Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration and of QinetiQ Ltd, * 20 // * subject to DEFCON 705 IPR conditions. 20 // * subject to DEFCON 705 IPR conditions. * 21 // * By using, copying, modifying or distri 21 // * By using, copying, modifying or distributing the software (or * 22 // * any work based on the software) you ag 22 // * any work based on the software) you agree to acknowledge its * 23 // * use in resulting scientific publicati 23 // * use in resulting scientific publications, and indicate your * 24 // * acceptance of all terms of the Geant4 Sof 24 // * acceptance of all terms of the Geant4 Software license. * 25 // ******************************************* 25 // ******************************************************************** 26 // 26 // 27 // G4TessellatedSolid implementation 27 // G4TessellatedSolid implementation 28 // 28 // 29 // 31.10.2004, P R Truscott, QinetiQ Ltd, UK - 29 // 31.10.2004, P R Truscott, QinetiQ Ltd, UK - Created. 30 // 17.09.2007, P R Truscott, QinetiQ Ltd & Ric 30 // 17.09.2007, P R Truscott, QinetiQ Ltd & Richard Holmberg 31 // Updated extensively prio 31 // Updated extensively prior to this date to deal with 32 // concaved tessellated sur 32 // concaved tessellated surfaces, based on the algorithm 33 // of Richard Holmberg. Th 33 // of Richard Holmberg. This had been slightly modified 34 // to determine with inside 34 // to determine with inside the geometry by projecting 35 // random rays from the poi 35 // random rays from the point provided. Now random rays 36 // are predefined rather th 36 // are predefined rather than making use of random 37 // number generator at run- 37 // number generator at run-time. 38 // 12.10.2012, M Gayer, CERN, complete rewrite 38 // 12.10.2012, M Gayer, CERN, complete rewrite reducing memory 39 // requirements more than 5 39 // requirements more than 50% and speedup by a factor of 40 // tens or more depending o 40 // tens or more depending on the number of facets, thanks 41 // to voxelization of surfa << 41 // to voxelization of surface and improvements. 42 // Speedup factor of thousa 42 // Speedup factor of thousands for solids with number of 43 // facets in hundreds of th 43 // facets in hundreds of thousands. 44 // 23.10.2016, E Tcherniaev, reimplemented Cal 44 // 23.10.2016, E Tcherniaev, reimplemented CalculateExtent() to make 45 // use of G4BoundingEnvelop 45 // use of G4BoundingEnvelope. 46 // ------------------------------------------- 46 // -------------------------------------------------------------------- 47 47 48 #include "G4TessellatedSolid.hh" 48 #include "G4TessellatedSolid.hh" 49 49 50 #if !defined(G4GEOM_USE_UTESSELLATEDSOLID) 50 #if !defined(G4GEOM_USE_UTESSELLATEDSOLID) 51 51 52 #include <algorithm> << 53 #include <fstream> << 54 #include <iomanip> << 55 #include <iostream> 52 #include <iostream> 56 #include <list> << 57 #include <random> << 58 #include <stack> 53 #include <stack> >> 54 #include <iostream> >> 55 #include <iomanip> >> 56 #include <fstream> >> 57 #include <algorithm> >> 58 #include <list> 59 59 60 #include "geomdefs.hh" 60 #include "geomdefs.hh" 61 #include "Randomize.hh" 61 #include "Randomize.hh" 62 #include "G4SystemOfUnits.hh" 62 #include "G4SystemOfUnits.hh" 63 #include "G4PhysicalConstants.hh" 63 #include "G4PhysicalConstants.hh" 64 #include "G4GeometryTolerance.hh" 64 #include "G4GeometryTolerance.hh" 65 #include "G4VoxelLimits.hh" 65 #include "G4VoxelLimits.hh" 66 #include "G4AffineTransform.hh" 66 #include "G4AffineTransform.hh" 67 #include "G4BoundingEnvelope.hh" 67 #include "G4BoundingEnvelope.hh" 68 68 >> 69 #include "G4PolyhedronArbitrary.hh" 69 #include "G4VGraphicsScene.hh" 70 #include "G4VGraphicsScene.hh" 70 #include "G4VisExtent.hh" 71 #include "G4VisExtent.hh" 71 72 72 #include "G4AutoLock.hh" 73 #include "G4AutoLock.hh" 73 74 74 namespace 75 namespace 75 { 76 { 76 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZE 77 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZER; 77 } 78 } 78 79 79 using namespace std; 80 using namespace std; 80 81 81 ////////////////////////////////////////////// 82 /////////////////////////////////////////////////////////////////////////////// 82 // 83 // 83 // Standard contructor has blank name and defi 84 // Standard contructor has blank name and defines no fFacets. 84 // 85 // 85 G4TessellatedSolid::G4TessellatedSolid () : G4 86 G4TessellatedSolid::G4TessellatedSolid () : G4VSolid("dummy") 86 { 87 { 87 Initialize(); 88 Initialize(); 88 } 89 } 89 90 90 ////////////////////////////////////////////// 91 /////////////////////////////////////////////////////////////////////////////// 91 // 92 // 92 // Alternative constructor. Simple define name 93 // Alternative constructor. Simple define name and geometry type - no fFacets 93 // to detine. 94 // to detine. 94 // 95 // 95 G4TessellatedSolid::G4TessellatedSolid (const 96 G4TessellatedSolid::G4TessellatedSolid (const G4String& name) 96 : G4VSolid(name) 97 : G4VSolid(name) 97 { 98 { 98 Initialize(); 99 Initialize(); 99 } 100 } 100 101 101 ////////////////////////////////////////////// 102 /////////////////////////////////////////////////////////////////////////////// 102 // 103 // 103 // Fake default constructor - sets only member 104 // Fake default constructor - sets only member data and allocates memory 104 // for usage restri 105 // for usage restricted to object persistency. 105 // 106 // 106 G4TessellatedSolid::G4TessellatedSolid( __void 107 G4TessellatedSolid::G4TessellatedSolid( __void__& a) : G4VSolid(a) 107 { 108 { 108 Initialize(); 109 Initialize(); 109 fMinExtent.set(0,0,0); 110 fMinExtent.set(0,0,0); 110 fMaxExtent.set(0,0,0); 111 fMaxExtent.set(0,0,0); 111 } 112 } 112 113 113 114 114 ////////////////////////////////////////////// 115 /////////////////////////////////////////////////////////////////////////////// 115 G4TessellatedSolid::~G4TessellatedSolid() 116 G4TessellatedSolid::~G4TessellatedSolid() 116 { 117 { 117 DeleteObjects(); 118 DeleteObjects(); 118 } 119 } 119 120 120 ////////////////////////////////////////////// 121 /////////////////////////////////////////////////////////////////////////////// 121 // 122 // 122 // Copy constructor. 123 // Copy constructor. 123 // 124 // 124 G4TessellatedSolid::G4TessellatedSolid (const 125 G4TessellatedSolid::G4TessellatedSolid (const G4TessellatedSolid& ts) 125 : G4VSolid(ts) 126 : G4VSolid(ts) 126 { 127 { 127 Initialize(); 128 Initialize(); 128 129 129 CopyObjects(ts); 130 CopyObjects(ts); 130 } 131 } 131 132 132 ////////////////////////////////////////////// 133 /////////////////////////////////////////////////////////////////////////////// 133 // 134 // 134 // Assignment operator. 