Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the intell 18 // * This code implementation is the intellectual property of the * 19 // * Vanderbilt University Free Electron Laser 19 // * Vanderbilt University Free Electron Laser Center * 20 // * Vanderbilt University, Nashville, TN, USA 20 // * Vanderbilt University, Nashville, TN, USA * 21 // * Development supported by: 21 // * Development supported by: * 22 // * United States MFEL program under grant F 22 // * United States MFEL program under grant FA9550-04-1-0045 * 23 // * and NASA under contract number NNG04CT05P 23 // * and NASA under contract number NNG04CT05P * 24 // * Written by Marcus H. Mendenhall and Rober 24 // * Written by Marcus H. Mendenhall and Robert A. Weller. * 25 // * 25 // * * 26 // * Contributed to the Geant4 Core, January, 26 // * Contributed to the Geant4 Core, January, 2005. * 27 // * 27 // * * 28 // ******************************************* 28 // ******************************************************************** 29 // 29 // >> 30 // $Id: G4Tet.cc 101118 2016-11-07 09:10:59Z gcosmo $ >> 31 // >> 32 // class G4Tet >> 33 // 30 // Implementation for G4Tet class 34 // Implementation for G4Tet class 31 // 35 // 32 // 03.09.2004 - Marcus Mendenhall, created << 36 // History: 33 // 08.01.2020 - Evgueni Tcherniaev, complete r << 37 // >> 38 // 20040903 - Marcus Mendenhall, created G4Tet >> 39 // 20041101 - Marcus Mendenhall, optimized constant dot products with >> 40 // fCdotNijk values >> 41 // 20041101 - MHM removed tracking error by clipping DistanceToOut to 0 >> 42 // for surface cases >> 43 // 20041101 - MHM many speed optimizations in if statements >> 44 // 20041101 - MHM changed vdotn comparisons to 1e-12 instead of 0.0 to >> 45 // avoid nearly-parallel problems >> 46 // 20041102 - MHM Added extra distance into solid to DistanceToIn(p,v) >> 47 // hit testing >> 48 // 20041102 - MHM added ability to check for degeneracy without throwing >> 49 // G4Exception >> 50 // 20041103 - MHM removed many unused variables from class >> 51 // 20040803 - Dionysios Anninos, added GetPointOnSurface() method >> 52 // 20061112 - MHM added code for G4VSolid GetSurfaceArea() >> 53 // 20100920 - Gabriele Cosmo added copy-ctor and operator=() >> 54 // 20160924 - Evgueni Tcherniaev, added Extent(pmin,pmax), >> 55 // use G4BoundingEnvelope for CalculateExtent() >> 56 // 34 // ------------------------------------------- 57 // -------------------------------------------------------------------- 35 58 36 #include "G4Tet.hh" 59 #include "G4Tet.hh" 37 60 38 #if !defined(G4GEOM_USE_UTET) 61 #if !defined(G4GEOM_USE_UTET) 39 62 >> 63 const char G4Tet::CVSVers[]="$Id: G4Tet.cc 101118 2016-11-07 09:10:59Z gcosmo $"; >> 64 40 #include "G4VoxelLimits.hh" 65 #include "G4VoxelLimits.hh" 41 #include "G4AffineTransform.hh" 66 #include "G4AffineTransform.hh" 42 #include "G4BoundingEnvelope.hh" 67 #include "G4BoundingEnvelope.hh" 43 68 44 #include "G4VPVParameterisation.hh" 69 #include "G4VPVParameterisation.hh" 45 70 46 #include "G4QuickRand.hh" << 71 #include "Randomize.hh" 47 72 48 #include "G4VGraphicsScene.hh" 73 #include "G4VGraphicsScene.hh" 49 #include "G4Polyhedron.hh" 74 #include "G4Polyhedron.hh" 50 #include "G4VisExtent.hh" 75 #include "G4VisExtent.hh" 51 76 >> 77 #include "G4ThreeVector.hh" >> 78 >> 79 #include <cmath> >> 80 52 #include "G4AutoLock.hh" 81 #include "G4AutoLock.hh" 53 82 54 namespace 83 namespace 55 { 84 { 56 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZE 85 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZER; 57 } 86 } 58 87 59 using namespace CLHEP; 88 using namespace CLHEP; 60 89 61 ////////////////////////////////////////////// 90 //////////////////////////////////////////////////////////////////////// 62 // 91 // 63 // Constructor - create a tetrahedron 92 // Constructor - create a tetrahedron >> 93 // This class is implemented separately from general polyhedra, >> 94 // because the simplex geometry can be computed very quickly, >> 95 // which may become important in situations imported from mesh generators, >> 96 // in which a very large number of G4Tets are created. 64 // A Tet has all of its geometrical informatio 97 // A Tet has all of its geometrical information precomputed 65 // << 98 66 G4Tet::G4Tet(const G4String& pName, 99 G4Tet::G4Tet(const G4String& pName, 67 const G4ThreeVector& p0, << 100 G4ThreeVector anchor, 68 const G4ThreeVector& p1, << 101 G4ThreeVector p2, 69 const G4ThreeVector& p2, << 102 G4ThreeVector p3, 70 const G4ThreeVector& p3, G4bool* << 103 G4ThreeVector p4, G4bool *degeneracyFlag) 71 : G4VSolid(pName) << 104 : G4VSolid(pName), fRebuildPolyhedron(false), fpPolyhedron(0), warningFlag(0) 72 { << 105 { 73 // Check for degeneracy << 106 // fV<x><y> is vector from vertex <y> to vertex <x> 74 G4bool degenerate = CheckDegeneracy(p0, p1, << 107 // 75 if (degeneracyFlag != nullptr) << 108 G4ThreeVector fV21=p2-anchor; >> 109 G4ThreeVector fV31=p3-anchor; >> 110 G4ThreeVector fV41=p4-anchor; >> 111 >> 112 // make sure this is a correctly oriented set of points for the tetrahedron >> 113 // >> 114 G4double signed_vol=fV21.cross(fV31).dot(fV41); >> 115 if(signed_vol<0.0) 76 { 116 { 77 *degeneracyFlag = degenerate; << 117 G4ThreeVector temp(p4); 78 } << 118 p4=p3; >> 119 p3=temp; >> 120 temp=fV41; >> 121 fV41=fV31; >> 122 fV31=temp; >> 123 } >> 124 fCubicVolume = std::fabs(signed_vol) / 6.; >> 125 >> 126 G4ThreeVector fV24=p2-p4; >> 127 G4ThreeVector fV43=p4-p3; >> 128 G4ThreeVector fV32=p3-p2; >> 129 >> 130 fXMin=std::min(std::min(std::min(anchor.x(), p2.x()),p3.x()),p4.x()); >> 131 fXMax=std::max(std::max(std::max(anchor.x(), p2.x()),p3.x()),p4.x()); >> 132 fYMin=std::min(std::min(std::min(anchor.y(), p2.y()),p3.y()),p4.y()); >> 133 