Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the intell 18 // * This code implementation is the intellectual property of the * 19 // * Vanderbilt University Free Electron Laser 19 // * Vanderbilt University Free Electron Laser Center * 20 // * Vanderbilt University, Nashville, TN, USA 20 // * Vanderbilt University, Nashville, TN, USA * 21 // * Development supported by: 21 // * Development supported by: * 22 // * United States MFEL program under grant F 22 // * United States MFEL program under grant FA9550-04-1-0045 * 23 // * and NASA under contract number NNG04CT05P 23 // * and NASA under contract number NNG04CT05P * 24 // * Written by Marcus H. Mendenhall and Rober 24 // * Written by Marcus H. Mendenhall and Robert A. Weller. * 25 // * 25 // * * 26 // * Contributed to the Geant4 Core, January, 26 // * Contributed to the Geant4 Core, January, 2005. * 27 // * 27 // * * 28 // ******************************************* 28 // ******************************************************************** 29 // 29 // >> 30 // $Id: G4Tet.cc,v 1.11.12.1 2010/09/08 15:54:59 gcosmo Exp $ >> 31 // GEANT4 tag $Name: geant4-09-03-patch-02 $ >> 32 // >> 33 // class G4Tet >> 34 // 30 // Implementation for G4Tet class 35 // Implementation for G4Tet class 31 // 36 // 32 // 03.09.2004 - Marcus Mendenhall, created << 37 // History: 33 // 08.01.2020 - Evgueni Tcherniaev, complete r << 38 // >> 39 // 20040903 - Marcus Mendenhall, created G4Tet >> 40 // 20041101 - Marcus Mendenhall, optimized constant dot products with >> 41 // fCdotNijk values >> 42 // 20041101 - MHM removed tracking error by clipping DistanceToOut to 0 >> 43 // for surface cases >> 44 // 20041101 - MHM many speed optimizations in if statements >> 45 // 20041101 - MHM changed vdotn comparisons to 1e-12 instead of 0.0 to >> 46 // avoid nearly-parallel problems >> 47 // 20041102 - MHM Added extra distance into solid to DistanceToIn(p,v) >> 48 // hit testing >> 49 // 20041102 - MHM added ability to check for degeneracy without throwing >> 50 // G4Exception >> 51 // 20041103 - MHM removed many unused variables from class >> 52 // 20040803 - Dionysios Anninos, added GetPointOnSurface() method >> 53 // 20061112 - MHM added code for G4VSolid GetSurfaceArea() >> 54 // 34 // ------------------------------------------- 55 // -------------------------------------------------------------------- 35 56 36 #include "G4Tet.hh" 57 #include "G4Tet.hh" 37 58 38 #if !defined(G4GEOM_USE_UTET) << 59 const char G4Tet::CVSVers[]="$Id: G4Tet.cc,v 1.11.12.1 2010/09/08 15:54:59 gcosmo Exp $"; 39 60 40 #include "G4VoxelLimits.hh" 61 #include "G4VoxelLimits.hh" 41 #include "G4AffineTransform.hh" 62 #include "G4AffineTransform.hh" 42 #include "G4BoundingEnvelope.hh" << 43 63 44 #include "G4VPVParameterisation.hh" 64 #include "G4VPVParameterisation.hh" 45 65 46 #include "G4QuickRand.hh" << 66 #include "Randomize.hh" 47 67 48 #include "G4VGraphicsScene.hh" 68 #include "G4VGraphicsScene.hh" 49 #include "G4Polyhedron.hh" 69 #include "G4Polyhedron.hh" >> 70 #include "G4NURBS.hh" >> 71 #include "G4NURBSbox.hh" 50 #include "G4VisExtent.hh" 72 #include "G4VisExtent.hh" 51 73 52 #include "G4AutoLock.hh" << 74 #include "G4ThreeVector.hh" 53 75 54 namespace << 76 #include <cmath> 55 { << 56 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZE << 57 } << 58 77 59 using namespace CLHEP; 78 using namespace CLHEP; 60 79 61 ////////////////////////////////////////////// 80 //////////////////////////////////////////////////////////////////////// 62 // 81 // 63 // Constructor - create a tetrahedron 82 // Constructor - create a tetrahedron >> 83 // This class is implemented separately from general polyhedra, >> 84 // because the simplex geometry can be computed very quickly, >> 85 // which may become important in situations imported from mesh generators, >> 86 // in which a very large number of G4Tets are created. 64 // A Tet has all of its geometrical informatio 87 // A Tet has all of its geometrical information precomputed 65 // << 88 66 G4Tet::G4Tet(const G4String& pName, 89 G4Tet::G4Tet(const G4String& pName, 67 const G4ThreeVector& p0, << 90 G4ThreeVector anchor, 68 const G4ThreeVector& p1, << 91 G4ThreeVector p2, 69 const G4ThreeVector& p2, << 92 G4ThreeVector p3, 70 const G4ThreeVector& p3, G4bool* << 93 G4ThreeVector p4, G4bool *degeneracyFlag) 71 : G4VSolid(pName) << 94 : G4VSolid(pName), fpPolyhedron(0), warningFlag(0) 72 { << 95 { 73 // Check for degeneracy << 96 // fV<x><y> is vector from vertex <y> to vertex <x> 74 G4bool degenerate = CheckDegeneracy(p0, p1, << 97 // 75 if (degeneracyFlag != nullptr) << 98 G4ThreeVector fV21=p2-anchor; >> 99 G4ThreeVector fV31=p3-anchor; >> 100 G4ThreeVector fV41=p4-anchor; >> 101 >> 102 // make sure this is a correctly oriented set of points for the tetrahedron >> 103 // >> 104 G4double signed_vol=fV21.cross(fV31).dot(fV41); >> 105 if(signed_vol<0.0) 76 { 106 { 77 *degeneracyFlag = degenerate; << 107 G4ThreeVector temp(p4); 78 } << 108 p4=p3; >> 109 p3=temp; >> 110 temp=fV41; >> 111 fV41=fV31; >> 112 fV31=temp; >> 113 } >> 114 fCubicVolume = std::fabs(signed_vol) / 6.; >> 115 >> 116 G4ThreeVector fV24=p2-p4; >> 117 G4ThreeVector fV43=p4-p3; >> 118 G4ThreeVector fV32=p3-p2; >> 119 >> 120 fXMin=std::min(std::min(std::min(anchor.x(), p2.x()),p3.x()),p4.x()); >> 121 fXMax=std::max(std::max(std::max(anchor.x(), p2.x()),p3.x()),p4.x()); >> 122 fYMin=std::min(std::min(std::min(anchor.y(), p2.y()),p3.y()),p4.y()); >> 123 fYMax=std::max(std::max(std::max(anchor.y(), p2.y()),p3.y()),p4.y()); >> 124 