Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4VTwistedFaceted implementation << 23 // $Id: G4VTwistedFaceted.cc,v 1.12 2006/01/16 12:55:32 gcosmo Exp $ >> 24 // GEANT4 tag $Name: geant4-08-00-patch-01 $ >> 25 // >> 26 // >> 27 // -------------------------------------------------------------------- >> 28 // GEANT 4 class source file >> 29 // >> 30 // >> 31 // G4VTwistedFaceted.cc >> 32 // >> 33 // Author: >> 34 // >> 35 // 04-Nov-2004 - O.Link (Oliver.Link@cern.ch) 27 // 36 // 28 // Author: 04-Nov-2004 - O.Link (Oliver.Link@c << 29 // ------------------------------------------- 37 // -------------------------------------------------------------------- 30 38 31 #include "G4VTwistedFaceted.hh" 39 #include "G4VTwistedFaceted.hh" 32 40 33 #include "G4PhysicalConstants.hh" << 34 #include "G4SystemOfUnits.hh" << 35 #include "G4VoxelLimits.hh" 41 #include "G4VoxelLimits.hh" 36 #include "G4AffineTransform.hh" 42 #include "G4AffineTransform.hh" 37 #include "G4BoundingEnvelope.hh" << 38 #include "G4SolidExtentList.hh" 43 #include "G4SolidExtentList.hh" 39 #include "G4ClippablePolygon.hh" 44 #include "G4ClippablePolygon.hh" 40 #include "G4VPVParameterisation.hh" 45 #include "G4VPVParameterisation.hh" 41 #include "G4GeometryTolerance.hh" << 42 #include "meshdefs.hh" 46 #include "meshdefs.hh" 43 47 44 #include "G4VGraphicsScene.hh" 48 #include "G4VGraphicsScene.hh" 45 #include "G4Polyhedron.hh" 49 #include "G4Polyhedron.hh" 46 #include "G4VisExtent.hh" 50 #include "G4VisExtent.hh" >> 51 #include "G4NURBS.hh" >> 52 #include "G4NURBStube.hh" >> 53 #include "G4NURBScylinder.hh" >> 54 #include "G4NURBStubesector.hh" 47 55 48 #include "Randomize.hh" 56 #include "Randomize.hh" 49 57 50 #include "G4AutoLock.hh" << 51 << 52 namespace << 53 { << 54 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZE << 55 } << 56 << 57 << 58 //============================================ 58 //===================================================================== 59 //* constructors ----------------------------- 59 //* constructors ------------------------------------------------------ 60 60 61 G4VTwistedFaceted:: 61 G4VTwistedFaceted:: 62 G4VTwistedFaceted( const G4String& pname, << 62 G4VTwistedFaceted( const G4String &pname, // Name of instance 63 G4double PhiTwist, 63 G4double PhiTwist, // twist angle 64 G4double pDz, 64 G4double pDz, // half z length 65 G4double pTheta, // 65 G4double pTheta, // direction between end planes 66 G4double pPhi, // 66 G4double pPhi, // defined by polar and azim. angles 67 G4double pDy1, // 67 G4double pDy1, // half y length at -pDz 68 G4double pDx1, // 68 G4double pDx1, // half x length at -pDz,-pDy 69 G4double pDx2, // 69 G4double pDx2, // half x length at -pDz,+pDy 70 G4double pDy2, // 70 G4double pDy2, // half y length at +pDz 71 G4double pDx3, // 71 G4double pDx3, // half x length at +pDz,-pDy 72 G4double pDx4, // 72 G4double pDx4, // half x length at +pDz,+pDy 73 G4double pAlph ) // << 73 G4double pAlph // tilt angle 74 : G4VSolid(pname), << 74 ) 75 fLowerEndcap(nullptr), fUpperEndcap(nullpt << 75 : G4VSolid(pname), 76 fSide90(nullptr), fSide180(nullptr), fSide << 76 fLowerEndcap(0), fUpperEndcap(0), fSide0(0), >> 77 fSide90(0), fSide180(0), fSide270(0), >> 78 fpPolyhedron(0) 77 { 79 { 78 80 79 G4double pDytmp ; 81 G4double pDytmp ; 80 G4double fDxUp ; 82 G4double fDxUp ; 81 G4double fDxDown ; 83 G4double fDxDown ; 82 84 83 fDx1 = pDx1 ; 85 fDx1 = pDx1 ; 84 fDx2 = pDx2 ; 86 fDx2 = pDx2 ; 85 fDx3 = pDx3 ; 87 fDx3 = pDx3 ; 86 fDx4 = pDx4 ; 88 fDx4 = pDx4 ; 87 fDy1 = pDy1 ; 89 fDy1 = pDy1 ; 88 fDy2 = pDy2 ; 90 fDy2 = pDy2 ; 89 fDz = pDz ; 91 fDz = pDz ; 90 92 91 G4double kAngTolerance << 92 = G4GeometryTolerance::GetInstance()->GetA << 93 << 94 // maximum values 93 // maximum values 95 // 94 // 96 fDxDown = ( fDx1 > fDx2 ? fDx1 : fDx2 ) ; 95 fDxDown = ( fDx1 > fDx2 ? fDx1 : fDx2 ) ; 97 fDxUp = ( fDx3 > fDx4 ? fDx3 : fDx4 ) ; 96 fDxUp = ( fDx3 > fDx4 ? fDx3 : fDx4 ) ; 98 fDx = ( fDxUp > fDxDown ? fDxUp : fDxDow 97 fDx = ( fDxUp > fDxDown ? fDxUp : fDxDown ) ; 99 fDy = ( fDy1 > fDy2 ? fDy1 : fDy2 ) ; 98 fDy = ( fDy1 > fDy2 ? fDy1 : fDy2 ) ; 100 99 101 // planarity check 100 // planarity check 102 // 101 // 103 if ( fDx1 != fDx2 && fDx3 != fDx4 ) 102 if ( fDx1 != fDx2 && fDx3 != fDx4 ) 104 { 103 { 105 pDytmp = fDy1 * ( fDx3 - fDx4 ) / ( fDx1 - 104 pDytmp = fDy1 * ( fDx3 - fDx4 ) / ( fDx1 - fDx2 ) ; 106 if ( std::fabs(pDytmp - fDy2) > kCarTolera 105 if ( std::fabs(pDytmp - fDy2) > kCarTolerance ) 107 { 106 { 108 std::ostringstream message; << 107 G4cerr << "ERROR - G4VTwistedFaceted::G4VTwistedFaceted(): " 109 message << "Not planar surface in untwis << 108 << GetName() << G4endl 110 << GetName() << G4endl << 109 << " Not planar ! - " << G4endl 111 << "fDy2 is " << fDy2 << " but s << 110 << "fDy2 is " << fDy2 << " but should be " 112 << pDytmp << "."; << 111 << pDytmp << "." << G4endl ; 113 G4Exception("G4VTwistedFaceted::G4VTwist << 112 G4Exception("G4VTwistedFaceted::G4VTwistedFaceted()", "InvalidSetup", 114 FatalErrorInArgument, messag << 113 FatalException, "Not planar surface in untwisted Trapezoid."); 115 } 114 } 116 } 115 } 117 116 118 #ifdef G4TWISTDEBUG << 117 #ifdef G4SPECSDEBUG 119 if ( fDx1 == fDx2 && fDx3 == fDx4 ) 118 if ( fDx1 == fDx2 && fDx3 == fDx4 ) 120 { 119 { 121 G4cout << "Trapezoid is a box" << G4endl 120 G4cout << "Trapezoid is a box" << G4endl ; 122 } 121 } 123 122 124 #endif 123 #endif 125 124 126 if ( ( fDx1 == fDx2 && fDx3 != fDx4 ) || ( 125 if ( ( fDx1 == fDx2 && fDx3 != fDx4 ) || ( fDx1 != fDx2 && fDx3 == fDx4 ) ) 127 { 126 { 128 std::ostringstream message; << 127 G4cerr << "ERROR - G4VTwistedFaceted::G4VTwistedFaceted(): " 129 message << "Not planar surface in untwiste << 128 << GetName() << G4endl 130 << GetName() << G4endl << 129 << " Not planar ! - " << G4endl 131 << "One endcap is rectangular, the << 130 << "One endcap is rectengular, the other is a trapezoid." << G4endl 132 << "For planarity reasons they hav << 131 << "For planarity reasons they have to be rectangles or trapezoids " 133 << "on both sides."; << 132 << G4endl 134 G4Exception("G4VTwistedFaceted::G4VTwisted << 133 << "on both sides." 135 FatalErrorInArgument, message) << 134 << G4endl ; >> 135 G4Exception("G4VTwistedFaceted::G4VTwistedFaceted()", "InvalidSetup", >> 136 FatalException, "Not planar surface in untwisted Trapezoid."); 136 } 137 } 137 138 138 // twist angle 139 // twist angle 139 // 140 // 140 fPhiTwist = PhiTwist ; 141 fPhiTwist = PhiTwist ; 141 142 142 // tilt angle 143 // tilt angle 143 // 144 // 144 fAlph = pAlph ; 145 fAlph = pAlph ; 145 fTAlph = std::tan(fAlph) ; 146 fTAlph = std::tan(fAlph) ; 146 147 147 fTheta = pTheta ; 148 fTheta = pTheta ; 148 fPhi = pPhi ; 149 fPhi = pPhi ; 149 150 150 // dx in surface equation 151 // dx in surface equation 151 // 152 // 152 fdeltaX = 2 * fDz * std::tan(fTheta) * std:: 153 fdeltaX = 2 * fDz * std::tan(fTheta) * std::cos(fPhi) ; 153 154 154 // dy in surface equation 155 // dy in surface equation 155 // 156 // 156 fdeltaY = 2 * fDz * std::tan(fTheta) * std:: 157 fdeltaY = 2 * fDz * std::tan(fTheta) * std::sin(fPhi) ; 157 158 158 if ( ( fDx1 <= 2*kCarTolerance) << 159 if ( ! ( ( fDx1 > 2*kCarTolerance) 159 || ( fDx2 <= 2*kCarTolerance) << 160 && ( fDx2 > 2*kCarTolerance) 160 || ( fDx3 <= 2*kCarTolerance) << 161 && ( fDx3 > 2*kCarTolerance) 161 || ( fDx4 <= 2*kCarTolerance) << 162 && ( fDx4 > 2*kCarTolerance) 162 || ( fDy1 <= 2*kCarTolerance) << 163 && ( fDy1 > 2*kCarTolerance) 163 || ( fDy2 <= 2*kCarTolerance) << 164 && ( fDy2 > 2*kCarTolerance) 164 || ( fDz <= 2*kCarTolerance) << 165 && ( fDz > 2*kCarTolerance) 165 || ( std::fabs(fPhiTwist) <= 2*kAngTo << 166 && ( std::fabs(fPhiTwist) > 2*kAngTolerance ) 166 || ( std::fabs(fPhiTwist) >= pi/2 ) << 167 && ( std::fabs(fPhiTwist) < pi/2 ) 167 || ( std::fabs(fAlph) >= pi/2 ) << 168 && ( std::fabs(fAlph) < pi/2 ) 168 || fTheta >= pi/2 || fTheta < 0 << 169 && ( fTheta < pi/2 && fTheta >= 0 ) ) 169 ) 170 ) 170 { 171 { 171 std::ostringstream message; << 172 G4cerr << "ERROR - G4VTwistedFaceted()::G4VTwistedFaceted(): " 172 message << "Invalid dimensions. Too small, << 173 << GetName() << G4endl 173 << GetName() << G4endl << 174 << " Dimensions too small or too big! - " << G4endl 174 << "fDx 1-4 = " << fDx1/cm << ", " << 175 << "fDx 1-4 = " << fDx1/cm << ", " << fDx2/cm << ", " 175 << fDx3/cm << ", " << fDx4/cm << " << 176 << fDx3/cm << ", " << fDx4/cm << " cm" << G4endl 