Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the intell 19 // * Vanderbilt University Free Electron Laser 20 // * Vanderbilt University, Nashville, TN, USA 21 // * Development supported by: 22 // * United States MFEL program under grant F 23 // * and NASA under contract number NNG04CT05P 24 // * Written by Marcus H. Mendenhall and Rober 25 // * 26 // * Contributed to the Geant4 Core, January, 27 // * 28 // ******************************************* 29 // 30 // Implementation for G4Tet class 31 // 32 // 03.09.2004 - Marcus Mendenhall, created 33 // 08.01.2020 - Evgueni Tcherniaev, complete r 34 // ------------------------------------------- 35 36 #include "G4Tet.hh" 37 38 #if !defined(G4GEOM_USE_UTET) 39 40 #include "G4VoxelLimits.hh" 41 #include "G4AffineTransform.hh" 42 #include "G4BoundingEnvelope.hh" 43 44 #include "G4VPVParameterisation.hh" 45 46 #include "G4QuickRand.hh" 47 48 #include "G4VGraphicsScene.hh" 49 #include "G4Polyhedron.hh" 50 #include "G4VisExtent.hh" 51 52 #include "G4AutoLock.hh" 53 54 namespace 55 { 56 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZE 57 } 58 59 using namespace CLHEP; 60 61 ////////////////////////////////////////////// 62 // 63 // Constructor - create a tetrahedron 64 // A Tet has all of its geometrical informatio 65 // 66 G4Tet::G4Tet(const G4String& pName, 67 const G4ThreeVector& p0, 68 const G4ThreeVector& p1, 69 const G4ThreeVector& p2, 70 const G4ThreeVector& p3, G4bool* 71 : G4VSolid(pName) 72 { 73 // Check for degeneracy 74 G4bool degenerate = CheckDegeneracy(p0, p1, 75 if (degeneracyFlag != nullptr) 76 { 77 *degeneracyFlag = degenerate; 78 } 79 else if (degenerate) 80 { 81 std::ostringstream message; 82 message << "Degenerate tetrahedron: " << G 83 << " anchor: " << p0 << "\n" 84 << " p1 : " << p1 << "\n" 85 << " p2 : " << p2 << "\n" 86 << " p3 : " << p3 << "\n" 87 << " volume: " 88 << std::abs((p1 - p0).cross(p2 - p 89 G4Exception("G4Tet::G4Tet()", "GeomSolids0 90 } 91 92 // Define surface thickness 93 halfTolerance = 0.5 * kCarTolerance; 94 95 // Set data members 96 Initialize(p0, p1, p2, p3); 97 } 98 99 ////////////////////////////////////////////// 100 // 101 // Fake default constructor - sets only member 102 // for usage restri 103 // 104 G4Tet::G4Tet( __void__& a ) 105 : G4VSolid(a) 106 { 107 } 108 109 ////////////////////////////////////////////// 110 // 111 // Destructor 112 // 113 G4Tet::~G4Tet() 114 { 115 delete fpPolyhedron; fpPolyhedron = nullptr; 116 } 117 118 ////////////////////////////////////////////// 119 // 120 // Copy constructor 121 // 122 G4Tet::G4Tet(const G4Tet& rhs) 123 : G4VSolid(rhs) 124 { 125 halfTolerance = rhs.halfTolerance; 126 fCubicVolume = rhs.fCubicVolume; 127 fSurfaceArea = rhs.fSurfaceArea; 128 for (G4int i = 0; i < 4; ++i) { fVertex[i] 129 for (G4int i = 0; i < 4; ++i) { fNormal[i] 130 for (G4int i = 0; i < 4; ++i) { fDist[i] = 131 for (G4int i = 0; i < 4; ++i) { fArea[i] = 132 fBmin = rhs.fBmin; 133 fBmax = rhs.fBmax; 134 } 135 136 ////////////////////////////////////////////// 137 // 138 // Assignment operator 139 // 140 G4Tet& G4Tet::operator = (const G4Tet& rhs) 141 { 142 // Check assignment to self 143 // 144 if (this == &rhs) { return *this; } 145 146 // Copy base class data 147 // 148 G4VSolid::operator=(rhs); 149 150 // Copy data 151 // 152 halfTolerance = rhs.halfTolerance; 153 fCubicVolume = rhs.fCubicVolume; 154 fSurfaceArea = rhs.fSurfaceArea; 155 for (G4int i = 0; i < 4; ++i) { fVertex[i] 156 for (G4int i = 0; i < 4; ++i) { fNormal[i] 157 for (G4int i = 0; i < 4; ++i) { fDist[i] = 158 for (G4int i = 0; i < 4; ++i) { fArea[i] = 159 fBmin = rhs.fBmin; 160 fBmax = rhs.fBmax; 161 fRebuildPolyhedron = false; 162 delete fpPolyhedron; fpPolyhedron = nullptr 163 164 return *this; 165 } 166 167 ////////////////////////////////////////////// 168 // 169 // Return true if tetrahedron is degenerate 170 // Tetrahedron is concidered as degenerate in 171 // height is less than degeneracy tolerance 172 // 173 G4bool G4Tet::CheckDegeneracy(const G4ThreeVec 174 const G4ThreeVec 175 const G4ThreeVec 176 const G4ThreeVec 177 { 178 G4double hmin = 4. * kCarTolerance; // degen 179 180 // Calculate volume 181 G4double vol = std::abs((p1 - p0).cross(p2 - 182 183 // Calculate face areas squared 184 G4double ss[4]; 185 ss[0] = ((p1 - p0).cross(p2 - p0)).mag2(); 186 ss[1] = ((p2 - p0).cross(p3 - p0)).mag2(); 187 ss[2] = ((p3 - p0).cross(p1 - p0)).mag2(); 188 ss[3] = ((p2 - p1).cross(p3 - p1)).mag2(); 189 190 // Find face with max area 191 G4int k = 0; 192 for (G4int i = 1; i < 4; ++i) { if (ss[i] > 193 194 // Check: vol^2 / s^2 <= hmin^2 195 return (vol*vol <= ss[k]*hmin*hmin); 196 } 197 198 ////////////////////////////////////////////// 199 // 200 // Set data members 201 // 202 void G4Tet::Initialize(const G4ThreeVector& p0 203 const G4ThreeVector& p1 204 const G4ThreeVector& p2 205 const G4ThreeVector& p3 206 { 207 // Set vertices 208 fVertex[0] = p0; 209 fVertex[1] = p1; 210 fVertex[2] = p2; 211 fVertex[3] = p3; 212 213 G4ThreeVector norm[4]; 214 norm[0] = (p2 - p0).cross(p1 - p0); 215 norm[1] = (p3 - p0).cross(p2 - p0); 216 norm[2] = (p1 - p0).cross(p3 - p0); 217 norm[3] = (p2 - p1).cross(p3 - p1); 218 G4double volume = norm[0].dot(p3 - p0); 219 if (volume > 0.) 220 { 221 for (auto & i : norm) { i = -i; } 222 } 223 224 // Set normals to face planes 225 for (G4int i = 0; i < 4; ++i) { fNormal[i] = 226 227 // Set distances to planes 228 for (G4int i = 0; i < 3; ++i) { fDist[i] = f 229 fDist[3] = fNormal[3].dot(p1); 230 231 // Set face areas 232 for (G4int i = 0; i < 4; ++i) { fArea[i] = 0 233 234 // Set bounding box 235 for (G4int i = 0; i < 3; ++i) 236 { 237 fBmin[i] = std::min(std::min(std::min(p0[i 238 fBmax[i] = std::max(std::max(std::max(p0[i 239 } 240 241 // Set volume and surface area 242 fCubicVolume = std::abs(volume)/6.; 243 fSurfaceArea = fArea[0] + fArea[1] + fArea[2 244 } 245 246 ////////////////////////////////////////////// 247 // 248 // Set vertices 249 // 250 void G4Tet::SetVertices(const G4ThreeVector& p 251 const G4ThreeVector& p 252 const G4ThreeVector& p 253 const G4ThreeVector& p 254 { 255 // Check for degeneracy 256 G4bool degenerate = CheckDegeneracy(p0, p1, 257 if (degeneracyFlag != nullptr) 258 { 259 *degeneracyFlag = degenerate; 260 } 261 else if (degenerate) 262 { 263 std::ostringstream message; 264 message << "Degenerate tetrahedron is not 265 << " anchor: " << p0 << "\n" 266 << " p1 : " << p1 << "\n" 267 << " p2 : " << p2 << "\n" 268 << " p3 : " << p3 << "\n" 269 << " volume: " 270 << std::abs((p1 - p0).cross(p2 - p 271 G4Exception("G4Tet::SetVertices()", "GeomS 272 FatalException, message); 273 } 274 275 // Set data members 276 Initialize(p0, p1, p2, p3); 277 278 // Set flag to rebuild polyhedron 279 fRebuildPolyhedron = true; 280 } 281 282 ////////////////////////////////////////////// 283 // 284 // Return four vertices 285 // 286 void G4Tet::GetVertices(G4ThreeVector& p0, 287 G4ThreeVector& p1, 288 G4ThreeVector& p2, 289 G4ThreeVector& p3) con 290 { 291 p0 = fVertex[0]; 292 p1 = fVertex[1]; 293 p2 = fVertex[2]; 294 p3 = fVertex[3]; 295 } 296 297 ////////////////////////////////////////////// 298 // 299 // Return std::vector of vertices 300 // 301 std::vector<G4ThreeVector> G4Tet::GetVertices( 302 { 303 std::vector<G4ThreeVector> vertices(4); 304 for (G4int i = 0; i < 4; ++i) { vertices[i] 305 return vertices; 306 } 307 308 ////////////////////////////////////////////// 309 // 310 // Dispatch to parameterisation for replicatio 311 // computation & modification. 312 // 313 void G4Tet::ComputeDimensions(G4VPVParameteris 314 const G4int , 315 const G4VPhysica 316 { 317 } 318 319 ////////////////////////////////////////////// 320 // 321 // Set bounding box 322 // 323 void G4Tet::SetBoundingLimits(const G4ThreeVec 324 const G4ThreeVec 325 { 326 G4int iout[4] = { 0, 0, 0, 0 }; 327 for (G4int i = 0; i < 4; ++i) 328 { 329 iout[i] = (G4int)(fVertex[i].x() < pMin.x( 330 fVertex[i].y() < pMin.y( 331 fVertex[i].z() < pMin.z( 332 fVertex[i].x() > pMax.x( 333 fVertex[i].y() > pMax.y( 334 fVertex[i].z() > pMax.z( 335 } 336 if (iout[0] + iout[1] + iout[2] + iout[3] != 337 { 338 std::ostringstream message; 339 message << "Attempt to set bounding box th 340 << GetName() << " !\n" 341 << " Specified bounding box limit 342 << " pmin: " << pMin << "\n" 343 << " pmax: " << pMax << "\n" 344 << " Tetrahedron vertices:\n" 345 << " anchor " << fVertex[0] << 346 << " p1 " << fVertex[1] << 347 << " p2 " << fVertex[2] << 348 << " p3 " << fVertex[3] << 349 G4Exception("G4Tet::SetBoundingLimits()", 350 FatalException, message); 351 } 352 fBmin = pMin; 353 fBmax = pMax; 354 } 355 356 ////////////////////////////////////////////// 357 // 358 // Return bounding box 359 // 360 void G4Tet::BoundingLimits(G4ThreeVector& pMin 361 { 362 pMin = fBmin; 363 pMax = fBmax; 364 } 365 366 ////////////////////////////////////////////// 367 // 368 // Calculate extent under transform and specif 369 // 370 G4bool G4Tet::CalculateExtent(const EAxis pAxi 371 const G4VoxelLim 372 const G4AffineTr 373 G4double& 374 { 375 G4ThreeVector bmin, bmax; 376 377 // Check bounding box (bbox) 378 // 379 BoundingLimits(bmin,bmax); 380 G4BoundingEnvelope bbox(bmin,bmax); 381 382 // Use simple bounding-box to help in the ca 383 // 384 return bbox.CalculateExtent(pAxis,pVoxelLimi 