fZMin=std::min(std::min(std::min(anchor.z(), p2.z()),p3.z()),p4.z()); >> 125 fZMax=std::max(std::max(std::max(anchor.z(), p2.z()),p3.z()),p4.z()); >> 126 >> 127 fDx=(fXMax-fXMin)*0.5; fDy=(fYMax-fYMin)*0.5; fDz=(fZMax-fZMin)*0.5; >> 128 >> 129 fMiddle=G4ThreeVector(fXMax+fXMin, fYMax+fYMin, fZMax+fZMin)*0.5; >> 130 fMaxSize=std::max(std::max(std::max((anchor-fMiddle).mag(), >> 131 (p2-fMiddle).mag()), >> 132 (p3-fMiddle).mag()), >> 133 (p4-fMiddle).mag()); >> 134 >> 135 G4bool degenerate=std::fabs(signed_vol) < 1e-9*fMaxSize*fMaxSize*fMaxSize; >> 136 >> 137 if(degeneracyFlag) *degeneracyFlag=degenerate; 79 else if (degenerate) 138 else if (degenerate) 80 { 139 { 81 std::ostringstream message; << 140 G4Exception("G4Tet::G4Tet()", "InvalidSetup", FatalException, 82 message << "Degenerate tetrahedron: " << G << 141 "Degenerate tetrahedron not allowed."); 83 << " anchor: " << p0 << "\n" << 84 << " p1 : " << p1 << "\n" << 85 << " p2 : " << p2 << "\n" << 86 << " p3 : " << p3 << "\n" << 87 << " volume: " << 88 << std::abs((p1 - p0).cross(p2 - p << 89 G4Exception("G4Tet::G4Tet()", "GeomSolids0 << 90 } 142 } 91 143 92 // Define surface thickness << 144 fTol=1e-9*(std::fabs(fXMin)+std::fabs(fXMax)+std::fabs(fYMin) 93 halfTolerance = 0.5 * kCarTolerance; << 145 +std::fabs(fYMax)+std::fabs(fZMin)+std::fabs(fZMax)); 94 << 146 //fTol=kCarTolerance; 95 // Set data members << 147 96 Initialize(p0, p1, p2, p3); << 148 fAnchor=anchor; >> 149 fP2=p2; >> 150 fP3=p3; >> 151 fP4=p4; >> 152 >> 153 G4ThreeVector fCenter123=(anchor+p2+p3)*(1.0/3.0); // face center >> 154 G4ThreeVector fCenter134=(anchor+p4+p3)*(1.0/3.0); >> 155 G4ThreeVector fCenter142=(anchor+p4+p2)*(1.0/3.0); >> 156 G4ThreeVector fCenter234=(p2+p3+p4)*(1.0/3.0); >> 157 >> 158 // compute area of each triangular face by cross product >> 159 // and sum for total surface area >> 160 >> 161 G4ThreeVector normal123=fV31.cross(fV21); >> 162 G4ThreeVector normal134=fV41.cross(fV31); >> 163 G4ThreeVector normal142=fV21.cross(fV41); >> 164 G4ThreeVector normal234=fV32.cross(fV43); >> 165 >> 166 fSurfaceArea=( >> 167 normal123.mag()+ >> 168 normal134.mag()+ >> 169 normal142.mag()+ >> 170 normal234.mag() >> 171 )/2.0; >> 172 >> 173 fNormal123=normal123.unit(); >> 174 fNormal134=normal134.unit(); >> 175 fNormal142=normal142.unit(); >> 176 fNormal234=normal234.unit(); >> 177 >> 178 fCdotN123=fCenter123.dot(fNormal123); >> 179 fCdotN134=fCenter134.dot(fNormal134); >> 180 fCdotN142=fCenter142.dot(fNormal142); >> 181 fCdotN234=fCenter234.dot(fNormal234); 97 } 182 } 98 183 99 ////////////////////////////////////////////// << 184 ////////////////////////////////////////////////////////////////////////// 100 // 185 // 101 // Fake default constructor - sets only member 186 // Fake default constructor - sets only member data and allocates memory 102 // for usage restri 187 // for usage restricted to object persistency. 103 // 188 // 104 G4Tet::G4Tet( __void__& a ) 189 G4Tet::G4Tet( __void__& a ) 105 : G4VSolid(a) << 190 : G4VSolid(a), fCubicVolume(0.), fSurfaceArea(0.), fpPolyhedron(0), >> 191 fAnchor(0,0,0), fP2(0,0,0), fP3(0,0,0), fP4(0,0,0), fMiddle(0,0,0), >> 192 fNormal123(0,0,0), fNormal142(0,0,0), fNormal134(0,0,0), >> 193 fNormal234(0,0,0), warningFlag(0), >> 194 fCdotN123(0.), fCdotN142(0.), fCdotN134(0.), fCdotN234(0.), >> 195 fXMin(0.), fXMax(0.), fYMin(0.), fYMax(0.), fZMin(0.), fZMax(0.), >> 196 fDx(0.), fDy(0.), fDz(0.), fTol(0.), fMaxSize(0.) 106 { 197 { 107 } 198 } 108 199 109 ////////////////////////////////////////////// << 200 ////////////////////////////////////////////////////////////////////////// 110 // 201 // 111 // Destructor 202 // Destructor 112 // << 203 113 G4Tet::~G4Tet() 204 G4Tet::~G4Tet() 114 { 205 { 115 delete fpPolyhedron; fpPolyhedron = nullptr; << 206 delete fpPolyhedron; 116 } 207 } 117 208 118 ////////////////////////////////////////////// << 209 ////////////////////////////////////////////////////////////////////////// 119 // << 120 // Copy constructor << 121 // 210 // 122 G4Tet::G4Tet(const G4Tet& rhs) << 211 // CheckDegeneracy 123 : G4VSolid(rhs) << 124 { << 125 halfTolerance = rhs.halfTolerance; << 126 fCubicVolume = rhs.fCubicVolume; << 127 fSurfaceArea = rhs.fSurfaceArea; << 128 for (G4int i = 0; i < 4; ++i) { fVertex[i] << 129 for (G4int i = 0; i < 4; ++i) { fNormal[i] << 130 for (G4int i = 0; i < 4; ++i) { fDist[i] = << 131 for (G4int i = 0; i < 4; ++i) { fArea[i] = << 132 fBmin = rhs.fBmin; << 133 fBmax = rhs.fBmax; << 134 } << 135 212 136 ////////////////////////////////////////////// << 213 G4bool G4Tet::CheckDegeneracy( G4ThreeVector anchor, 137 // << 214 G4ThreeVector p2, 138 // Assignment operator << 215 G4ThreeVector p3, 139 // << 216 G4ThreeVector p4 ) 140 G4Tet& G4Tet::operator = (const G4Tet& rhs) << 141 { 217 { 142 // Check assignment to self << 218 G4bool result; 143 // << 219 G4Tet *object=new G4Tet("temp",anchor,p2,p3,p4,&result); 144 if (this == &rhs) { return *this; } << 220 delete object; 145 << 221 return result; 146 // Copy base class data << 147 // << 148 G4VSolid::operator=(rhs); << 149 << 150 // Copy data << 151 // << 152 halfTolerance = rhs.halfTolerance; << 153 fCubicVolume = rhs.fCubicVolume; << 154 fSurfaceArea = rhs.fSurfaceArea; << 155 for (G4int i = 0; i < 4; ++i) { fVertex[i] << 156 for (G4int i = 0; i < 4; ++i) { fNormal[i] << 157 for (G4int i = 0; i < 4; ++i) { fDist[i] = << 158 for (G4int i = 0; i < 4; ++i) { fArea[i] = << 159 fBmin = rhs.fBmin; << 160 fBmax = rhs.fBmax; << 161 fRebuildPolyhedron = false; << 162 delete fpPolyhedron; fpPolyhedron = nullptr << 163 << 164 return *this; << 165 } 222 } 166 223 167 ////////////////////////////////////////////// << 224 ////////////////////////////////////////////////////////////////////////// 168 // << 169 // Return true if tetrahedron is degenerate << 170 // Tetrahedron is concidered as degenerate in << 171 // height is less than degeneracy tolerance << 172 // 225 // 173 G4bool G4Tet::CheckDegeneracy(const G4ThreeVec << 226 // Dispatch to parameterisation for replication mechanism dimension 174 const G4ThreeVec << 227 // computation & modification. 