176 << "fDy 1-2 = " << fDy1/cm << ", " << 177 << "fDy 1-2 = " << fDy1/cm << ", " << fDy2/cm << ", " 177 << " cm" << G4endl << 178 << " cm" << G4endl 178 << "fDz = " << fDz/cm << " cm" << << 179 << "fDz = " << fDz/cm << " cm" << G4endl 179 << " twistangle " << fPhiTwist/deg << 180 << " twistangle " << fPhiTwist/deg << " deg" << G4endl 180 << " phi,theta = " << fPhi/deg << << 181 << " phi,theta = " << fPhi/deg << ", " << fTheta/deg >> 182 << " deg" << G4endl ; 181 G4Exception("G4TwistedTrap::G4VTwistedFace 183 G4Exception("G4TwistedTrap::G4VTwistedFaceted()", 182 "GeomSolids0002", FatalErrorIn << 184 "InvalidSetup", FatalException, >> 185 "Invalid dimensions. Too small, or twist angle too big."); 183 } 186 } 184 CreateSurfaces(); 187 CreateSurfaces(); >> 188 fCubicVolume = 2 * fDz * ( ( fDx1 + fDx2 ) * fDy1 + ( fDx3 + fDx4 ) * fDy2 ); 185 } 189 } 186 190 187 191 188 //============================================ 192 //===================================================================== 189 //* Fake default constructor ----------------- 193 //* Fake default constructor ------------------------------------------ 190 194 191 G4VTwistedFaceted::G4VTwistedFaceted( __void__ 195 G4VTwistedFaceted::G4VTwistedFaceted( __void__& a ) 192 : G4VSolid(a), << 196 : G4VSolid(a), 193 fLowerEndcap(nullptr), fUpperEndcap(nullpt << 197 fLowerEndcap(0), fUpperEndcap(0), fSide0(0), 194 fSide0(nullptr), fSide90(nullptr), fSide18 << 198 fSide90(0), fSide180(0), fSide270(0), >> 199 fCubicVolume(0.), fpPolyhedron(0) 195 { 200 { 196 } 201 } 197 202 198 << 199 //============================================ 203 //===================================================================== 200 //* destructor ------------------------------- 204 //* destructor -------------------------------------------------------- 201 205 202 G4VTwistedFaceted::~G4VTwistedFaceted() 206 G4VTwistedFaceted::~G4VTwistedFaceted() 203 { 207 { 204 delete fLowerEndcap ; << 208 if (fLowerEndcap) delete fLowerEndcap ; 205 delete fUpperEndcap ; << 209 if (fUpperEndcap) delete fUpperEndcap ; 206 210 207 delete fSide0 ; << 211 if (fSide0) delete fSide0 ; 208 delete fSide90 ; << 212 if (fSide90) delete fSide90 ; 209 delete fSide180 ; << 213 if (fSide180) delete fSide180 ; 210 delete fSide270 ; << 214 if (fSide270) delete fSide270 ; 211 delete fpPolyhedron; fpPolyhedron = nullptr; << 215 if (fpPolyhedron) delete fpPolyhedron; 212 } 216 } 213 217 214 << 215 //============================================ 218 //===================================================================== 216 //* Copy constructor ------------------------- << 219 //* ComputeDimensions ------------------------------------------------- 217 220 218 G4VTwistedFaceted::G4VTwistedFaceted(const G4V << 221 void G4VTwistedFaceted::ComputeDimensions(G4VPVParameterisation* , 219 : G4VSolid(rhs), << 222 const G4int , 220 fCubicVolume(rhs.fCubicVolume), fSurfaceAr << 223 const G4VPhysicalVolume* ) 221 fTheta(rhs.fTheta), fPhi(rhs.fPhi), << 222 fDy1(rhs.fDy1), fDx1(rhs.fDx1), fDx2(rhs.f << 223 fDx3(rhs.fDx3), fDx4(rhs.fDx4), fDz(rhs.fD << 224 fAlph(rhs.fAlph), fTAlph(rhs.fTAlph), fdel << 225 fdeltaY(rhs.fdeltaY), fPhiTwist(rhs.fPhiTw << 226 fUpperEndcap(nullptr), fSide0(nullptr), fS << 227 { 224 { 228 CreateSurfaces(); << 225 G4Exception("G4VTwistedFaceted::ComputeDimensions()", >> 226 "NotSupported", FatalException, >> 227 "G4VTwistedFaceted does not support Parameterisation."); 229 } 228 } 230 229 231 << 232 //============================================ 230 //===================================================================== 233 //* Assignment operator ---------------------- << 231 //* CalculateExtent --------------------------------------------------- 234 232 235 G4VTwistedFaceted& G4VTwistedFaceted::operator << 233 G4bool >> 234 G4VTwistedFaceted::CalculateExtent( const EAxis pAxis, >> 235 const G4VoxelLimits &pVoxelLimit, >> 236 const G4AffineTransform &pTransform, >> 237 G4double &pMin, >> 238 G4double &pMax ) const 236 { 239 { 237 // Check assignment to self << 240 G4double maxRad = std::sqrt( fDx*fDx + fDy*fDy); 238 // << 239 if (this == &rhs) { return *this; } << 240 241 241 // Copy base class data << 242 if (!pTransform.IsRotated()) 242 // << 243 { 243 G4VSolid::operator=(rhs); << 244 // Special case handling for unrotated boxes >> 245 // Compute x/y/z mins and maxs respecting limits, with early returns >> 246 // if outside limits. Then switch() on pAxis >> 247 >> 248 G4double xoffset,xMin,xMax; >> 249 G4double yoffset,yMin,yMax; >> 250 G4double zoffset,zMin,zMax; >> 251 >> 252 xoffset = pTransform.NetTranslation().x() ; >> 253 xMin = xoffset - maxRad ; >> 254 xMax = xoffset + maxRad ; 244 255 245 // Copy data << 256 if (pVoxelLimit.IsXLimited()) 246 // << 257 { 247 fTheta = rhs.fTheta; fPhi = rhs.fPhi; << 258 if ( xMin > pVoxelLimit.GetMaxXExtent()+kCarTolerance || 248 fDy1= rhs.fDy1; fDx1= rhs.fDx1; fDx2= rhs.f << 259 xMax < pVoxelLimit.GetMinXExtent()-kCarTolerance ) return false; 249 fDx3= rhs.fDx3; fDx4= rhs.fDx4; fDz= rhs.fD << 260 else 250 fAlph= rhs.fAlph; fTAlph= rhs.fTAlph; fdelt << 261 { 251 fdeltaY= rhs.fdeltaY; fPhiTwist= rhs.fPhiTw << 262 if (xMin < pVoxelLimit.GetMinXExtent()) 252 fUpperEndcap= nullptr; fSide0= nullptr; fSi << 263 { 253 fCubicVolume= rhs.fCubicVolume; fSurfaceAre << 264 xMin = pVoxelLimit.GetMinXExtent() ; 254 fRebuildPolyhedron = false; << 265 } 255 delete fpPolyhedron; fpPolyhedron = nullptr << 266 if (xMax > pVoxelLimit.GetMaxXExtent()) 256 << 267 { 257 CreateSurfaces(); << 268 xMax = pVoxelLimit.GetMaxXExtent() ; >> 269 } >> 270 } >> 271 } >> 272 yoffset = pTransform.NetTranslation().y() ; >> 273 yMin = yoffset - maxRad ; >> 274 yMax = yoffset + maxRad ; >> 275 >> 276 if (pVoxelLimit.IsYLimited()) >> 277 { >> 278 if ( yMin > pVoxelLimit.GetMaxYExtent()+kCarTolerance || >> 279 yMax < pVoxelLimit.GetMinYExtent()-kCarTolerance ) return false; >> 280 else >> 281 { >> 282 if (yMin < pVoxelLimit.GetMinYExtent()) >> 283 { >> 284 yMin = pVoxelLimit.GetMinYExtent() ; >> 285 } >> 286 if (yMax > pVoxelLimit.GetMaxYExtent()) >> 287 { >> 288 yMax = pVoxelLimit.GetMaxYExtent() ; >> 289 } >> 290 } >> 291 } >> 292 zoffset = pTransform.NetTranslation().z() ; >> 293 zMin = zoffset - fDz ; >> 294 zMax = zoffset + fDz ; >> 295 >> 296 if (pVoxelLimit.IsZLimited()) >> 297 { >> 298 if ( zMin > pVoxelLimit.GetMaxZExtent()+kCarTolerance || >> 299 zMax < pVoxelLimit.GetMinZExtent()-kCarTolerance ) return false; >> 300 else >> 301 { >> 302 if (zMin < pVoxelLimit.GetMinZExtent()) >> 303 { >> 304 zMin = pVoxelLimit.GetMinZExtent() ; >> 305 } >> 306 if (zMax > pVoxelLimit.GetMaxZExtent()) >> 307 { >> 308 zMax = pVoxelLimit.GetMaxZExtent() ; >> 309 } >> 310 } >> 311 } >> 312 switch (pAxis) >> 313 { >> 314 case kXAxis: >> 315 pMin = xMin ; >> 316 pMax = xMax ; >> 317 break ; >> 318 case kYAxis: >> 319 pMin=yMin; >> 320 pMax=yMax; >> 321 break; >> 322 case kZAxis: >> 323 pMin=zMin; >> 324 pMax=zMax; >> 325 break; >> 326 default: >> 327 break; >> 328 } >> 329 pMin -= kCarTolerance ; >> 330 pMax += kCarTolerance ; >> 331 >> 332 return true; >> 333 } >> 334 else // General rotated case - create and clip mesh to boundaries >> 335 { >> 336 G4bool existsAfterClip = false ; >> 337 G4ThreeVectorList* vertices ; 258 338 259 return *this; << 339 pMin = +kInfinity ; 260 } << 340 pMax = -kInfinity ; >> 341 >> 342 // Calculate rotated vertex coordinates >> 343 >> 344 vertices = CreateRotatedVertices(pTransform) ; >> 345 ClipCrossSection(vertices,0,pVoxelLimit,pAxis,pMin,pMax) ; >> 346 ClipCrossSection(vertices,4,pVoxelLimit,pAxis,pMin,pMax) ; >> 347 ClipBetweenSections(vertices,0,pVoxelLimit,pAxis,pMin,pMax) ; >> 348 >> 349 if (pVoxelLimit.IsLimited(pAxis) == false) >> 350 { >> 351 if ( pMin != kInfinity || pMax != -kInfinity ) >> 352 { >> 353 existsAfterClip = true ; 261 354 >> 355 // Add 2*tolerance to avoid precision troubles 262 356 263 //============================================ << 357 pMin -= kCarTolerance; 264 //* ComputeDimensions ------------------------ << 358 pMax += kCarTolerance; 265 << 359 } 266 void G4VTwistedFaceted::ComputeDimensions(G4VP << 360 } 267 cons << 361 else 268 cons << 362 { 269 { << 363 G4ThreeVector clipCentre( 270 G4Exception("G4VTwistedFaceted::ComputeDimen << 364 ( pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5, 271 "GeomSolids0001", FatalException << 365 ( pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5, 272 "G4VTwistedFaceted does not supp << 366 ( pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5 ); >> 367 >> 368 if ( pMin != kInfinity || pMax != -kInfinity ) >> 369 { >> 370 existsAfterClip = true ; >> 371 >> 372 // Check to see if endpoints are in the solid >> 373 >> 374 clipCentre(pAxis) = pVoxelLimit.GetMinExtent(pAxis); >> 375 >> 376 if (Inside(pTransform.Inverse().TransformPoint(clipCentre)) >> 377 != kOutside) >> 378 { >> 379 pMin = pVoxelLimit.GetMinExtent(pAxis); >> 380 } >> 381 else >> 382 { >> 383 pMin -= kCarTolerance; >> 384 } >> 385 clipCentre(pAxis) = pVoxelLimit.GetMaxExtent(pAxis); >> 386 >> 387 if (Inside(pTransform.Inverse().TransformPoint(clipCentre)) >> 388 != kOutside) >> 389 { >> 390 pMax = pVoxelLimit.GetMaxExtent(pAxis); >> 391 } >> 392 else >> 393 { >> 394 pMax += kCarTolerance; >> 395 } >> 396 } >> 397 >> 398 // Check for case where completely enveloping clipping volume >> 399 // If point inside then we are confident that the solid completely >> 400 // envelopes the clipping volume. Hence set min/max extents according >> 401 // to clipping volume extents along the specified axis. >> 402 >> 403 else if (Inside(pTransform.Inverse().TransformPoint(clipCentre)) >> 404 != kOutside) >> 405 { >> 406 existsAfterClip = true ; >> 407 pMin = pVoxelLimit.GetMinExtent(pAxis) ; >> 408 pMax = pVoxelLimit.GetMaxExtent(pAxis) ; >> 409 } >> 410 } >> 411 delete vertices; >> 412 return existsAfterClip; >> 413 } >> 414 >> 415 273 } 416 } 274 417 275 << 418 G4ThreeVectorList* G4VTwistedFaceted:: 276 //============================================ << 419 CreateRotatedVertices(const G4AffineTransform& pTransform) const 277 //* Extent ----------------------------------- << 278 << 279 void G4VTwistedFaceted::BoundingLimits(G4Three << 280 G4Three << 281 { 420 { 282 G4double cosPhi = std::cos(fPhi); << 283 G4double sinPhi = std::sin(fPhi); << 284 G4double tanTheta = std::tan(fTheta); << 285 G4double tanAlpha = fTAlph; << 286 << 287 G4double xmid1 = fDy1*tanAlpha; << 288 G4double x1 = std::abs(xmid1 + fDx1); << 289 G4double x2 = std::abs(xmid1 - fDx1); << 290 G4double x3 = std::abs(xmid1 + fDx2); << 291 G4double x4 = std::abs(xmid1 - fDx2); << 292 G4double xmax1 = std::max(std::max(std::max( << 293 G4double rmax1 = std::sqrt(xmax1*xmax1 + fDy << 294 << 295 G4double xmid2 = fDy2*tanAlpha; << 296 G4double x5 = std::abs(xmid2 + fDx3); << 297 G4double x6 = std::abs(xmid2 - fDx3); << 298 G4double x7 = std::abs(xmid2 + fDx4); << 299 G4double x8 = std::abs(xmid2 - fDx4); << 300 G4double xmax2 = std::max(std::max(std::max( << 301 G4double rmax2 = std::sqrt(xmax2*xmax2 + fDy << 302 << 303 G4double x0 = fDz*tanTheta*cosPhi; << 304 G4double y0 = fDz*tanTheta*sinPhi; << 305 G4double xmin = std::min(-x0 - rmax1, x0 - r << 306 G4double ymin = std::min(-y0 - rmax1, y0 - r << 307 G4double xmax = std::max(-x0 + rmax1, x0 + r << 308 G4double ymax = std::max(-y0 + rmax1, y0 + r << 309 pMin.set(xmin, ymin,-fDz); << 310 pMax.set(xmax, ymax, fDz); << 311 } << 312 421 >> 422 G4ThreeVectorList* vertices = new G4ThreeVectorList(); >> 423 vertices->reserve(8); 313 424 314 //============================================ << 425 if (vertices) 315 //* CalculateExtent -------------------------- << 426 { 316 427 317 G4bool << 428 G4double maxRad = std::sqrt( fDx*fDx + fDy*fDy); 318 G4VTwistedFaceted::CalculateExtent( const EAxi << 319 const G4Vo << 320 const G4Af << 321 G4do << 322 G4do << 323 { << 324 G4ThreeVector bmin, bmax; << 325 << 326 // Get bounding box << 327 BoundingLimits(bmin,bmax); << 328 << 329 // Find extent << 330 G4BoundingEnvelope bbox(bmin,bmax); << 331 return bbox.CalculateExtent(pAxis,pVoxelLimi << 332 } << 333 429 >> 430 G4ThreeVector vertex0(-maxRad,-maxRad,-fDz) ; >> 431 G4ThreeVector vertex1(maxRad,-maxRad,-fDz) ; >> 432 G4ThreeVector vertex2(maxRad,maxRad,-fDz) ; >> 433 G4ThreeVector vertex3(-maxRad,maxRad,-fDz) ; >> 434 G4ThreeVector vertex4(-maxRad,-maxRad,fDz) ; >> 435 G4ThreeVector vertex5(maxRad,-maxRad,fDz) ; >> 436 G4ThreeVector vertex6(maxRad,maxRad,fDz) ; >> 437 G4ThreeVector vertex7(-maxRad,maxRad,fDz) ; >> 438 >> 439 vertices->push_back(pTransform.TransformPoint(vertex0)); >> 440 vertices->push_back(pTransform.TransformPoint(vertex1)); >> 441 vertices->push_back(pTransform.TransformPoint(vertex2)); >> 442 vertices->push_back(pTransform.TransformPoint(vertex3)); >> 443 vertices->push_back(pTransform.TransformPoint(vertex4)); >> 444 vertices->push_back(pTransform.TransformPoint(vertex5)); >> 445 vertices->push_back(pTransform.TransformPoint(vertex6)); >> 446 vertices->push_back(pTransform.TransformPoint(vertex7)); >> 447 } >> 448 else >> 449 { >> 450 DumpInfo(); >> 451 G4Exception("G4VTwistedFaceted::CreateRotatedVertices()", >> 452 "FatalError", FatalException, >> 453 "Error in allocation of vertices. Out of memory !"); >> 454 } >> 455 return vertices; >> 456 } 334 457 335 //============================================ 458 //===================================================================== 336 //* Inside ----------------------------------- 459 //* Inside ------------------------------------------------------------ 337 460 338 EInside G4VTwistedFaceted::Inside(const G4Thre 461 EInside G4VTwistedFaceted::Inside(const G4ThreeVector& p) const 339 { 462 { 340 463 341 EInside tmpin = kOutside ; << 464 G4ThreeVector *tmpp; >> 465 EInside *tmpin; >> 466 if (fLastInside.p == p) { >> 467 return fLastInside.inside; >> 468 } else { >> 469 tmpp = const_cast<G4ThreeVector*>(&(fLastInside.p)); >> 470 tmpin = const_cast<EInside*>(&(fLastInside.inside)); >> 471 tmpp->set(p.x(), p.y(), p.z()); >> 472 } >> 473 >> 474 *tmpin = kOutside ; 342 475 343 G4double phi = p.z()/(2*fDz) * fPhiTwist ; 476 G4double phi = p.z()/(2*fDz) * fPhiTwist ; // rotate the point to z=0 344 G4double cphi = std::cos(-phi) ; 477 G4double cphi = std::cos(-phi) ; 345 G4double sphi = std::sin(-phi) ; 478 G4double sphi = std::sin(-phi) ; 346 479 347 G4double px = p.x() + fdeltaX * ( -phi/fPh 480 G4double px = p.x() + fdeltaX * ( -phi/fPhiTwist) ; // shift 348 G4double py = p.y() + fdeltaY * ( -phi/fPh 481 G4double py = p.y() + fdeltaY * ( -phi/fPhiTwist) ; 349 G4double pz = p.z() ; 482 G4double pz = p.z() ; 350 483 351 G4double posx = px * cphi - py * sphi ; 484 G4double posx = px * cphi - py * sphi ; // rotation 352 G4double posy = px * sphi + py * cphi ; 485 G4double posy = px * sphi + py * cphi ; 353 G4double posz = pz ; 486 G4double posz = pz ; 354 487 355 G4double xMin = Xcoef(posy,phi,fTAlph) - 2* 488 G4double xMin = Xcoef(posy,phi,fTAlph) - 2*Xcoef(posy,phi,0.) ; 356 G4double xMax = Xcoef(posy,phi,fTAlph) ; 489 G4double xMax = Xcoef(posy,phi,fTAlph) ; 357 490 358 G4double yMax = GetValueB(phi)/2. ; // b(p 491 G4double yMax = GetValueB(phi)/2. ; // b(phi)/2 is limit 359 G4double yMin = -yMax ; 492 G4double yMin = -yMax ; 360 493 361 #ifdef G4TWISTDEBUG << 494 #ifdef G4SPECSDEBUG 362 495 363 G4cout << "inside called: p = " << p << G4e 496 G4cout << "inside called: p = " << p << G4endl ; 364 G4cout << "fDx1 = " << fDx1 << G4endl ; 497 G4cout << "fDx1 = " << fDx1 << G4endl ; 365 G4cout << "fDx2 = " << fDx2 << G4endl ; 498 G4cout << "fDx2 = " << fDx2 << G4endl ; 366 G4cout << "fDx3 = " << fDx3 << G4endl ; 499 G4cout << "fDx3 = " << fDx3 << G4endl ; 367 G4cout << "fDx4 = " << fDx4 << G4endl ; 500 G4cout << "fDx4 = " << fDx4 << G4endl ; 368 501 369 G4cout << "fDy1 = " << fDy1 << G4endl ; 502 G4cout << "fDy1 = " << fDy1 << G4endl ; 370 G4cout << "fDy2 = " << fDy2 << G4endl ; 503 G4cout << "fDy2 = " << fDy2 << G4endl ; 371 504 372 G4cout << "fDz = " << fDz << G4endl ; 505 G4cout << "fDz = " << fDz << G4endl ; 373 506 374 G4cout << "Tilt angle alpha = " << fAlph << 507 G4cout << "Tilt angle alpha = " << fAlph << G4endl ; 375 G4cout << "phi,theta = " << fPhi << " , " < 508 G4cout << "phi,theta = " << fPhi << " , " << fTheta << G4endl ; 376 509 377 G4cout << "Twist angle = " << fPhiTwist << 510 G4cout << "Twist angle = " << fPhiTwist << G4endl ; 378 511 379 G4cout << "posx = " << posx << G4endl ; 512 G4cout << "posx = " << posx << G4endl ; 380 G4cout << "posy = " << posy << G4endl ; 513 G4cout << "posy = " << posy << G4endl ; 381 G4cout << "xMin = " << xMin << G4endl ; 514 G4cout << "xMin = " << xMin << G4endl ; 382 G4cout << "xMax = " << xMax << G4endl ; 515 G4cout << "xMax = " << xMax << G4endl ; 383 G4cout << "yMin = " << yMin << G4endl ; 516 G4cout << "yMin = " << yMin << G4endl ; 384 G4cout << "yMax = " << yMax << G4endl ; 517 G4cout << "yMax = " << yMax << G4endl ; 385 518 386 #endif 519 #endif 387 520 388 521 389 if ( posx <= xMax - kCarTolerance*0.5 522 if ( posx <= xMax - kCarTolerance*0.5 390 && posx >= xMin + kCarTolerance*0.5 ) 523 && posx >= xMin + kCarTolerance*0.5 ) 391 { 524 { 392 if ( posy <= yMax - kCarTolerance*0.5 525 if ( posy <= yMax - kCarTolerance*0.5 393 && posy >= yMin + kCarTolerance*0.5 ) 526 && posy >= yMin + kCarTolerance*0.5 ) 394 { 527 { 395 if (std::fabs(posz) <= fDz - kCarTo << 528 if (std::fabs(posz) <= fDz - kCarTolerance*0.5 ) *tmpin = kInside ; 396 else if (std::fabs(posz) <= fDz + kCarTo << 529 else if (std::fabs(posz) <= fDz + kCarTolerance*0.5 ) *tmpin = kSurface ; 397 } 530 } 398 else if ( posy <= yMax + kCarTolerance*0.5 531 else if ( posy <= yMax + kCarTolerance*0.5 399 && posy >= yMin - kCarTolerance*0.5 532 && posy >= yMin - kCarTolerance*0.5 ) 400 { 533 { 401 if (std::fabs(posz) <= fDz + kCarToleran << 534 if (std::fabs(posz) <= fDz + kCarTolerance*0.5 ) *tmpin = kSurface ; 402 } 535 } 403 } 536 } 404 else if ( posx <= xMax + kCarTolerance*0.5 537 else if ( posx <= xMax + kCarTolerance*0.5 405 && posx >= xMin - kCarTolerance*0.5 ) 538 && posx >= xMin - kCarTolerance*0.5 ) 406 { 539 { 407 if ( posy <= yMax + kCarTolerance*0.5 540 if ( posy <= yMax + kCarTolerance*0.5 408 && posy >= yMin - kCarTolerance*0.5 ) 541 && posy >= yMin - kCarTolerance*0.5 ) 409 { 542 { 410 if (std::fabs(posz) <= fDz + kCarToleran << 543 if (std::fabs(posz) <= fDz + kCarTolerance*0.5) *tmpin = kSurface ; 411 } 544 } 412 } 545 } 413 546 414 #ifdef G4TWISTDEBUG << 547 #ifdef G4SPECSDEBUG 415 G4cout << "inside = " << tmpin << G4endl ; << 548 G4cout << "inside = " << fLastInside.inside << G4endl ; 416 #endif 549 #endif 417 550 418 return tmpin; << 551 return fLastInside.inside; 419 552 420 } 553 } 421 554 422 << 423 //============================================ 555 //===================================================================== 424 //* SurfaceNormal ---------------------------- 556 //* SurfaceNormal ----------------------------------------------------- 425 557 426 G4ThreeVector G4VTwistedFaceted::SurfaceNormal 558 G4ThreeVector G4VTwistedFaceted::SurfaceNormal(const G4ThreeVector& p) const 427 { 559 { 428 // 560 // 429 // return the normal unit vector to the Hyp 561 // return the normal unit vector to the Hyperbolical Surface at a point 430 // p on (or nearly on) the surface 562 // p on (or nearly on) the surface 431 // 563 // 432 // Which of the three or four surfaces are 564 // Which of the three or four surfaces are we closest to? 433 // 565 // 434 566 >> 567 if (fLastNormal.p == p) >> 568 { >> 569 return fLastNormal.vec; >> 570 } >> 571 >> 572 G4ThreeVector *tmpp = const_cast<G4ThreeVector*>(&(fLastNormal.p)); >> 573 G4ThreeVector *tmpnormal = const_cast<G4ThreeVector*>(&(fLastNormal.vec)); >> 574 G4VTwistSurface **tmpsurface = const_cast<G4VTwistSurface**>(fLastNormal.surface); >> 575 tmpp->set(p.x(), p.y(), p.z()); 435 576 436 G4double distance = kInfinity; << 577 G4double distance = kInfinity; 437 578 438 G4VTwistSurface* surfaces[6]; << 579 G4VTwistSurface *surfaces[6]; 439 580 440 surfaces[0] = fSide0 ; 581 surfaces[0] = fSide0 ; 441 surfaces[1] = fSide90 ; 582 surfaces[1] = fSide90 ; 442 surfaces[2] = fSide180 ; 583 surfaces[2] = fSide180 ; 443 surfaces[3] = fSide270 ; 584 surfaces[3] = fSide270 ; 444 surfaces[4] = fLowerEndcap; 585 surfaces[4] = fLowerEndcap; 445 surfaces[5] = fUpperEndcap; 586 surfaces[5] = fUpperEndcap; 446 587 447 G4ThreeVector xx; 588 G4ThreeVector xx; 448 G4ThreeVector bestxx; 589 G4ThreeVector bestxx; 449 G4int i; 590 G4int i; 450 G4int besti = -1; 591 G4int besti = -1; 451 for (i=0; i< 6; i++) 592 for (i=0; i< 6; i++) 452 { 593 { 453 G4double tmpdistance = surfaces[i]->Dist 594 G4double tmpdistance = surfaces[i]->DistanceTo(p, xx); 454 if (tmpdistance < distance) 595 if (tmpdistance < distance) 455 { 596 { 456 distance = tmpdistance; 597 distance = tmpdistance; 457 bestxx = xx; 598 bestxx = xx; 458 besti = i; 599 besti = i; 459 } 600 } 460 } 601 } 461 602 462 return surfaces[besti]->GetNormal(bestxx, t << 603 tmpsurface[0] = surfaces[besti]; >> 604 *tmpnormal = tmpsurface[0]->GetNormal(bestxx, true); >> 605 >> 606 return fLastNormal.vec; 463 } 607 } 464 608 465 << 466 //============================================ 609 //===================================================================== 467 //* DistanceToIn (p, v) ---------------------- 610 //* DistanceToIn (p, v) ----------------------------------------------- 468 611 469 G4double G4VTwistedFaceted::DistanceToIn (cons 612 G4double G4VTwistedFaceted::DistanceToIn (const G4ThreeVector& p, 470 cons 613 const G4ThreeVector& v ) const 471 { 614 { 472 615 473 // DistanceToIn (p, v): 616 // DistanceToIn (p, v): 474 // Calculate distance to surface of shape f 617 // Calculate distance to surface of shape from `outside' 475 // along with the v, allowing for tolerance 618 // along with the v, allowing for tolerance. 476 // The function returns kInfinity if no int 619 // The function returns kInfinity if no intersection or 477 // just grazing within tolerance. 620 // just grazing within tolerance. 478 621 479 // 622 // >> 623 // checking last value >> 624 // >> 625 >> 626 G4ThreeVector *tmpp; >> 627 G4ThreeVector *tmpv; >> 628 G4double *tmpdist; >> 629 if (fLastDistanceToInWithV.p == p && fLastDistanceToInWithV.vec == v) >> 630 { >> 631 return fLastDistanceToIn.value; >> 632 } >> 633 else >> 634 { >> 635 tmpp = const_cast<G4ThreeVector*>(&(fLastDistanceToInWithV.p)); >> 636 tmpv = const_cast<G4ThreeVector*>(&(fLastDistanceToInWithV.vec)); >> 637 tmpdist = const_cast<G4double*>(&(fLastDistanceToInWithV.value)); >> 638 tmpp->set(p.x(), p.y(), p.z()); >> 639 tmpv->set(v.x(), v.y(), v.z()); >> 640 } >> 641 >> 642 // 480 // Calculate DistanceToIn(p,v) 643 // Calculate DistanceToIn(p,v) 481 // 644 // 482 645 483 EInside currentside = Inside(p); 646 EInside currentside = Inside(p); 484 647 485 if (currentside == kInside) 648 if (currentside == kInside) 486 { 649 { 487 } 650 } 488 else if (currentside == kSurface) 651 else if (currentside == kSurface) 489 { 652 { 490 // particle is just on a boundary. 653 // particle is just on a boundary. 491 // if the particle is entering to the vol 654 // if the particle is entering to the volume, return 0 492 // 655 // 493 G4ThreeVector normal = SurfaceNormal(p); 656 G4ThreeVector normal = SurfaceNormal(p); 494 if (normal*v < 0) 657 if (normal*v < 0) 495 { 658 { 496 return 0; << 659 *tmpdist = 0; >> 660 return fLastDistanceToInWithV.value; 497 } 661 } 498 } 662 } 499 663 500 // now, we can take smallest positive dista 664 // now, we can take smallest positive distance. 501 665 502 // Initialize 666 // Initialize 503 // 667 // 504 G4double distance = kInfinity; << 668 G4double distance = kInfinity; 505 669 506 // Find intersections and choose nearest on 670 // Find intersections and choose nearest one 507 // 671 // 508 G4VTwistSurface *surfaces[6]; 672 G4VTwistSurface *surfaces[6]; 509 673 510 surfaces[0] = fSide0; 674 surfaces[0] = fSide0; 511 surfaces[1] = fSide90 ; 675 surfaces[1] = fSide90 ; 512 surfaces[2] = fSide180 ; 676 surfaces[2] = fSide180 ; 513 surfaces[3] = fSide270 ; 677 surfaces[3] = fSide270 ; 514 surfaces[4] = fLowerEndcap; 678 surfaces[4] = fLowerEndcap; 515 surfaces[5] = fUpperEndcap; 679 surfaces[5] = fUpperEndcap; 516 680 517 G4ThreeVector xx; 681 G4ThreeVector xx; 518 G4ThreeVector bestxx; 682 G4ThreeVector bestxx; 519 for (const auto & surface : surfaces) << 683 G4int i; >> 684 G4int besti = -1; >> 685 for (i=0; i < 6 ; i++) >> 686 //for (i=1; i < 2 ; i++) 520 { 687 { 521 #ifdef G4TWISTDEBUG << 688 522 G4cout << G4endl << "surface " << &surfa << 689 #ifdef G4SPECSDEBUG >> 690 G4cout << G4endl << "surface " << i << ": " << G4endl << G4endl ; 523 #endif 691 #endif 524 G4double tmpdistance = surface->Distance << 692 G4double tmpdistance = surfaces[i]->DistanceToIn(p, v, xx); 525 #ifdef G4TWISTDEBUG << 693 #ifdef G4SPECSDEBUG 526 G4cout << "Solid DistanceToIn : distance 694 G4cout << "Solid DistanceToIn : distance = " << tmpdistance << G4endl ; 527 G4cout << "intersection point = " << xx 695 G4cout << "intersection point = " << xx << G4endl ; 528 #endif 696 #endif 529 if (tmpdistance < distance) 697 if (tmpdistance < distance) 530 { 698 { 531 distance = tmpdistance; 699 distance = tmpdistance; 532 bestxx = xx; 700 bestxx = xx; >> 