Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Implementation of G4UGenericPolycone wrappe << 27 // 26 // 28 // 30.10.13 G.Cosmo, CERN << 27 // $Id:$ >> 28 // >> 29 // >> 30 // Implementation of G4UGenericPolycone wrapper class 29 // ------------------------------------------- 31 // -------------------------------------------------------------------- 30 32 31 #include "G4GenericPolycone.hh" 33 #include "G4GenericPolycone.hh" 32 #include "G4UGenericPolycone.hh" 34 #include "G4UGenericPolycone.hh" 33 35 34 #if ( defined(G4GEOM_USE_USOLIDS) || defined(G 36 #if ( defined(G4GEOM_USE_USOLIDS) || defined(G4GEOM_USE_PARTIAL_USOLIDS) ) 35 37 36 #include "G4GeomTools.hh" 38 #include "G4GeomTools.hh" 37 #include "G4AffineTransform.hh" 39 #include "G4AffineTransform.hh" 38 #include "G4VPVParameterisation.hh" 40 #include "G4VPVParameterisation.hh" 39 #include "G4BoundingEnvelope.hh" 41 #include "G4BoundingEnvelope.hh" 40 42 41 #include "G4Polyhedron.hh" 43 #include "G4Polyhedron.hh" 42 44 43 using namespace CLHEP; 45 using namespace CLHEP; 44 46 45 ////////////////////////////////////////////// 47 //////////////////////////////////////////////////////////////////////// 46 // 48 // 47 // Constructor (generic parameters) 49 // Constructor (generic parameters) 48 // 50 // 49 G4UGenericPolycone::G4UGenericPolycone(const G << 51 G4UGenericPolycone::G4UGenericPolycone(const G4String& name, 50 G 52 G4double phiStart, 51 G 53 G4double phiTotal, 52 G 54 G4int numRZ, 53 const G 55 const G4double r[], 54 const G 56 const G4double z[] ) 55 : Base_t(name, phiStart, phiTotal, numRZ, r, << 57 : G4USolid(name, new UGenericPolycone(name, phiStart, phiTotal, numRZ, r, z)) 56 { << 58 { 57 wrStart = phiStart; while (wrStart < 0) wrSt << 58 wrDelta = phiTotal; << 59 if (wrDelta <= 0 || wrDelta >= twopi*(1-DBL_ << 60 { << 61 wrStart = 0; << 62 wrDelta = twopi; << 63 } << 64 rzcorners.resize(0); << 65 for (G4int i=0; i<numRZ; ++i) << 66 { << 67 rzcorners.emplace_back(r[i],z[i]); << 68 } << 69 std::vector<G4int> iout; << 70 G4GeomTools::RemoveRedundantVertices(rzcorne << 71 } 59 } 72 60 73 61 74 ////////////////////////////////////////////// 62 //////////////////////////////////////////////////////////////////////// 75 // 63 // 76 // Fake default constructor - sets only member 64 // Fake default constructor - sets only member data and allocates memory 77 // for usage restri 65 // for usage restricted to object persistency. 78 // 66 // 79 G4UGenericPolycone::G4UGenericPolycone(__void_ 67 G4UGenericPolycone::G4UGenericPolycone(__void__& a) 80 : Base_t(a) << 68 : G4USolid(a) 81 { 69 { 82 } 70 } 83 71 84 72 85 ////////////////////////////////////////////// 73 ////////////////////////////////////////////////////////////////////////// 86 // 74 // 87 // Destructor 75 // Destructor 88 // 76 // 89 G4UGenericPolycone::~G4UGenericPolycone() = de << 77 G4UGenericPolycone::~G4UGenericPolycone() >> 78 { >> 79 } 90 80 91 81 92 ////////////////////////////////////////////// 82 ////////////////////////////////////////////////////////////////////////// 93 // 83 // 94 // Copy constructor 84 // Copy constructor 95 // 85 // 96 G4UGenericPolycone::G4UGenericPolycone(const G << 86 G4UGenericPolycone::G4UGenericPolycone(const G4UGenericPolycone &source) 97 : Base_t(source) << 87 : G4USolid(source) 98 { 88 { 99 wrStart = source.wrStart; << 100 wrDelta = source.wrDelta; << 101 rzcorners = source.rzcorners; << 102 } 89 } 103 90 104 91 105 ////////////////////////////////////////////// 92 ////////////////////////////////////////////////////////////////////////// 106 // 93 // 107 // Assignment operator 94 // Assignment operator 108 // 95 // 109 G4UGenericPolycone& 96 G4UGenericPolycone& 110 G4UGenericPolycone::operator=(const G4UGeneric << 97 G4UGenericPolycone::operator=(const G4UGenericPolycone &source) 111 { 98 { 112 if (this == &source) return *this; 99 if (this == &source) return *this; 113 << 100 114 Base_t::operator=( source ); << 101 G4USolid::operator=( source ); 115 wrStart = source.wrStart; << 102 116 wrDelta = source.wrDelta; << 117 rzcorners = source.rzcorners; << 118 << 119 return *this; 103 return *this; 120 } 104 } 121 105 122 G4double G4UGenericPolycone::GetStartPhi() con 106 G4double G4UGenericPolycone::GetStartPhi() const 123 { 107 { 124 return wrStart; << 108 return GetShape()->GetStartPhi(); 125 } 109 } 126 G4double G4UGenericPolycone::GetEndPhi() const 110 G4double G4UGenericPolycone::GetEndPhi() const 127 { 111 { 128 return (wrStart + wrDelta); << 112 return GetShape()->GetEndPhi(); 129 } 113 } 130 G4double G4UGenericPolycone::GetSinStartPhi() 114 G4double G4UGenericPolycone::GetSinStartPhi() const 131 { 115 { 132 if (IsOpen()) return 0.; << 116 if (!GetShape()->IsOpen()) return 0; 133 G4double phi = GetStartPhi(); << 117 G4double phi = GetShape()->GetStartPhi(); 134 return std::sin(phi); 118 return std::sin(phi); 135 } 119 } 136 G4double G4UGenericPolycone::GetCosStartPhi() 120 G4double G4UGenericPolycone::GetCosStartPhi() const 137 { 121 { 138 if (IsOpen()) return 1.; << 122 if (!GetShape()->IsOpen()) return 1; 139 G4double phi = GetStartPhi(); << 123 G4double phi = GetShape()->GetStartPhi(); 140 return std::cos(phi); 124 return std::cos(phi); 141 } 125 } 142 G4double G4UGenericPolycone::GetSinEndPhi() co 126 G4double G4UGenericPolycone::GetSinEndPhi() const 143 { 127 { 144 if (IsOpen()) return 0.; << 128 if (!GetShape()->IsOpen()) return 0; 145 G4double phi = GetEndPhi(); << 129 G4double phi = GetShape()->GetEndPhi(); 146 return std::sin(phi); 130 return std::sin(phi); 147 } 131 } 148 G4double G4UGenericPolycone::GetCosEndPhi() co 132 G4double G4UGenericPolycone::GetCosEndPhi() const 149 { 133 { 150 if (IsOpen()) return 1.; << 134 if (!GetShape()->IsOpen()) return 1; 151 G4double phi = GetEndPhi(); << 135 G4double phi = GetShape()->GetEndPhi(); 152 return std::cos(phi); 136 return std::cos(phi); 153 } 137 } 154 G4bool G4UGenericPolycone::IsOpen() const 138 G4bool G4UGenericPolycone::IsOpen() const 155 { 139 { 156 return (wrDelta < twopi); << 140 return GetShape()->IsOpen(); 157 } 141 } 158 G4int G4UGenericPolycone::GetNumRZCorner() con 142 G4int G4UGenericPolycone::GetNumRZCorner() const 159 { 143 { 160 return rzcorners.size(); << 144 return GetShape()->GetNumRZCorner(); 161 } 145 } 162 G4PolyconeSideRZ G4UGenericPolycone::GetCorner 146 G4PolyconeSideRZ G4UGenericPolycone::GetCorner(G4int index) const 163 { 147 { 164 G4TwoVector rz = rzcorners.at(index); << 148 UPolyconeSideRZ pside = GetShape()->GetCorner(index); 165 G4PolyconeSideRZ psiderz = { rz.x(), rz.y() << 149 G4PolyconeSideRZ psiderz = { pside.r, pside.z }; 166 150 167 return psiderz; 151 return psiderz; 168 } 152 } 169 153 170 ////////////////////////////////////////////// 154 ////////////////////////////////////////////////////////////////////////// 171 // 155 // 172 // Make a clone of the object << 173 << 174 G4VSolid* G4UGenericPolycone::Clone() const << 175 { << 176 return new G4UGenericPolycone(*this); << 177 } << 178 << 179 ////////////////////////////////////////////// << 180 // << 181 // Get bounding box 156 // Get bounding box 182 157 183 void 158 void 184 G4UGenericPolycone::BoundingLimits(G4ThreeVect << 159 G4UGenericPolycone::Extent(G4ThreeVector& pMin, G4ThreeVector& pMax) const 185 G4ThreeVect << 186 { 160 { 187 G4double rmin = kInfinity, rmax = -kInfinity 161 G4double rmin = kInfinity, rmax = -kInfinity; 188 G4double zmin = kInfinity, zmax = -kInfinity 162 G4double zmin = kInfinity, zmax = -kInfinity; 189 163 190 for (G4int i=0; i<GetNumRZCorner(); ++i) 164 for (G4int i=0; i<GetNumRZCorner(); ++i) 191 { 165 { 192 G4PolyconeSideRZ corner = GetCorner(i); 166 G4PolyconeSideRZ corner = GetCorner(i); 193 if (corner.r < rmin) rmin = corner.r; 167 if (corner.r < rmin) rmin = corner.r; 194 if (corner.r > rmax) rmax = corner.r; 168 if (corner.r > rmax) rmax = corner.r; 195 if (corner.z < zmin) zmin = corner.z; 169 if (corner.z < zmin) zmin = corner.z; 196 if (corner.z > zmax) zmax = corner.z; 170 if (corner.z > zmax) zmax = corner.z; 197 } 171 } 198 172 199 if (IsOpen()) 173 if (IsOpen()) 200 { 174 { 201 G4TwoVector vmin,vmax; 175 G4TwoVector vmin,vmax; 202 G4GeomTools::DiskExtent(rmin,rmax, 176 G4GeomTools::DiskExtent(rmin,rmax, 203 GetSinStartPhi(),G 177 GetSinStartPhi(),GetCosStartPhi(), 204 GetSinEndPhi(),Get 178 GetSinEndPhi(),GetCosEndPhi(), 205 vmin,vmax); 179 vmin,vmax); 206 pMin.set(vmin.x(),vmin.y(),zmin); 180 pMin.set(vmin.x(),vmin.y(),zmin); 207 pMax.set(vmax.x(),vmax.y(),zmax); 181 pMax.set(vmax.x(),vmax.y(),zmax); 208 } 182 } 209 else 183 else 210 { 184 { 211 pMin.set(-rmax,-rmax, zmin); 185 pMin.set(-rmax,-rmax, zmin); 212 pMax.set( rmax, rmax, zmax); 186 pMax.set( rmax, rmax, zmax); 213 } 187 } 214 188 215 // Check correctness of the bounding box 189 // Check correctness of the bounding box 216 // 190 // 217 if (pMin.x() >= pMax.x() || pMin.y() >= pMax 191 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 218 { 192 { 219 std::ostringstream message; 193 std::ostringstream message; 220 message << "Bad bounding box (min >= max) 194 message << "Bad bounding box (min >= max) for solid: " 221 << GetName() << " !" 195 << GetName() << " !" 222 << "\npMin = " << pMin 196 << "\npMin = " << pMin 223 << "\npMax = " << pMax; 197 << "\npMax = " << pMax; 224 G4Exception("G4UGenericPolycone::BoundingL << 198 G4Exception("G4UGenericPolycone::Extent()", "GeomMgt0001", 225 JustWarning, message); 199 JustWarning, message); 226 StreamInfo(G4cout); 200 StreamInfo(G4cout); 227 } 201 } 228 } 202 } 229 203 230 ////////////////////////////////////////////// 204 ////////////////////////////////////////////////////////////////////////// 231 // 205 // 232 // Calculate extent under transform and specif 206 // Calculate extent under transform and specified limit 233 207 234 G4bool 208 G4bool 235 G4UGenericPolycone::CalculateExtent(const EAxi 209 G4UGenericPolycone::CalculateExtent(const EAxis pAxis, 236 const G4Vo 210 const G4VoxelLimits& pVoxelLimit, 237 const G4Af 211 const G4AffineTransform& pTransform, 238 G4do 212 G4double& pMin, G4double& pMax) const 239 { 213 { 240 G4ThreeVector bmin, bmax; 214 G4ThreeVector bmin, bmax; 241 G4bool exist; 215 G4bool exist; 242 216 243 // Check bounding box (bbox) 217 // Check bounding box (bbox) 244 // 218 // 245 BoundingLimits(bmin,bmax); << 219 Extent(bmin,bmax); 246 G4BoundingEnvelope bbox(bmin,bmax); 220 G4BoundingEnvelope bbox(bmin,bmax); 247 #ifdef G4BBOX_EXTENT 221 #ifdef G4BBOX_EXTENT 248 return