175 const G4ThreeVec << 176 const G4ThreeVec << 177 { << 178 G4double hmin = 4. * kCarTolerance; // degen << 179 << 180 // Calculate volume << 181 G4double vol = std::abs((p1 - p0).cross(p2 - << 182 << 183 // Calculate face areas squared << 184 G4double ss[4]; << 185 ss[0] = ((p1 - p0).cross(p2 - p0)).mag2(); << 186 ss[1] = ((p2 - p0).cross(p3 - p0)).mag2(); << 187 ss[2] = ((p3 - p0).cross(p1 - p0)).mag2(); << 188 ss[3] = ((p2 - p1).cross(p3 - p1)).mag2(); << 189 << 190 // Find face with max area << 191 G4int k = 0; << 192 for (G4int i = 1; i < 4; ++i) { if (ss[i] > << 193 228 194 // Check: vol^2 / s^2 <= hmin^2 << 229 void G4Tet::ComputeDimensions(G4VPVParameterisation* , 195 return (vol*vol <= ss[k]*hmin*hmin); << 230 const G4int , >> 231 const G4VPhysicalVolume* ) >> 232 { 196 } 233 } 197 234 198 ////////////////////////////////////////////// << 235 ////////////////////////////////////////////////////////////////////////// 199 // << 200 // Set data members << 201 // 236 // 202 void G4Tet::Initialize(const G4ThreeVector& p0 << 237 // Calculate extent under transform and specified limit 203 const G4ThreeVector& p1 << 204 const G4ThreeVector& p2 << 205 const G4ThreeVector& p3 << 206 { << 207 // Set vertices << 208 fVertex[0] = p0; << 209 fVertex[1] = p1; << 210 fVertex[2] = p2; << 211 fVertex[3] = p3; << 212 238 213 G4ThreeVector norm[4]; << 239 G4bool G4Tet::CalculateExtent(const EAxis pAxis, 214 norm[0] = (p2 - p0).cross(p1 - p0); << 240 const G4VoxelLimits& pVoxelLimit, 215 norm[1] = (p3 - p0).cross(p2 - p0); << 241 const G4AffineTransform& pTransform, 216 norm[2] = (p1 - p0).cross(p3 - p0); << 242 G4double& pMin, G4double& pMax) const 217 norm[3] = (p2 - p1).cross(p3 - p1); << 243 { 218 G4double volume = norm[0].dot(p3 - p0); << 244 G4double xMin,xMax; 219 if (volume > 0.) << 245 G4double yMin,yMax; 220 { << 246 G4double zMin,zMax; 221 for (auto & i : norm) { i = -i; } << 247 >> 248 if (pTransform.IsRotated()) >> 249 { >> 250 G4ThreeVector pp0=pTransform.TransformPoint(fAnchor); >> 251 G4ThreeVector pp1=pTransform.TransformPoint(fP2); >> 252 G4ThreeVector pp2=pTransform.TransformPoint(fP3); >> 253 G4ThreeVector pp3=pTransform.TransformPoint(fP4); >> 254 >> 255 xMin = std::min(std::min(std::min(pp0.x(), pp1.x()),pp2.x()),pp3.x()); >> 256 xMax = std::max(std::max(std::max(pp0.x(), pp1.x()),pp2.x()),pp3.x()); >> 257 yMin = std::min(std::min(std::min(pp0.y(), pp1.y()),pp2.y()),pp3.y()); >> 258 yMax = std::max(std::max(std::max(pp0.y(), pp1.y()),pp2.y()),pp3.y()); >> 259 zMin = std::min(std::min(std::min(pp0.z(), pp1.z()),pp2.z()),pp3.z()); >> 260 zMax = std::max(std::max(std::max(pp0.z(), pp1.z()),pp2.z()),pp3.z()); >> 261 >> 262 } >> 263 else >> 264 { >> 265 G4double xoffset = pTransform.NetTranslation().x() ; >> 266 xMin = xoffset + fXMin; >> 267 xMax = xoffset + fXMax; >> 268 G4double yoffset = pTransform.NetTranslation().y() ; >> 269 yMin = yoffset + fYMin; >> 270 yMax = yoffset + fYMax; >> 271 G4double zoffset = pTransform.NetTranslation().z() ; >> 272 zMin = zoffset + fZMin; >> 273 zMax = zoffset + fZMax; >> 274 } >> 275 >> 276 if (pVoxelLimit.IsXLimited()) >> 277 { >> 278 if ( (xMin > pVoxelLimit.GetMaxXExtent()+fTol) || >> 279 (xMax < pVoxelLimit.GetMinXExtent()-fTol) ) { return false; } >> 280 else >> 281 { >> 282 xMin = std::max(xMin, pVoxelLimit.GetMinXExtent()); >> 283 xMax = std::min(xMax, pVoxelLimit.GetMaxXExtent()); >> 284 } 222 } 285 } 223 286 224 // Set normals to face planes << 287 if (pVoxelLimit.IsYLimited()) 225 for (G4int i = 0; i < 4; ++i) { fNormal[i] = << 226 << 227 // Set distances to planes << 228 for (G4int i = 0; i < 3; ++i) { fDist[i] = f << 229 fDist[3] = fNormal[3].dot(p1); << 230 << 231 // Set face areas << 232 for (G4int i = 0; i < 4; ++i) { fArea[i] = 0 << 233 << 234 // Set bounding box << 235 for (G4int i = 0; i < 3; ++i) << 236 { 288 { 237 fBmin[i] = std::min(std::min(std::min(p0[i << 289 if ( (yMin > pVoxelLimit.GetMaxYExtent()+fTol) || 238 fBmax[i] = std::max(std::max(std::max(p0[i << 290 (yMax < pVoxelLimit.GetMinYExtent()-fTol) ) { return false; } 239 } << 291 else 240 << 292 { 241 // Set volume and surface area << 293 yMin = std::max(yMin, pVoxelLimit.GetMinYExtent()); 242 fCubicVolume = std::abs(volume)/6.; << 294 yMax = std::min(yMax, pVoxelLimit.GetMaxYExtent()); 243 fSurfaceArea = fArea[0] + fArea[1] + fArea[2 << 295 } 244 } << 296 } 245 297 246 ////////////////////////////////////////////// << 298 if (pVoxelLimit.IsZLimited()) 247 // << 299 { 248 // Set vertices << 300 if ( (zMin > pVoxelLimit.GetMaxZExtent()+fTol) || 249 // << 301 (zMax < pVoxelLimit.GetMinZExtent()-fTol) ) { return false; } 250 void G4Tet::SetVertices(const G4ThreeVector& p << 302 else 251 const G4ThreeVector& p << 303 { 252 const G4ThreeVector& p << 304 zMin = std::max(zMin, pVoxelLimit.GetMinZExtent()); 253 const G4ThreeVector& p << 305 zMax = std::min(zMax, pVoxelLimit.GetMaxZExtent()); 254 { << 306 } 255 // Check for degeneracy << 256 G4bool degenerate = CheckDegeneracy(p0, p1, << 257 if (degeneracyFlag != nullptr) << 258 { << 259 *degeneracyFlag = degenerate; << 260 } 307 } 261 else if (degenerate) << 308 >> 309 switch (pAxis) 262 { 310 { 263 std::ostringstream message; << 311 case kXAxis: 264 message << "Degenerate tetrahedron is not << 312 pMin=xMin; 265 << " anchor: " << p0 << "\n" << 313 pMax=xMax; 266 << " p1 : " << p1 << "\n" << 314 break; 267 << " p2 : " << p2 << "\n" << 315 case kYAxis: 268 << " p3 : " << p3 << "\n" << 316 pMin=yMin; 269 << " volume: " << 317 pMax=yMax; 270 << std::abs((p1 - p0).cross(p2 - p << 318 break; 271 G4Exception("G4Tet::SetVertices()", "GeomS << 319 case kZAxis: 272 FatalException, message); << 320 pMin=zMin; >> 321 pMax=zMax; >> 322 break; >> 323 default: >> 324 break; 273 } 325 } 274 326 275 // Set data members << 327 return true; 276 Initialize(p0, p1, p2, p3); << 328 } 277 << 278 // Set flag to rebuild polyhedron << 279 fRebuildPolyhedron = true; << 280 } << 281 329 282 ////////////////////////////////////////////// << 330 ///////////////////////////////////////////////////////////////////////// 283 // << 284 // Return four vertices << 285 // 331 // 286 void G4Tet::GetVertices(G4ThreeVector& p0, << 332 // Return whether point inside/outside/on surface, using tolerance 287 G4ThreeVector& p1, << 288 G4ThreeVector& p2, << 289 G4ThreeVector& p3) con << 290 { << 291 p0 = fVertex[0]; << 292 p1 = fVertex[1]; << 293 p2 = fVertex[2]; << 294 p3 = fVertex[3]; << 295 } << 296 333 297 ////////////////////////////////////////////// << 334 EInside G4Tet::Inside(const G4ThreeVector& p) const 298 // << 299 // Return std::vector of vertices << 300 // << 301 std::vector<G4ThreeVector> G4Tet::GetVertices( << 302 { 335 { 303 std::vector<G4ThreeVector> vertices(4); << 336 G4double r123, r134, r142, r234; 304 for (G4int i = 0; i < 4; ++i) { vertices[i] << 305 return vertices; << 306 } << 307 337 308 ////////////////////////////////////////////// << 338 // this is written to allow if-statement truncation so the outside test 309 // << 339 // (where most of the world is) can fail very quickly and efficiently 310 // Dispatch to parameterisation for replicatio << 311 // computation & modification. << 312 // << 313 void G4Tet::ComputeDimensions(G4VPVParameteris << 314 const G4int , << 315 const G4VPhysica << 316 { << 317 } << 318 340 319 ////////////////////////////////////////////// << 341 if ( (r123=p.dot(fNormal123)-fCdotN123) > fTol || 320 // << 342 (r134=p.dot(fNormal134)-fCdotN134) > fTol || 321 // Set bounding box << 343 (r142=p.dot(fNormal142)-fCdotN142) > fTol || 322 // << 344 (r234=p.dot(fNormal234)-fCdotN234) > fTol ) 323 void G4Tet::SetBoundingLimits(const G4ThreeVec << 345 { 324 const G4ThreeVec << 346 return kOutside; // at least one is out! 325 { << 347 } 326 G4int iout[4] = { 0, 0, 0, 0 }; << 348 else if( (r123 < -fTol)&&(r134 < -fTol)&&(r142 < -fTol)&&(r234 < -fTol) ) 327 for (G4int i = 0; i < 4; ++i) << 328 { 349 { 329 iout[i] = (G4int)(fVertex[i].x() < pMin.x( << 350 return kInside; // all are definitively inside 330 fVertex[i].y() < pMin.y( << 331 fVertex[i].z() < pMin.z( << 332 fVertex[i].x() > pMax.x( << 333 fVertex[i].y() > pMax.y( << 334 fVertex[i].z() > pMax.z( << 335 } 351 } 336 if (iout[0] + iout[1] + iout[2] + iout[3] != << 352 else 337 { 353 { 338 std::ostringstream message; << 354 return kSurface; // too close to tell 339 message << "Attempt to set bounding box th << 340 << GetName() << " !\n" << 341 << " Specified bounding box limit << 342 << " pmin: " << pMin << "\n" << 343 << " pmax: " << pMax << "\n" << 344 << " Tetrahedron vertices:\n" << 345 << " anchor " << fVertex[0] << << 346 << " p1 " << fVertex[1] << << 347 << " p2 " << fVertex[2] << << 348 << " p3 " << fVertex[3] << << 349 G4Exception("G4Tet::SetBoundingLimits()", << 350 FatalException, message); << 351 } 355 } 352 fBmin = pMin; << 353 fBmax = pMax; << 354 } 356 } 355 357 356 ////////////////////////////////////////////// << 358 /////////////////////////////////////////////////////////////////////// 357 // 359 // 358 // Return bounding box << 360 // Calculate side nearest to p, and return normal 359 // << 361 // If two sides are equidistant, normal of first side (x/y/z) 360 void G4Tet::BoundingLimits(G4ThreeVector& pMin << 362 // encountered returned. >> 363 // This assumes that we are looking from the inside! >> 364 >> 365 G4ThreeVector G4Tet::SurfaceNormal( const G4ThreeVector& p) const 361 { 366 { 362 pMin = fBmin; << 367 G4double r123=std::fabs(p.dot(fNormal123)-fCdotN123); 363 pMax = fBmax; << 368 G4double r134=std::fabs(p.dot(fNormal134)-fCdotN134); 364 } << 369 G4double r142=std::fabs(p.dot(fNormal142)-fCdotN142); >> 370 G4double r234=std::fabs(p.dot(fNormal234)-fCdotN234); >> 371 >> 372 if( (r123<=r134) && (r123<=r142) && (r123<=r234) ) { return fNormal123; } >> 373 else if ( (r134<=r142) && (r134<=r234) ) { return fNormal134; } >> 374 else if (r142 <= r234) { return fNormal142; } >> 375 return fNormal234; >> 376 } >> 377 >> 378 /////////////////////////////////////////////////////////////////////////// >> 379 // >> 380 // Calculate distance to box from an outside point >> 381 // - return kInfinity if no intersection. >> 382 // All this is very unrolled, for speed. 