fYMax=std::max(std::max(std::max(anchor.y(), p2.y()),p3.y()),p4.y()); >> 134 fZMin=std::min(std::min(std::min(anchor.z(), p2.z()),p3.z()),p4.z()); >> 135 fZMax=std::max(std::max(std::max(anchor.z(), p2.z()),p3.z()),p4.z()); >> 136 >> 137 fDx=(fXMax-fXMin)*0.5; fDy=(fYMax-fYMin)*0.5; fDz=(fZMax-fZMin)*0.5; >> 138 >> 139 fMiddle=G4ThreeVector(fXMax+fXMin, fYMax+fYMin, fZMax+fZMin)*0.5; >> 140 fMaxSize=std::max(std::max(std::max((anchor-fMiddle).mag(), >> 141 (p2-fMiddle).mag()), >> 142 (p3-fMiddle).mag()), >> 143 (p4-fMiddle).mag()); >> 144 >> 145 G4bool degenerate=std::fabs(signed_vol) < 1e-9*fMaxSize*fMaxSize*fMaxSize; >> 146 >> 147 if(degeneracyFlag) *degeneracyFlag=degenerate; 79 else if (degenerate) 148 else if (degenerate) 80 { 149 { 81 std::ostringstream message; << 150 G4Exception("G4Tet::G4Tet()", "GeomSolids0002", FatalException, 82 message << "Degenerate tetrahedron: " << G << 151 "Degenerate tetrahedron not allowed."); 83 << " anchor: " << p0 << "\n" << 84 << " p1 : " << p1 << "\n" << 85 << " p2 : " << p2 << "\n" << 86 << " p3 : " << p3 << "\n" << 87 << " volume: " << 88 << std::abs((p1 - p0).cross(p2 - p << 89 G4Exception("G4Tet::G4Tet()", "GeomSolids0 << 90 } 152 } 91 153 92 // Define surface thickness << 154 fTol=1e-9*(std::fabs(fXMin)+std::fabs(fXMax)+std::fabs(fYMin) 93 halfTolerance = 0.5 * kCarTolerance; << 155 +std::fabs(fYMax)+std::fabs(fZMin)+std::fabs(fZMax)); 94 << 156 //fTol=kCarTolerance; 95 // Set data members << 157 96 Initialize(p0, p1, p2, p3); << 158 fAnchor=anchor; >> 159 fP2=p2; >> 160 fP3=p3; >> 161 fP4=p4; >> 162 >> 163 G4ThreeVector fCenter123=(anchor+p2+p3)*(1.0/3.0); // face center >> 164 G4ThreeVector fCenter134=(anchor+p4+p3)*(1.0/3.0); >> 165 G4ThreeVector fCenter142=(anchor+p4+p2)*(1.0/3.0); >> 166 G4ThreeVector fCenter234=(p2+p3+p4)*(1.0/3.0); >> 167 >> 168 // compute area of each triangular face by cross product >> 169 // and sum for total surface area >> 170 >> 171 G4ThreeVector normal123=fV31.cross(fV21); >> 172 G4ThreeVector normal134=fV41.cross(fV31); >> 173 G4ThreeVector normal142=fV21.cross(fV41); >> 174 G4ThreeVector normal234=fV32.cross(fV43); >> 175 >> 176 fSurfaceArea=( >> 177 normal123.mag()+ >> 178 normal134.mag()+ >> 179 normal142.mag()+ >> 180 normal234.mag() >> 181 )/2.0; >> 182 >> 183 fNormal123=normal123.unit(); >> 184 fNormal134=normal134.unit(); >> 185 fNormal142=normal142.unit(); >> 186 fNormal234=normal234.unit(); >> 187 >> 188 fCdotN123=fCenter123.dot(fNormal123); >> 189 fCdotN134=fCenter134.dot(fNormal134); >> 190 fCdotN142=fCenter142.dot(fNormal142); >> 191 fCdotN234=fCenter234.dot(fNormal234); 97 } 192 } 98 193 99 ////////////////////////////////////////////// << 194 ////////////////////////////////////////////////////////////////////////// 100 // 195 // 101 // Fake default constructor - sets only member 196 // Fake default constructor - sets only member data and allocates memory 102 // for usage restri 197 // for usage restricted to object persistency. 103 // 198 // 104 G4Tet::G4Tet( __void__& a ) 199 G4Tet::G4Tet( __void__& a ) 105 : G4VSolid(a) << 200 : G4VSolid(a), fCubicVolume(0.), fSurfaceArea(0.), >> 201 fRebuildPolyhedron(false), fpPolyhedron(0), >> 202 fAnchor(0,0,0), fP2(0,0,0), fP3(0,0,0), fP4(0,0,0), fMiddle(0,0,0), >> 203 fNormal123(0,0,0), fNormal142(0,0,0), fNormal134(0,0,0), >> 204 fNormal234(0,0,0), warningFlag(0), >> 205 fCdotN123(0.), fCdotN142(0.), fCdotN134(0.), fCdotN234(0.), >> 206 fXMin(0.), fXMax(0.), fYMin(0.), fYMax(0.), fZMin(0.), fZMax(0.), >> 207 fDx(0.), fDy(0.), fDz(0.), fTol(0.), fMaxSize(0.) 106 { 208 { 107 } 209 } 108 210 109 ////////////////////////////////////////////// << 211 ////////////////////////////////////////////////////////////////////////// 110 // 212 // 111 // Destructor 213 // Destructor 112 // << 214 113 G4Tet::~G4Tet() 215 G4Tet::~G4Tet() 114 { 216 { 115 delete fpPolyhedron; fpPolyhedron = nullptr; << 217 delete fpPolyhedron; fpPolyhedron = 0; 116 } 218 } 117 219 118 ////////////////////////////////////////////// << 220 /////////////////////////////////////////////////////////////////////////////// 119 // 221 // 120 // Copy constructor 222 // Copy constructor 121 // << 223 122 G4Tet::G4Tet(const G4Tet& rhs) 224 G4Tet::G4Tet(const G4Tet& rhs) 123 : G4VSolid(rhs) << 225 : G4VSolid(rhs), >> 226 fCubicVolume(rhs.fCubicVolume), fSurfaceArea(rhs.fSurfaceArea), >> 227 fRebuildPolyhedron(false), fpPolyhedron(0), fAnchor(rhs.fAnchor), >> 228 fP2(rhs.fP2), fP3(rhs.fP3), fP4(rhs.fP4), fMiddle(rhs.fMiddle), >> 229 fNormal123(rhs.fNormal123), fNormal142(rhs.fNormal142), >> 230 fNormal134(rhs.fNormal134), fNormal234(rhs.fNormal234), >> 231 warningFlag(rhs.warningFlag), fCdotN123(rhs.fCdotN123), >> 232 fCdotN142(rhs.fCdotN142), fCdotN134(rhs.fCdotN134), >> 233 fCdotN234(rhs.fCdotN234), fXMin(rhs.fXMin), fXMax(rhs.fXMax), >> 234 fYMin(rhs.fYMin), fYMax(rhs.fYMax), fZMin(rhs.fZMin), fZMax(rhs.fZMax), >> 235 fDx(rhs.fDx), fDy(rhs.fDy), fDz(rhs.fDz), fTol(rhs.fTol), >> 236 fMaxSize(rhs.fMaxSize) 124 { 237 { 125 halfTolerance = rhs.halfTolerance; << 126 fCubicVolume = rhs.fCubicVolume; << 127 fSurfaceArea = rhs.fSurfaceArea; << 128 for (G4int i = 0; i < 4; ++i) { fVertex[i] << 129 for (G4int i = 0; i < 4; ++i) { fNormal[i] << 130 for (G4int i = 0; i < 4; ++i) { fDist[i] = << 131 for (G4int i = 0; i < 4; ++i) { fArea[i] = << 132 fBmin = rhs.fBmin; << 133 fBmax = rhs.fBmax; << 134 } 238 } 135 239 136 ////////////////////////////////////////////// << 240 >> 241 /////////////////////////////////////////////////////////////////////////////// 137 // 242 // 138 // Assignment operator 243 // Assignment operator 139 // << 244 140 G4Tet& G4Tet::operator = (const G4Tet& rhs) << 245 G4Tet& G4Tet::operator = (const G4Tet& rhs) 141 { 246 { 142 // Check assignment