701 besti = i; 533 } 702 } 534 } 703 } 535 704 536 #ifdef G4TWISTDEBUG << 705 #ifdef G4SPECSDEBUG 537 G4cout << "best distance = " << distance << 706 G4cout << "best distance = " << distance << G4endl ; 538 #endif 707 #endif 539 708 >> 709 *tmpdist = distance; 540 // timer.Stop(); 710 // timer.Stop(); 541 return distance; << 711 return fLastDistanceToInWithV.value; 542 } 712 } 543 713 544 714 545 //============================================ << 546 //* DistanceToIn (p) ------------------------- << 547 << 548 G4double G4VTwistedFaceted::DistanceToIn (cons 715 G4double G4VTwistedFaceted::DistanceToIn (const G4ThreeVector& p) const 549 { 716 { 550 // DistanceToIn(p): 717 // DistanceToIn(p): 551 // Calculate distance to surface of shape f 718 // Calculate distance to surface of shape from `outside', 552 // allowing for tolerance 719 // allowing for tolerance 553 // 720 // 554 721 555 // 722 // >> 723 // checking last value >> 724 // >> 725 >> 726 G4ThreeVector *tmpp; >> 727 G4double *tmpdist; >> 728 if (fLastDistanceToIn.p == p) >> 729 { >> 730 return fLastDistanceToIn.value; >> 731 } >> 732 else >> 733 { >> 734 tmpp = const_cast<G4ThreeVector*>(&(fLastDistanceToIn.p)); >> 735 tmpdist = const_cast<G4double*>(&(fLastDistanceToIn.value)); >> 736 tmpp->set(p.x(), p.y(), p.z()); >> 737 } >> 738 >> 739 // 556 // Calculate DistanceToIn(p) 740 // Calculate DistanceToIn(p) 557 // 741 // 558 742 559 EInside currentside = Inside(p); 743 EInside currentside = Inside(p); 560 744 561 switch (currentside) 745 switch (currentside) 562 { 746 { 563 case (kInside) : 747 case (kInside) : 564 { 748 { 565 } 749 } 566 750 567 case (kSurface) : 751 case (kSurface) : 568 { 752 { 569 return 0; << 753 *tmpdist = 0.; >> 754 return fLastDistanceToIn.value; 570 } 755 } 571 756 572 case (kOutside) : 757 case (kOutside) : 573 { 758 { 574 // Initialize 759 // Initialize 575 // 760 // 576 G4double distance = kInfinity; << 761 G4double distance = kInfinity; 577 762 578 // Find intersections and choose near 763 // Find intersections and choose nearest one 579 // 764 // 580 G4VTwistSurface* surfaces[6]; << 765 G4VTwistSurface *surfaces[6]; 581 766 582 surfaces[0] = fSide0; 767 surfaces[0] = fSide0; 583 surfaces[1] = fSide90 ; 768 surfaces[1] = fSide90 ; 584 surfaces[2] = fSide180 ; 769 surfaces[2] = fSide180 ; 585 surfaces[3] = fSide270 ; 770 surfaces[3] = fSide270 ; 586 surfaces[4] = fLowerEndcap; 771 surfaces[4] = fLowerEndcap; 587 surfaces[5] = fUpperEndcap; 772 surfaces[5] = fUpperEndcap; 588 773 >> 774 G4int i; >> 775 G4int besti = -1; 589 G4ThreeVector xx; 776 G4ThreeVector xx; 590 G4ThreeVector bestxx; 777 G4ThreeVector bestxx; 591 for (const auto & surface : surfaces) << 778 for (i=0; i< 6; i++) 592 { 779 { 593 G4double tmpdistance = surface->Di << 780 G4double tmpdistance = surfaces[i]->DistanceTo(p, xx); 594 if (tmpdistance < distance) 781 if (tmpdistance < distance) 595 { 782 { 596 distance = tmpdistance; 783 distance = tmpdistance; 597 bestxx = xx; 784 bestxx = xx; >> 785 besti = i; 598 } 786 } 599 } 787 } 600 return distance; << 788 *tmpdist = distance; >> 789 return fLastDistanceToIn.value; 601 } 790 } 602 791 603 default: << 792 default : 604 { 793 { 605 G4Exception("G4VTwistedFaceted::Dista << 794 G4Exception("G4VTwistedFaceted::DistanceToIn(p)", "InvalidCondition", 606 FatalException, "Unknown 795 FatalException, "Unknown point location!"); 607 } 796 } 608 } // switch end 797 } // switch end 609 798 610 return 0.; << 799 return kInfinity; 611 } 800 } 612 801 613 802 614 //============================================ 803 //===================================================================== 615 //* DistanceToOut (p, v) --------------------- 804 //* DistanceToOut (p, v) ---------------------------------------------- 616 805 617 G4double 806 G4double 618 G4VTwistedFaceted::DistanceToOut( const G4Thre 807 G4VTwistedFaceted::DistanceToOut( const G4ThreeVector& p, 619 const G4Thre 808 const G4ThreeVector& v, 620 const G4bool 809 const G4bool calcNorm, 621 G4bool << 810 G4bool *validNorm, 622 G4Thre << 811 G4ThreeVector *norm ) const 623 { 812 { 624 // DistanceToOut (p, v): 813 // DistanceToOut (p, v): 625 // Calculate distance to surface of shape f 814 // Calculate distance to surface of shape from `inside' 626 // along with the v, allowing for tolerance 815 // along with the v, allowing for tolerance. 627 // The function returns kInfinity if no int 816 // The function returns kInfinity if no intersection or 628 // just grazing within tolerance. 817 // just grazing within tolerance. 629 818 630 // 819 // >> 820 // checking last value >> 821 // >> 822 >> 823 G4ThreeVector *tmpp; >> 824 G4ThreeVector *tmpv; >> 825 G4double *tmpdist; >> 826 if (fLastDistanceToOutWithV.p == p && fLastDistanceToOutWithV.vec == v ) >> 827 { >> 828 return fLastDistanceToOutWithV.value; >> 829 } >> 830 else >> 831 { >> 832 tmpp = const_cast<G4ThreeVector*>(&(fLastDistanceToOutWithV.p)); >> 833 tmpv = const_cast<G4ThreeVector*>(&(fLastDistanceToOutWithV.vec)); >> 834 tmpdist = const_cast<G4double*>(&(fLastDistanceToOutWithV.value)); >> 835 tmpp->set(p.x(), p.y(), p.z()); >> 836 tmpv->set(v.x(), v.y(), v.z()); >> 837 } >> 838 >> 839 // 631 // Calculate DistanceToOut(p,v) 840 // Calculate DistanceToOut(p,v) 632 // 841 // 633 842 634 EInside currentside = Inside(p); 843 EInside currentside = Inside(p); 635 844 636 if (currentside == kOutside) 845 if (currentside == kOutside) 637 { 846 { 638 } 847 } 639 else if (currentside == kSurface) 848 else if (currentside == kSurface) 640 { 849 { 641 // particle is just on a boundary. 850 // particle is just on a boundary. 642 // if the particle is exiting from the v 851 // if the particle is exiting from the volume, return 0 643 // 852 // 644 G4ThreeVector normal = SurfaceNormal(p); 853 G4ThreeVector normal = SurfaceNormal(p); >> 854 G4VTwistSurface *blockedsurface = fLastNormal.surface[0]; 645 if (normal*v > 0) 855 if (normal*v > 0) 646 { 856 { 647 if (calcNorm) 857 if (calcNorm) 648 { 858 { 649 *norm = normal; << 859 *norm = (blockedsurface->GetNormal(p, true)); 650 *validNorm = true; << 860 *validNorm = blockedsurface->IsValidNorm(); 651 } 861 } >> 862 *tmpdist = 0.; 652 // timer.Stop(); 863 // timer.Stop(); 653 return 0; << 864 return fLastDistanceToOutWithV.value; 654 } 865 } 655 } 866 } 656 867 657 // now, we can take smallest positive dista 868 // now, we can take smallest positive distance. 658 869 659 // Initialize 870 // Initialize 660 G4double distance = kInfinity; << 871 G4double distance = kInfinity; 661 872 662 // find intersections and choose nearest on 873 // find intersections and choose nearest one. 663 G4VTwistSurface *surfaces[6]; 874 G4VTwistSurface *surfaces[6]; 664 875 665 surfaces[0] = fSide0; 876 surfaces[0] = fSide0; 666 surfaces[1] = fSide90 ; 877 surfaces[1] = fSide90 ; 667 surfaces[2] = fSide180 ; 878 surfaces[2] = fSide180 ; 668 surfaces[3] = fSide270 ; 879 surfaces[3] = fSide270 ; 669 surfaces[4] = fLowerEndcap; 880 surfaces[4] = fLowerEndcap; 670 surfaces[5] = fUpperEndcap; 881 surfaces[5] = fUpperEndcap; 671 882 >> 883 G4int i; 672 G4int besti = -1; 884 G4int besti = -1; 673 G4ThreeVector xx; 885 G4ThreeVector xx; 674 G4ThreeVector bestxx; 886 G4ThreeVector bestxx; 675 for (auto i=0; i<6 ; ++i) << 887 for (i=0; i< 6 ; i++) { 676 { << 677 G4double tmpdistance = surfaces[i]->Dist 888 G4double tmpdistance = surfaces[i]->DistanceToOut(p, v, xx); 678 if (tmpdistance < distance) 889 if (tmpdistance < distance) 679 { 890 { 680 distance = tmpdistance; 891 distance = tmpdistance; 681 bestxx = xx; 892 bestxx = xx; 682 besti = i; 893 besti = i; 683 } 894 } 684 } 895 } 685 896 686 if (calcNorm) 897 if (calcNorm) 687 { 898 { 688 if (besti != -1) 899 if (besti != -1) 689 { 900 { 690 *norm = (surfaces[besti]->GetNormal(p 901 *norm = (surfaces[besti]->GetNormal(p, true)); 691 *validNorm = surfaces[besti]->IsValid 902 *validNorm = surfaces[besti]->IsValidNorm(); 692 } 903 } 693 } 904 } 694 905 695 return distance; << 906 *tmpdist = distance; >> 907 // timer.Stop(); >> 908 return fLastDistanceToOutWithV.value; 696 } 909 } 697 910 698 911 699 //============================================ << 700 //* DistanceToOut (p) ------------------------ << 701 << 702 G4double G4VTwistedFaceted::DistanceToOut( con 912 G4double G4VTwistedFaceted::DistanceToOut( const G4ThreeVector& p ) const 703 { 913 { 704 // DistanceToOut(p): 914 // DistanceToOut(p): 705 // Calculate distance to