VP << 363 } 267 cons << 364 else 268 cons << 365 { 269 { << 366 G4ThreeVector clipCentre( 270 G4Exception("G4VTwistedFaceted::ComputeDimen << 367 ( pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5, 271 "GeomSolids0001", FatalException << 368 ( pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5, 272 "G4VTwistedFaceted does not supp << 369 ( pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5 ); >> 370 >> 371 if ( pMin != kInfinity || pMax != -kInfinity ) >> 372 { >> 373 existsAfterClip = true ; >> 374 >> 375 // Check to see if endpoints are in the solid >> 376 >> 377 clipCentre(pAxis) = pVoxelLimit.GetMinExtent(pAxis); >> 378 >> 379 if (Inside(pTransform.Inverse().TransformPoint(clipCentre)) >> 380 != kOutside) >> 381 { >> 382 pMin = pVoxelLimit.GetMinExtent(pAxis); >> 383 } >> 384 else >> 385 { >> 386 pMin -= kCarTolerance; >> 387 } >> 388 clipCentre(pAxis) = pVoxelLimit.GetMaxExtent(pAxis); >> 389 >> 390 if (Inside(pTransform.Inverse().TransformPoint(clipCentre)) >> 391 != kOutside) >> 392 { >> 393 pMax = pVoxelLimit.GetMaxExtent(pAxis); >> 394 } >> 395 else >> 396 { >> 397 pMax += kCarTolerance; >> 398 } >> 399 } >> 400 >> 401 // Check for case where completely enveloping clipping volume >> 402 // If point inside then we are confident that the solid completely >> 403 // envelopes the clipping volume. Hence set min/max extents according >> 404 // to clipping volume extents along the specified axis. >> 405 >> 406 else if (Inside(pTransform.Inverse().TransformPoint(clipCentre)) >> 407 != kOutside) >> 408 { >> 409 existsAfterClip = true ; >> 410 pMin = pVoxelLimit.GetMinExtent(pAxis) ; >> 411 pMax = pVoxelLimit.GetMaxExtent(pAxis) ; >> 412 } >> 413 } >> 414 delete vertices; >> 415 return existsAfterClip; >> 416 } >> 417 >> 418 273 } 419 } 274 420 275 << 421 G4ThreeVectorList* G4VTwistedFaceted:: 276 //============================================ << 422 CreateRotatedVertices(const G4AffineTransform& pTransform) const 277 //* Extent ----------------------------------- << 278 << 279 void G4VTwistedFaceted::BoundingLimits(G4Three << 280 G4Three << 281 { 423 { 282 G4double cosPhi = std::cos(fPhi); << 283 G4double sinPhi = std::sin(fPhi); << 284 G4double tanTheta = std::tan(fTheta); << 285 G4double tanAlpha = fTAlph; << 286 << 287 G4double xmid1 = fDy1*tanAlpha; << 288 G4double x1 = std::abs(xmid1 + fDx1); << 289 G4double x2 = std::abs(xmid1 - fDx1); << 290 G4double x3 = std::abs(xmid1 + fDx2); << 291 G4double x4 = std::abs(xmid1 - fDx2); << 292 G4double xmax1 = std::max(std::max(std::max( << 293 G4double rmax1 = std::sqrt(xmax1*xmax1 + fDy << 294 << 295 G4double xmid2 = fDy2*tanAlpha; << 296 G4double x5 = std::abs(xmid2 + fDx3); << 297 G4double x6 = std::abs(xmid2 - fDx3); << 298 G4double x7 = std::abs(xmid2 + fDx4); << 299 G4double x8 = std::abs(xmid2 - fDx4); << 300 G4double xmax2 = std::max(std::max(std::max( << 301 G4double rmax2 = std::sqrt(xmax2*xmax2 + fDy << 302 << 303 G4double x0 = fDz*tanTheta*cosPhi; << 304 G4double y0 = fDz*tanTheta*sinPhi; << 305 G4double xmin = std::min(-x0 - rmax1, x0 - r << 306 G4double ymin = std::min(-y0 - rmax1, y0 - r << 307 G4double xmax = std::max(-x0 + rmax1, x0 + r << 308 G4double ymax = std::max(-y0 + rmax1, y0 + r << 309 pMin.set(xmin, ymin,-fDz); << 310 pMax.set(xmax, ymax, fDz); << 311 } << 312 424 >> 425 G4ThreeVectorList* vertices = new G4ThreeVectorList(); >> 426 vertices->reserve(8); 313 427 314 //============================================ << 428 if (vertices) 315 //* CalculateExtent -------------------------- << 429 { 316 430 317 G4bool << 431 G4double maxRad = std::sqrt( fDx*fDx + fDy*fDy); 318 G4VTwistedFaceted::CalculateExtent( const EAxi << 319 const G4Vo << 320 const G4Af << 321 G4do << 322 G4do << 323 { << 324 G4ThreeVector bmin, bmax; << 325 << 326 // Get bounding box << 327 BoundingLimits(bmin,bmax); << 328 << 329 // Find extent << 330 G4BoundingEnvelope bbox(bmin,bmax); << 331 return bbox.CalculateExtent(pAxis,pVoxelLimi << 332 } << 333 432 >> 433 G4ThreeVector vertex0(-maxRad,-maxRad,-fDz) ; >> 434 G4ThreeVector vertex1(maxRad,-maxRad,-fDz) ; >> 435 G4ThreeVector vertex2(maxRad,maxRad,-fDz) ; >> 436 G4ThreeVector vertex3(-maxRad,maxRad,-fDz) ; >> 437 G4ThreeVector vertex4(-maxRad,-maxRad,fDz) ; >> 438 G4ThreeVector vertex5(maxRad,-maxRad,fDz) ; >> 439 G4ThreeVector vertex6(maxRad,maxRad,fDz) ; >> 440 G4ThreeVector vertex7(-maxRad,maxRad,fDz) ; >> 441 >> 442 vertices->push_back(pTransform.TransformPoint(vertex0)); >> 443 vertices->push_back(pTransform.TransformPoint(vertex1)); >> 444 vertices->push_back(pTransform.TransformPoint(vertex2)); >> 445 vertices->push_back(pTransform.TransformPoint(vertex3)); >> 446 vertices->push_back(pTransform.TransformPoint(vertex4)); >> 447 vertices->push_back(pTransform.TransformPoint(vertex5)); >> 448 vertices->push_back(pTransform.TransformPoint(vertex6)); >> 449 vertices->push_back(pTransform.TransformPoint(vertex7)); >> 450 } >> 451 else >> 452 { >> 453 DumpInfo(); >> 454 G4Exception("G4VTwistedFaceted::CreateRotatedVertices()", >> 455 "FatalError", FatalException, >> 456 "Error in allocation of vertices. Out of memory !"); >> 457 } >> 458 return vertices; >> 459 } 334 460 335 //============================================ 461 //===================================================================== 336 //* Inside ----------------------------------- 462 //* Inside ------------------------------------------------------------ 337 463 338 EInside G4VTwistedFaceted::Inside(const G4Thre 464 EInside G4VTwistedFaceted::Inside(const G4ThreeVector& p) const 339 { 465 { 340 466 341 EInside tmpin = kOutside ; << 467 G4ThreeVector *tmpp; >> 468 EInside *tmpin; >> 469 if (fLastInside.p == p) { >> 470 return fLastInside.inside; >> 471 } else { >> 472 tmpp = const_cast<G4ThreeVector*>(&(fLastInside.p)); >> 473 tmpin = const_cast<EInside*>(&(fLastInside.inside)); >> 474 tmpp->set(p.x(), p.y(), p.z()); >> 475 } >> 476 >> 477 *tmpin = kOutside ; 342 478 343 G4double phi = p.z()/(2*fDz) * fPhiTwist ; 479 G4double phi = p.z()/(2*fDz) * fPhiTwist ; // rotate the point to z=0 344 G4double cphi = std::cos(-phi) ; 480 G4double cphi = std::cos(-phi) ; 345 G4double sphi = std::sin(-phi) ; 481 G4double sphi = std::sin(-phi) ; 346 482 347 G4double px = p.x() + fdeltaX * ( -phi/fPh 483 G4double px = p.x() + fdeltaX * ( -phi/fPhiTwist) ; // shift 348 G4double py = p.y() + fdeltaY * ( -phi/fPh 484 G4double py = p.y() + fdeltaY * ( -phi/fPhiTwist) ; 349 G4double pz = p.z() ; 485 G4double pz = p.z() ; 350 486 351 G4double posx = px * cphi - py * sphi ; 487 G4double posx = px * cphi - py * sphi ; // rotation 352 G4double posy = px * sphi + py * cphi ; 488 G4double posy = px * sphi + py * cphi ; 353 G4double posz = pz ; 489 G4double posz = pz ; 354 490 355 G4double xMin = Xcoef(posy,phi,fTAlph) - 2* 491 G4double xMin = Xcoef(posy,phi,fTAlph) - 2*Xcoef(posy,phi,0.) ; 356 G4double xMax = Xcoef(posy,phi,fTAlph) ; 492 G4double xMax = Xcoef(posy,phi,fTAlph) ; 357 493 358 G4double yMax = GetValueB(phi)/2. ; // b(p 494 G4double yMax = GetValueB(phi)/2. ; // b(phi)/2 is limit 359 G4double yMin = -yMax ; 495 G4double yMin = -yMax ; 360 496 361 #ifdef G4TWISTDEBUG << 497 #ifdef G4SPECSDEBUG 362 498 363 G4cout << "inside called: p = " << p << G4e 499 G4cout << "inside called: p = " << p << G4endl ; 364 G4cout << "fDx1 = " << fDx1 << G4endl ; 500 G4cout << "fDx1 = " << fDx1 << G4endl ; 365 G4cout << "fDx2 = " << fDx2 << G4endl ; 501 G4cout << "fDx2 = " << fDx2 << G4endl ; 366 G4cout << "fDx3 = " << fDx3 << G4endl ; 502 G4cout << "fDx3 = " << fDx3 << G4endl ; 367 G4cout << "fDx4 = " << fDx4 << G4endl ; 503 G4cout << "fDx4 = " << fDx4 << G4endl ; 368 504 369 G4cout << "fDy1 = " << fDy1 << G4endl ; 505 G4cout << "fDy1 = " << fDy1 << G4endl ; 370 G4cout << "fDy2 = " << fDy2 << G4endl ; 506 G4cout << "fDy2 = " << fDy2 << G4endl ; 371 507 372 G4cout << "fDz = " << fDz << G4endl ; 508 G4cout << "fDz = " << fDz << G4endl ; 373 509 374 G4cout << "Tilt angle alpha = " << fAlph << 510 G4cout << "Tilt angle alpha = " << fAlph << G4endl ; 375 G4cout << "phi,theta = " << fPhi << " , " < 511 G4cout << "phi,theta = " << fPhi << " , " << fTheta << G4endl ; 376 512 377 G4cout << "Twist angle = " << fPhiTwist << 513 G4cout << "Twist angle = " << fPhiTwist << G4endl ; 378 514 379 G4cout << "posx = " << posx << G4endl ; 515 G4cout << "posx = " << posx << G4endl ; 380 G4cout << "posy = " << posy << G4endl ; 516 G4cout << "posy = " << posy << G4endl ; 381 G4cout << "xMin = " << xMin << G4endl ; 517 G4cout << "xMin = " << xMin << G4endl ; 382 G4cout << "xMax = " << xMax << G4endl ; 518 G4cout << "xMax = " << xMax << G4endl ; 383 G4cout << "yMin = " << yMin << G4endl ; 519 G4cout << "yMin = " << yMin << G4endl ; 384 G4cout << "yMax = " << yMax << G4endl ; 520 G4cout << "yMax = " << yMax << G4endl ; 385 521 386 #endif 522 #endif 387 523 388 524 389 if ( posx <= xMax - kCarTolerance*0.5 525 if ( posx <= xMax - kCarTolerance*0.5 390 && posx >= xMin + kCarTolerance*0.5 ) 526 && posx >= xMin + kCarTolerance*0.5 ) 391 { 527 { 392 if ( posy <= yMax - kCarTolerance*0.5 528 if ( posy <= yMax - kCarTolerance*0.5 393 && posy >= yMin + kCarTolerance*0.5 ) 529 && posy >= yMin + kCarTolerance*0.5 ) 394 { 530 { 395 if (std::fabs(posz) <= fDz - kCarTo << 531 if (std::fabs(posz) <= fDz - kCarTolerance*0.5 ) *tmpin = kInside ; 396 else if (std::fabs(posz) <= fDz + kCarTo << 532 else if (std::fabs(posz) <= fDz + kCarTolerance*0.5 ) *tmpin = kSurface ; 397 } 533 } 398 else if ( posy <= yMax + kCarTolerance*0.5 534 else if ( posy <= yMax + kCarTolerance*0.5 399 && posy >= yMin - kCarTolerance*0.5 535 && posy >= yMin - kCarTolerance*0.5 ) 400 { 536 { 401 if (std::fabs(posz) <= fDz + kCarToleran << 537 if (std::fabs(posz) <= fDz + kCarTolerance*0.5 ) *tmpin = kSurface ; 402 } 538 } 403 } 539 } 404 else if ( posx <= xMax + kCarTolerance*0.5 540 else if ( posx <= xMax + kCarTolerance*0.5 405 && posx >= xMin - kCarTolerance*0.5 ) 541 && posx >= xMin - kCarTolerance*0.5 ) 406 { 542 { 407 if ( posy <= yMax + kCarTolerance*0.5 543 if ( posy <= yMax + kCarTolerance*0.5 408 && posy >= yMin - kCarTolerance*0.5 ) 544 && posy >= yMin - kCarTolerance*0.5 ) 409 { 545 { 410 if (std::fabs(posz) <= fDz + kCarToleran << 546 if (std::fabs(posz) <= fDz + kCarTolerance*0.5) *tmpin = kSurface ; 411 } 547 } 412 } 548 } 413 549 414 #ifdef G4TWISTDEBUG << 550 #ifdef G4SPECSDEBUG 415 G4cout << "inside = " << tmpin << G4endl ; << 551 G4cout << "inside = " << fLastInside.inside << G4endl ; 416 #endif 552 #endif 417 553 418 return tmpin; << 554 return fLastInside.inside; 419 555 420 } 556 } 421 557 422 << 423 //============================================ 558 //===================================================================== 424 //* SurfaceNormal ---------------------------- 559 //* SurfaceNormal ----------------------------------------------------- 425 560 426 G4ThreeVector G4VTwistedFaceted::SurfaceNormal 561 G4ThreeVector G4VTwistedFaceted::SurfaceNormal(const G4ThreeVector& p) const 427 { 562 { 428 // 563 // 429 // return the normal unit vector to the Hyp 564 // return the normal unit vector to the Hyperbolical Surface at a point 430 // p on (or nearly on) the surface 565 // p on (or nearly on) the surface 431 // 566 // 432 // Which of the three or four surfaces are 567 // Which of the three or four surfaces are we closest to? 433 // 568 // 434 569 >> 570 if (fLastNormal.p == p) >> 571 { >> 572 return fLastNormal.vec; >> 573 } >> 574 >> 575 G4ThreeVector *tmpp = const_cast<G4ThreeVector*>(&(fLastNormal.p)); >> 576 G4ThreeVector *tmpnormal = const_cast<G4ThreeVector*>(&(fLastNormal.vec)); >> 577 G4VTwistSurface **tmpsurface = const_cast<G4VTwistSurface**>(fLastNormal.surface); >> 578 tmpp->set(p.x(), p.y(), p.z()); 435 579 436 G4double distance = kInfinity; << 580 G4double distance = kInfinity; 437 581 438 G4VTwistSurface* surfaces[6]; << 582 G4VTwistSurface *surfaces[6]; 439 583 440 surfaces[0] = fSide0 ; 584 surfaces[0] = fSide0 ; 441 surfaces[1] = fSide90 ; 585 surfaces[1] = fSide90 ; 442 surfaces[2] = fSide180 ; 586 surfaces[2] = fSide180 ; 443 surfaces[3] = fSide270 ; 587 surfaces[3] = fSide270 ; 444 surfaces[4] = fLowerEndcap; 588 surfaces[4] = fLowerEndcap; 445 surfaces[5] = fUpperEndcap; 589 surfaces[5] = fUpperEndcap; 446 590 447 G4ThreeVector xx; 591 G4ThreeVector xx; 448 G4ThreeVector bestxx; 592 G4ThreeVector bestxx; 449 G4int i; 593 G4int i; 450 G4int besti = -1; 594 G4int besti = -1; 451 for (i=0; i< 6; i++) 595 for (i=0; i< 6; i++) 452 { 596 { 453 G4double tmpdistance = surfaces[i]->Dist 597 G4double tmpdistance = surfaces[i]->DistanceTo(p, xx); 454 if (tmpdistance < distance) 598 if (tmpdistance < distance) 455 { 599 { 456 distance = tmpdistance; 600 distance = tmpdistance; 