to self 247 // Check assignment to self 143 // 248 // 144 if (this == &rhs) { return *this; } 249 if (this == &rhs) { return *this; } 145 250 146 // Copy base class data 251 // Copy base class data 147 // 252 // 148 G4VSolid::operator=(rhs); 253 G4VSolid::operator=(rhs); 149 254 150 // Copy data 255 // Copy data 151 // 256 // 152 halfTolerance = rhs.halfTolerance; << 257 fCubicVolume = rhs.fCubicVolume; fSurfaceArea = rhs.fSurfaceArea; 153 fCubicVolume = rhs.fCubicVolume; << 258 fAnchor = rhs.fAnchor; 154 fSurfaceArea = rhs.fSurfaceArea; << 259 fP2 = rhs.fP2; fP3 = rhs.fP3; fP4 = rhs.fP4; fMiddle = rhs.fMiddle; 155 for (G4int i = 0; i < 4; ++i) { fVertex[i] << 260 fNormal123 = rhs.fNormal123; fNormal142 = rhs.fNormal142; 156 for (G4int i = 0; i < 4; ++i) { fNormal[i] << 261 fNormal134 = rhs.fNormal134; fNormal234 = rhs.fNormal234; 157 for (G4int i = 0; i < 4; ++i) { fDist[i] = << 262 warningFlag = rhs.warningFlag; fCdotN123 = rhs.fCdotN123; 158 for (G4int i = 0; i < 4; ++i) { fArea[i] = << 263 fCdotN142 = rhs.fCdotN142; fCdotN134 = rhs.fCdotN134; 159 fBmin = rhs.fBmin; << 264 fCdotN234 = rhs.fCdotN234; fXMin = rhs.fXMin; fXMax = rhs.fXMax; 160 fBmax = rhs.fBmax; << 265 fYMin = rhs.fYMin; fYMax = rhs.fYMax; fZMin = rhs.fZMin; fZMax = rhs.fZMax; >> 266 fDx = rhs.fDx; fDy = rhs.fDy; fDz = rhs.fDz; fTol = rhs.fTol; >> 267 fMaxSize = rhs.fMaxSize; 161 fRebuildPolyhedron = false; 268 fRebuildPolyhedron = false; 162 delete fpPolyhedron; fpPolyhedron = nullptr << 269 delete fpPolyhedron; fpPolyhedron = 0; 163 270 164 return *this; 271 return *this; 165 } 272 } 166 273 167 ////////////////////////////////////////////// << 274 ////////////////////////////////////////////////////////////////////////// 168 // << 169 // Return true if tetrahedron is degenerate << 170 // Tetrahedron is concidered as degenerate in << 171 // height is less than degeneracy tolerance << 172 // << 173 G4bool G4Tet::CheckDegeneracy(const G4ThreeVec << 174 const G4ThreeVec << 175 const G4ThreeVec << 176 const G4ThreeVec << 177 { << 178 G4double hmin = 4. * kCarTolerance; // degen << 179 << 180 // Calculate volume << 181 G4double vol = std::abs((p1 - p0).cross(p2 - << 182 << 183 // Calculate face areas squared << 184 G4double ss[4]; << 185 ss[0] = ((p1 - p0).cross(p2 - p0)).mag2(); << 186 ss[1] = ((p2 - p0).cross(p3 - p0)).mag2(); << 187 ss[2] = ((p3 - p0).cross(p1 - p0)).mag2(); << 188 ss[3] = ((p2 - p1).cross(p3 - p1)).mag2(); << 189 << 190 // Find face with max area << 191 G4int k = 0; << 192 for (G4int i = 1; i < 4; ++i) { if (ss[i] > << 193 << 194 // Check: vol^2 / s^2 <= hmin^2 << 195 return (vol*vol <= ss[k]*hmin*hmin); << 196 } << 197 << 198 ////////////////////////////////////////////// << 199 // << 200 // Set data members << 201 // << 202 void G4Tet::Initialize(const G4ThreeVector& p0 << 203 const G4ThreeVector& p1 << 204 const G4ThreeVector& p2 << 205 const G4ThreeVector& p3 << 206 { << 207 // Set vertices << 208 fVertex[0] = p0; << 209 fVertex[1] = p1; << 210 fVertex[2] = p2; << 211 fVertex[3] = p3; << 212 << 213 G4ThreeVector norm[4]; << 214 norm[0] = (p2 - p0).cross(p1 - p0); << 215 norm[1] = (p3 - p0).cross(p2 - p0); << 216 norm[2] = (p1 - p0).cross(p3 - p0); << 217 norm[3] = (p2 - p1).cross(p3 - p1); << 218 G4double volume = norm[0].dot(p3 - p0); << 219 if (volume > 0.) << 220 { << 221 for (auto & i : norm) { i = -i; } << 222 } << 223 << 224 // Set normals to face planes << 225 for (G4int i = 0; i < 4; ++i) { fNormal[i] = << 226 << 227 // Set distances to planes << 228 for (G4int i = 0; i < 3; ++i) { fDist[i] = f << 229 fDist[3] = fNormal[3].dot(p1); << 230 << 231 // Set face areas << 232 for (G4int i = 0; i < 4; ++i) { fArea[i] = 0 << 233 << 234 // Set bounding box << 235 for (G4int i = 0; i < 3; ++i) << 236 { << 237 fBmin[i] = std::min(std::min(std::min(p0[i << 238 fBmax[i] = std::max(std::max(std::max(p0[i << 239 } << 240 << 241 // Set volume and surface area << 242 fCubicVolume = std::abs(volume)/6.; << 243 fSurfaceArea = fArea[0] + fArea[1] + fArea[2 << 244 } << 245 << 246 ////////////////////////////////////////////// << 247 // << 248 // Set vertices << 249 // << 250 void G4Tet::SetVertices(const G4ThreeVector& p << 251 const G4ThreeVector& p << 252 const G4ThreeVector& p << 253 const G4ThreeVector& p << 254 { << 255 // Check for degeneracy << 256 G4bool degenerate = CheckDegeneracy(p0, p1, << 257 if (degeneracyFlag != nullptr) << 258 { << 259 *degeneracyFlag = degenerate; << 260 } << 261 else if (degenerate) << 262 { << 263 std::ostringstream message; << 264 message << "Degenerate tetrahedron is not << 265 << " anchor: " << p0 << "\n" << 266 << " p1 : " << p1 << "\n" << 267 << " p2 : " << p2 << "\n" << 268 << " p3 : " << p3 << "\n" << 269 << " volume: " << 270 << std::abs((p1 - p0).cross(p2 - p << 271 G4Exception("G4Tet::SetVertices()", "GeomS << 272 FatalException, message); << 273 } << 274 << 275 // Set data members << 276 Initialize(p0, p1, p2, p3); << 277 << 278 // Set flag to rebuild polyhedron << 279 fRebuildPolyhedron = true; << 280 } << 281 << 282 ////////////////////////////////////////////// << 283 // << 284 // Return four vertices << 285 // 275 // 286 void G4Tet::GetVertices(G4ThreeVector& p0, << 276 // CheckDegeneracy 287 G4ThreeVector& p1, << 288 G4ThreeVector& p2, << 289 G4ThreeVector& p3) con << 290 { << 291 p0 = fVertex[0]; << 292 p1 = fVertex[1]; << 293 p2 = fVertex[2]; << 294 p3 = fVertex[3]; << 295 } << 296 277 297 ////////////////////////////////////////////// << 278 G4bool G4Tet::CheckDegeneracy( G4ThreeVector anchor, 298 // << 279 G4ThreeVector p2, 299 // Return std::vector of vertices << 280 G4ThreeVector p3, 300 // << 281 G4ThreeVector p4 ) 301 std::vector<G4ThreeVector> G4Tet::GetVertices( << 302 { 282 { 303 std::vector<G4ThreeVector> vertices(4); << 283 G4bool result; 304 for (G4int i = 0; i < 4; ++i) { vertices[i] << 284 G4Tet *object=new G4Tet("temp",anchor,p2,p3,p4,&result); 305 return vertices; << 285 delete object; >> 286 return result; 306 } 287 } 307 288 308 ////////////////////////////////////////////// << 289 ////////////////////////////////////////////////////////////////////////// 309 // 290 // 310 // Dispatch to parameterisation for replicatio 291 // Dispatch to parameterisation for replication mechanism dimension 311 // computation & modification. 