365 383 366 ////////////////////////////////////////////// << 384 G4double G4Tet::DistanceToIn(const G4ThreeVector& p, 367 // << 385 const G4ThreeVector& v) const 368 // Calculate extent under transform and specif << 369 // << 370 G4bool G4Tet::CalculateExtent(const EAxis pAxi << 371 const G4VoxelLim << 372 const G4AffineTr << 373 G4double& << 374 { 386 { 375 G4ThreeVector bmin, bmax; << 387 G4ThreeVector vu(v.unit()), hp; >> 388 G4double vdotn, t, tmin=kInfinity; 376 389 377 // Check bounding box (bbox) << 390 G4double extraDistance=10.0*fTol; // a little ways into the solid 378 // << 379 BoundingLimits(bmin,bmax); << 380 G4BoundingEnvelope bbox(bmin,bmax); << 381 391 382 // Use simple bounding-box to help in the ca << 392 vdotn=-vu.dot(fNormal123); 383 // << 393 if(vdotn > 1e-12) 384 return bbox.CalculateExtent(pAxis,pVoxelLimi << 394 { // this is a candidate face, since it is pointing at us >> 395 t=(p.dot(fNormal123)-fCdotN123)/vdotn; // # distance to intersection >> 396 if( (t>=-fTol) && (t<tmin) ) >> 397 { // if not true, we're going away from this face or it's not close >> 398 hp=p+vu*(t+extraDistance); // a little beyond point of intersection >> 399 if ( ( hp.dot(fNormal134)-fCdotN134 < 0.0 ) && >> 400 ( hp.dot(fNormal142)-fCdotN142 < 0.0 ) && >> 401 ( hp.dot(fNormal234)-fCdotN234 < 0.0 ) ) >> 402 { >> 403 tmin=t; >> 404 } >> 405 } >> 406 } 385 407 386 #if 0 << 408 vdotn=-vu.dot(fNormal134); 387 // Precise extent computation (disabled by d << 409 if(vdotn > 1e-12) 388 // << 410 { // # this is a candidate face, since it is pointing at us 389 G4bool exist; << 411 t=(p.dot(fNormal134)-fCdotN134)/vdotn; // # distance to intersection 390 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 412 if( (t>=-fTol) && (t<tmin) ) 391 { << 413 { // if not true, we're going away from this face 392 return exist = (pMin < pMax) ? true : fals << 414 hp=p+vu*(t+extraDistance); // a little beyond point of intersection 393 } << 415 if ( ( hp.dot(fNormal123)-fCdotN123 < 0.0 ) && >> 416 ( hp.dot(fNormal142)-fCdotN142 < 0.0 ) && >> 417 ( hp.dot(fNormal234)-fCdotN234 < 0.0 ) ) >> 418 { >> 419 tmin=t; >> 420 } >> 421 } >> 422 } 394 423 395 // Set bounding envelope (benv) and calculat << 424 vdotn=-vu.dot(fNormal142); 396 // << 425 if(vdotn > 1e-12) 397 std::vector<G4ThreeVector> vec = GetVertices << 426 { // # this is a candidate face, since it is pointing at us >> 427 t=(p.dot(fNormal142)-fCdotN142)/vdotn; // # distance to intersection >> 428 if( (t>=-fTol) && (t<tmin) ) >> 429 { // if not true, we're going away from this face >> 430 hp=p+vu*(t+extraDistance); // a little beyond point of intersection >> 431 if ( ( hp.dot(fNormal123)-fCdotN123 < 0.0 ) && >> 432 ( hp.dot(fNormal134)-fCdotN134 < 0.0 ) && >> 433 ( hp.dot(fNormal234)-fCdotN234 < 0.0 ) ) >> 434 { >> 435 tmin=t; >> 436 } >> 437 } >> 438 } 398 439 399 G4ThreeVectorList anchor(1); << 440 vdotn=-vu.dot(fNormal234); 400 anchor[0].set(vec[0].x(),vec[0].y(),vec[0].z << 441 if(vdotn > 1e-12) >> 442 { // # this is a candidate face, since it is pointing at us >> 443 t=(p.dot(fNormal234)-fCdotN234)/vdotn; // # distance to intersection >> 444 if( (t>=-fTol) && (t<tmin) ) >> 445 { // if not true, we're going away from this face >> 446 hp=p+vu*(t+extraDistance); // a little beyond point of intersection >> 447 if ( ( hp.dot(fNormal123)-fCdotN123 < 0.0 ) && >> 448 ( hp.dot(fNormal134)-fCdotN134 < 0.0 ) && >> 449 ( hp.dot(fNormal142)-fCdotN142 < 0.0 ) ) >> 450 { >> 451 tmin=t; >> 452 } >> 453 } >> 454 } 401 455 402 G4ThreeVectorList base(3); << 456 return std::max(0.0,tmin); 403 base[0].set(vec[1].x(),vec[1].y(),vec[1].z() << 457 } 404 base[1].set(vec[2].x(),vec[2].y(),vec[2].z() << 405 base[2].set(vec[3].x(),vec[3].y(),vec[3].z() << 406 458 407 std::vector<const G4ThreeVectorList *> polyg << 459 ////////////////////////////////////////////////////////////////////////// 408 polygons[0] = &anchor; << 460 // 409 polygons[1] = &base; << 461 // Approximate distance to tet. >> 462 // returns distance to sphere centered on bounding box >> 463 // - If inside return 0 410 464 411 G4BoundingEnvelope benv(bmin,bmax,polygons); << 465 G4double G4Tet::DistanceToIn(const G4ThreeVector& p) const 412 return exists = benv.CalculateExtent(pAxis,p << 466 { 413 #endif << 467 G4double dd=(p-fMiddle).mag() - fMaxSize - fTol; >> 468 return std::max(0.0, dd); 414 } 469 } 415 470 416 ////////////////////////////////////////////// << 471 ///////////////////////////////////////////////////////////////////////// 417 // 472 // 418 // Return whether point inside/outside/on surf << 473 // Calcluate distance to surface of box from inside 419 // << 474 // by calculating distances to box's x/y/z planes. 420 EInside G4Tet::Inside(const G4ThreeVector& p) << 475 // Smallest distance is exact distance to exiting. >> 476 >> 477 G4double G4Tet::DistanceToOut( const G4ThreeVector& p,const G4ThreeVector& v, >> 478 const G4bool calcNorm, >> 479 G4bool *validNorm, G4ThreeVector *n) const 421 { 480 { 422 G4double dd[4]; << 481 G4ThreeVector vu(v.unit()); 423 for (G4int i = 0; i < 4; ++i) { dd[i] = fNor << 482 G4double t1=kInfinity,t2=kInfinity,t3=kInfinity,t4=kInfinity, vdotn, tt; 424 483 425 G4double dist = std::max(std::max(std::max(d << 484 vdotn=vu.dot(fNormal123); 426 return (dist <= -halfTolerance) ? << 485 if(vdotn > 1e-12) // #we're heading towards this face, so it is a candidate 427 kInside : ((dist <= halfTolerance) ? kSurf << 486 { 428 } << 487 t1=(fCdotN123-p.dot(fNormal123))/vdotn; // # distance to intersection >> 488 } 429 489 430 ////////////////////////////////////////////// << 490 vdotn=vu.dot(fNormal134); 431 // << 491 if(vdotn > 1e-12) // #we're heading towards this face, so it is a candidate 432 // Return unit normal to surface at p << 492 { 433 // << 493 t2=(fCdotN134-p.dot(fNormal134))/vdotn; // # distance to intersection 434 G4ThreeVector G4Tet::SurfaceNormal( const G4Th << 494 } 435 { << 436 G4double k[4]; << 437 for (G4int i = 0; i < 4; ++i) << 438 { << 439 k[i] = (G4double)(std::abs(fNormal[i].dot( << 440 } << 441 G4double nsurf = k[0] + k[1] + k[2] + k[3]; << 442 G4ThreeVector norm = << 443 k[0]*fNormal[0] + k[1]*fNormal[1] + k[2]*f << 444 << 445 if (nsurf == 1.) return norm; << 446 else if (nsurf > 1.) return norm.unit(); // << 447 { << 448 #ifdef G4SPECSDEBUG << 449 std::ostringstream message; << 450 G4long oldprc = message.precision(16); << 451 message << "Point p is not on surface (!?) << 452 << GetName() << "\n"; << 453 message << "Position:\n"; << 454 message << " p.x() = " << p.x()/mm << " << 455 message << " p.y() = " << p.y()/mm << " << 456 message << " p.z() = " << p.z()/mm << " << 457 G4cout.precision(oldprc); << 458 G4Exception("G4Tet::SurfaceNormal(p)", "Ge << 459 JustWarning, message ); << 460 DumpInfo(); << 461 #endif << 462 return ApproxSurfaceNormal(p); << 463 } << 464 } << 465 495 466 ////////////////////////////////////////////// << 496 vdotn=vu.dot(fNormal142); 467 // << 497 if(vdotn > 1e-12) // #we're heading towards this face, so it is a candidate 468 // Find surface nearest to point and return co << 498 { 469 // This method normally should not be called << 499 t3=(fCdotN142-p.dot(fNormal142))/vdotn; // # distance to intersection 470 // << 500 } 471 G4ThreeVector G4Tet::ApproxSurfaceNormal(const << 472 { << 473 G4double dist = -DBL_MAX; << 474 G4int iside = 0; << 475 for (G4int i = 0; i < 4; ++i) << 476 { << 477 G4double d = fNormal[i].dot(p) - fDist[i]; << 478 if (d > dist) { dist = d; iside = i; } << 479 } << 480 return fNormal[iside]; << 481 } << 482 501 483 ////////////////////////////////////////////// << 502 vdotn=vu.dot(fNormal234); 484 // << 503 if(vdotn > 1e-12) // #we're heading towards this face, so it is a candidate 485 // Calculate distance to surface from outside, << 504 { 486 // return kInfinity if no intersection << 505 t4=(fCdotN234-p.dot(fNormal234))/vdotn; // # distance to intersection 487 // << 506 } 488 G4double G4Tet::DistanceToIn(const G4ThreeVect << 507 489 const G4ThreeVect << 508 tt=std::min(std::min(std::min(t1,t2),t3),t4); 490 { << 509 491 G4double tin = -DBL_MAX, tout = DBL_MAX; << 510 if (warningFlag && (tt == kInfinity || tt < -fTol)) 492 for (G4int i = 0; i < 4; ++i) << 493 { << 494 G4double cosa = fNormal[i].dot(v); << 495 G4double dist = fNormal[i].dot(p) - fDist[ << 496 if (dist >= -halfTolerance) << 497 { 511 { 498 if (cosa >= 0.) { return kInfinity; } << 512 DumpInfo(); 499 tin = std::max(tin, -dist/cosa); << 513 G4cout << "p = " << p / mm << "mm" << G4endl; >> 514 G4cout << "v = " << v << G4endl; >> 515 G4cout << "t1, t2, t3, t4 (mm) " >> 516 << t1/mm << ", " << t2/mm << ", " << t3/mm << ", " << t4/mm >> 517 << G4endl << G4endl; >> 518 G4Exception("G4Tet::DistanceToOut(p,v,...)", "Notification", JustWarning, >> 519 "No good intersection found or already outside!?" ); >> 520 if(validNorm) >> 521 { >> 522 *validNorm=false; // flag normal as meaningless >> 523 } 500 } 524 } 501 else if (cosa > 0.) << 525 else if(calcNorm && n) 502 { 526 { 503 tout = std::min(tout, -dist/cosa); << 527 static G4ThreeVector normal; >> 528 if(tt==t1) { normal=fNormal123; } >> 529 else if (tt==t2) { normal=fNormal134; } >> 530 else if (tt==t3) { normal=fNormal142; } >> 531 else if (tt==t4) { normal=fNormal234; } >> 532 n=&normal; >> 533 if(validNorm) { *validNorm=true; } 504 } 534 } 505 } << 506 535 507 return (tout - tin <= halfTolerance) ? << 536 return std::max(tt,0.0); // avoid tt<0.0 by a tiny bit 508 kInfinity : ((tin < halfTolerance) ? 0. : << 537 // if we are right on a face 509 } 538 } 510 539 511 ////////////////////////////////////////////// << 540 //////////////////////////////////////////////////////////////////////////// 512 // 541 // 513 // Estimate safety distance to surface from ou << 542 // Calculate exact shortest distance to any boundary from inside 514 // << 543 // - If outside return 0 515 G4double G4Tet::DistanceToIn(const G4ThreeVect << 544 >> 545 G4double G4Tet::DistanceToOut(const G4ThreeVector& p) const 516 { 546 { 517 G4double dd[4]; << 547 G4double t1,t2,t3,t4; 518 for (G4int i = 0; i < 4; ++i) { dd[i] = fNor << 548 t1=fCdotN123-p.dot(fNormal123); // distance to plane, positive if inside >> 549 t2=fCdotN134-p.dot(fNormal134); // distance to plane >> 550 t3=fCdotN142-p.dot(fNormal142); // distance to plane >> 551 t4=fCdotN234-p.dot(fNormal234); // distance to plane 519 552 520 G4double dist = std::max(std::max(std::max(d << 553 // if any one of these is negative, we are outside, 521 return (dist > 0.) ? dist : 0.; << 554 // so return zero in that case >> 555 >> 556 G4double tmin=std::min(std::min(std::min(t1,t2),t3),t4); >> 557 return (tmin < fTol)? 0:tmin; 522 } 558 } 523 559 524 ////////////////////////////////////////////// 560 //////////////////////////////////////////////////////////////////////// 525 // 561 // 526 // Calcluate distance to surface from inside << 562 // Create a List containing the transformed vertices 527 // << 563 // Note: Caller has deletion responsibility 528 G4double G4Tet::DistanceToOut(const G4ThreeVec << 564 529 const G4ThreeVec << 565 G4ThreeVectorList* 530 const G4bool cal << 566 G4Tet::CreateRotatedVertices(const G4AffineTransform& pTransform) const 531 G4bool* va << 532 G4ThreeVec << 533 { 567 { 534 // Calculate distances and cosines << 568 G4ThreeVectorList* vertices = new G4ThreeVectorList(); 535 G4double cosa[4], dist[4]; << 536 G4int ind[4] = {0}, nside = 0; << 537 for (G4int i = 0; i < 4; ++i) << 538 { << 539 G4double tmp = fNormal[i].dot(v); << 540 cosa[i] = tmp; << 541 ind[nside] = (G4int)(tmp > 