bbox.CalculateExtent(pAxis,pVoxelLimi << 222 if (true) return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 249 #endif 223 #endif 250 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox 224 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax)) 251 { 225 { 252 return exist = pMin < pMax; << 226 return exist = (pMin < pMax) ? true : false; 253 } 227 } 254 228 255 // To find the extent, RZ contour of the pol 229 // To find the extent, RZ contour of the polycone is subdivided 256 // in triangles. The extent is calculated as 230 // in triangles. The extent is calculated as cumulative extent of 257 // all sub-polycones formed by rotation of t 231 // all sub-polycones formed by rotation of triangles around Z 258 // 232 // 259 G4TwoVectorList contourRZ; 233 G4TwoVectorList contourRZ; 260 G4TwoVectorList triangles; 234 G4TwoVectorList triangles; 261 G4double eminlim = pVoxelLimit.GetMinExtent( 235 G4double eminlim = pVoxelLimit.GetMinExtent(pAxis); 262 G4double emaxlim = pVoxelLimit.GetMaxExtent( 236 G4double emaxlim = pVoxelLimit.GetMaxExtent(pAxis); 263 237 264 // get RZ contour, ensure anticlockwise orde 238 // get RZ contour, ensure anticlockwise order of corners 265 for (G4int i=0; i<GetNumRZCorner(); ++i) 239 for (G4int i=0; i<GetNumRZCorner(); ++i) 266 { 240 { 267 G4PolyconeSideRZ corner = GetCorner(i); 241 G4PolyconeSideRZ corner = GetCorner(i); 268 contourRZ.emplace_back(corner.r,corner.z); << 242 contourRZ.push_back(G4TwoVector(corner.r,corner.z)); 269 } 243 } 270 G4double area = G4GeomTools::PolygonArea(con 244 G4double area = G4GeomTools::PolygonArea(contourRZ); 271 if (area < 0.) std::reverse(contourRZ.begin( 245 if (area < 0.) std::reverse(contourRZ.begin(),contourRZ.end()); 272 246 273 // triangulate RZ countour 247 // triangulate RZ countour 274 if (!G4GeomTools::TriangulatePolygon(contour 248 if (!G4GeomTools::TriangulatePolygon(contourRZ,triangles)) 275 { 249 { 276 std::ostringstream message; 250 std::ostringstream message; 277 message << "Triangulation of RZ contour ha 251 message << "Triangulation of RZ contour has failed for solid: " 278 << GetName() << " !" 252 << GetName() << " !" 279 << "\nExtent has been calculated u 253 << "\nExtent has been calculated using boundary box"; 280 G4Exception("G4UGenericPolycone::Calculate 254 G4Exception("G4UGenericPolycone::CalculateExtent()", 281 "GeomMgt1002", JustWarning, me 255 "GeomMgt1002", JustWarning, message); 282 return bbox.CalculateExtent(pAxis,pVoxelLi 256 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 283 } 257 } 284 258 285 // set trigonometric values 259 // set trigonometric values 286 const G4int NSTEPS = 24; // numbe 260 const G4int NSTEPS = 24; // number of steps for whole circle 287 G4double astep = twopi/NSTEPS; // max a << 261 G4double astep = (360/NSTEPS)*deg; // max angle for one step 288 262 289 G4double sphi = GetStartPhi(); 263 G4double sphi = GetStartPhi(); 290 G4double ephi = GetEndPhi(); 264 G4double ephi = GetEndPhi(); 291 G4double dphi = IsOpen() ? ephi-sphi : two 265 G4double dphi = IsOpen() ? ephi-sphi : twopi; 292 G4int ksteps = (dphi <= astep) ? 1 : (G4i 266 G4int ksteps = (dphi <= astep) ? 1 : (G4int)((dphi-deg)/astep) + 1; 293 G4double ang = dphi/ksteps; 267 G4double ang = dphi/ksteps; 294 268 295 G4double sinHalf = std::sin(0.5*ang); 269 G4double sinHalf = std::sin(0.5*ang); 296 G4double cosHalf = std::cos(0.5*ang); 270 G4double cosHalf = std::cos(0.5*ang); 297 G4double sinStep = 2.*sinHalf*cosHalf; 271 G4double sinStep = 2.