292 // computation & modification. 312 // << 293 313 void G4Tet::ComputeDimensions(G4VPVParameteris 294 void G4Tet::ComputeDimensions(G4VPVParameterisation* , 314 const G4int , 295 const G4int , 315 const G4VPhysica 296 const G4VPhysicalVolume* ) 316 { 297 { 317 } 298 } 318 299 319 ////////////////////////////////////////////// << 300 ////////////////////////////////////////////////////////////////////////// 320 // << 321 // Set bounding box << 322 // 301 // 323 void G4Tet::SetBoundingLimits(const G4ThreeVec << 302 // Get bounding box 324 const G4ThreeVec << 303 >> 304 void G4Tet::Extent(G4ThreeVector& pMin, G4ThreeVector& pMax) const 325 { 305 { 326 G4int iout[4] = { 0, 0, 0, 0 }; << 306 pMin.set(fXMin,fYMin,fZMin); 327 for (G4int i = 0; i < 4; ++i) << 307 pMax.set(fXMax,fYMax,fZMax); 328 { << 308 329 iout[i] = (G4int)(fVertex[i].x() < pMin.x( << 309 // Check correctness of the bounding box 330 fVertex[i].y() < pMin.y( << 310 // 331 fVertex[i].z() < pMin.z( << 311 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 332 fVertex[i].x() > pMax.x( << 333 fVertex[i].y() > pMax.y( << 334 fVertex[i].z() > pMax.z( << 335 } << 336 if (iout[0] + iout[1] + iout[2] + iout[3] != << 337 { 312 { 338 std::ostringstream message; 313 std::ostringstream message; 339 message << "Attempt to set bounding box th << 314 message << "Bad bounding box (min >= max) for solid: " 340 << GetName() << " !\n" << 315 << GetName() << " !" 341 << " Specified bounding box limit << 316 << "\npMin = " << pMin 342 << " pmin: " << pMin << "\n" << 317 << "\npMax = " << pMax; 343 << " pmax: " << pMax << "\n" << 318 G4Exception("G4Tet::Extent()", "GeomMgt0001", JustWarning, message); 344 << " Tetrahedron vertices:\n" << 319 DumpInfo(); 345 << " anchor " << fVertex[0] << << 346 << " p1 " << fVertex[1] << << 347 << " p2 " << fVertex[2] << << 348 << " p3 " << fVertex[3] << << 349 G4Exception("G4Tet::SetBoundingLimits()", << 350 FatalException, message); << 351 } 320 } 352 fBmin = pMin; << 353 fBmax = pMax; << 354 } 321 } 355 322 356 ////////////////////////////////////////////// << 323 ////////////////////////////////////////////////////////////////////////// 357 // << 358 // Return bounding box << 359 // << 360 void G4Tet::BoundingLimits(G4ThreeVector& pMin << 361 { << 362 pMin = fBmin; << 363 pMax = fBmax; << 364 } << 365 << 366 ////////////////////////////////////////////// << 367 // 324 // 368 // Calculate extent under transform and specif 325 // Calculate extent under transform and specified limit 369 // << 326 370 G4bool G4Tet::CalculateExtent(const EAxis pAxi 327 G4bool G4Tet::CalculateExtent(const EAxis pAxis, 371 const G4VoxelLim 328 const G4VoxelLimits& pVoxelLimit, 372 const G4AffineTr 329 const G4AffineTransform& pTransform, 373 G4double& 330 G4double& pMin, G4double& pMax) const 374 { 331 { 375 G4ThreeVector bmin, bmax; 332 G4ThreeVector bmin, bmax; >> 333 G4bool exist; 376 334 377 // Check bounding box (bbox) 335 // Check bounding box (bbox) 378 // 336 // 379 BoundingLimits(bmin,bmax); << 337 Extent(bmin,bmax); 380 G4BoundingEnvelope bbox(bmin,bmax); 338 G4BoundingEnvelope bbox(bmin,bmax); 381 << 339 #ifdef G4BBOX_EXTENT 382 // Use simple bounding-box to help in the ca << 340 if (true) return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 383 // << 341 #endif 384 return bbox.CalculateExtent(pAxis,pVoxelLimi << 385 << 386 #if 0 << 387 // Precise extent computation (disabled by d << 388 // << 389 G4bool exist; << 390 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox 342 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax)) 391 { 343 { 392 return exist = (pMin < pMax) ? true : fals 344 return exist = (pMin < pMax) ? true : false; 393 } 345 } 394 346 395 // Set bounding envelope (benv) and calculat 347 // Set bounding envelope (benv) and calculate extent 396 // 348 // 397 std::vector<G4ThreeVector> vec = GetVertices 349 std::vector<G4ThreeVector> vec = GetVertices(); 398 350 399 G4ThreeVectorList anchor(1); 351 G4ThreeVectorList anchor(1); 400 anchor[0].set(vec[0].x(),vec[0].y(),vec[0].z 352 anchor[0].set(vec[0].x(),vec[0].y(),vec[0].z()); 401 353 402 G4ThreeVectorList base(3); 354 G4ThreeVectorList base(3); 403 base[0].set(vec[1].x(),vec[1].y(),vec[1].z() 355 base[0].set(vec[1].x(),vec[1].y(),vec[1].z()); 404 base[1].set(vec[2].x(),vec[2].y(),vec[2].z() 356 base[1].set(vec[2].x(),vec[2].y(),vec[2].z()); 405 base[2].set(vec[3].x(),vec[3].y(),vec[3].z() 357 base[2].set(vec[3].x(),vec[3].y(),vec[3].z()); 406 358 407 std::vector<const G4ThreeVectorList *> polyg 359 std::vector<const G4ThreeVectorList *> polygons(2); 408 polygons[0] = &anchor; 360 polygons[0] = &anchor; 409 polygons[1] = &base; 361 polygons[1] = &base; 410 362 411 G4BoundingEnvelope benv(bmin,bmax,polygons); 363 G4BoundingEnvelope benv(bmin,bmax,polygons); 412 return exists = benv.CalculateExtent(pAxis,p << 364 exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 413 #endif << 365 return exist; 414 } 366 } 415 367 416 ////////////////////////////////////////////// << 368 ///////////////////////////////////////////////////////////////////////// 417 // << 418 // Return whether point inside/outside/on surf << 419 // 369 // >> 370 // Return whether point inside/outside/on