457 bestxx = xx; 601 bestxx = xx; 458 besti = i; 602 besti = i; 459 } 603 } 460 } 604 } 461 605 462 return surfaces[besti]->GetNormal(bestxx, t << 606 tmpsurface[0] = surfaces[besti]; >> 607 *tmpnormal = tmpsurface[0]->GetNormal(bestxx, true); >> 608 >> 609 return fLastNormal.vec; 463 } 610 } 464 611 465 << 466 //============================================ 612 //===================================================================== 467 //* DistanceToIn (p, v) ---------------------- 613 //* DistanceToIn (p, v) ----------------------------------------------- 468 614 469 G4double G4VTwistedFaceted::DistanceToIn (cons 615 G4double G4VTwistedFaceted::DistanceToIn (const G4ThreeVector& p, 470 cons 616 const G4ThreeVector& v ) const 471 { 617 { 472 618 473 // DistanceToIn (p, v): 619 // DistanceToIn (p, v): 474 // Calculate distance to surface of shape f 620 // Calculate distance to surface of shape from `outside' 475 // along with the v, allowing for tolerance 621 // along with the v, allowing for tolerance. 476 // The function returns kInfinity if no int 622 // The function returns kInfinity if no intersection or 477 // just grazing within tolerance. 623 // just grazing within tolerance. 478 624 479 // 625 // >> 626 // checking last value >> 627 // >> 628 >> 629 G4ThreeVector *tmpp; >> 630 G4ThreeVector *tmpv; >> 631 G4double *tmpdist; >> 632 if (fLastDistanceToInWithV.p == p && fLastDistanceToInWithV.vec == v) >> 633 { >> 634 return fLastDistanceToIn.value; >> 635 } >> 636 else >> 637 { >> 638 tmpp = const_cast<G4ThreeVector*>(&(fLastDistanceToInWithV.p)); >> 639 tmpv = const_cast<G4ThreeVector*>(&(fLastDistanceToInWithV.vec)); >> 640 tmpdist = const_cast<G4double*>(&(fLastDistanceToInWithV.value)); >> 641 tmpp->set(p.x(), p.y(), p.z()); >> 642 tmpv->set(v.x(), v.y(), v.z()); >> 643 } >> 644 >> 645 // 480 // Calculate DistanceToIn(p,v) 646 // Calculate DistanceToIn(p,v) 481 // 647 // 482 648 483 EInside currentside = Inside(p); 649 EInside currentside = Inside(p); 484 650 485 if (currentside == kInside) 651 if (currentside == kInside) 486 { 652 { 487 } 653 } 488 else if (currentside == kSurface) 654 else if (currentside == kSurface) 489 { 655 { 490 // particle is just on a boundary. 656 // particle is just on a boundary. 491 // if the particle is entering to the vol 657 // if the particle is entering to the volume, return 0 492 // 658 // 493 G4ThreeVector normal = SurfaceNormal(p); 659 G4ThreeVector normal = SurfaceNormal(p); 494 if (normal*v < 0) 660 if (normal*v < 0) 495 { 661 { 496 return 0; << 662 *tmpdist = 0; >> 663 return fLastDistanceToInWithV.value; 497 } 664 } 498 } 665 } 499 666 500 // now, we can take smallest positive dista 667 // now, we can take smallest positive distance. 501 668 502 // Initialize 669 // Initialize 503 // 670 // 504 G4double distance = kInfinity; << 671 G4double distance = kInfinity; 505 672 506 // Find intersections and choose nearest on 673 // Find intersections and choose nearest one 507 // 674 // 508 G4VTwistSurface *surfaces[6]; 675 G4VTwistSurface *surfaces[6]; 509 676 510 surfaces[0] = fSide0; 677 surfaces[0] = fSide0; 511 surfaces[1] = fSide90 ; 678 surfaces[1] = fSide90 ; 512 surfaces[2] = fSide180 ; 679 surfaces[2] = fSide180 ; 513 surfaces[3] = fSide270 ; 680 surfaces[3] = fSide270 ; 514 surfaces[4] = fLowerEndcap; 681 surfaces[4] = fLowerEndcap; 515 surfaces[5] = fUpperEndcap; 682 surfaces[5] = fUpperEndcap; 516 683 517 G4ThreeVector xx; 684 G4ThreeVector xx; 518 G4ThreeVector bestxx; 685 G4ThreeVector bestxx; 519 for (const auto & surface : surfaces) << 686 G4int i; >> 687 G4int besti = -1; >> 688 for (i=0; i < 6 ; i++) >> 689 //for (i=1; i < 2 ; i++) 520 { 690 { 521 #ifdef G4TWISTDEBUG << 691 522 G4cout << G4endl << "surface " << &surfa << 692 #ifdef G4SPECSDEBUG >> 693 G4cout << G4endl << "surface " << i << ": " << G4endl << G4endl ; 523 #endif 694 #endif 524 G4double tmpdistance = surface->Distance << 695 G4double tmpdistance = surfaces[i]->DistanceToIn(p, v, xx); 525 #ifdef G4TWISTDEBUG << 696 #ifdef G4SPECSDEBUG 526 G4cout << "Solid DistanceToIn : distance 697 G4cout << "Solid DistanceToIn : distance = " << tmpdistance << G4endl ; 527 G4cout << "intersection point = " << xx 698 G4cout << "intersection point = " << xx << G4endl ; 528 #endif 699 #endif 529 if (tmpdistance < distance) 700 if (tmpdistance < distance) 530 { 701 { 531 distance = tmpdistance; 702 distance = tmpdistance; 532 bestxx = xx; 703 bestxx = xx; >> 704 besti = i; 533 } 705 } 534 } 706 } 535 707 536 #ifdef G4TWISTDEBUG << 708 #ifdef G4SPECSDEBUG 537 G4cout << "best distance = " << distance << 709 G4cout << "best distance = " << distance << G4endl ; 538 #endif 710 #endif 539 711 >> 712 *tmpdist = distance; 540 // timer.Stop(); 713 // timer.Stop(); 541 return distance; << 714 return fLastDistanceToInWithV.value; 542 } 715 } 543 716 544 717 545 //============================================ << 546 //* DistanceToIn (p) ------------------------- << 547 << 548 G4double G4VTwistedFaceted::DistanceToIn (cons 718 G4double G4VTwistedFaceted::DistanceToIn (const G4ThreeVector& p) const 549 { 719 { 550 // DistanceToIn(p): 720 // DistanceToIn(p): 551 // Calculate distance to surface of shape f 721 // Calculate distance to surface of shape from `outside', 552 // allowing for tolerance 722 // allowing for tolerance 553 // 723 // 554 724 555 // 725 // >> 726 // checking last value >> 727 // >> 728 >> 729 G4ThreeVector *tmpp; >> 730 G4double *tmpdist; >> 731 if (fLastDistanceToIn.p == p) >> 732 { >> 733 return fLastDistanceToIn.value; >> 734 } >> 735 else >> 736 { >> 737 tmpp = const_cast<G4ThreeVector*>(&(fLastDistanceToIn.p)); >> 738 tmpdist = const_cast<G4double*>(&(fLastDistanceToIn.value)); >> 739 tmpp->set(p.x(), p.y(), p.z()); >> 740 } >> 741 >> 742 // 556 // Calculate DistanceToIn(p) 743 // Calculate DistanceToIn(p) 557 // 744 // 558 745 559 EInside currentside = Inside(p); 746 EInside currentside = Inside(p); 560 747 561 switch (currentside) 748 switch (currentside) 562 { 749 { 563 case (kInside) : 750 case (kInside) : 564 { 751 { 565 } 752 } 566 753 567 case (kSurface) : 754 case (kSurface) : 568 { 755 { 569 return 0; << 756 *tmpdist = 0.; >> 757 return fLastDistanceToIn.value; 570 } 758 } 571 759 572 case (kOutside) : 760 case (kOutside) : 573 { 761 { 574 // Initialize 762 // Initialize 575 // 763 // 576 G4double distance = kInfinity; << 764 G4double distance = kInfinity; 577 765 578 // Find intersections and choose near 766 // Find intersections and choose nearest one 579 // 767 // 580 G4VTwistSurface* surfaces[6]; << 768 G4VTwistSurface *surfaces[6]; 581 769 582 surfaces[0] = fSide0; 770 surfaces[0] = fSide0; 583 surfaces[1] = fSide90 ; 771 surfaces[1] = fSide90 ; 584 surfaces[2] = fSide180 ; 772 surfaces[2] = fSide180 ; 585 surfaces[3] = fSide270 ; 773 surfaces[3] = fSide270 ; 586 surfaces[4] = fLowerEndcap; 774 surfaces[4] = fLowerEndcap; 587 surfaces[5] = fUpperEndcap; 775 surfaces[5] = fUpperEndcap; 588 776 >> 777 G4int i; >> 778 G4int besti = -1; 589 G4ThreeVector xx; 779 G4ThreeVector xx; 590 G4ThreeVector bestxx; 780 G4ThreeVector bestxx; 591 for (const auto & surface : surfaces) << 781 for (i=0; i< 6; i++) 592 { 782 { 593 G4double tmpdistance = surface->Di << 783 G4double tmpdistance = surfaces[i]->DistanceTo(p, xx); 594 if (tmpdistance < distance) 784 if (tmpdistance < distance) 595 { 785 { 596 distance = tmpdistance; 786 distance = tmpdistance; 597 bestxx = xx; 787 bestxx = xx; >> 788 besti = i; 598 } 789 } 599 } 790 } 600 return distance; << 791 *tmpdist = distance; >> 792 return fLastDistanceToIn.value; 601 } 793 } 602 794 603 default: << 795 default : 604 { 796 { 605 G4Exception("G4VTwistedFaceted::Dista << 797 G4Exception("G4VTwistedFaceted::DistanceToIn(p)", "InvalidCondition", 606 FatalException, "Unknown 798 FatalException, "Unknown point location!"); 607 } 799 } 608 } // switch end 800 } // switch end 609 801 610 return 0.; << 802 return kInfinity; 611 } 803 } 612 804 613 805 614 //============================================ 806 //===================================================================== 615 //* DistanceToOut (p, v) --------------------- 807 //* DistanceToOut (p, v) ---------------------------------------------- 616 808 617 G4double 809 G4double 618 G4VTwistedFaceted::DistanceToOut( const G4Thre 810 G4VTwistedFaceted::DistanceToOut( const G4ThreeVector& p, 619 const G4Thre 811 const G4ThreeVector& v, 620 const G4bool 812 const G4bool calcNorm, 621 G4bool << 813 G4bool *validNorm, 622 G4Thre << 814 G4ThreeVector *norm ) const 623 { 815 { 624 // DistanceToOut (p, v): 816 // DistanceToOut (p, v): 625 // Calculate distance to surface of shape f 817 // Calculate distance to surface of shape from `inside' 626 // along with the v, allowing for tolerance 818 // along with the v, allowing for tolerance. 627 // The function returns kInfinity if no int 819 // The function returns kInfinity if no intersection or 628 // just grazing within tolerance. 820 // just grazing within tolerance. 629 821 630 // 822 // >> 823 // checking last value >> 824 // >> 825 >> 826 G4ThreeVector *tmpp; >> 827 G4ThreeVector *tmpv; >> 828 G4double *tmpdist; >> 829 if (fLastDistanceToOutWithV.p == p && fLastDistanceToOutWithV.vec == v ) >> 830 { >> 831 return fLastDistanceToOutWithV.value; >> 832 } >> 833 else >> 834 { >> 835 tmpp = const_cast<G4ThreeVector*>(&(fLastDistanceToOutWithV.p)); >> 836 tmpv = const_cast<G4ThreeVector*>(&(fLastDistanceToOutWithV.vec)); >> 837 tmpdist = const_cast<G4double*>(&(fLastDistanceToOutWithV.value)); >> 838 tmpp->set(p.x(), p.y(), p.z()); >> 839 tmpv->set(v.x(), v.y(), v.z()); >> 840 } >> 841 >> 842 // 631 // Calculate DistanceToOut(p,v) 843 // Calculate DistanceToOut(p,v) 632 // 844 // 633 845 634 EInside currentside = Inside(p); 846 EInside currentside = Inside(p); 635 847 636 if (currentside == kOutside) 848 if (currentside == kOutside) 637 { 849 { 638 } 850 } 639 else if (currentside == kSurface) 851 else if (currentside == kSurface) 640 { 852 { 641 // particle is just on a boundary. 853 // particle is just on a boundary. 642 // if the particle is exiting from the v 854 // if the particle is exiting from the volume, return 0 643 // 855 // 644 G4ThreeVector normal = SurfaceNormal(p); 856 G4ThreeVector normal = SurfaceNormal(p); >> 857 G4VTwistSurface *blockedsurface = fLastNormal.surface[0]; 645 if (normal*v > 0) 858 if (normal*v > 0) 646 { 859 { 647 if (calcNorm) 860 if (calcNorm) 648 { 861 { 649 *norm = normal; << 862 *norm = (blockedsurface->GetNormal(p, true)); 650 *validNorm = true; << 863 *validNorm = blockedsurface->IsValidNorm(); 651 } 864 } >> 865 *tmpdist = 0.; 652 // timer.Stop(); 866 // timer.Stop(); 653 return 0; << 867 return fLastDistanceToOutWithV.value; 654 } 868 } 655 } 869 } 656 870 657 // now, we can take smallest positive dista 871 // now, we can take smallest positive distance. 658 872 659 // Initialize 873 // Initialize 660 G4double distance = kInfinity; << 874 G4double distance = kInfinity; 661 875 662 // find intersections and choose nearest on 876 // find intersections and choose nearest one. 663 G4VTwistSurface *surfaces[6]; 877 G4VTwistSurface *surfaces[6]; 664 878 665 surfaces[0] = fSide0; 879 surfaces[0] = fSide0; 666 surfaces[1] = fSide90 ; 880 surfaces[1] = fSide90 ; 667 surfaces[2] = fSide180 ; 881 surfaces[2] = fSide180 ; 668 surfaces[3] = fSide270 ; 882 surfaces[3] = fSide270 ; 669 surfaces[4] = fLowerEndcap; 883 surfaces[4] = fLowerEndcap; 670 surfaces[5] = fUpperEndcap; 884 surfaces[5] = fUpperEndcap; 671 885 >> 886 G4int i; 672 G4int besti = -1; 887 G4int besti = -1; 673 G4ThreeVector xx; 888 G4ThreeVector xx; 674 G4ThreeVector bestxx; 889 G4ThreeVector bestxx; 675 for (auto i=0; i<6 ; ++i) << 890 for (i=0; i< 6 ; i++) { 676 { << 677 G4double tmpdistance = surfaces[i]->Dist 891 G4double tmpdistance = surfaces[i]->DistanceToOut(p, v, xx); 678 if (tmpdistance < distance) 892 if (tmpdistance < distance) 679 { 893 { 680 distance = tmpdistance; 894 distance = tmpdistance; 681 bestxx = xx; 895 bestxx = xx; 682 besti = i; 896 besti = i; 683 } 897 } 684 } 898 } 685 899 686 if (calcNorm) 900 if (calcNorm) 687 { 901 { 688 if (besti != -1) 902 if (besti != -1) 689 { 903 { 690 *norm = (surfaces[besti]->GetNormal(p 904 *norm = (surfaces[besti]->GetNormal(p, true)); 691 *validNorm = surfaces[besti]->IsValid 905 *validNorm = surfaces[besti]->IsValidNorm(); 692 } 906 } 693 } 907 } 694 908 695 return distance; << 909 *tmpdist = distance; >> 910 // timer.Stop(); >> 911 return fLastDistanceToOutWithV.value; 696 } 912 } 697 913 698 914 699 //============================================ << 700 //* DistanceToOut (p) ------------------------ << 701 << 702 G4double G4VTwistedFaceted::DistanceToOut( con 915 G4double