surface of shape f 915 // Calculate distance to surface of shape from `inside', 706 // allowing for tolerance 916 // allowing for tolerance >> 917 >> 918 // >> 919 // checking last value >> 920 // >> 921 >> 922 >> 923 G4ThreeVector *tmpp; >> 924 G4double *tmpdist; >> 925 if (fLastDistanceToOut.p == p) >> 926 { >> 927 return fLastDistanceToOut.value; >> 928 } >> 929 else >> 930 { >> 931 tmpp = const_cast<G4ThreeVector*>(&(fLastDistanceToOut.p)); >> 932 tmpdist = const_cast<G4double*>(&(fLastDistanceToOut.value)); >> 933 tmpp->set(p.x(), p.y(), p.z()); >> 934 } 707 935 708 // 936 // 709 // Calculate DistanceToOut(p) 937 // Calculate DistanceToOut(p) 710 // 938 // 711 939 712 EInside currentside = Inside(p); 940 EInside currentside = Inside(p); 713 G4double retval = kInfinity; << 714 941 715 switch (currentside) 942 switch (currentside) 716 { 943 { 717 case (kOutside) : 944 case (kOutside) : 718 { 945 { 719 #ifdef G4SPECSDEBUG << 720 G4int oldprc = G4cout.precision(16) ; << 721 G4cout << G4endl ; << 722 DumpInfo(); << 723 G4cout << "Position:" << G4endl << G4 << 724 G4cout << "p.x() = " << p.x()/mm << << 725 G4cout << "p.y() = " << p.y()/mm << << 726 G4cout << "p.z() = " << p.z()/mm << << 727 G4cout.precision(oldprc) ; << 728 G4Exception("G4VTwistedFaceted::Distan << 729 JustWarning, "Point p is o << 730 #endif << 731 break; << 732 } 946 } 733 case (kSurface) : 947 case (kSurface) : 734 { 948 { 735 retval = 0; << 949 *tmpdist = 0.; 736 break; << 950 return fLastDistanceToOut.value; 737 } 951 } 738 952 739 case (kInside) : 953 case (kInside) : 740 { 954 { 741 // Initialize << 955 // Initialize 742 // << 956 // 743 G4double distance = kInfinity; << 957 G4double distance = kInfinity; 744 958 745 // find intersections and choose neare << 959 // find intersections and choose nearest one 746 // << 960 // 747 G4VTwistSurface* surfaces[6]; << 961 G4VTwistSurface *surfaces[6]; 748 << 962 749 surfaces[0] = fSide0; << 963 surfaces[0] = fSide0; 750 surfaces[1] = fSide90 ; << 964 surfaces[1] = fSide90 ; 751 surfaces[2] = fSide180 ; << 965 surfaces[2] = fSide180 ; 752 surfaces[3] = fSide270 ; << 966 surfaces[3] = fSide270 ; 753 surfaces[4] = fLowerEndcap; << 967 surfaces[4] = fLowerEndcap; 754 surfaces[5] = fUpperEndcap; << 968 surfaces[5] = fUpperEndcap; 755 << 969 756 G4ThreeVector xx; << 970 G4int i; 757 G4ThreeVector bestxx; << 971 G4int besti = -1; 758 for (const auto & surface : surfaces) << 972 G4ThreeVector xx; 759 { << 973 G4ThreeVector bestxx; 760 G4double tmpdistance = surface->Dist << 974 for (i=0; i< 6; i++) 761 if (tmpdistance < distance) << 975 { 762 { << 976 G4double tmpdistance = surfaces[i]->DistanceTo(p, xx); 763 distance = tmpdistance; << 977 if (tmpdistance < distance) 764 bestxx = xx; << 978 { 765 } << 979 distance = tmpdistance; 766 } << 980 bestxx = xx; 767 retval = distance; << 981 besti = i; 768 break; << 982 } >> 983 } >> 984 *tmpdist = distance; >> 985 >> 986 return fLastDistanceToOut.value; 769 } 987 } 770 988 771 default : 989 default : 772 { 990 { 773 G4Exception("G4VTwistedFaceted::Distan << 991 G4Exception("G4VTwistedFaceted::DistanceToOut(p)", "InvalidCondition", 774 FatalException, "Unknown p << 992 FatalException, "Unknown point location!"); 775 break; << 776 } 993 } 777 } // switch end 994 } // switch end 778 995 779 return retval; << 996 return 0; 780 } 997 } 781 998 782 999 783 //============================================ 1000 //===================================================================== 784 //* StreamInfo ------------------------------- 1001 //* StreamInfo -------------------------------------------------------- 785 1002 786 std::ostream& G4VTwistedFaceted::StreamInfo(st 1003 std::ostream& G4VTwistedFaceted::StreamInfo(std::ostream& os) const 787 { 1004 { 788 // 1005 // 789 // Stream object contents to an output strea 1006 // Stream object contents to an output stream 790 // 1007 // 791 G4long oldprc = os.precision(16); << 792 os << "------------------------------------- 1008 os << "-----------------------------------------------------------\n" 793 << " *** Dump for solid - " << GetName 1009 << " *** Dump for solid - " << GetName() << " ***\n" 794 << " ================================= 1010 << " ===================================================\n" 795 << " Solid type: G4VTwistedFaceted\n" 1011 << " Solid type: G4VTwistedFaceted\n" 796 << " Parameters: \n" 1012 << " Parameters: \n" 797 << " polar angle theta = " << fTheta/ 1013 << " polar angle theta = " << fTheta/degree << " deg" << G4endl 798 << " azimuthal angle phi = " << fPhi/de 1014 << " azimuthal angle phi = " << fPhi/degree << " deg" << G4endl 799 << " tilt angle alpha = " << fAlph/de 1015 << " tilt angle alpha = " << fAlph/degree << " deg" << G4endl 800 << " TWIST angle = " << fPhiTwis 1016 << " TWIST angle = " << fPhiTwist/degree << " deg" << G4endl 801 << " Half length along y (lower endcap) 1017 << " Half length along y (lower endcap) = " << fDy1/cm << " cm" 802 << G4endl 1018 << G4endl 803 << " Half length along x (lower endcap, 1019 << " Half length along x (lower endcap, bottom) = " << fDx1/cm << " cm" 804 << G4endl 1020 << G4endl 805 << " Half length along x (lower endcap, 1021 << " Half length along x (lower endcap, top) = " << fDx2/cm << " cm" 806 << G4endl 1022 << G4endl 807 << " Half length along y (upper endcap) 1023 << " Half length along y (upper endcap) = " << fDy2/cm << " cm" 808 << G4endl 1024 << G4endl 809 << " Half length along x (upper endcap, 1025 << " Half length along x (upper endcap, bottom) = " << fDx3/cm << " cm" 810 << G4endl 1026 << G4endl 811 << " Half length along x (upper endcap, 1027 << " Half length along x (upper endcap, top) = " << fDx4/cm << " cm" 812 << G4endl 1028 << G4endl 813 << "------------------------------------- 1029 << "-----------------------------------------------------------\n"; 814 os.precision(oldprc); << 815 1030 816 return os; 1031 return os; 817 } 1032 } 818 1033 819 1034 820 //============================================ 1035 //===================================================================== 821 //* DiscribeYourselfTo ----------------------- 1036 //* DiscribeYourselfTo ------------------------------------------------ 822 1037 823 void G4VTwistedFaceted::DescribeYourselfTo (G4 1038 void G4VTwistedFaceted::DescribeYourselfTo (G4VGraphicsScene& scene) const 824 { 1039 { 825 scene.AddSolid (*this); 1040 scene.AddSolid (*this); 826 } 1041 } 827 1042 828 << 829 //============================================ 1043 //===================================================================== 830 //* GetExtent -------------------------------- 1044 //* GetExtent --------------------------------------------------------- 831 1045 832 G4VisExtent G4VTwistedFaceted::GetExtent() con 1046 G4VisExtent G4VTwistedFaceted::GetExtent() const 833 { 1047 { 834 G4double maxRad = std::sqrt( fDx*fDx + fDy*f 1048 G4double maxRad = std::sqrt( fDx*fDx + fDy*fDy); 835 1049 836 return { -maxRad, maxRad , << 1050 return G4VisExtent(-maxRad, maxRad , 837 -maxRad, maxRad , << 1051 -maxRad, maxRad , 838 -fDz, fDz }; << 1052 -fDz, fDz ); >> 1053 } >> 1054 >> 1055 >> 1056 //===================================================================== >> 1057 //* CreateNUBS -------------------------------------------------------- >> 1058 >> 1059 G4NURBS* G4VTwistedFaceted::CreateNURBS () const >> 1060 { >> 1061 G4double maxRad = std::sqrt( fDx*fDx + fDy*fDy); >> 1062 >> 1063 return new G4NURBStube(maxRad, maxRad, fDz); >> 1064 // Tube for now!!! 839 } 1065 } 840 1066 841 1067 842 //============================================ 1068 //===================================================================== 843 //* CreateSurfaces --------------------------- 1069 //* CreateSurfaces ---------------------------------------------------- 844 1070 845 void G4VTwistedFaceted::CreateSurfaces() 1071 void G4VTwistedFaceted::CreateSurfaces() 846 { 1072 { 847 1073 848 // create 6 surfaces of TwistedTub. 1074 // create 6 surfaces of TwistedTub. 849 1075 850 if ( fDx1 == fDx2 && fDx3 == fDx4 ) // sp 1076 if ( fDx1 == fDx2 && fDx3 == fDx4 ) // special case : Box 851 { 1077 { 852 fSide0 = new G4TwistBoxSide("0deg", fPhi << 1078 fSide0 = new G4TwistBoxSide("0deg", fPhiTwist, fDz, fTheta, fPhi, 853 fDy1, fDx1, fDx1, fD << 1079 fDy1, fDx1, fDx1, fDy2, fDx3, fDx3, fAlph, 0.*deg); 854 fSide180 = new G4TwistBoxSide("180deg", fP 1080 fSide180 = new G4TwistBoxSide("180deg", fPhiTwist, fDz, fTheta, fPhi+pi, 855 fDy1, fDx1, fDx1, fD << 1081 fDy1, fDx1, fDx1, fDy2, fDx3, fDx3, fAlph, 180.