*sinHalf*cosHalf; 298 G4double cosStep = 1. - 2.*sinHalf*sinHalf; 272 G4double cosStep = 1. - 2.*sinHalf*sinHalf; 299 273 300 G4double sinStart = GetSinStartPhi(); 274 G4double sinStart = GetSinStartPhi(); 301 G4double cosStart = GetCosStartPhi(); 275 G4double cosStart = GetCosStartPhi(); 302 G4double sinEnd = GetSinEndPhi(); 276 G4double sinEnd = GetSinEndPhi(); 303 G4double cosEnd = GetCosEndPhi(); 277 G4double cosEnd = GetCosEndPhi(); 304 278 305 // define vectors and arrays 279 // define vectors and arrays 306 std::vector<const G4ThreeVectorList *> polyg 280 std::vector<const G4ThreeVectorList *> polygons; 307 polygons.resize(ksteps+2); 281 polygons.resize(ksteps+2); 308 G4ThreeVectorList pols[NSTEPS+2]; 282 G4ThreeVectorList pols[NSTEPS+2]; 309 for (G4int k=0; k<ksteps+2; ++k) pols[k].res 283 for (G4int k=0; k<ksteps+2; ++k) pols[k].resize(6); 310 for (G4int k=0; k<ksteps+2; ++k) polygons[k] 284 for (G4int k=0; k<ksteps+2; ++k) polygons[k] = &pols[k]; 311 G4double r0[6],z0[6]; // contour with origin 285 G4double r0[6],z0[6]; // contour with original edges of triangle 312 G4double r1[6]; // shifted radii of ex 286 G4double r1[6]; // shifted radii of external edges of triangle 313 287 314 // main loop along triangles 288 // main loop along triangles 315 pMin = kInfinity; 289 pMin = kInfinity; 316 pMax =-kInfinity; 290 pMax =-kInfinity; 317 G4int ntria = triangles.size()/3; 291 G4int ntria = triangles.size()/3; 318 for (G4int i=0; i<ntria; ++i) 292 for (G4int i=0; i<ntria; ++i) 319 { 293 { 320 G4int i3 = i*3; 294 G4int i3 = i*3; 321 for (G4int k=0; k<3; ++k) 295 for (G4int k=0; k<3; ++k) 322 { 296 { 323 G4int e0 = i3+k, e1 = (k<2) ? e0+1 : i3; 297 G4int e0 = i3+k, e1 = (k<2) ? e0+1 : i3; 324 G4int k2 = k*2; 298 G4int k2 = k*2; 325 // set contour with original edges of tr 299 // set contour with original edges of triangle 326 r0[k2+0] = triangles[e0].x(); z0[k2+0] = 300 r0[k2+0] = triangles[e0].x(); z0[k2+0] = triangles[e0].y(); 327 r0[k2+1] = triangles[e1].x(); z0[k2+1] = 301 r0[k2+1] = triangles[e1].x(); z0[k2+1] = triangles[e1].y(); 328 // set shifted radii 302 // set shifted radii 329 r1[k2+0] = r0[k2+0]; 303 r1[k2+0] = r0[k2+0]; 330 r1[k2+1] = r0[k2+1]; 304 r1[k2+1] = r0[k2+1]; 331 if (z0[k2+1] - z0[k2+0] <= 0) continue; 305 if (z0[k2+1] - z0[k2+0] <= 0) continue; 332 r1[k2+0] /= cosHalf; 306 r1[k2+0] /= cosHalf; 333 r1[k2+1] /= cosHalf; 307 r1[k2+1] /= cosHalf; 334 } 308 } 335 309 336 // rotate countour, set sequence of 6-side 310 // rotate countour, set sequence of 6-sided polygons 337 G4double sinCur = sinStart*cosHalf + cosSt 311 G4double sinCur = sinStart*cosHalf + cosStart*sinHalf; 338 G4double cosCur = cosStart*cosHalf - sinSt 312 G4double cosCur = cosStart*cosHalf - sinStart*sinHalf; 339 for (G4int j=0; j<6; ++j) 313 for (G4int j=0; j<6; ++j) 340 { 314 { 341 pols[0][j].set(r0[j]*cosStart,r0[j]*sinS 315 pols[0][j].set(r0[j]*cosStart,r0[j]*sinStart,z0[j]); 342 } 316 } 343 for (G4int k=1; k<ksteps+1; ++k) 317 for (G4int k=1; k<ksteps+1; ++k) 344 { 318 { 345 for (G4int j=0; j<6; ++j) 319 for (G4int j=0; j<6; ++j) 346 { 320 { 347 pols[k][j].set(r1[j]*cosCur,r1[j]*sinC 321 pols[k][j].set(r1[j]*cosCur,r1[j]*sinCur,z0[j]); 348 } 322 } 349 G4double sinTmp = sinCur; 323 G4double sinTmp = sinCur; 350 sinCur = sinCur*cosStep + cosCur*sinStep 324 sinCur = sinCur*cosStep + cosCur*sinStep; 351 cosCur = cosCur*cosStep - sinTmp*sinStep 325 cosCur = cosCur*cosStep - sinTmp*sinStep; 352 } 326 } 353 for (G4int j=0; j<6; ++j) 327 for (G4int j=0; j<6; ++j) 