G4VTwistedFaceted::DistanceToOut( const G4ThreeVector& p ) const 703 { 916 { 704 // DistanceToOut(p): 917 // DistanceToOut(p): 705 // Calculate distance to surface of shape f 918 // Calculate distance to surface of shape from `inside', 706 // allowing for tolerance 919 // allowing for tolerance >> 920 >> 921 // >> 922 // checking last value >> 923 // >> 924 >> 925 >> 926 G4ThreeVector *tmpp; >> 927 G4double *tmpdist; >> 928 if (fLastDistanceToOut.p == p) >> 929 { >> 930 return fLastDistanceToOut.value; >> 931 } >> 932 else >> 933 { >> 934 tmpp = const_cast<G4ThreeVector*>(&(fLastDistanceToOut.p)); >> 935 tmpdist = const_cast<G4double*>(&(fLastDistanceToOut.value)); >> 936 tmpp->set(p.x(), p.y(), p.z()); >> 937 } 707 938 708 // 939 // 709 // Calculate DistanceToOut(p) 940 // Calculate DistanceToOut(p) 710 // 941 // 711 942 712 EInside currentside = Inside(p); 943 EInside currentside = Inside(p); 713 G4double retval = kInfinity; << 714 944 715 switch (currentside) 945 switch (currentside) 716 { 946 { 717 case (kOutside) : 947 case (kOutside) : 718 { 948 { 719 #ifdef G4SPECSDEBUG << 720 G4int oldprc = G4cout.precision(16) ; << 721 G4cout << G4endl ; << 722 DumpInfo(); << 723 G4cout << "Position:" << G4endl << G4 << 724 G4cout << "p.x() = " << p.x()/mm << << 725 G4cout << "p.y() = " << p.y()/mm << << 726 G4cout << "p.z() = " << p.z()/mm << << 727 G4cout.precision(oldprc) ; << 728 G4Exception("G4VTwistedFaceted::Distan << 729 JustWarning, "Point p is o << 730 #endif << 731 break; << 732 } 949 } 733 case (kSurface) : 950 case (kSurface) : 734 { 951 { 735 retval = 0; << 952 *tmpdist = 0.; 736 break; << 953 return fLastDistanceToOut.value; 737 } 954 } 738 955 739 case (kInside) : 956 case (kInside) : 740 { 957 { 741 // Initialize << 958 // Initialize 742 // << 959 // 743 G4double distance = kInfinity; << 960 G4double distance = kInfinity; 744 961 745 // find intersections and choose neare << 962 // find intersections and choose nearest one 746 // << 963 // 747 G4VTwistSurface* surfaces[6]; << 964 G4VTwistSurface *surfaces[6]; 748 << 965 749 surfaces[0] = fSide0; << 966 surfaces[0] = fSide0; 750 surfaces[1] = fSide90 ; << 967 surfaces[1] = fSide90 ; 751 surfaces[2] = fSide180 ; << 968 surfaces[2] = fSide180 ; 752 surfaces[3] = fSide270 ; << 969 surfaces[3] = fSide270 ; 753 surfaces[4] = fLowerEndcap; << 970 surfaces[4] = fLowerEndcap; 754 surfaces[5] = fUpperEndcap; << 971 surfaces[5] = fUpperEndcap; 755 << 972 756 G4ThreeVector xx; << 973 G4int i; 757 G4ThreeVector bestxx; << 974 G4int besti = -1; 758 for (const auto & surface : surfaces) << 975 G4ThreeVector xx; 759 { << 976 G4ThreeVector bestxx; 760 G4double tmpdistance = surface->Dist << 977 for (i=0; i< 6; i++) 761 if (tmpdistance < distance) << 978 { 762 { << 979 G4double tmpdistance = surfaces[i]->DistanceTo(p, xx); 763 distance = tmpdistance; << 980 if (tmpdistance < distance) 764 bestxx = xx; << 981 { 765 } << 982 distance = tmpdistance; 766 } << 983 bestxx = xx; 767 retval = distance; << 984 besti = i; 768 break; << 985 } >> 986 } >> 987 *tmpdist = distance; >> 988 >> 989 return fLastDistanceToOut.value; 769 } 990 } 770 991 771 default : 992 default : 772 { 993 { 773 G4Exception("G4VTwistedFaceted::Distan << 994 G4Exception("G4VTwistedFaceted::DistanceToOut(p)", "InvalidCondition", 774 FatalException, "Unknown p << 995 FatalException, "Unknown point location!"); 775 break; << 776 } 996 } 777 } // switch end 997 } // switch end 778 998 779 return retval; << 999 return 0; 780 } 1000 } 781 1001 782 1002 783 //============================================ 1003 //===================================================================== 784 //* StreamInfo ------------------------------- 1004 //* StreamInfo -------------------------------------------------------- 785 1005 786 std::ostream& G4VTwistedFaceted::StreamInfo(st 1006 std::ostream& G4VTwistedFaceted::StreamInfo(std::ostream& os) const 787 { 1007 { 788 // 1008 // 789 // Stream object contents to an output strea 1009 // Stream object contents to an output stream 790 // 1010 // 791 G4long oldprc = os.precision(16); << 792 os << "------------------------------------- 1011 os << "-----------------------------------------------------------\n" 793 << " *** Dump for solid - " << GetName 1012 << " *** Dump for solid - " << GetName() << " ***\n" 794 << " ================================= 1013 << " ===================================================\n" 795 << " Solid type: G4VTwistedFaceted\n" 1014 << " Solid type: G4VTwistedFaceted\n" 796 << " Parameters: \n" 1015 << " Parameters: \n" 797 << " polar angle theta = " << fTheta/ 1016 << " polar angle theta = " << fTheta/degree << " deg" << G4endl 798 << " azimuthal angle phi = " << fPhi/de 1017 << " azimuthal angle phi = " << fPhi/degree << " deg" << G4endl 799 << " tilt angle alpha = " << fAlph/de 1018 << " tilt angle alpha = " << fAlph/degree << " deg" << G4endl 800 << " TWIST angle = " << fPhiTwis 1019 << " TWIST angle = " << fPhiTwist/degree << " deg" << G4endl 801 << " Half length along y (lower endcap) 1020 << " Half length along y (lower endcap) = " << fDy1/cm << " cm" 802 << G4endl 1021 << G4endl 803 << " Half length along x (lower endcap, 1022 << " Half length along x (lower endcap, bottom) = " << fDx1/cm << " cm" 804 << G4endl 1023 << G4endl 805 << " Half length along x (lower endcap, 1024 << " Half length along x (lower endcap, top) = " << fDx2/cm << " cm" 806 << G4endl 1025 << G4endl 807 << " Half length along y (upper endcap) 1026 << " Half length along y (upper endcap) = " << fDy2/cm << " cm" 808 << G4endl 1027 << G4endl 809 << " Half length along x (upper endcap, 1028 << " Half length along x (upper endcap, bottom) = " << fDx3/cm << " cm" 810 << G4endl 1029 << G4endl 811 << " Half length along x (upper endcap, 1030 << " Half length along x (upper endcap, top) = " << fDx4/cm << " cm" 812 << G4endl 1031 << G4endl 813 << "------------------------------------- 1032 << "-----------------------------------------------------------\n"; 814 os.precision(oldprc); << 815 1033 816 return os; 1034 return os; 817 } 1035 } 818 1036 819 1037 820 //============================================ 1038 //===================================================================== 821 //* DiscribeYourselfTo ----------------------- 1039 //* DiscribeYourselfTo ------------------------------------------------ 822 1040 