0) * i; << 542 nside += (G4int)(tmp > 0); << 543 dist[i] = fNormal[i].dot(p) - fDist[i]; << 544 } << 545 569 546 // Find intersection (in most of cases nside << 570 if (vertices) 547 G4double tout = DBL_MAX; << 548 G4int iside = 0; << 549 for (G4int i = 0; i < nside; ++i) << 550 { 571 { 551 G4int k = ind[i]; << 572 vertices->reserve(4); 552 // Check: leaving the surface << 573 G4ThreeVector vertex0(fAnchor); 553 if (dist[k] >= -halfTolerance) { tout = 0. << 574 G4ThreeVector vertex1(fP2); 554 // Compute distance to intersection << 575 G4ThreeVector vertex2(fP3); 555 G4double tmp = -dist[k]/cosa[k]; << 576 G4ThreeVector vertex3(fP4); 556 if (tmp < tout) { tout = tmp; iside = k; } << 557 } << 558 577 559 // Set normal, if required, and return dista << 578 vertices->push_back(pTransform.TransformPoint(vertex0)); 560 if (calcNorm) << 579 vertices->push_back(pTransform.TransformPoint(vertex1)); >> 580 vertices->push_back(pTransform.TransformPoint(vertex2)); >> 581 vertices->push_back(pTransform.TransformPoint(vertex3)); >> 582 } >> 583 else 561 { 584 { 562 *validNorm = true; << 585 DumpInfo(); 563 *n = fNormal[iside]; << 586 G4Exception("G4Tet::CreateRotatedVertices()", >> 587 "FatalError", FatalException, >> 588 "Error in allocation of vertices. Out of memory !"); 564 } 589 } 565 return tout; << 590 return vertices; 566 } << 567 << 568 ////////////////////////////////////////////// << 569 // << 570 // Calculate safety distance to surface from i << 571 // << 572 G4double G4Tet::DistanceToOut(const G4ThreeVec << 573 { << 574 G4double dd[4]; << 575 for (G4int i = 0; i < 4; ++i) { dd[i] = fDis << 576 << 577 G4double dist = std::min(std::min(std::min(d << 578 return (dist > 0.) ? dist : 0.; << 579 } 591 } 580 592 581 ////////////////////////////////////////////// << 593 ////////////////////////////////////////////////////////////////////////// 582 // 594 // 583 // GetEntityType 595 // GetEntityType 584 // << 596 585 G4GeometryType G4Tet::GetEntityType() const 597 G4GeometryType G4Tet::GetEntityType() const 586 { 598 { 587 return {"G4Tet"}; << 599 return G4String("G4Tet"); 588 } 600 } 589 601 590 ////////////////////////////////////////////// << 602 ////////////////////////////////////////////////////////////////////////// 591 // << 592 // IsFaceted << 593 // 603 // 594 G4bool G4Tet::IsFaceted() const << 604 // Stream object contents to an output stream >> 605 >> 606 std::ostream& G4Tet::StreamInfo(std::ostream& os) const 595 { 607 { 596 return true; << 608 os << "-----------------------------------------------------------\n" >> 609 << " *** Dump for solid - " << GetName() << " ***\n" >> 610 << " ===================================================\n" >> 611 << " Solid type: G4Tet\n" >> 612 << " Parameters: \n" >> 613 << " anchor: " << fAnchor/mm << " mm \n" >> 614 << " p2: " << fP2/mm << " mm \n" >> 615 << " p3: " << fP3/mm << " mm \n" >> 616 << " p4: " << fP4/mm << " mm \n" >> 617 << " normal123: " << fNormal123 << " \n" >> 618 << " normal134: " << fNormal134 << " \n" >> 619 << " normal142: " << fNormal142 << " \n" >> 620 << " normal234: " << fNormal234 << " \n" >> 621 << "-----------------------------------------------------------\n"; >> 622 >> 623 return os; 597 } 624 } 598 625 >> 626 599 ////////////////////////////////////////////// 627 //////////////////////////////////////////////////////////////////////// 600 // 628 // 601 // Make a clone of the object << 629 // GetPointOnFace 602 // 630 // 603 G4VSolid* G4Tet::Clone() const << 631 // Auxiliary method for get point on surface >> 632 >> 633 G4ThreeVector G4Tet::GetPointOnFace(G4ThreeVector p1, G4ThreeVector p2, >> 634 G4ThreeVector p3, G4double& area) const 604 { 635 { 605 return new G4Tet(*this); << 636 G4double lambda1,lambda2; >> 637 G4ThreeVector v, w; >> 638 >> 639 v = p3 - p1; >> 640 w = p1 - p2; >> 641 >> 642 lambda1 = RandFlat::shoot(0.,1.); >> 643 lambda2 = RandFlat::shoot(0.,lambda1); >> 644 >> 645 area = 0.5*(v.cross(w)).mag(); >> 646 >> 647 return (p2 + lambda1*w + lambda2*v); 606 } 648 } 607 649 608 ////////////////////////////////////////////// << 650 //////////////////////////////////////////////////////////////////////////// 609 // 651 // 610 // Stream object contents to an output stream << 652 // GetPointOnSurface 611 // << 653 612 std::ostream& G4Tet::StreamInfo(std::ostream& << 654 G4ThreeVector G4Tet::GetPointOnSurface() const 613 { 655 { 614 G4long oldprc = os.precision(16); << 656 G4double chose,aOne,aTwo,aThree,aFour; 615 os << "------------------------------------- << 657 G4ThreeVector p1, p2, p3, p4; 616 << " *** Dump for solid - " << GetName << 658 617 << " ================================= << 659 p1 = GetPointOnFace(fAnchor,fP2,fP3,aOne); 618 << " Solid type: " << GetEntityType() << << 660 p2 = GetPointOnFace(fAnchor,fP4,fP3,aTwo); 619 << " Parameters: \n" << 661 p3 = GetPointOnFace(fAnchor,fP4,fP2,aThree); 620 << " anchor: " << fVertex[0]/mm << " m << 662 p4 = GetPointOnFace(fP4,fP3,fP2,aFour); 621 << " p1 : " << fVertex[1]/mm << " m << 663 622 << " p2 : " << fVertex[2]/mm << " m << 664 chose = RandFlat::shoot(0.,aOne+aTwo+aThree+aFour); 623 << " p3 : " << fVertex[3]/mm << " m << 665 if( (chose>=0.) && (chose <aOne) ) {return p1;} 624 << "------------------------------------- << 666 else if( (chose>=aOne) && (chose < aOne+aTwo) ) {return p2;} 625 os.precision(oldprc); << 667 else if( (chose>=aOne+aTwo) && (chose<aOne+aTwo+aThree) ) {return p3;} 626 return os; << 668 return p4; 627 } 669 } 628 670 629 ////////////////////////////////////////////// 671 //////////////////////////////////////////////////////////////////////// 