385 386 #if 0 387 // Precise extent computation (disabled by d 388 // 389 G4bool exist; 390 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox 391 { 392 return exist = (pMin < pMax) ? true : fals 393 } 394 395 // Set bounding envelope (benv) and calculat 396 // 397 std::vector<G4ThreeVector> vec = GetVertices 398 399 G4ThreeVectorList anchor(1); 400 anchor[0].set(vec[0].x(),vec[0].y(),vec[0].z 401 402 G4ThreeVectorList base(3); 403 base[0].set(vec[1].x(),vec[1].y(),vec[1].z() 404 base[1].set(vec[2].x(),vec[2].y(),vec[2].z() 405 base[2].set(vec[3].x(),vec[3].y(),vec[3].z() 406 407 std::vector<const G4ThreeVectorList *> polyg 408 polygons[0] = &anchor; 409 polygons[1] = &base; 410 411 G4BoundingEnvelope benv(bmin,bmax,polygons); 412 return exists = benv.CalculateExtent(pAxis,p 413 #endif 414 } 415 416 ////////////////////////////////////////////// 417 // 418 // Return whether point inside/outside/on surf 419 // 420 EInside G4Tet::Inside(const G4ThreeVector& p) 421 { 422 G4double dd[4]; 423 for (G4int i = 0; i < 4; ++i) { dd[i] = fNor 424 425 G4double dist = std::max(std::max(std::max(d 426 return (dist <= -halfTolerance) ? 427 kInside : ((dist <= halfTolerance) ? kSurf 428 } 429 430 ////////////////////////////////////////////// 431 // 432 // Return unit normal to surface at p 433 // 434 G4ThreeVector G4Tet::SurfaceNormal( const G4Th 435 { 436 G4double k[4]; 437 for (G4int i = 0; i < 4; ++i) 438 { 439 k[i] = (G4double)(std::abs(fNormal[i].dot( 440 } 441 G4double nsurf = k[0] + k[1] + k[2] + k[3]; 442 G4ThreeVector norm = 443 k[0]*fNormal[0] + k[1]*fNormal[1] + k[2]*f 444 445 if (nsurf == 1.) return norm; 446 else if (nsurf > 1.) return norm.unit(); // 447 { 448 #ifdef G4SPECSDEBUG 449 std::ostringstream message; 450 G4long oldprc = message.precision(16); 451 message << "Point p is not on surface (!?) 452 << GetName() << "\n"; 453 message << "Position:\n"; 454 message << " p.x() = " << p.x()/mm << " 455 message << " p.y() = " << p.y()/mm << " 456 message << " p.z() = " << p.z()/mm << " 457 G4cout.precision(oldprc); 458 G4Exception("G4Tet::SurfaceNormal(p)", "Ge 459 JustWarning, message ); 460 DumpInfo(); 461 #endif 462 return ApproxSurfaceNormal(p); 463 } 464 } 465 466 ////////////////////////////////////////////// 467 // 468 // Find surface nearest to point and return co 469 // This method normally should not be called 470 // 471 G4ThreeVector G4Tet::ApproxSurfaceNormal(const 472 { 473 G4double dist = -DBL_MAX; 474 G4int iside = 0; 475 for (G4int i = 0; i < 4; ++i) 476 { 477 G4double d = fNormal[i].dot(p) - fDist[i]; 478 if (d > dist) { dist = d; iside = i; } 479 } 480 return fNormal[iside]; 481 } 482 483 ////////////////////////////////////////////// 484 // 485 // Calculate distance to surface from outside, 486 // return kInfinity if no intersection 487 // 488 G4double G4Tet::DistanceToIn(const G4ThreeVect 489 const G4ThreeVect 490 { 491 G4double tin = -DBL_MAX, tout = DBL_MAX; 492 for (G4int i = 0; i < 4; ++i) 493 { 494 G4double cosa = fNormal[i].dot(v); 495 G4double dist = fNormal[i].dot(p) - fDist[ 496 if (dist >= -halfTolerance) 497 { 498 if (cosa >= 0.) { return kInfinity; } 499 tin = std::max(tin, -dist/cosa); 500 } 501 else if (cosa > 0.) 