354 { 328 { 355 pols[ksteps+1][j].set(r0[j]*cosEnd,r0[j] 329 pols[ksteps+1][j].set(r0[j]*cosEnd,r0[j]*sinEnd,z0[j]); 356 } 330 } 357 331 358 // set sub-envelope and adjust extent 332 // set sub-envelope and adjust extent 359 G4double emin,emax; 333 G4double emin,emax; 360 G4BoundingEnvelope benv(polygons); 334 G4BoundingEnvelope benv(polygons); 361 if (!benv.CalculateExtent(pAxis,pVoxelLimi 335 if (!benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,emin,emax)) continue; 362 if (emin < pMin) pMin = emin; 336 if (emin < pMin) pMin = emin; 363 if (emax > pMax) pMax = emax; 337 if (emax > pMax) pMax = emax; 364 if (eminlim > pMin && emaxlim < pMax) retu 338 if (eminlim > pMin && emaxlim < pMax) return true; // max possible extent 365 } 339 } 366 return (pMin < pMax); 340 return (pMin < pMax); 367 } 341 } 368 342 369 ////////////////////////////////////////////// 343 //////////////////////////////////////////////////////////////////////// 370 // 344 // 371 // CreatePolyhedron 345 // CreatePolyhedron 372 346 373 G4Polyhedron* G4UGenericPolycone::CreatePolyhe 347 G4Polyhedron* G4UGenericPolycone::CreatePolyhedron() const 374 { 348 { 375 return new G4PolyhedronPcon(wrStart, wrDelta << 349 >> 350 >> 351 // The following code prepares for: >> 352 // HepPolyhedron::createPolyhedron(int Nnodes, int Nfaces, >> 353 // const double xyz[][3], >> 354 // const int faces_vec[][4]) >> 355 // Here is an extract from the header file HepPolyhedron.h: >> 356 /** >> 357 * Creates user defined polyhedron. >> 358 * This function allows to the user to define arbitrary polyhedron. >> 359 * The faces of the polyhedron should be either triangles or planar >> 360 * quadrilateral. Nodes of a face are defined by indexes pointing to >> 361 * the elements in the xyz array. Numeration of the elements in the >> 362 * array starts from 1 (like in fortran). The indexes can be positive >> 363 * or negative. Negative sign means that the corresponding edge is >> 364 * invisible. The normal of the face should be directed to exterior >> 365 * of the polyhedron. >> 366 * >> 367 * @param Nnodes number of nodes >> 368 * @param Nfaces number of faces >> 369 * @param xyz nodes >> 370 * @param faces_vec faces (quadrilaterals or triangles) >> 371 * @return status of the operation - is non-zero in case of problem >> 372 */ >> 373 const G4int numSide = >> 374 G4int(G4Polyhedron::GetNumberOfRotationSteps() >> 375 * (GetEndPhi() - GetStartPhi()) / twopi) + 1; >> 376 G4int nNodes; >> 377 G4int nFaces; >> 378 typedef G4double double3[3]; >> 379 double3* xyz; >> 380 typedef G4int int4[4]; >> 381 int4* faces_vec; >> 382 if (IsOpen()) >> 383 { >> 384 // Triangulate open ends. Simple ear-chopping algorithm... >> 385 // I'm not sure how robust this algorithm is (J.Allison). >> 386 // >> 387 std::vector<G4bool> chopped(GetNumRZCorner(), false); >> 388 std::vector<G4int*> triQuads; >> 389 G4int remaining = GetNumRZCorner(); >> 390 G4int iStarter = 0; >> 391 while (remaining >= 3) // Loop checking, 13.08.2015, G.Cosmo >> 392 { >> 393 // Find unchopped corners... >> 394 // >> 395 G4int A = -1, B = -1, C = -1; >> 396 G4int iStepper = iStarter; >> 397 do // Loop checking, 13.08.2015, G.Cosmo >> 398 { >> 399 if (A < 0) { A = iStepper; } >> 400 else if (B < 0) { B = iStepper; } >> 401 else if (C < 0) { C = iStepper; } >> 402 do // Loop checking, 13.08.2015, G.Cosmo >> 403 { >> 404 if (++iStepper >= GetNumRZCorner()) { iStepper = 0; } >> 405 } >> 406 while (chopped[iStepper]); >> 407 } >> 