630 // 672 // 631 // Return random point on the surface << 673 // GetVertices 632 // << 633 G4ThreeVector G4Tet::GetPointOnSurface() const << 634 { << 635 constexpr G4int iface[4][3] = { {0,1,2}, {0, << 636 674 637 // Select face << 675 std::vector<G4ThreeVector> G4Tet::GetVertices() const 638 G4double select = fSurfaceArea*G4QuickRand() << 676 { 639 G4int i = 0; << 677 std::vector<G4ThreeVector> vertices(4); 640 i += (G4int)(select > fArea[0]); << 678 vertices[0] = fAnchor; 641 i += (G4int)(select > fArea[0] + fArea[1]); << 679 vertices[1] = fP2; 642 i += (G4int)(select > fArea[0] + fArea[1] + << 680 vertices[2] = fP3; 643 << 681 vertices[3] = fP4; 644 // Set selected triangle << 645 G4ThreeVector p0 = fVertex[iface[i][0]]; << 646 G4ThreeVector e1 = fVertex[iface[i][1]] - p0 << 647 G4ThreeVector e2 = fVertex[iface[i][2]] - p0 << 648 682 649 // Return random point << 683 return vertices; 650 G4double r1 = G4QuickRand(); << 651 G4double r2 = G4QuickRand(); << 652 return (r1 + r2 > 1.) ? << 653 p0 + e1*(1. - r1) + e2*(1. - r2) : p0 + e1 << 654 } 684 } 655 685 656 ////////////////////////////////////////////// 686 //////////////////////////////////////////////////////////////////////// 657 // 687 // 658 // Return volume of the tetrahedron << 688 // GetCubicVolume 659 // << 689 660 G4double G4Tet::GetCubicVolume() 690 G4double G4Tet::GetCubicVolume() 661 { 691 { 662 return fCubicVolume; 692 return fCubicVolume; 663 } 693 } 664 694 665 ////////////////////////////////////////////// 695 //////////////////////////////////////////////////////////////////////// 666 // 696 // 667 // Return surface area of the tetrahedron << 697 // GetSurfaceArea 668 // << 698 669 G4double G4Tet::GetSurfaceArea() 699 G4double G4Tet::GetSurfaceArea() 670 { 700 { 671 return fSurfaceArea; 701 return fSurfaceArea; 672 } 702 } 673 703 674 ////////////////////////////////////////////// << 675 // << 676 // Methods for visualisation 704 // Methods for visualisation >> 705 >> 706 //////////////////////////////////////////////////////////////////////// 677 // 707 // 678 void G4Tet::DescribeYourselfTo (G4VGraphicsSce << 708 // DescribeYourselfTo >> 709 >> 710 void G4Tet::DescribeYourselfTo (G4VGraphicsScene& scene) const 679 { 711 { 680 scene.AddSolid (*this); 712 scene.AddSolid (*this); 681 } 713 } 682 714 683 ////////////////////////////////////////////// 715 //////////////////////////////////////////////////////////////////////// 684 // 716 // 685 // Return VisExtent << 717 // GetExtent 686 // << 718 687 G4VisExtent G4Tet::GetExtent() const << 719 G4VisExtent G4Tet::GetExtent() const 688 { 720 { 689 return { fBmin.x(), fBmax.x(), << 721 return G4VisExtent (fXMin, fXMax, fYMin, fYMax, fZMin, fZMax); 690 fBmin.y(), fBmax.y(), << 691 fBmin.z(), fBmax.z() }; << 692 } 722 } 693 723 694 ////////////////////////////////////////////// 724 //////////////////////////////////////////////////////////////////////// 695 // 725 // 696 // CreatePolyhedron 726 // CreatePolyhedron 697 // << 698 G4Polyhedron* G4Tet::CreatePolyhedron() const << 699 { << 700 // Check orientation of vertices << 701 G4ThreeVector v1 = fVertex[1] - fVertex[0]; << 702 G4ThreeVector v2 = fVertex[2] - fVertex[0]; << 703 G4ThreeVector v3 = fVertex[3] - fVertex[0]; << 704 G4bool invert = v1.cross(v2).dot(v3) < 0.; << 705 G4int k2 = (invert) ? 3 : 2; << 706 G4int k3 = (invert) ? 2 : 3; << 707 727 708 // Set coordinates of vertices << 728 G4Polyhedron* G4Tet::CreatePolyhedron () const >> 729 { >> 730 G4Polyhedron *ph=new G4Polyhedron; 709 G4double xyz[4][3]; 731 G4double xyz[4][3]; 710 for (G4int i = 0; i < 3; ++i) << 732 static G4int faces[4][4]={{1,3,2,0},{1,4,3,0},{1,2,4,0},{2,3,4,0}}; 711 { << 733 xyz[0][0]=fAnchor.x(); xyz[0][1]=fAnchor.y(); xyz[0][2]=fAnchor.z(); 712 xyz[0][i] = fVertex[0][i]; << 734 xyz[1][0]=fP2.x(); xyz[1][1]=fP2.y(); xyz[1][2]=fP2.z(); 713 xyz[1][i] = fVertex[1][i]; << 735 xyz[2][0]=fP3.x(); xyz[2][1]=fP3.y(); xyz[2][2]=fP3.z(); 714 xyz[2][i] = fVertex[k2][i]; << 736 xyz[3][0]=fP4.x(); xyz[3][1]=fP4.y(); xyz[3][2]=fP4.z(); 715 xyz[3][i] = fVertex[k3][i]; << 716 } << 717 737 718 // Create polyhedron << 719 G4int faces[4][4] = { {1,3,2,0}, {1,4,3,0}, << 720 auto ph = new G4Polyhedron; << 721 ph->createPolyhedron(4,4,xyz,faces); 738 ph->createPolyhedron(4,4,xyz,faces); 722 739 723 return ph; 740 return ph; 724 } 741 } 725 742 726 ////////////////////////////////////////////// 743 //////////////////////////////////////////////////////////////////////// 727 // 744 // 728 // GetPolyhedron << 745 // CreateNURBS >> 746 >> 747 G4NURBS* G4Tet::CreateNURBS () const >> 748 { >> 749 return new G4NURBSbox (fDx, fDy, fDz); >> 750 } >> 751 >> 752 //////////////////////////////////////////////////////////////////////// 729 // 753 // 730 G4Polyhedron* G4Tet::GetPolyhedron() const << 754 // GetPolyhedron >> 755 >> 756 G4Polyhedron* G4Tet::GetPolyhedron () const 731 { 757 { 732 if (fpPolyhedron == nullptr || << 758 if (!fpPolyhedron || 733 fRebuildPolyhedron || << 734 fpPolyhedron->GetNumberOfRotationStepsAt 759 fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != 735 fpPolyhedron->GetNumberOfRotationSteps() 760 fpPolyhedron->GetNumberOfRotationSteps()) 736 { << 761 { 737 G4AutoLock l(&polyhedronMutex); << 762 delete fpPolyhedron; 738 delete fpPolyhedron; << 763 fpPolyhedron = CreatePolyhedron(); 739 fpPolyhedron = CreatePolyhedron(); << 764 } 740 fRebuildPolyhedron = false; << 741 l.unlock(); << 742 } << 743 return fpPolyhedron; 765 return fpPolyhedron; 744 } 766 } 745 << 746 #endif << 747 767