135 // Assignment operator. 135 // 136 // 136 G4TessellatedSolid& 137 G4TessellatedSolid& 137 G4TessellatedSolid::operator= (const G4Tessell 138 G4TessellatedSolid::operator= (const G4TessellatedSolid &ts) 138 { 139 { 139 if (&ts == this) return *this; 140 if (&ts == this) return *this; 140 141 141 // Copy base class data 142 // Copy base class data 142 G4VSolid::operator=(ts); 143 G4VSolid::operator=(ts); 143 144 144 DeleteObjects (); 145 DeleteObjects (); 145 146 146 Initialize(); 147 Initialize(); 147 148 148 CopyObjects (ts); 149 CopyObjects (ts); 149 150 150 return *this; 151 return *this; 151 } 152 } 152 153 153 ////////////////////////////////////////////// 154 /////////////////////////////////////////////////////////////////////////////// 154 // 155 // 155 void G4TessellatedSolid::Initialize() 156 void G4TessellatedSolid::Initialize() 156 { 157 { 157 kCarToleranceHalf = 0.5*kCarTolerance; 158 kCarToleranceHalf = 0.5*kCarTolerance; 158 159 159 fRebuildPolyhedron = false; fpPolyhedron = n 160 fRebuildPolyhedron = false; fpPolyhedron = nullptr; 160 fCubicVolume = 0.; fSurfaceArea = 0.; 161 fCubicVolume = 0.; fSurfaceArea = 0.; 161 162 162 fGeometryType = "G4TessellatedSolid"; 163 fGeometryType = "G4TessellatedSolid"; 163 fSolidClosed = false; 164 fSolidClosed = false; 164 165 165 fMinExtent.set(kInfinity,kInfinity,kInfinity 166 fMinExtent.set(kInfinity,kInfinity,kInfinity); 166 fMaxExtent.set(-kInfinity,-kInfinity,-kInfin 167 fMaxExtent.set(-kInfinity,-kInfinity,-kInfinity); 167 168 168 SetRandomVectors(); 169 SetRandomVectors(); 169 } 170 } 170 171 171 ////////////////////////////////////////////// 172 /////////////////////////////////////////////////////////////////////////////// 172 // 173 // 173 void G4TessellatedSolid::DeleteObjects() 174 void G4TessellatedSolid::DeleteObjects() 174 { 175 { 175 std::size_t size = fFacets.size(); << 176 G4int size = fFacets.size(); 176 for (std::size_t i = 0; i < size; ++i) { de << 177 for (G4int i = 0; i < size; ++i) { delete fFacets[i]; } 177 fFacets.clear(); 178 fFacets.clear(); 178 delete fpPolyhedron; fpPolyhedron = nullptr; 179 delete fpPolyhedron; fpPolyhedron = nullptr; 179 } 180 } 180 181 181 ////////////////////////////////////////////// 182 /////////////////////////////////////////////////////////////////////////////// 182 // 183 // 183 void G4TessellatedSolid::CopyObjects (const G4 184 void G4TessellatedSolid::CopyObjects (const G4TessellatedSolid &ts) 184 { 185 { 185 G4ThreeVector reductionRatio; 186 G4ThreeVector reductionRatio; 186 G4int fmaxVoxels = fVoxels.GetMaxVoxels(redu 187 G4int fmaxVoxels = fVoxels.GetMaxVoxels(reductionRatio); 187 if (fmaxVoxels < 0) 188 if (fmaxVoxels < 0) 188 fVoxels.SetMaxVoxels(reductionRatio); 189 fVoxels.SetMaxVoxels(reductionRatio); 189 else 190 else 190 fVoxels.SetMaxVoxels(fmaxVoxels); 191 fVoxels.SetMaxVoxels(fmaxVoxels); 191 192 192 G4int n = ts.GetNumberOfFacets(); 193 G4int n = ts.GetNumberOfFacets(); 193 for (G4int i = 0; i < n; ++i) 194 for (G4int i = 0; i < n; ++i) 194 { 195 { 195 G4VFacet *facetClone = (ts.GetFacet(i))->G 196 G4VFacet *facetClone = (ts.GetFacet(i))->GetClone(); 196 AddFacet(facetClone); 197 AddFacet(facetClone); 197 } 198 } 198 if (ts.GetSolidClosed()) SetSolidClosed(true 199 if (ts.GetSolidClosed()) SetSolidClosed(true); 199 } 200 } 200 201 201 ////////////////////////////////////////////// 202 /////////////////////////////////////////////////////////////////////////////// 202 // 203 // 203 // Add a facet to the facet list. 204 // Add a facet to the facet list. 204 // Note that you can add, but you cannot delet 205 // Note that you can add, but you cannot delete. 