408 while (C < 0 && iStepper != iStarter); >> 409 >> 410 // Check triangle at B is pointing outward (an "ear"). >> 411 // Sign of z cross product determines... >> 412 // >> 413 G4double BAr = GetCorner(A).r - GetCorner(B).r; >> 414 G4double BAz = GetCorner(A).z - GetCorner(B).z; >> 415 G4double BCr = GetCorner(C).r - GetCorner(B).r; >> 416 G4double BCz = GetCorner(C).z - GetCorner(B).z; >> 417 if (BAr * BCz - BAz * BCr < kCarTolerance) >> 418 { >> 419 G4int* tq = new G4int[3]; >> 420 tq[0] = A + 1; >> 421 tq[1] = B + 1; >> 422 tq[2] = C + 1; >> 423 triQuads.push_back(tq); >> 424 chopped[B] = true; >> 425 --remaining; >> 426 } >> 427 else >> 428 { >> 429 do // Loop checking, 13.08.2015, G.Cosmo >> 430 { >> 431 if (++iStarter >= GetNumRZCorner()) { iStarter = 0; } >> 432 } >> 433 while (chopped[iStarter]); >> 434 } >> 435 } >> 436 // Transfer to faces... >> 437 // >> 438 nNodes = (numSide + 1) * GetNumRZCorner(); >> 439 nFaces = numSide * GetNumRZCorner() + 2 * triQuads.size(); >> 440 faces_vec = new int4[nFaces]; >> 441 G4int iface = 0; >> 442 G4int addition = GetNumRZCorner() * numSide; >> 443 G4int d = GetNumRZCorner() - 1; >> 444 for (G4int iEnd = 0; iEnd < 2; ++iEnd) >> 445 { >> 446 for (size_t i = 0; i < triQuads.size(); ++i) >> 447 { >> 448 // Negative for soft/auxiliary/normally invisible edges... >> 449 // >> 450 G4int a, b, c; >> 451 if (iEnd == 0) >> 452 { >> 453 a = triQuads[i][0]; >> 454 b = triQuads[i][1]; >> 455 c = triQuads[i][2]; >> 456 } >> 457 else >> 458 { >> 459 a = triQuads[i][0] + addition; >> 460 b = triQuads[i][2] + addition; >> 461 c = triQuads[i][1] + addition; >> 462 } >> 463 G4int ab = std::abs(b - a); >> 464 G4int bc = std::abs(c - b); >> 465 G4int ca = std::abs(a - c); >> 466 faces_vec[iface][0] = (ab == 1 || ab == d)? a: -a; >> 467 faces_vec[iface][1] = (bc == 1 || bc == d)? b: -b; >> 468 faces_vec[iface][2] = (ca == 1 || ca == d)? c: -c; >> 469 faces_vec[iface][3] = 0; >> 470 ++iface; >> 471 } >> 472 } >> 473 >> 474 // Continue with sides... >> 475 >> 476 xyz = new double3[nNodes]; >> 477 const G4double dPhi = (GetEndPhi() - GetStartPhi()) / numSide; >> 478 G4double phi = GetStartPhi(); >> 479 G4int ixyz = 0; >> 480 for (G4int iSide = 0; iSide < numSide; ++iSide) >> 481 { >> 482 for (G4int iCorner = 0; iCorner < GetNumRZCorner(); ++iCorner) >> 483 { >> 484 xyz[ixyz][0] = GetCorner(iCorner).r * std::cos(phi); >> 485 xyz[ixyz][1] = GetCorner(iCorner).r * std::sin(phi); >> 486 xyz[ixyz][2] = GetCorner(iCorner).z; >> 487 if (iSide == 0) // startPhi >> 488 { >> 489 if (iCorner < GetNumRZCorner() - 1) >> 490 { >> 491 faces_vec[iface][0] = ixyz + 1; >> 492 faces_vec[iface][1] = -(ixyz + GetNumRZCorner() + 1); >> 493 faces_vec[iface][2] = ixyz + GetNumRZCorner() + 2; >> 494 faces_vec[iface][3] = ixyz + 2; >> 495 } >> 496 else >> 497 { >> 498 faces_vec[iface][0] = ixyz + 1; >> 499 faces_vec[iface][1] = -(ixyz + GetNumRZCorner() + 1); >> 500 faces_vec[iface][2] = ixyz + 2; >> 501 faces_vec[iface][3] = ixyz - GetNumRZCorner() + 2; >> 502 } >> 503 } >> 504 else if (iSide == numSide - 1) // endPhi >> 505 { >> 506 if (iCorner < GetNumRZCorner() - 1) >> 507 { >> 508 faces_vec[iface][0] = ixyz + 1; >> 509 faces_vec[iface][1] = ixyz + GetNumRZCorner() + 1; >> 510 faces_vec[iface][2] = ixyz + GetNumRZCorner() + 2; >> 511 faces_vec[iface][3] = -(ixyz + 2); >> 512 } >> 513 else >> 514 { >> 515 faces_vec[iface][0] = ixyz + 1; >> 516 faces_vec[iface][1] = ixyz + GetNumRZCorner() + 1; >> 517 faces_vec[iface][2] = ixyz + 