surface, using tolerance >> 371 420 EInside G4Tet::Inside(const G4ThreeVector& p) 372 EInside G4Tet::Inside(const G4ThreeVector& p) const 421 { 373 { 422 G4double dd[4]; << 374 G4double r123, r134, r142, r234; 423 for (G4int i = 0; i < 4; ++i) { dd[i] = fNor << 375 >> 376 // this is written to allow if-statement truncation so the outside test >> 377 // (where most of the world is) can fail very quickly and efficiently 424 378 425 G4double dist = std::max(std::max(std::max(d << 379 if ( (r123=p.dot(fNormal123)-fCdotN123) > fTol || 426 return (dist <= -halfTolerance) ? << 380 (r134=p.dot(fNormal134)-fCdotN134) > fTol || 427 kInside : ((dist <= halfTolerance) ? kSurf << 381 (r142=p.dot(fNormal142)-fCdotN142) > fTol || >> 382 (r234=p.dot(fNormal234)-fCdotN234) > fTol ) >> 383 { >> 384 return kOutside; // at least one is out! >> 385 } >> 386 else if( (r123 < -fTol)&&(r134 < -fTol)&&(r142 < -fTol)&&(r234 < -fTol) ) >> 387 { >> 388 return kInside; // all are definitively inside >> 389 } >> 390 else >> 391 { >> 392 return kSurface; // too close to tell >> 393 } 428 } 394 } 429 395 430 ////////////////////////////////////////////// << 396 /////////////////////////////////////////////////////////////////////// 431 // << 432 // Return unit normal to surface at p << 433 // 397 // >> 398 // Calculate side nearest to p, and return normal >> 399 // If two sides are equidistant, normal of first side (x/y/z) >> 400 // encountered returned. >> 401 // This assumes that we are looking from the inside! >> 402 434 G4ThreeVector G4Tet::SurfaceNormal( const G4Th 403 G4ThreeVector G4Tet::SurfaceNormal( const G4ThreeVector& p) const 435 { 404 { 436 G4double k[4]; << 405 G4double r123=std::fabs(p.dot(fNormal123)-fCdotN123); 437 for (G4int i = 0; i < 4; ++i) << 406 G4double r134=std::fabs(p.dot(fNormal134)-fCdotN134); >> 407 G4double r142=std::fabs(p.dot(fNormal142)-fCdotN142); >> 408 G4double r234=std::fabs(p.dot(fNormal234)-fCdotN234); >> 409 >> 410 const G4double delta = 0.5*kCarTolerance; >> 411 G4ThreeVector sumnorm(0., 0., 0.); >> 412 G4int noSurfaces=0; >> 413 >> 414 if (r123 <= delta) 438 { 415 { 439 k[i] = (G4double)(std::abs(fNormal[i].dot( << 416 noSurfaces ++; >> 417 sumnorm= fNormal123; 440 } 418 } 441 G4double nsurf = k[0] + k[1] + k[2] + k[3]; << 442 G4ThreeVector norm = << 443 k[0]*fNormal[0] + k[1]*fNormal[1] + k[2]*f << 444 419 445 if (nsurf == 1.) return norm; << 420 if (r134 <= delta) 446 else if (nsurf > 1.) return norm.unit(); // << 447 { 421 { 448 #ifdef G4SPECSDEBUG << 422 noSurfaces ++; 449 std::ostringstream message; << 423 sumnorm += fNormal134; 450 G4long oldprc = message.precision(16); << 451 message << "Point p is not on surface (!?) << 452 << GetName() << "\n"; << 453 message << "Position:\n"; << 454 message << " p.x() = " << p.x()/mm << " << 455 message << " p.y() = " << p.y()/mm << " << 456 message << " p.z() = " << p.z()/mm << " << 457 G4cout.precision(oldprc); << 458 G4Exception("G4Tet::SurfaceNormal(p)", "Ge << 459 JustWarning, message ); << 460 DumpInfo(); << 461 #endif << 462 return ApproxSurfaceNormal(p); << 463 } 424 } 464 } << 425 465 << 426 if (r142 <= delta) 466 ////////////////////////////////////////////// << 467 // << 468 // Find surface nearest to point and return co << 469 // This method normally should not be called << 470 // << 471 G4ThreeVector G4Tet::ApproxSurfaceNormal(const << 472 { << 473 G4double dist = -DBL_MAX; << 474 G4int iside = 0; << 475 for (G4int i = 0; i < 4; ++i) << 476 { 427 { 477 G4double d = fNormal[i].dot(p) - fDist[i]; << 428 noSurfaces ++; 478 if (d > dist) { dist = d; iside = i; } << 429 sumnorm += fNormal142; 479 } 430 } 480 return fNormal[iside]; << 431 if (r234 <= delta) 481 } << 432 { >> 433 noSurfaces ++; >> 434 sumnorm += fNormal234; >> 435 } >> 436 >> 437 if( noSurfaces > 0 ) >> 438 { >> 439 if( noSurfaces == 1 ) >> 440 { >> 441 return sumnorm; >> 442 } >> 443 else >> 444 { >> 445 return sumnorm.unit(); >> 446 } >> 447 } >> 448 else // Approximative Surface Normal >> 449 { 482 450 483 ////////////////////////////////////////////// << 451 if( (r123<=r134) && (r123<=r142) && (r123<=r234) ) { return fNormal123; } 484 // << 452 else if ( (r134<=r142) && (r134<=r234) ) { return fNormal134; } 485 // Calculate distance to surface from outside, << 453 else if (r142 <= r234) { return fNormal142; } 486 // return kInfinity if no intersection << 454 return fNormal234; >> 455 } >> 456 } >> 457 /////////////////////////////////////////////////////////////////////////// 487 // 458 // >> 459 // Calculate distance to box from an outside point >> 460 // - return kInfinity if no intersection. >> 461 // All this is very unrolled, for speed. >> 462 488 G4double G4Tet::DistanceToIn(const G4ThreeVect 463 G4double G4Tet::DistanceToIn(const G4ThreeVector& p, 489 const G4ThreeVect 464 const G4ThreeVector& v) const 490 { 465 { 491 G4double tin = -DBL_MAX, tout = DBL_MAX; << 466 G4ThreeVector vu(v.unit()), hp; 492 for (G4int i = 0; i < 4; ++i) << 467 G4double vdotn, t, tmin=kInfinity; 493 { << 468 494 G4double cosa = fNormal[i].dot(v); << 469 G4double extraDistance=10.0*fTol; // a little ways into the solid 495 G4double dist = fNormal[i].dot(p) - fDist[ << 470 496 if (dist >= -halfTolerance) << 471 vdotn=-vu.dot(fNormal123); 497 { << 472 if(vdotn > 1e-12) 498 if (cosa >= 0.) { return kInfinity; } << 473 { // this is a candidate face, since it is pointing at us 499 tin = std::max(tin, -dist/cosa); << 474 t=(p.dot(fNormal123)-fCdotN123)/vdotn; // # distance to intersection >> 475 if( (t>=-fTol) && (t<tmin) ) >> 476 { // if not true, we're going away from this face or it's not close >> 477 hp=p+vu*(t+extraDistance); // a little beyond point of intersection >> 478 if ( ( hp.dot(fNormal134)-fCdotN134 < 0.0 ) && >> 