502 { 503 tout = std::min(tout, -dist/cosa); 504 } 505 } 506 507 return (tout - tin <= halfTolerance) ? 508 kInfinity : ((tin < halfTolerance) ? 0. : 509 } 510 511 ////////////////////////////////////////////// 512 // 513 // Estimate safety distance to surface from ou 514 // 515 G4double G4Tet::DistanceToIn(const G4ThreeVect 516 { 517 G4double dd[4]; 518 for (G4int i = 0; i < 4; ++i) { dd[i] = fNor 519 520 G4double dist = std::max(std::max(std::max(d 521 return (dist > 0.) ? dist : 0.; 522 } 523 524 ////////////////////////////////////////////// 525 // 526 // Calcluate distance to surface from inside 527 // 528 G4double G4Tet::DistanceToOut(const G4ThreeVec 529 const G4ThreeVec 530 const G4bool cal 531 G4bool* va 532 G4ThreeVec 533 { 534 // Calculate distances and cosines 535 G4double cosa[4], dist[4]; 536 G4int ind[4] = {0}, nside = 0; 537 for (G4int i = 0; i < 4; ++i) 538 { 539 G4double tmp = fNormal[i].dot(v); 540 cosa[i] = tmp; 541 ind[nside] = (G4int)(tmp > 0) * i; 542 nside += (G4int)(tmp > 0); 543 dist[i] = fNormal[i].dot(p) - fDist[i]; 544 } 545 546 // Find intersection (in most of cases nside 547 G4double tout = DBL_MAX; 548 G4int iside = 0; 549 for (G4int i = 0; i < nside; ++i) 550 { 551 G4int k = ind[i]; 552 // Check: leaving the surface 553 if (dist[k] >= -halfTolerance) { tout = 0. 554 // Compute distance to intersection 555 G4double tmp = -dist[k]/cosa[k]; 556 if (tmp < tout) { tout = tmp; iside = k; } 557 } 558 559 // Set normal, if required, and return dista 560 if (calcNorm) 561 { 562 *validNorm = true; 563 *n = fNormal[iside]; 564 } 565 return tout; 566 } 567 568 ////////////////////////////////////////////// 569 // 570 // Calculate safety distance to surface from i 571 // 572 G4double G4Tet::DistanceToOut(const G4ThreeVec 573 { 574 G4double dd[4]; 575 for (G4int i = 0; i < 4; ++i) { dd[i] = fDis 576 577 G4double dist = std::min(std::min(std::min(d 578 return (dist > 0.) ? dist : 0.; 579 } 580 581 ////////////////////////////////////////////// 582 // 583 // GetEntityType 584 // 585 G4GeometryType G4Tet::GetEntityType() const 586 { 587 return {"G4Tet"}; 588 } 589 590 ////////////////////////////////////////////// 591 // 592 // IsFaceted 593 // 594 G4bool G4Tet::IsFaceted() const 595 { 596 return true; 597 } 598 599 ////////////////////////////////////////////// 600 // 601 // Make a clone of the object 602 // 603 G4VSolid* G4Tet::Clone() const 604 { 605 return new G4Tet(*this); 606 } 607 608 ////////////////////////////////////////////// 609 // 610 // Stream object contents to an output stream 611 // 612 std::ostream& G4Tet::StreamInfo(std::ostream& 613 { 614 G4long oldprc = os.precision(16); 615 os << "------------------------------------- 616 << " *** Dump for solid - " << GetName 617 << " ================================= 618 << " Solid type: " << GetEntityType() << 619 << " Parameters: \n" 620 << " anchor: " << fVertex[0]/mm << " m 621 << " p1 : " << fVertex[1]/mm << " m 622 << " p2 : " << fVertex[2]/mm << " m 623 << " p3 : " << fVertex[3]/mm << " m 624 << "------------------------------------- 625 os.precision(oldprc); 626 return os; 627 } 628 629 ////////////////////////////////////////////// 630 // 631 // Return random point on the surface 632 // 633 G4ThreeVector G4Tet::GetPointOnSurface() const 634 { 635 constexpr G4int iface[4][3] = { {0,1,2}, {0, 636 637 // Select face 638 G4double select = fSurfaceArea*G4QuickRand() 639 G4int i = 0; 640 i += (G4int)(select > fArea[0]); 641 i += (G4int)(select > fArea[0] + fArea[1]); 642 i += (G4int)(select > fArea[0] + fArea[1] + 643 644 // Set selected triangle 645 G4ThreeVector p0 = fVertex[iface[i][0]]; 646 G4ThreeVector e1 = fVertex[iface[i][1]] - p0 647 G4ThreeVector e2 = fVertex[iface[i][2]] - p0 648 649 // Return random point 650 G4double r1 = G4QuickRand(); 651 G4double r2 = G4QuickRand(); 652 return (r1 + r2 > 1.) ? 653 p0 + e1*(1. - r1) + e2*(1. - r2) : p0 + e1 654 } 655 656 ////////////////////////////////////////////// 657 // 658 // Return volume of the tetrahedron 659 // 660 G4double G4Tet::GetCubicVolume() 661 { 662 return fCubicVolume; 663 } 664 665 ////////////////////////////////////////////// 666 // 667 // Return surface area of the tetrahedron 668 // 669 G4double G4Tet::GetSurfaceArea() 670 { 671 return fSurfaceArea; 672 } 673 674 ////////////////////////////////////////////// 675 // 676 // Methods for visualisation 677 // 678 void G4Tet::DescribeYourselfTo (G4VGraphicsSce 679 { 680 scene.AddSolid (*this); 681 } 682 683 ////////////////////////////////////////////// 684 // 685 // Return VisExtent 686 // 687 G4VisExtent G4Tet::GetExtent() const 688 { 689 return { fBmin.x(), fBmax.x(), 690 fBmin.y(), fBmax.y(), 691 fBmin.z(), fBmax.z() }; 692 } 693 694 ////////////////////////////////////////////// 695 // 696 // CreatePolyhedron 697 // 698 G4Polyhedron* G4Tet::CreatePolyhedron() const 699 { 700 // Check orientation of vertices 701 G4ThreeVector v1 = fVertex[1] - fVertex[0]; 702 G4ThreeVector v2 = fVertex[2] - fVertex[0]; 703 G4ThreeVector v3 = fVertex[3] - fVertex[0]; 704 G4bool invert = v1.cross(v2).dot(v3) < 0.; 705 G4int k2 = (invert) ? 3 : 2; 706 G4int k3 = (invert) ? 2 : 3; 707 708 // Set coordinates of vertices 709 G4double xyz[4][3]; 710 for (G4int i = 0; i < 3; ++i) 711 { 712 xyz[0][i] = fVertex[0][i]; 713 xyz[1][i] = fVertex[1][i]; 714 xyz[2][i] = fVertex[k2][i]; 715 xyz[3][i] = fVertex[k3][i]; 716 } 717 718 // Create polyhedron 719 G4int faces[4][4] = { {1,3,2,0}, {1,4,3,0}, 720 auto ph = new G4Polyhedron; 721 ph->createPolyhedron(4,4,xyz,faces); 722 723 return ph; 724 } 725 726 ////////////////////////////////////////////// 727 // 728 // GetPolyhedron 729 // 730 G4Polyhedron* G4Tet::GetPolyhedron() const 731 { 732 if (fpPolyhedron == nullptr || 733 fRebuildPolyhedron || 734 fpPolyhedron->GetNumberOfRotationStepsAt 735 fpPolyhedron->GetNumberOfRotationSteps() 736 { 737 G4AutoLock l(&polyhedronMutex); 738 delete fpPolyhedron; 739 fpPolyhedron = CreatePolyhedron(); 740 fRebuildPolyhedron = false; 741 l.unlock(); 742 } 743 return fpPolyhedron; 744 } 745 746 #endif 747