2; >> 518 faces_vec[iface][3] = -(ixyz - GetNumRZCorner() + 2); >> 519 } >> 520 } >> 521 else >> 522 { >> 523 if (iCorner < GetNumRZCorner() - 1) >> 524 { >> 525 faces_vec[iface][0] = ixyz + 1; >> 526 faces_vec[iface][1] = -(ixyz + GetNumRZCorner() + 1); >> 527 faces_vec[iface][2] = ixyz + GetNumRZCorner() + 2; >> 528 faces_vec[iface][3] = -(ixyz + 2); >> 529 } >> 530 else >> 531 { >> 532 faces_vec[iface][0] = ixyz + 1; >> 533 faces_vec[iface][1] = -(ixyz + GetNumRZCorner() + 1); >> 534 faces_vec[iface][2] = ixyz + 2; >> 535 faces_vec[iface][3] = -(ixyz - GetNumRZCorner() + 2); >> 536 } >> 537 } >> 538 ++iface; >> 539 ++ixyz; >> 540 } >> 541 phi += dPhi; >> 542 } >> 543 >> 544 // Last corners... >> 545 >> 546 for (G4int iCorner = 0; iCorner < GetNumRZCorner(); ++iCorner) >> 547 { >> 548 xyz[ixyz][0] = GetCorner(iCorner).r * std::cos(phi); >> 549 xyz[ixyz][1] = GetCorner(iCorner).r * std::sin(phi); >> 550 xyz[ixyz][2] = GetCorner(iCorner).z; >> 551 ++ixyz; >> 552 } >> 553 } >> 554 else // !phiIsOpen - i.e., a complete 360 degrees. >> 555 { >> 556 nNodes = numSide * GetNumRZCorner(); >> 557 nFaces = numSide * GetNumRZCorner();; >> 558 xyz = new double3[nNodes]; >> 559 faces_vec = new int4[nFaces]; >> 560 const G4double dPhi = (GetEndPhi() - GetStartPhi()) / numSide; >> 561 G4double phi = GetStartPhi(); >> 562 G4int ixyz = 0, iface = 0; >> 563 for (G4int iSide = 0; iSide < numSide; ++iSide) >> 564 { >> 565 for (G4int iCorner = 0; iCorner < GetNumRZCorner(); ++iCorner) >> 566 { >> 567 xyz[ixyz][0] = GetCorner(iCorner).r * std::cos(phi); >> 568 xyz[ixyz][1] = GetCorner(iCorner).r * std::sin(phi); >> 569 xyz[ixyz][2] = GetCorner(iCorner).z; >> 570 >> 571 if (iSide < numSide - 1) >> 572 { >> 573 if (iCorner < GetNumRZCorner() - 1) >> 574 { >> 575 faces_vec[iface][0] = ixyz + 1; >> 576 faces_vec[iface][1] = -(ixyz + GetNumRZCorner() + 1); >> 577 faces_vec[iface][2] = ixyz + GetNumRZCorner() + 2; >> 578 faces_vec[iface][3] = -(ixyz + 2); >> 579 } >> 580 else >> 581 { >> 582 faces_vec[iface][0] = ixyz + 1; >> 583 faces_vec[iface][1] = -(ixyz + GetNumRZCorner() + 1); >> 584 faces_vec[iface][2] = ixyz + 2; >> 585 faces_vec[iface][3] = -(ixyz - GetNumRZCorner() + 2); >> 586 } >> 587 } >> 588 else // Last side joins ends... >> 589 { >> 590 if (iCorner < GetNumRZCorner() - 1) >> 591 { >> 592 faces_vec[iface][0] = ixyz + 1; >> 593 faces_vec[iface][1] = -(ixyz + GetNumRZCorner() - nFaces + 1); >> 594 faces_vec[iface][2] = ixyz + GetNumRZCorner() - nFaces + 2; >> 595 faces_vec[iface][3] = -(ixyz + 2); >> 596 } >> 597 else >> 598 { >> 599 faces_vec[iface][0] = ixyz + 1; >> 600 faces_vec[iface][1] = -(ixyz - nFaces + GetNumRZCorner() + 1); >> 601 faces_vec[iface][2] = ixyz - nFaces + 2; >> 602 faces_vec[iface][3] = -(ixyz - GetNumRZCorner() + 2); >> 603 } >> 604 } >> 605 ++ixyz; >> 606 ++iface; >> 607 } >> 608 phi += dPhi; >> 609 } >> 610 } >> 611 G4Polyhedron* polyhedron = new G4Polyhedron; >> 612 G4int prob = polyhedron->createPolyhedron(nNodes, nFaces, xyz, faces_vec); >> 613 delete [] faces_vec; >> 614 delete [] xyz; >> 615 if (prob) >> 616 { >> 617 std::ostringstream message; >> 618 message << "Problem creating G4Polyhedron for: " << GetName(); >> 619 G4Exception("G4GenericPolycone::CreatePolyhedron()", "GeomSolids1002", >> 620 JustWarning, message); >> 621 delete polyhedron; >> 622 return 0; >> 623 } >> 624 else >> 625 { >> 626 return polyhedron; >> 627 } 376 } 628 } 377 629 378 #endif // G4GEOM_USE_USOLIDS 630 #endif // G4GEOM_USE_USOLIDS 379 631