479 ( hp.dot(fNormal142)-fCdotN142 < 0.0 ) && >> 480 ( hp.dot(fNormal234)-fCdotN234 < 0.0 ) ) >> 481 { >> 482 tmin=t; >> 483 } >> 484 } 500 } 485 } 501 else if (cosa > 0.) << 486 502 { << 487 vdotn=-vu.dot(fNormal134); 503 tout = std::min(tout, -dist/cosa); << 488 if(vdotn > 1e-12) >> 489 { // # this is a candidate face, since it is pointing at us >> 490 t=(p.dot(fNormal134)-fCdotN134)/vdotn; // # distance to intersection >> 491 if( (t>=-fTol) && (t<tmin) ) >> 492 { // if not true, we're going away from this face >> 493 hp=p+vu*(t+extraDistance); // a little beyond point of intersection >> 494 if ( ( hp.dot(fNormal123)-fCdotN123 < 0.0 ) && >> 495 ( hp.dot(fNormal142)-fCdotN142 < 0.0 ) && >> 496 ( hp.dot(fNormal234)-fCdotN234 < 0.0 ) ) >> 497 { >> 498 tmin=t; >> 499 } >> 500 } 504 } 501 } 505 } << 506 502 507 return (tout - tin <= halfTolerance) ? << 503 vdotn=-vu.dot(fNormal142); 508 kInfinity : ((tin < halfTolerance) ? 0. : << 504 if(vdotn > 1e-12) >> 505 { // # this is a candidate face, since it is pointing at us >> 506 t=(p.dot(fNormal142)-fCdotN142)/vdotn; // # distance to intersection >> 507 if( (t>=-fTol) && (t<tmin) ) >> 508 { // if not true, we're going away from this face >> 509 hp=p+vu*(t+extraDistance); // a little beyond point of intersection >> 510 if ( ( hp.dot(fNormal123)-fCdotN123 < 0.0 ) && >> 511 ( hp.dot(fNormal134)-fCdotN134 < 0.0 ) && >> 512 ( hp.dot(fNormal234)-fCdotN234 < 0.0 ) ) >> 513 { >> 514 tmin=t; >> 515 } >> 516 } >> 517 } >> 518 >> 519 vdotn=-vu.dot(fNormal234); >> 520 if(vdotn > 1e-12) >> 521 { // # this is a candidate face, since it is pointing at us >> 522 t=(p.dot(fNormal234)-fCdotN234)/vdotn; // # distance to intersection >> 523 if( (t>=-fTol) && (t<tmin) ) >> 524 { // if not true, we're going away from this face >> 525 hp=p+vu*(t+extraDistance); // a little beyond point of intersection >> 526 if ( ( hp.dot(fNormal123)-fCdotN123 < 0.0 ) && >> 527 ( hp.dot(fNormal134)-fCdotN134 < 0.0 ) && >> 528 ( hp.dot(fNormal142)-fCdotN142 < 0.0 ) ) >> 529 { >> 530 tmin=t; >> 531 } >> 532 } >> 533 } >> 534 >> 535 return std::max(0.0,tmin); 509 } 536 } 510 537 511 ////////////////////////////////////////////// << 538 ////////////////////////////////////////////////////////////////////////// 512 // << 539 // 513 // Estimate safety distance to surface from ou << 540 // Approximate distance to tet. 514 // << 541 // returns distance to sphere centered on bounding box >> 542 // - If inside return 0 >> 543 515 G4double G4Tet::DistanceToIn(const G4ThreeVect 544 G4double G4Tet::DistanceToIn(const G4ThreeVector& p) const 516 { 545 { 517 G4double dd[4]; << 546 G4double dd=(p-fMiddle).mag() - fMaxSize - fTol; 518 for (G4int i = 0; i < 4; ++i) { dd[i] = fNor << 547 return std::max(0.0, dd); 519 << 520 G4double dist = std::max(std::max(std::max(d << 521 return (dist > 0.) ? dist : 0.; << 522 } 548 } 523 549 524 ////////////////////////////////////////////// << 550 ///////////////////////////////////////////////////////////////////////// 525 // 551 // 526 // Calcluate distance to surface from inside << 552 // Calcluate distance to surface of box from inside 527 // << 553 // by calculating distances to box's x/y/z planes. 528 G4double G4Tet::DistanceToOut(const G4ThreeVec << 554 // Smallest distance is exact distance to exiting. 529 const G4ThreeVec << 530 const G4bool cal << 531 G4bool* va << 532 G4ThreeVec << 533 { << 534 // Calculate distances and cosines << 535 G4double cosa[4], dist[4]; << 536 G4int ind[4] = {0}, nside = 0; << 537 for (G4int i = 0; i < 4; ++i) << 538 { << 539 G4double tmp = fNormal[i].dot(v); << 540 cosa[i] = tmp; << 541 ind[nside] = (G4int)(tmp > 0) * i; << 542 nside += (G4int)(tmp > 0); << 543 dist[i] = fNormal[i].dot(p) - fDist[i]; << 544 } << 545 << 546 // Find intersection (in most of cases nside << 547 G4double tout = DBL_MAX; << 548 G4int iside = 0; << 549 for (G4int i = 0; i < nside; ++i) << 550 { << 551 G4int k = ind[i]; << 552 // Check: leaving the surface << 553 if (dist[k] >= -halfTolerance) { tout = 0. << 554 // Compute distance to intersection << 555 G4double tmp = -dist[k]/cosa[k]; << 556 if (tmp < tout) { tout = tmp; iside = k; } << 557 } << 558 555 559 // Set normal, if required, and return dista << 556 G4double G4Tet::DistanceToOut( const G4ThreeVector& p,const G4ThreeVector& v, 560 if (calcNorm) << 557 const G4bool calcNorm, 561 { << 558 G4bool *validNorm, G4ThreeVector *n) const 562 *validNorm = true; << 559 { 563 *n = fNormal[iside]; << 560 G4ThreeVector vu(v.unit()); 564 } << 561 G4double t1=kInfinity,t2=kInfinity,t3=kInfinity,t4=kInfinity, vdotn, tt; 565 return tout; << 562 >> 563 vdotn=vu.dot(fNormal123); >> 564 if(vdotn > 1e-12) // #we're heading towards this face, so it is a candidate >> 565 { >> 566 t1=(fCdotN123-p.dot(fNormal123))/vdotn; // # distance to intersection >> 567 } >> 568 >> 569 vdotn=vu.dot(fNormal134); >> 570 if(vdotn > 1e-12) // #we're heading towards this face, so it is a candidate >> 571 { >> 572 t2=(fCdotN134-p.dot(fNormal134))/vdotn; // # distance to intersection >> 573 } >> 574 >> 575 vdotn=vu.dot(fNormal142); >> 576 if(vdotn > 1e-12) // #we're heading towards this face, so it is a candidate >> 577 { >> 578 t3=(fCdotN142-p.dot(fNormal142))/vdotn; // # distance to intersection >> 579 } >> 580 >> 581 vdotn=vu.dot(fNormal234); >> 582 if(vdotn > 1e-12) // #we're heading towards this face, so it is a candidate >> 583 { >> 584 t4=(fCdotN234-p.dot(fNormal234))/vdotn; // # distance to intersection >> 585 } >> 586 >> 587 tt=std::min(std::min(std::min(t1,t2),t3),t4); >> 588 >> 589 if (warningFlag && (tt == kInfinity || tt < -fTol)) >> 590 { >> 591 DumpInfo(); >> 592 std::ostringstream message; >> 593 message << "No good intersection found or already outside!?" << G4endl >> 594 << "p = " << p / mm << "mm" << G4endl >> 595 << "v = " << v << G4endl >> 596 << "t1, t2, t3, t4 (mm) " >> 597 << t1/mm << ", " << t2/mm << ", " << t3/mm << ", " << t4/mm; >> 598 G4Exception("G4Tet::DistanceToOut(p,v,...)", "GeomSolids1002", >> 599 JustWarning, message); >> 600 if(validNorm) >> 601 { >> 602 *validNorm=false; // flag normal as meaningless >> 603 } >> 604 } >> 605 else if(calcNorm && n) >> 606 { >> 607 G4ThreeVector normal; >> 608 if(tt==t1) { normal=fNormal123; } >> 609 else if (tt==t2) { normal=fNormal134; } >> 610 else if (tt==t3) { normal=fNormal142; } >> 611 else if (tt==t4) { normal=fNormal234; } >> 612 *n=normal; >> 613 if(validNorm) { *validNorm=true; } >> 614 } >> 615 >> 616 return std::max(tt,0.0); // avoid tt<0.0 by a tiny bit >> 617 // if we are right on a face 566 } 618 } 567 619 568 ////////////////////////////////////////////// << 620 //////////////////////////////////////////////////////////////////////////// 569 // << 570 // Calculate safety distance to surface from i << 571 // 621 // >> 622 // Calculate exact shortest distance to any boundary from inside >> 623 // - If outside return 0 >> 624 572 G4double G4Tet::DistanceToOut(const G4ThreeVec 625 G4double G4Tet::DistanceToOut(const G4ThreeVector& p) const 573 { 626 { 574 G4double dd[4]; << 627 G4double t1,t2,t3,t4; 575 for (G4int i = 0; i < 4; ++i) { dd[i] = fDis << 628 t1=fCdotN123-p.dot(fNormal123); // distance to plane, positive if inside >> 629 t2=fCdotN134-p.dot(fNormal134); // distance to plane >> 630 t3=fCdotN142-p.dot(fNormal142); // distance to plane >> 631 t4=fCdotN234-p.dot(fNormal234); // distance to plane 576 632 577 G4double dist = std::min(std::min(std::min(d << 633 // if any one of these is negative, we are outside, 578 return (dist > 0.) ? dist : 0.; << 634 // so return zero in that case >> 635 >> 636 G4double tmin=std::min(std::min(std::min(t1,t2),t3),t4); >> 637 return (tmin < fTol)? 0:tmin; 579 } 638 } 580 639 581 ////////////////////////////////////////////// << 640 ////////////////////////////////////////////////////////////////////////// 582 // 641 // 583 // GetEntityType 642 // GetEntityType 584 // << 585 G4GeometryType G4Tet::GetEntityType() const << 586 { << 587 return {"G4Tet"}; << 588 } << 589 643 590 ////////////////////////////////////////////// << 644 G4GeometryType G4Tet::GetEntityType() const 591 // << 592 // IsFaceted << 593 // << 594 G4bool G4Tet::IsFaceted() const << 595 { 645 { 596 return true; << 646 return G4String("G4Tet"); 597 } 647 } 598 648 599 ////////////////////////////////////////////// << 649 ////////////////////////////////////////////////////////////////////////// 600 // 650 // 601 // Make a clone of the object 651 // Make a clone of the object 602 // << 652 603 G4VSolid* G4Tet::Clone() const 653 G4VSolid* G4Tet::Clone() const 604 { 654 { 605 return new G4Tet(*this); 655 return new G4Tet(*this); 606 } 656 } 607 657 608 ////////////////////////////////////////////// << 658 ////////////////////////////////////////////////////////////////////////// 609 // 659 // 610 // Stream object contents to an output stream 660 // Stream object contents to an output stream 611 // << 661 612 std::ostream& G4Tet::StreamInfo(std::ostream& 662 std::ostream& G4Tet::StreamInfo(std::ostream& os) const 613 { 663 { 614 G4long oldprc = os.precision(16); << 664 G4int oldprc = os.precision(16); 615 os << "------------------------------------- 665 os << "-----------------------------------------------------------\n" 616 << " *** Dump for solid - " << GetName << 666 << " *** Dump for solid - " << GetName() << " ***\n" 617 << " ================================= << 667 << " ===================================================\n" 618 << " Solid type: " << GetEntityType() << << 668 << " Solid type: G4Tet\n" 619 << " Parameters: \n" << 669 << " Parameters: \n" 620 << " anchor: " << fVertex[0]/mm << " m << 670 << " anchor: " << fAnchor/mm << " mm \n" 621 << " p1 : " << fVertex[1]/mm << " m << 671 << " p2: " << fP2/mm << " mm \n" 622 << " p2 : " << fVertex[2]/mm << " m << 672 << " p3: " << fP3/mm << " mm \n" 623 << " p3 : " << fVertex[3]/mm << " m << 673 << " p4: " << fP4/mm << " mm \n" 624 << "------------------------------------- << 674 << " normal123: " << fNormal123 << " \n" >> 675 << " normal134: " << fNormal134 << " \n" >> 676 << " normal142: " << fNormal142 << " \n" >> 677 << " normal234: " << fNormal234 << " \n" >> 678 << "-----------------------------------------------------------\n"; 625 os.precision(oldprc); 679 os.precision(oldprc); >> 680 626 return os; 681 return os; 627 } 682 } 628 683 >> 684 629 ////////////////////////////////////////////// 685 //////////////////////////////////////////////////////////////////////// 630 // 686 // 631 // Return random point on the surface << 687 // GetPointOnFace 632 // 688 // 633 G4ThreeVector G4Tet::GetPointOnSurface() const << 689 // Auxiliary method for get point on surface >> 690 >> 691 G4ThreeVector G4Tet::GetPointOnFace(G4ThreeVector p1, G4ThreeVector p2, >> 692 G4ThreeVector p3, G4double& area) const 634 { 693 { 635 constexpr G4int iface[4][3] = { {0,1,2}, {0, << 694 G4double lambda1,lambda2; >> 695 G4ThreeVector v, w; >> 696 >> 697 v = p3 - p1; >> 698 w = p1 - p2; >> 699 >> 700 lambda1 = G4RandFlat::shoot(0.,1.); >> 701 lambda2 = G4RandFlat::shoot(0.,lambda1); 636 702 637 // Select face << 703 area = 0.5*(v.cross(w)).mag(); 638 G4double select = fSurfaceArea*G4QuickRand() << 704 639 G4int i = 0; << 705 return (p2 + lambda1*w + lambda2*v); 640 i += (G4int)(select > fArea[0]); << 706 } 641 i += (G4int)(select > fArea[0] + fArea[1]); << 707 642 i += (G4int)(select > fArea[0] + fArea[1] + << 708 //////////////////////////////////////////////////////////////////////////// 643 << 709 // 644 // Set