823 void G4VTwistedFaceted::DescribeYourselfTo (G4 1041 void G4VTwistedFaceted::DescribeYourselfTo (G4VGraphicsScene& scene) const 824 { 1042 { 825 scene.AddSolid (*this); 1043 scene.AddSolid (*this); 826 } 1044 } 827 1045 828 << 829 //============================================ 1046 //===================================================================== 830 //* GetExtent -------------------------------- 1047 //* GetExtent --------------------------------------------------------- 831 1048 832 G4VisExtent G4VTwistedFaceted::GetExtent() con 1049 G4VisExtent G4VTwistedFaceted::GetExtent() const 833 { 1050 { 834 G4double maxRad = std::sqrt( fDx*fDx + fDy*f 1051 G4double maxRad = std::sqrt( fDx*fDx + fDy*fDy); 835 1052 836 return { -maxRad, maxRad , << 1053 return G4VisExtent(-maxRad, maxRad , 837 -maxRad, maxRad , << 1054 -maxRad, maxRad , 838 -fDz, fDz }; << 1055 -fDz, fDz ); >> 1056 } >> 1057 >> 1058 >> 1059 //===================================================================== >> 1060 //* CreateNUBS -------------------------------------------------------- >> 1061 >> 1062 G4NURBS* G4VTwistedFaceted::CreateNURBS () const >> 1063 { >> 1064 G4double maxRad = std::sqrt( fDx*fDx + fDy*fDy); >> 1065 >> 1066 return new G4NURBStube(maxRad, maxRad, fDz); >> 1067 // Tube for now!!! 839 } 1068 } 840 1069 841 1070 842 //============================================ 1071 //===================================================================== 843 //* CreateSurfaces --------------------------- 1072 //* CreateSurfaces ---------------------------------------------------- 844 1073 845 void G4VTwistedFaceted::CreateSurfaces() 1074 void G4VTwistedFaceted::CreateSurfaces() 846 { 1075 { 847 1076 848 // create 6 surfaces of TwistedTub. 1077 // create 6 surfaces of TwistedTub. 849 1078 850 if ( fDx1 == fDx2 && fDx3 == fDx4 ) // sp 1079 if ( fDx1 == fDx2 && fDx3 == fDx4 ) // special case : Box 851 { 1080 { 852 fSide0 = new G4TwistBoxSide("0deg", fPhi << 1081 fSide0 = new G4TwistBoxSide("0deg", fPhiTwist, fDz, fTheta, fPhi, 853 fDy1, fDx1, fDx1, fD << 1082 fDy1, fDx1, fDx1, fDy2, fDx3, fDx3, fAlph, 0.*deg); 854 fSide180 = new G4TwistBoxSide("180deg", fP 1083 fSide180 = new G4TwistBoxSide("180deg", fPhiTwist, fDz, fTheta, fPhi+pi, 855 fDy1, fDx1, fDx1, fD << 1084 fDy1, fDx1, fDx1, fDy2, fDx3, fDx3, fAlph, 180.*deg); 856 } 1085 } 857 else // default general case 1086 else // default general case 858 { 1087 { 859 fSide0 = new G4TwistTrapAlphaSide("0deg" 1088 fSide0 = new G4TwistTrapAlphaSide("0deg" ,fPhiTwist, fDz, fTheta, 860 fPhi, fDy1, fDx1, fDx2, 1089 fPhi, fDy1, fDx1, fDx2, fDy2, fDx3, fDx4, fAlph, 0.*deg); 861 fSide180 = new G4TwistTrapAlphaSide("180de 1090 fSide180 = new G4TwistTrapAlphaSide("180deg", fPhiTwist, fDz, fTheta, 862 fPhi+pi, fDy1, fDx2, fDx1, fD 1091 fPhi+pi, fDy1, fDx2, fDx1, fDy2, fDx4, fDx3, fAlph, 180.*deg); 863 } 1092 } 864 1093 865 // create parallel sides 1094 // create parallel sides 866 // 1095 // 867 fSide90 = new G4TwistTrapParallelSide("90deg 1096 fSide90 = new G4TwistTrapParallelSide("90deg", fPhiTwist, fDz, fTheta, 868 fPhi, fDy1, fDx1, fDx2, 1097 fPhi, fDy1, fDx1, fDx2, fDy2, fDx3, fDx4, fAlph, 0.*deg); 869 fSide270 = new G4TwistTrapParallelSide("270d 1098 fSide270 = new G4TwistTrapParallelSide("270deg", fPhiTwist, fDz, fTheta, 870 fPhi+pi, fDy1, fDx2, fDx1, fD 1099 fPhi+pi, fDy1, fDx2, fDx1, fDy2, fDx4, fDx3, fAlph, 180.*deg); 871 1100 872 // create endcaps 1101 // create endcaps 873 // 1102 // 874 fUpperEndcap = new G4TwistTrapFlatSide("Uppe 1103 fUpperEndcap = new G4TwistTrapFlatSide("UpperCap",fPhiTwist, fDx3, fDx4, fDy2, 875 fDz, fAlph 1104 fDz, fAlph, fPhi, fTheta, 1 ); 876 fLowerEndcap = new G4TwistTrapFlatSide("Lowe 1105 fLowerEndcap = new G4TwistTrapFlatSide("LowerCap",fPhiTwist, fDx1, fDx2, fDy1, 877 fDz, fAlph 1106 fDz, fAlph, fPhi, fTheta, -1 ); 878 1107 879 // Set neighbour surfaces 1108 // Set neighbour surfaces 880 1109 881 fSide0->SetNeighbours( fSide270 , fLowerEnd 1110 fSide0->SetNeighbours( fSide270 , fLowerEndcap , fSide90 , fUpperEndcap ); 882 fSide90->SetNeighbours( fSide0 , fLowerEnd 1111 fSide90->SetNeighbours( fSide0 , fLowerEndcap , fSide180 , fUpperEndcap ); 883 fSide180->SetNeighbours(fSide90 , fLowerEnd 1112 fSide180->SetNeighbours(fSide90 , fLowerEndcap , fSide270 , fUpperEndcap ); 884 fSide270->SetNeighbours(fSide180 , fLowerEnd 1113 fSide270->SetNeighbours(fSide180 , fLowerEndcap , fSide0 , fUpperEndcap ); 885 fUpperEndcap->SetNeighbours( fSide180, fSide 1114 fUpperEndcap->SetNeighbours( fSide180, fSide270 , fSide0 , fSide90 ); 886 fLowerEndcap->SetNeighbours( fSide180, fSide 1115 fLowerEndcap->SetNeighbours( fSide180, fSide270 , fSide0 , fSide90 ); 887 1116 888 } 1117 } 889 1118 890 //============================================ << 891 //* GetCubicVolume --------------------------- << 892 << 893 G4double G4VTwistedFaceted::GetCubicVolume() << 894 { << 895 if(fCubicVolume == 0.) << 896 { << 897 fCubicVolume = ((fDx1 + fDx2 + fDx3 + fDx4 << 898 (fDx4 + fDx3 - fDx2 - fDx1 << 899 } << 900 return fCubicVolume; << 901 } << 902 << 903 //============================================ << 904 //* GetLateralFaceArea ----------------------- << 905 << 906 G4double << 907 G4VTwistedFaceted::GetLateralFaceArea(const G4 << 908 const G4 << 909 const G4 << 910 const G4 << 911 { << 912 constexpr G4int NSTEP = 100; << 913 constexpr G4double dt = 1./NSTEP; << 914 << 915 G4double h = 2.*fDz; << 916 G4double hh = h*h; << 917 G4double hTanTheta = h*std::tan(fTheta); << 918 G4double x1 = p1.x(); << 919 G4double y1 = p1.y(); << 920 G4double x21 = p2.x() - p1.x(); << 921 G4double y21 = p2.y() - p1.y(); << 922 G4double x31 = p3.x() - p1.x(); << 923 G4double y31 = p3.y() - p1.y(); << 924 G4double x42 = p4.x() - p2.x(); << 925 G4double y42 = p4.y() - p2.y(); << 926 G4double x43 = p4.x() - p3.x(); << 927 G4double y43 = p4.y() - p3.y(); << 928 << 929 // check if face is plane (just in case) << 930 G4double lmax = std::max(std::max(std::abs(x << 931 std::max(std::abs(x << 932 G4double eps = lmax*kCarTolerance; << 933 if (std::abs(fPhiTwist) < kCarTolerance && << 934 std::abs(x21*y43 - y21*x43) < eps) << 935 { << 936 G4double x0 = hTanTheta*std::cos(fPhi); << 937 G4double y0 = hTanTheta*std::sin(fPhi); << 938 G4ThreeVector A(p4.x() - p1.x() + x0, p4.y << 939 G4ThreeVector B(p3.x() - p2.x() + x0, p3.y << 940 return (A.cross(B)).mag()*0.5; << 941 } << 942 << 943 // twisted face << 944 G4double area = 0.; << 945 for (G4int i = 0; i < NSTEP; ++i) << 946 { << 947 G4double t = (i + 0.5)*dt; << 948 G4double I = x21 + (x42 - x31)*t; << 949 G4double J = y21 + (y42 - y31)*t; << 950 G4double II = I*I; << 951 G4double JJ = J*J; << 952 G4double IIJJ = hh*(I*I + J*J); << 953 << 954 G4double ang = fPhi + fPhiTwist*(0.5 - t); << 955 G4double A = fPhiTwist*(II + JJ) + x21*y43 << 956 G4double B = fPhiTwist*(I*(x1 + x31*t) + J << 957 hTanTheta*(I*std::sin(ang) - J*std::cos( << 958 (I*y31 - J*x31); << 959 << 960 G4double invAA = 1./(A*A); << 961 G4double sqrtAA = 2.