*deg); 856 } 1082 } 857 else // default general case 1083 else // default general case 858 { 1084 { 859 fSide0 = new G4TwistTrapAlphaSide("0deg" 1085 fSide0 = new G4TwistTrapAlphaSide("0deg" ,fPhiTwist, fDz, fTheta, 860 fPhi, fDy1, fDx1, fDx2, 1086 fPhi, fDy1, fDx1, fDx2, fDy2, fDx3, fDx4, fAlph, 0.*deg); 861 fSide180 = new G4TwistTrapAlphaSide("180de 1087 fSide180 = new G4TwistTrapAlphaSide("180deg", fPhiTwist, fDz, fTheta, 862 fPhi+pi, fDy1, fDx2, fDx1, fD 1088 fPhi+pi, fDy1, fDx2, fDx1, fDy2, fDx4, fDx3, fAlph, 180.*deg); 863 } 1089 } 864 1090 865 // create parallel sides 1091 // create parallel sides 866 // 1092 // 867 fSide90 = new G4TwistTrapParallelSide("90deg 1093 fSide90 = new G4TwistTrapParallelSide("90deg", fPhiTwist, fDz, fTheta, 868 fPhi, fDy1, fDx1, fDx2, 1094 fPhi, fDy1, fDx1, fDx2, fDy2, fDx3, fDx4, fAlph, 0.*deg); 869 fSide270 = new G4TwistTrapParallelSide("270d 1095 fSide270 = new G4TwistTrapParallelSide("270deg", fPhiTwist, fDz, fTheta, 870 fPhi+pi, fDy1, fDx2, fDx1, fD 1096 fPhi+pi, fDy1, fDx2, fDx1, fDy2, fDx4, fDx3, fAlph, 180.*deg); 871 1097 872 // create endcaps 1098 // create endcaps 873 // 1099 // 874 fUpperEndcap = new G4TwistTrapFlatSide("Uppe 1100 fUpperEndcap = new G4TwistTrapFlatSide("UpperCap",fPhiTwist, fDx3, fDx4, fDy2, 875 fDz, fAlph 1101 fDz, fAlph, fPhi, fTheta, 1 ); 876 fLowerEndcap = new G4TwistTrapFlatSide("Lowe 1102 fLowerEndcap = new G4TwistTrapFlatSide("LowerCap",fPhiTwist, fDx1, fDx2, fDy1, 877 fDz, fAlph 1103 fDz, fAlph, fPhi, fTheta, -1 ); 878 1104 879 // Set neighbour surfaces 1105 // Set neighbour surfaces 880 1106 881 fSide0->SetNeighbours( fSide270 , fLowerEnd 1107 fSide0->SetNeighbours( fSide270 , fLowerEndcap , fSide90 , fUpperEndcap ); 882 fSide90->SetNeighbours( fSide0 , fLowerEnd 1108 fSide90->SetNeighbours( fSide0 , fLowerEndcap , fSide180 , fUpperEndcap ); 883 fSide180->SetNeighbours(fSide90 , fLowerEnd 1109 fSide180->SetNeighbours(fSide90 , fLowerEndcap , fSide270 , fUpperEndcap ); 884 fSide270->SetNeighbours(fSide180 , fLowerEnd 1110 fSide270->SetNeighbours(fSide180 , fLowerEndcap , fSide0 , fUpperEndcap ); 885 fUpperEndcap->SetNeighbours( fSide180, fSide 1111 fUpperEndcap->SetNeighbours( fSide180, fSide270 , fSide0 , fSide90 ); 886 fLowerEndcap->SetNeighbours( fSide180, fSide 1112 fLowerEndcap->SetNeighbours( fSide180, fSide270 , fSide0 , fSide90 ); 887 1113 888 } 1114 } 889 1115 890 //============================================ << 891 //* GetCubicVolume --------------------------- << 892 << 893 G4double G4VTwistedFaceted::GetCubicVolume() << 894 { << 895 if(fCubicVolume == 0.) << 896 { << 897 fCubicVolume = ((fDx1 + fDx2 + fDx3 + fDx4 << 898 (fDx4 + fDx3 - fDx2 - fDx1 << 899 } << 900 return fCubicVolume; << 901 } << 902 << 903 //============================================ << 904 //* GetLateralFaceArea ----------------------- << 905 << 906 G4double << 907 G4VTwistedFaceted::GetLateralFaceArea(const G4 << 908 const G4 << 909 const G4 << 910 const G4 << 911 { << 912 constexpr G4int NSTEP = 100; << 913 constexpr G4double dt = 1./NSTEP; << 914 << 915 G4double h = 2.*fDz; << 916 G4double hh = h*h; << 917 G4double hTanTheta = h*std::tan(fTheta); << 918 G4double x1 = p1.x(); << 919 G4double y1 = p1.y(); << 920 G4double x21 = p2.x() - p1.x(); << 921 G4double y21 = p2.y() - p1.y(); << 922 G4double x31 = p3.x() - p1.x(); << 923 G4double y31 = p3.y() - p1.y(); << 924 G4double x42 = p4.x() - p2.x(); << 925 G4double y42 = p4.y() - p2.y(); << 926 G4double x43 = p4.x() - p3.x(); << 927 G4double y43 = p4.y() - p3.y(); << 928 << 929 // check if face is plane (just in case) << 930 G4double lmax = std::max(std::max(std::abs(x << 931 std::max(std::abs(x << 932 G4double eps = lmax*kCarTolerance; << 933 if (std::abs(fPhiTwist) < kCarTolerance && << 934 std::abs(x21*y43 - y21*x43) < eps) << 935 { << 936 G4double x0 = hTanTheta*std::cos(fPhi); << 937 G4double y0 = hTanTheta*std::sin(fPhi); << 938 G4ThreeVector A(p4.x() - p1.x() + x0, p4.y << 939 G4ThreeVector B(p3.x() - p2.x() + x0, p3.y << 940 return (A.cross(B)).mag()*0.5; << 941 } << 942 << 943 // twisted face << 944 G4double area = 0.; << 945 for (G4int i = 0; i < NSTEP; ++i) << 946 { << 947 G4double t = (i + 0.5)*dt; << 948 G4double I = x21 + (x42 - x31)*t; << 949 G4double J = y21 + (y42 - y31)*t; << 950 G4double II = I*I; << 951 G4double JJ = J*J; << 952 G4double IIJJ = hh*(I*I + J*J); << 953 << 954 G4double ang = fPhi + fPhiTwist*(0.5 - t); << 955 G4double A = fPhiTwist*(II + JJ) + x21*y43 << 956 G4double B = fPhiTwist*(I*(x1 + x31*t) + J << 957 hTanTheta*(I*std::sin(ang) - J*std::cos( << 958 (I*y31 - J*x31); << 959 << 960 G4double invAA = 1./(A*A); << 961 G4double sqrtAA = 2.*std::abs(A); << 962 G4double invSqrtAA = 1./sqrtAA; << 963 << 964 G4double aa = A*A; << 965 G4double bb = 2.*A*B; << 966 G4double cc = IIJJ + B*B; << 967 << 968 G4double R1 = std::sqrt(aa + bb + cc); << 969 G4double R0 = std::sqrt(cc); << 970 G4double log1 = std::log(std::abs(sqrtAA*R << 971 G4double log0 = std::log(std::abs(sqrtAA*R << 972 << 973 area += 0.5*R1 + 0.25*bb*invAA*(R1 - R0) + << 974 } << 975 return area*dt; << 976 } << 977 << 978 //============================================ << 979 //* GetSurfaceArea --------------------------- << 980 << 981 G4double G4VTwistedFaceted::GetSurfaceArea() << 982 { << 983 if (fSurfaceArea == 0.) << 984 { << 985 G4TwoVector vv[8]; << 986 vv[0] = G4TwoVector(-fDx1 - fDy1*fTAlph,-f << 987 vv[1] = G4TwoVector( fDx1 - fDy1*fTAlph,-f << 988 vv[2] = G4TwoVector(-fDx2 + fDy1*fTAlph, f << 989 vv[3] = G4TwoVector( fDx2 + fDy1*fTAlph, f << 990 vv[4] = G4TwoVector(-fDx3 - fDy2*fTAlph,-f << 991 vv[5] = G4TwoVector( fDx3 - fDy2*fTAlph,-f << 992 vv[6] = G4TwoVector(-fDx4 + fDy2*fTAlph, f << 993 vv[7] = G4TwoVector( fDx4 + fDy2*fTAlph, f << 994 fSurfaceArea = 2.*(fDy1*(fDx1 + fDx2) + fD << 995 GetLateralFaceArea(vv[0], vv[1], vv[4], << 996 GetLateralFaceArea(vv[1], vv[3], vv[5], << 997 GetLateralFaceArea(vv[3], vv[2], vv[7], << 998 GetLateralFaceArea(vv[2], vv[0], vv[6], << 999 } << 1000 return fSurfaceArea; << 1001 } << 1002 1116 1003 //=========================================== 1117 //===================================================================== 1004 //* GetEntityType --------------------------- 1118 //* GetEntityType ----------------------------------------------------- 1005 1119 1006 G4GeometryType G4VTwistedFaceted::GetEntityTy 1120 G4GeometryType G4VTwistedFaceted::GetEntityType() const 1007 { 1121 { 1008 return {"G4VTwistedFaceted"}; << 1122 return G4String("G4VTwistedFaceted"); 1009 } 1123 } 1010 1124 1011 1125 1012 //=========================================== 1126 //===================================================================== 1013 //* GetPolyhedron --------------------------- 1127 //* GetPolyhedron ----------------------------------------------------- 1014 1128 1015 G4Polyhedron* G4VTwistedFaceted::GetPolyhedro 1129 G4Polyhedron* G4VTwistedFaceted::GetPolyhedron() const 1016 { 1130 { 1017 if (fpPolyhedron == nullptr || << 1131 if (!fpPolyhedron || 1018 fRebuildPolyhedron || << 1019 fpPolyhedron->GetNumberOfRotationStepsA 1132 fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != 1020 fpPolyhedron->GetNumberOfRotationSteps( 1133 fpPolyhedron->GetNumberOfRotationSteps()) 1021 { 1134 { 1022 G4AutoLock l(&polyhedronMutex); << 1023 delete fpPolyhedron; 1135 delete fpPolyhedron; 1024 fpPolyhedron = CreatePolyhedron(); 1136 fpPolyhedron = CreatePolyhedron(); 1025 fRebuildPolyhedron = false; << 1026 l.unlock(); << 1027 } 1137 } 1028 1138 1029 return fpPolyhedron; 1139 return fpPolyhedron; 1030 } 1140 } 1031 1141 1032 1142 1033 //=========================================== 1143 //===================================================================== 1034 //* GetPointInSolid ------------------------- 1144 //* GetPointInSolid --------------------------------------------------- 1035 1145 1036 G4ThreeVector G4VTwistedFaceted::GetPointInSo 1146 G4ThreeVector G4VTwistedFaceted::GetPointInSolid(G4double z) const 1037 { 1147 { 1038 1148 1039 1149 1040 // this routine is only used for a test 1150 // this routine is only used for a test 1041 // can be deleted ... 1151 // can be deleted ... 