selected triangle << 710 // GetPointOnSurface 645 G4ThreeVector p0 = fVertex[iface[i][0]]; << 711 646 G4ThreeVector e1 = fVertex[iface[i][1]] - p0 << 712 G4ThreeVector G4Tet::GetPointOnSurface() const 647 G4ThreeVector e2 = fVertex[iface[i][2]] - p0 << 713 { 648 << 714 G4double chose,aOne,aTwo,aThree,aFour; 649 // Return random point << 715 G4ThreeVector p1, p2, p3, p4; 650 G4double r1 = G4QuickRand(); << 716 651 G4double r2 = G4QuickRand(); << 717 p1 = GetPointOnFace(fAnchor,fP2,fP3,aOne); 652 return (r1 + r2 > 1.) ? << 718 p2 = GetPointOnFace(fAnchor,fP4,fP3,aTwo); 653 p0 + e1*(1. - r1) + e2*(1. - r2) : p0 + e1 << 719 p3 = GetPointOnFace(fAnchor,fP4,fP2,aThree); >> 720 p4 = GetPointOnFace(fP4,fP3,fP2,aFour); >> 721 >> 722 chose = G4RandFlat::shoot(0.,aOne+aTwo+aThree+aFour); >> 723 if( (chose>=0.) && (chose <aOne) ) {return p1;} >> 724 else if( (chose>=aOne) && (chose < aOne+aTwo) ) {return p2;} >> 725 else if( (chose>=aOne+aTwo) && (chose<aOne+aTwo+aThree) ) {return p3;} >> 726 return p4; 654 } 727 } 655 728 656 ////////////////////////////////////////////// 729 //////////////////////////////////////////////////////////////////////// 657 // 730 // 658 // Return volume of the tetrahedron << 731 // GetVertices >> 732 >> 733 std::vector<G4ThreeVector> G4Tet::GetVertices() const >> 734 { >> 735 std::vector<G4ThreeVector> vertices(4); >> 736 vertices[0] = fAnchor; >> 737 vertices[1] = fP2; >> 738 vertices[2] = fP3; >> 739 vertices[3] = fP4; >> 740 >> 741 return vertices; >> 742 } >> 743 >> 744 //////////////////////////////////////////////////////////////////////// 659 // 745 // >> 746 // GetCubicVolume >> 747 660 G4double G4Tet::GetCubicVolume() 748 G4double G4Tet::GetCubicVolume() 661 { 749 { 662 return fCubicVolume; 750 return fCubicVolume; 663 } 751 } 664 752 665 ////////////////////////////////////////////// 753 //////////////////////////////////////////////////////////////////////// 666 // 754 // 667 // Return surface area of the tetrahedron << 755 // GetSurfaceArea 668 // << 756 669 G4double G4Tet::GetSurfaceArea() 757 G4double G4Tet::GetSurfaceArea() 670 { 758 { 671 return fSurfaceArea; 759 return fSurfaceArea; 672 } 760 } 673 761 674 ////////////////////////////////////////////// << 675 // << 676 // Methods for visualisation 762 // Methods for visualisation >> 763 >> 764 //////////////////////////////////////////////////////////////////////// 677 // 765 // 678 void G4Tet::DescribeYourselfTo (G4VGraphicsSce << 766 // DescribeYourselfTo >> 767 >> 768 void G4Tet::DescribeYourselfTo (G4VGraphicsScene& scene) const 679 { 769 { 680 scene.AddSolid (*this); 770 scene.AddSolid (*this); 681 } 771 } 682 772 683 ////////////////////////////////////////////// 773 //////////////////////////////////////////////////////////////////////// 684 // 774 // 685 // Return VisExtent << 775 // GetExtent 686 // << 776 687 G4VisExtent G4Tet::GetExtent() const << 777 G4VisExtent G4Tet::GetExtent() const 688 { 778 { 689 return { fBmin.x(), fBmax.x(), << 779 return G4VisExtent (fXMin, fXMax, fYMin, fYMax, fZMin, fZMax); 690 fBmin.y(), fBmax.y(), << 691 fBmin.z(), fBmax.z() }; << 692 } 780 } 693 781 694 ////////////////////////////////////////////// 782 //////////////////////////////////////////////////////////////////////// 695 // 783 // 696 // CreatePolyhedron 784 // CreatePolyhedron 697 // << 698 G4Polyhedron* G4Tet::CreatePolyhedron() const << 699 { << 700 // Check orientation of vertices << 701 G4ThreeVector v1 = fVertex[1] - fVertex[0]; << 702 G4ThreeVector v2 = fVertex[2] - fVertex[0]; << 703 G4ThreeVector v3 = fVertex[3] - fVertex[0]; << 704 G4bool invert = v1.cross(v2).dot(v3) < 0.; << 705 G4int k2 = (invert) ? 3 : 2; << 706 G4int k3 = (invert) ? 2 : 3; << 707 785 708 // Set coordinates of vertices << 786 G4Polyhedron* G4Tet::CreatePolyhedron () const >> 787 { >> 788 G4Polyhedron *ph=new G4Polyhedron; 709 G4double xyz[4][3]; 789 G4double xyz[4][3]; 710 for (G4int i = 0; i < 3; ++i) << 790 const G4int faces[4][4]={{1,3,2,0},{1,4,3,0},{1,2,4,0},{2,3,4,0}}; 711 { << 791 xyz[0][0]=fAnchor.x(); xyz[0][1]=fAnchor.y(); xyz[0][2]=fAnchor.z(); 712 xyz[0][i] = fVertex[0][i]; << 792 xyz[1][0]=fP2.x(); xyz[1][1]=fP2.y(); xyz[1][2]=fP2.z(); 713 xyz[1][i] = fVertex[1][i]; << 793 xyz[2][0]=fP3.x(); xyz[2][1]=fP3.y(); xyz[2][2]=fP3.z(); 714 xyz[2][i] = fVertex[k2][i]; << 794 xyz[3][0]=fP4.x(); xyz[3][1]=fP4.y(); xyz[3][2]=fP4.z(); 715 xyz[3][i] = fVertex[k3][i]; << 716 } << 717 795 718 // Create polyhedron << 719 G4int faces[4][4] = { {1,3,2,0}, {1,4,3,0}, << 720 auto ph = new G4Polyhedron; << 721 ph->createPolyhedron(4,4,xyz,faces); 796 ph->createPolyhedron(4,4,xyz,faces); 722 797 723 return ph; 798 return ph; 724 } 799 } 725 800 726 ////////////////////////////////////////////// 801 //////////////////////////////////////////////////////////////////////// 727 // 802 // 728 // GetPolyhedron 803 // GetPolyhedron 729 // << 804 730 G4Polyhedron* G4Tet::GetPolyhedron() const << 805 G4Polyhedron* G4Tet::GetPolyhedron () const 731 { 806 { 732 if (fpPolyhedron == nullptr || << 807 if (!fpPolyhedron || 733 fRebuildPolyhedron || 808 fRebuildPolyhedron || 734 fpPolyhedron->GetNumberOfRotationStepsAt 809 fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != 735 fpPolyhedron->GetNumberOfRotationSteps() 810 fpPolyhedron->GetNumberOfRotationSteps()) 736 { << 811 { 737 G4AutoLock l(&polyhedronMutex); << 812 G4AutoLock l(&polyhedronMutex); 738 delete fpPolyhedron; << 813 delete fpPolyhedron; 739 fpPolyhedron = CreatePolyhedron(); << 814 fpPolyhedron = CreatePolyhedron(); 740 fRebuildPolyhedron = false; << 815 fRebuildPolyhedron = false; 741 l.unlock(); << 816 l.unlock(); 742 } << 817 } 743 return fpPolyhedron; 818 return fpPolyhedron; 744 } 819 } 745 820 746 #endif 821 #endif 747 822