*std::abs(A); << 962 G4double invSqrtAA = 1./sqrtAA; << 963 << 964 G4double aa = A*A; << 965 G4double bb = 2.*A*B; << 966 G4double cc = IIJJ + B*B; << 967 << 968 G4double R1 = std::sqrt(aa + bb + cc); << 969 G4double R0 = std::sqrt(cc); << 970 G4double log1 = std::log(std::abs(sqrtAA*R << 971 G4double log0 = std::log(std::abs(sqrtAA*R << 972 << 973 area += 0.5*R1 + 0.25*bb*invAA*(R1 - R0) + << 974 } << 975 return area*dt; << 976 } << 977 << 978 //============================================ << 979 //* GetSurfaceArea --------------------------- << 980 << 981 G4double G4VTwistedFaceted::GetSurfaceArea() << 982 { << 983 if (fSurfaceArea == 0.) << 984 { << 985 G4TwoVector vv[8]; << 986 vv[0] = G4TwoVector(-fDx1 - fDy1*fTAlph,-f << 987 vv[1] = G4TwoVector( fDx1 - fDy1*fTAlph,-f << 988 vv[2] = G4TwoVector(-fDx2 + fDy1*fTAlph, f << 989 vv[3] = G4TwoVector( fDx2 + fDy1*fTAlph, f << 990 vv[4] = G4TwoVector(-fDx3 - fDy2*fTAlph,-f << 991 vv[5] = G4TwoVector( fDx3 - fDy2*fTAlph,-f << 992 vv[6] = G4TwoVector(-fDx4 + fDy2*fTAlph, f << 993 vv[7] = G4TwoVector( fDx4 + fDy2*fTAlph, f << 994 fSurfaceArea = 2.*(fDy1*(fDx1 + fDx2) + fD << 995 GetLateralFaceArea(vv[0], vv[1], vv[4], << 996 GetLateralFaceArea(vv[1], vv[3], vv[5], << 997 GetLateralFaceArea(vv[3], vv[2], vv[7], << 998 GetLateralFaceArea(vv[2], vv[0], vv[6], << 999 } << 1000 return fSurfaceArea; << 1001 } << 1002 1119 1003 //=========================================== 1120 //===================================================================== 1004 //* GetEntityType --------------------------- 1121 //* GetEntityType ----------------------------------------------------- 1005 1122 1006 G4GeometryType G4VTwistedFaceted::GetEntityTy 1123 G4GeometryType G4VTwistedFaceted::GetEntityType() const 1007 { 1124 { 1008 return {"G4VTwistedFaceted"}; << 1125 return G4String("G4VTwistedFaceted"); 1009 } 1126 } 1010 1127 1011 1128 1012 //=========================================== 1129 //===================================================================== 1013 //* GetPolyhedron --------------------------- 1130 //* GetPolyhedron ----------------------------------------------------- 1014 1131 1015 G4Polyhedron* G4VTwistedFaceted::GetPolyhedro 1132 G4Polyhedron* G4VTwistedFaceted::GetPolyhedron() const 1016 { 1133 { 1017 if (fpPolyhedron == nullptr || << 1134 if (!fpPolyhedron || 1018 fRebuildPolyhedron || << 1019 fpPolyhedron->GetNumberOfRotationStepsA 1135 fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != 1020 fpPolyhedron->GetNumberOfRotationSteps( 1136 fpPolyhedron->GetNumberOfRotationSteps()) 1021 { 1137 { 1022 G4AutoLock l(&polyhedronMutex); << 1023 delete fpPolyhedron; 1138 delete fpPolyhedron; 1024 fpPolyhedron = CreatePolyhedron(); 1139 fpPolyhedron = CreatePolyhedron(); 1025 fRebuildPolyhedron = false; << 1026 l.unlock(); << 1027 } 1140 } 1028 1141 1029 return fpPolyhedron; 1142 return fpPolyhedron; 1030 } 1143 } 1031 1144 1032 1145 1033 //=========================================== 1146 //===================================================================== 1034 //* GetPointInSolid ------------------------- 1147 //* GetPointInSolid --------------------------------------------------- 1035 1148 1036 G4ThreeVector G4VTwistedFaceted::GetPointInSo 1149 G4ThreeVector G4VTwistedFaceted::GetPointInSolid(G4double z) const 1037 { 1150 { 1038 1151 1039 1152 1040 // this routine is only used for a test 1153 // this routine is only used for a test 1041 // can be deleted ... 1154 // can be deleted ... 1042 1155 1043 if ( z == fDz ) z -= 0.1*fDz ; 1156 if ( z == fDz ) z -= 0.1*fDz ; 1044 if ( z == -fDz ) z += 0.1*fDz ; 1157 if ( z == -fDz ) z += 0.1*fDz ; 1045 1158 1046 G4double phi = z/(2*fDz)*fPhiTwist ; 1159 G4double phi = z/(2*fDz)*fPhiTwist ; 1047 1160 1048 return { fdeltaX * phi/fPhiTwist, fdeltaY * << 1161 return G4ThreeVector(fdeltaX * phi/fPhiTwist, fdeltaY * phi/fPhiTwist, z ) ; 1049 } 1162 } 1050 1163 1051 1164 1052 //=========================================== 1165 //===================================================================== 1053 //* GetPointOnSurface ----------------------- 1166 //* GetPointOnSurface ------------------------------------------------- 1054 1167 1055 G4ThreeVector G4VTwistedFaceted::GetPointOnSu 1168 G4ThreeVector G4VTwistedFaceted::GetPointOnSurface() const 1056 { 1169 { 1057 1170 1058 G4double phi = G4RandFlat::shoot(-fPhiTwist << 1171 G4double phi = CLHEP::RandFlat::shoot(-fPhiTwist/2.,fPhiTwist/2.); 1059 G4double u , umin, umax ; // variable for 1172 G4double u , umin, umax ; // variable for twisted surfaces 1060 G4double y ; // variable for 1173 G4double y ; // variable for flat surface (top and bottom) 1061 1174 1062 // Compute the areas. Attention: Only corre 1175 // Compute the areas. Attention: Only correct for trapezoids 1063 // where the twisting is done along the z-a 1176 // where the twisting is done along the z-axis. In the general case 1064 // the computed surface area is more diffic 1177 // the computed surface area is more difficult. However this simplification 1065 // does not affect the tracking through the 1178 // does not affect the tracking through the solid. 