1042 1152 1043 if ( z == fDz ) z -= 0.1*fDz ; 1153 if ( z == fDz ) z -= 0.1*fDz ; 1044 if ( z == -fDz ) z += 0.1*fDz ; 1154 if ( z == -fDz ) z += 0.1*fDz ; 1045 1155 1046 G4double phi = z/(2*fDz)*fPhiTwist ; 1156 G4double phi = z/(2*fDz)*fPhiTwist ; 1047 1157 1048 return { fdeltaX * phi/fPhiTwist, fdeltaY * << 1158 return G4ThreeVector(fdeltaX * phi/fPhiTwist, fdeltaY * phi/fPhiTwist, z ) ; 1049 } 1159 } 1050 1160 1051 1161 1052 //=========================================== 1162 //===================================================================== 1053 //* GetPointOnSurface ----------------------- 1163 //* GetPointOnSurface ------------------------------------------------- 1054 1164 1055 G4ThreeVector G4VTwistedFaceted::GetPointOnSu 1165 G4ThreeVector G4VTwistedFaceted::GetPointOnSurface() const 1056 { 1166 { 1057 1167 1058 G4double phi = G4RandFlat::shoot(-fPhiTwist << 1168 G4double phi = CLHEP::RandFlat::shoot(-fPhiTwist/2.,fPhiTwist/2.); 1059 G4double u , umin, umax ; // variable for 1169 G4double u , umin, umax ; // variable for twisted surfaces 1060 G4double y ; // variable for 1170 G4double y ; // variable for flat surface (top and bottom) 1061 1171 1062 // Compute the areas. Attention: Only corre 1172 // Compute the areas. Attention: Only correct for trapezoids 1063 // where the twisting is done along the z-a 1173 // where the twisting is done along the z-axis. In the general case 1064 // the computed surface area is more diffic 1174 // the computed surface area is more difficult. However this simplification 1065 // does not affect the tracking through the 1175 // does not affect the tracking through the solid. 1066 1176 1067 G4double a1 = fSide0->GetSurfaceArea(); << 1177 G4double a1 = fSide0->GetSurfaceArea(); 1068 G4double a2 = fSide90->GetSurfaceArea(); << 1178 G4double a2 = fSide90->GetSurfaceArea(); 1069 G4double a3 = fSide180->GetSurfaceArea() ; << 1179 G4double a3 = fSide180->GetSurfaceArea() ; 1070 G4double a4 = fSide270->GetSurfaceArea() ; << 1180 G4double a4 = fSide270->GetSurfaceArea() ; 1071 G4double a5 = fLowerEndcap->GetSurfaceArea( << 1181 G4double a5 = fLowerEndcap->GetSurfaceArea() ; 1072 G4double a6 = fUpperEndcap->GetSurfaceArea( << 1182 G4double a6 = fUpperEndcap->GetSurfaceArea() ; 1073 1183 1074 #ifdef G4TWISTDEBUG << 1184 #ifdef G4SPECSDEBUG 1075 G4cout << "Surface 0 deg = " << a1 << G4e 1185 G4cout << "Surface 0 deg = " << a1 << G4endl ; 1076 G4cout << "Surface 90 deg = " << a2 << G4e 1186 G4cout << "Surface 90 deg = " << a2 << G4endl ; 1077 G4cout << "Surface 180 deg = " << a3 << G4e 1187 G4cout << "Surface 180 deg = " << a3 << G4endl ; 1078 G4cout << "Surface 270 deg = " << a4 << G4e 1188 G4cout << "Surface 270 deg = " << a4 << G4endl ; 1079 G4cout << "Surface Lower = " << a5 << G4e 1189 G4cout << "Surface Lower = " << a5 << G4endl ; 1080 G4cout << "Surface Upper = " << a6 << G4e 1190 G4cout << "Surface Upper = " << a6 << G4endl ; 1081 #endif 1191 #endif 1082 1192 1083 G4double chose = G4RandFlat::shoot(0.,a1 + << 1193 G4double chose = CLHEP::RandFlat::shoot(0.,a1 + a2 + a3 + a4 + a5 + a6) ; 1084 1194 1085 if(chose < a1) 1195 if(chose < a1) 1086 { 1196 { >> 1197 1087 umin = fSide0->GetBoundaryMin(phi) ; 1198 umin = fSide0->GetBoundaryMin(phi) ; 1088 umax = fSide0->GetBoundaryMax(phi) ; 1199 umax = fSide0->GetBoundaryMax(phi) ; 1089 u = G4RandFlat::shoot(umin,umax) ; << 1200 u = CLHEP::RandFlat::shoot(umin,umax) ; 1090 1201 1091 return fSide0->SurfacePoint(phi, u, true 1202 return fSide0->SurfacePoint(phi, u, true) ; // point on 0deg surface 1092 } 1203 } 1093 1204 1094 else if( (chose >= a1) && (chose < a1 + a2 1205 else if( (chose >= a1) && (chose < a1 + a2 ) ) 1095 { 1206 { >> 1207 1096 umin = fSide90->GetBoundaryMin(phi) ; 1208 umin = fSide90->GetBoundaryMin(phi) ; 1097 umax = fSide90->GetBoundaryMax(phi) ; 1209 umax = fSide90->GetBoundaryMax(phi) ; 1098 1210 1099 u = G4RandFlat::shoot(umin,umax) ; << 1211 u = CLHEP::RandFlat::shoot(umin,umax) ; 1100 1212 1101 return fSide90->SurfacePoint(phi, u, true 1213 return fSide90->SurfacePoint(phi, u, true); // point on 90deg surface 1102 } 1214 } >> 1215 1103 else if( (chose >= a1 + a2 ) && (chose < a1 1216 else if( (chose >= a1 + a2 ) && (chose < a1 + a2 + a3 ) ) 1104 { 1217 { >> 1218 1105 umin = fSide180->GetBoundaryMin(phi) ; 1219 umin = fSide180->GetBoundaryMin(phi) ; 1106 umax = fSide180->GetBoundaryMax(phi) ; 1220 umax = fSide180->GetBoundaryMax(phi) ; 1107 u = G4RandFlat::shoot(umin,umax) ; << 1221 u = CLHEP::RandFlat::shoot(umin,umax) ; 1108 1222 1109 return fSide180->SurfacePoint(phi, u, tru << 1223 return fSide180->SurfacePoint(phi, u, true); // point on 180 deg surface 1110 } 1224 } >> 1225 1111 else if( (chose >= a1 + a2 + a3 ) && (chos 1226 else if( (chose >= a1 + a2 + a3 ) && (chose < a1 + a2 + a3 + a4 ) ) 1112 { 1227 { >> 1228 1113 umin = fSide270->GetBoundaryMin(phi) ; 1229 umin = fSide270->GetBoundaryMin(phi) ; 1114 umax = fSide270->GetBoundaryMax(phi) ; 1230 umax = fSide270->GetBoundaryMax(phi) ; 1115 u = G4RandFlat::shoot(umin,umax) ; << 1231 u = CLHEP::RandFlat::shoot(umin,umax) ; >> 1232 1116 return fSide270->SurfacePoint(phi, u, tru 1233 return fSide270->SurfacePoint(phi, u, true); // point on 270 deg surface 1117 } 1234 } >> 1235 1118 else if( (chose >= a1 + a2 + a3 + a4 ) && 1236 else if( (chose >= a1 + a2 + a3 + a4 ) && (chose < a1 + a2 + a3 + a4 + a5 ) ) 1119 { 1237 { 1120 y = G4RandFlat::shoot(-fDy1,fDy1) ; << 1238 >> 1239 y = CLHEP::RandFlat::shoot(-fDy1,fDy1) ; 1121 umin = fLowerEndcap->GetBoundaryMin(y) ; 1240 umin = fLowerEndcap->GetBoundaryMin(y) ; 1122 umax = fLowerEndcap->GetBoundaryMax(y) ; 1241 umax = fLowerEndcap->GetBoundaryMax(y) ; 1123 u = G4RandFlat::shoot(umin,umax) ; << 1242 u = CLHEP::RandFlat::shoot(umin,umax) ; 1124 1243 1125 return fLowerEndcap->SurfacePoint(u,y,tru 1244 return fLowerEndcap->SurfacePoint(u,y,true); // point on lower endcap 1126 } 1245 } 1127 else << 1246 else { 1128 { << 1247 1129 y = G4RandFlat::shoot(-fDy2,fDy2) ; << 1248 y = CLHEP::RandFlat::shoot(-fDy2,fDy2) ; 1130 umin = fUpperEndcap->GetBoundaryMin(y) ; 1249 umin = fUpperEndcap->GetBoundaryMin(y) ; 1131 umax = fUpperEndcap->GetBoundaryMax(y) ; 1250 umax = fUpperEndcap->GetBoundaryMax(y) ; 1132 u = G4RandFlat::shoot(umin,umax) ; << 1251 u = CLHEP::RandFlat::shoot(umin,umax) ; 1133 1252 1134 return fUpperEndcap->SurfacePoint(u,y,tru 1253 return fUpperEndcap->SurfacePoint(u,y,true) ; // point on upper endcap 1135 1254 1136 } 1255 } 1137 } 1256 } 1138 1257 1139 1258 1140 //=========================================== 1259 //===================================================================== 1141 //* CreatePolyhedron ------------------------ 1260 //* CreatePolyhedron -------------------------------------------------- 1142 1261 1143 G4Polyhedron* G4VTwistedFaceted::CreatePolyhe 1262 G4Polyhedron* G4VTwistedFaceted::CreatePolyhedron () const 1144 { 1263 { 1145 // number of meshes 1264 // number of meshes 1146 const G4int k = << 1265 const G4int m = 1147 G4int(G4Polyhedron::GetNumberOfRotationStep << 1266 G4int(G4Polyhedron::GetNumberOfRotationSteps() * fPhiTwist / twopi) + 2; 1148 std::abs(fPhiTwist) / twopi) + 2; << 1267 const G4int n = m; 1149 const G4int n = k; << 1150 1268 1151 const G4int nnodes = 4*(k-1)*(n-2) + 2*k*k << 1269 const G4int nnodes = 4*(m-1)*(n-2) + 2*m*m ; 1152 const G4int nfaces = 4*(k-1)*(n-1) + 2*(k-1 << 1270 const G4int nfaces = 4*(m-1)*(n-1) + 2*(m-1)*(m-1) ; 1153 1271 1154 auto ph = new G4Polyhedron; << 1272 G4Polyhedron *ph=new G4Polyhedron; 1155 typedef G4double G4double3[3]; 1273 typedef G4double G4double3[3]; 1156 typedef G4int G4int4[4]; 1274 typedef G4int G4int4[4]; 1157 auto xyz = new G4double3[nnodes]; // numbe << 1275 G4double3* xyz = new G4double3[nnodes]; // number of nodes 1158 auto faces = new G4int4[nfaces] ; // numbe << 1276 G4int4* faces = new G4int4[nfaces] ; // number of faces 1159 1277 1160 fLowerEndcap->GetFacets(k,k,xyz,faces,0) ; << 1278 fLowerEndcap->GetFacets(m,m,xyz,faces,0) ; 1161 fUpperEndcap->GetFacets(k,k,xyz,faces,1) ; << 1279 fUpperEndcap->GetFacets(m,m,xyz,faces,1) ; 1162 fSide270->GetFacets(k,n,xyz,faces,2) ; << 1280 fSide270->GetFacets(m,n,xyz,faces,2) ; 1163 fSide0->GetFacets(k,n,xyz,faces,3) ; << 1281 fSide0->GetFacets(m,n,xyz,faces,3) ; 1164 fSide90->GetFacets(k,n,xyz,faces,4) ; << 1282 fSide90->GetFacets(m,n,xyz,faces,4) ; 1165 fSide180->GetFacets(k,n,xyz,faces,5) ; << 1283 fSide180->GetFacets(m,n,xyz,faces,5) ; 1166 1284 1167 ph->createPolyhedron(nnodes,nfaces,xyz,face 1285 ph->createPolyhedron(nnodes,nfaces,xyz,faces); 1168 1286 1169 return ph; 1287 return ph; 1170 } 1288 } 1171 1289