1066 1179 1067 G4double a1 = fSide0->GetSurfaceArea(); << 1180 G4double a1 = fSide0->GetSurfaceArea(); 1068 G4double a2 = fSide90->GetSurfaceArea(); << 1181 G4double a2 = fSide90->GetSurfaceArea(); 1069 G4double a3 = fSide180->GetSurfaceArea() ; << 1182 G4double a3 = fSide180->GetSurfaceArea() ; 1070 G4double a4 = fSide270->GetSurfaceArea() ; << 1183 G4double a4 = fSide270->GetSurfaceArea() ; 1071 G4double a5 = fLowerEndcap->GetSurfaceArea( << 1184 G4double a5 = fLowerEndcap->GetSurfaceArea() ; 1072 G4double a6 = fUpperEndcap->GetSurfaceArea( << 1185 G4double a6 = fUpperEndcap->GetSurfaceArea() ; 1073 1186 1074 #ifdef G4TWISTDEBUG << 1187 #ifdef G4SPECSDEBUG 1075 G4cout << "Surface 0 deg = " << a1 << G4e 1188 G4cout << "Surface 0 deg = " << a1 << G4endl ; 1076 G4cout << "Surface 90 deg = " << a2 << G4e 1189 G4cout << "Surface 90 deg = " << a2 << G4endl ; 1077 G4cout << "Surface 180 deg = " << a3 << G4e 1190 G4cout << "Surface 180 deg = " << a3 << G4endl ; 1078 G4cout << "Surface 270 deg = " << a4 << G4e 1191 G4cout << "Surface 270 deg = " << a4 << G4endl ; 1079 G4cout << "Surface Lower = " << a5 << G4e 1192 G4cout << "Surface Lower = " << a5 << G4endl ; 1080 G4cout << "Surface Upper = " << a6 << G4e 1193 G4cout << "Surface Upper = " << a6 << G4endl ; 1081 #endif 1194 #endif 1082 1195 1083 G4double chose = G4RandFlat::shoot(0.,a1 + << 1196 G4double chose = CLHEP::RandFlat::shoot(0.,a1 + a2 + a3 + a4 + a5 + a6) ; 1084 1197 1085 if(chose < a1) 1198 if(chose < a1) 1086 { 1199 { >> 1200 1087 umin = fSide0->GetBoundaryMin(phi) ; 1201 umin = fSide0->GetBoundaryMin(phi) ; 1088 umax = fSide0->GetBoundaryMax(phi) ; 1202 umax = fSide0->GetBoundaryMax(phi) ; 1089 u = G4RandFlat::shoot(umin,umax) ; << 1203 u = CLHEP::RandFlat::shoot(umin,umax) ; 1090 1204 1091 return fSide0->SurfacePoint(phi, u, true 1205 return fSide0->SurfacePoint(phi, u, true) ; // point on 0deg surface 1092 } 1206 } 1093 1207 1094 else if( (chose >= a1) && (chose < a1 + a2 1208 else if( (chose >= a1) && (chose < a1 + a2 ) ) 1095 { 1209 { >> 1210 1096 umin = fSide90->GetBoundaryMin(phi) ; 1211 umin = fSide90->GetBoundaryMin(phi) ; 1097 umax = fSide90->GetBoundaryMax(phi) ; 1212 umax = fSide90->GetBoundaryMax(phi) ; 1098 1213 1099 u = G4RandFlat::shoot(umin,umax) ; << 1214 u = CLHEP::RandFlat::shoot(umin,umax) ; 1100 1215 1101 return fSide90->SurfacePoint(phi, u, true 1216 return fSide90->SurfacePoint(phi, u, true); // point on 90deg surface 1102 } 1217 } >> 1218 1103 else if( (chose >= a1 + a2 ) && (chose < a1 1219 else if( (chose >= a1 + a2 ) && (chose < a1 + a2 + a3 ) ) 1104 { 1220 { >> 1221 1105 umin = fSide180->GetBoundaryMin(phi) ; 1222 umin = fSide180->GetBoundaryMin(phi) ; 1106 umax = fSide180->GetBoundaryMax(phi) ; 1223 umax = fSide180->GetBoundaryMax(phi) ; 1107 u = G4RandFlat::shoot(umin,umax) ; << 1224 u = CLHEP::RandFlat::shoot(umin,umax) ; 1108 1225 1109 return fSide180->SurfacePoint(phi, u, tru << 1226 return fSide180->SurfacePoint(phi, u, true); // point on 180 deg surface 1110 } 1227 } >> 1228 1111 else if( (chose >= a1 + a2 + a3 ) && (chos 1229 else if( (chose >= a1 + a2 + a3 ) && (chose < a1 + a2 + a3 + a4 ) ) 1112 { 1230 { >> 1231 1113 umin = fSide270->GetBoundaryMin(phi) ; 1232 umin = fSide270->GetBoundaryMin(phi) ; 1114 umax = fSide270->GetBoundaryMax(phi) ; 1233 umax = fSide270->GetBoundaryMax(phi) ; 1115 u = G4RandFlat::shoot(umin,umax) ; << 1234 u = CLHEP::RandFlat::shoot(umin,umax) ; >> 1235 1116 return fSide270->SurfacePoint(phi, u, tru 1236 return fSide270->SurfacePoint(phi, u, true); // point on 270 deg surface 1117 } 1237 } >> 1238 1118 else if( (chose >= a1 + a2 + a3 + a4 ) && 1239 else if( (chose >= a1 + a2 + a3 + a4 ) && (chose < a1 + a2 + a3 + a4 + a5 ) ) 1119 { 1240 { 1120 y = G4RandFlat::shoot(-fDy1,fDy1) ; << 1241 >> 1242 y = CLHEP::RandFlat::shoot(-fDy1,fDy1) ; 1121 umin = fLowerEndcap->GetBoundaryMin(y) ; 1243 umin = fLowerEndcap->GetBoundaryMin(y) ; 1122 umax = fLowerEndcap->GetBoundaryMax(y) ; 1244 umax = fLowerEndcap->GetBoundaryMax(y) ; 1123 u = G4RandFlat::shoot(umin,umax) ; << 1245 u = CLHEP::RandFlat::shoot(umin,umax) ; 1124 1246 1125 return fLowerEndcap->SurfacePoint(u,y,tru 1247 return fLowerEndcap->SurfacePoint(u,y,true); // point on lower endcap 1126 } 1248 } 1127 else << 1249 else { 1128 { << 1250 1129 y = G4RandFlat::shoot(-fDy2,fDy2) ; << 1251 y = CLHEP::RandFlat::shoot(-fDy2,fDy2) ; 1130 umin = fUpperEndcap->GetBoundaryMin(y) ; 1252 umin = fUpperEndcap->GetBoundaryMin(y) ; 1131 umax = fUpperEndcap->GetBoundaryMax(y) ; 1253 umax = fUpperEndcap->GetBoundaryMax(y) ; 1132 u = G4RandFlat::shoot(umin,umax) ; << 1254 u = CLHEP::RandFlat::shoot(umin,umax) ; 1133 1255 1134 return fUpperEndcap->SurfacePoint(u,y,tru 1256 return fUpperEndcap->SurfacePoint(u,y,true) ; // point on upper endcap 1135 1257 1136 } 1258 } 1137 } 1259 } 1138 1260 1139 1261 1140 //=========================================== 1262 //===================================================================== 1141 //* CreatePolyhedron ------------------------ 1263 //* CreatePolyhedron -------------------------------------------------- 1142 1264 1143 G4Polyhedron* G4VTwistedFaceted::CreatePolyhe 1265 G4Polyhedron* G4VTwistedFaceted::CreatePolyhedron () const 1144 { 1266 { 1145 // number of meshes 1267 // number of meshes 1146 const G4int k = << 1268 const G4int m = 1147 G4int(G4Polyhedron::GetNumberOfRotationStep << 1269 G4int(G4Polyhedron::GetNumberOfRotationSteps() * fPhiTwist / twopi) + 2; 1148 std::abs(fPhiTwist) / twopi) + 2; << 1270 const G4int n = m; 1149 const G4int n = k; << 1150 1271 1151 const G4int nnodes = 4*(k-1)*(n-2) + 2*k*k << 1272 const G4int nnodes = 4*(m-1)*(n-2) + 2*m*m ; 1152 const G4int nfaces = 4*(k-1)*(n-1) + 2*(k-1 << 1273 const G4int nfaces = 4*(m-1)*(n-1) + 2*(m-1)*(m-1) ; 1153 1274 1154 auto ph = new G4Polyhedron; << 1275 G4Polyhedron *ph=new G4Polyhedron; 1155 typedef G4double G4double3[3]; 1276 typedef G4double G4double3[3]; 1156 typedef G4int G4int4[4]; 1277 typedef G4int G4int4[4]; 1157 auto xyz = new G4double3[nnodes]; // numbe << 1278 G4double3* xyz = new G4double3[nnodes]; // number of nodes 1158 auto faces = new G4int4[nfaces] ; // numbe << 1279 G4int4* faces = new G4int4[nfaces] ; // number of faces 1159 1280 1160 fLowerEndcap->GetFacets(k,k,xyz,faces,0) ; << 1281 fLowerEndcap->GetFacets(m,m,xyz,faces,0) ; 1161 fUpperEndcap->GetFacets(k,k,xyz,faces,1) ; << 1282 fUpperEndcap->GetFacets(m,m,xyz,faces,1) ; 1162 fSide270->GetFacets(k,n,xyz,faces,2) ; << 1283 fSide270->GetFacets(m,n,xyz,faces,2) ; 1163 fSide0->GetFacets(k,n,xyz,faces,3) ; << 1284 fSide0->GetFacets(m,n,xyz,faces,3) ; 1164 fSide90->GetFacets(k,n,xyz,faces,4) ; << 1285 fSide90->GetFacets(m,n,xyz,faces,4) ; 1165 fSide180->GetFacets(k,n,xyz,faces,5) ; << 1286 fSide180->GetFacets(m,n,xyz,faces,5) ; 1166 1287 1167 ph->createPolyhedron(nnodes,nfaces,xyz,face 1288 ph->createPolyhedron(nnodes,nfaces,xyz,faces); 1168 1289 1169 return ph; 1290 return ph; 1170 } 1291 } 1171 1292