205 // 206 // 206 G4bool G4TessellatedSolid::AddFacet (G4VFacet* 207 G4bool G4TessellatedSolid::AddFacet (G4VFacet* aFacet) 207 { 208 { 208 // Add the facet to the vector. 209 // Add the facet to the vector. 209 // 210 // 210 if (fSolidClosed) 211 if (fSolidClosed) 211 { 212 { 212 G4Exception("G4TessellatedSolid::AddFacet( 213 G4Exception("G4TessellatedSolid::AddFacet()", "GeomSolids1002", 213 JustWarning, "Attempt to add f 214 JustWarning, "Attempt to add facets when solid is closed."); 214 return false; 215 return false; 215 } 216 } 216 else if (aFacet->IsDefined()) 217 else if (aFacet->IsDefined()) 217 { 218 { 218 set<G4VertexInfo,G4VertexComparator>::iter 219 set<G4VertexInfo,G4VertexComparator>::iterator begin 219 = fFacetList.begin(), end = fFacetList.e 220 = fFacetList.begin(), end = fFacetList.end(), pos, it; 220 G4ThreeVector p = aFacet->GetCircumcentre( 221 G4ThreeVector p = aFacet->GetCircumcentre(); 221 G4VertexInfo value; 222 G4VertexInfo value; 222 value.id = (G4int)fFacetList.size(); << 223 value.id = fFacetList.size(); 223 value.mag2 = p.x() + p.y() + p.z(); 224 value.mag2 = p.x() + p.y() + p.z(); 224 225 225 G4bool found = false; 226 G4bool found = false; 226 if (!OutsideOfExtent(p, kCarTolerance)) 227 if (!OutsideOfExtent(p, kCarTolerance)) 227 { 228 { 228 G4double kCarTolerance3 = 3 * kCarTolera 229 G4double kCarTolerance3 = 3 * kCarTolerance; 229 pos = fFacetList.lower_bound(value); 230 pos = fFacetList.lower_bound(value); 230 231 231 it = pos; 232 it = pos; 232 while (!found && it != end) // Loop c 233 while (!found && it != end) // Loop checking, 13.08.2015, G.Cosmo 233 { 234 { 234 G4int id = (*it).id; 235 G4int id = (*it).id; 235 G4VFacet *facet = fFacets[id]; 236 G4VFacet *facet = fFacets[id]; 236 G4ThreeVector q = facet->GetCircumcent 237 G4ThreeVector q = facet->GetCircumcentre(); 237 if ((found = (facet == aFacet))) break 238 if ((found = (facet == aFacet))) break; 238 G4double dif = q.x() + q.y() + q.z() - 239 G4double dif = q.x() + q.y() + q.z() - value.mag2; 239 if (dif > kCarTolerance3) break; 240 if (dif > kCarTolerance3) break; 240 it++; 241 it++; 241 } 242 } 242 243 243 if (fFacets.size() > 1) 244 if (fFacets.size() > 1) 244 { 245 { 245 it = pos; 246 it = pos; 246 while (!found && it != begin) // Lo 247 while (!found && it != begin) // Loop checking, 13.08.2015, G.Cosmo 247 { 248 { 248 --it; 249 --it; 249 G4int id = (*it).id; 250 G4int id = (*it).id; 250 G4VFacet *facet = fFacets[id]; << 251 G4VFacet *facet = fFacets[id]; 251 G4ThreeVector q = facet->GetCircumce 252 G4ThreeVector q = facet->GetCircumcentre(); 252 found = (facet == aFacet); 253 found = (facet == aFacet); 253 if (found) break; 254 if (found) break; 254 G4double dif = value.mag2 - (q.x() + 255 G4double dif = value.mag2 - (q.x() + q.y() + q.z()); 255 if (dif > kCarTolerance3) break; 256 if (dif > kCarTolerance3) break; 256 } 257 } 257 } 258 } 258 } 259 } 259 260 260 if (!found) 261 if (!found) 261 { 262 { 262 fFacets.push_back(aFacet); 263 fFacets.push_back(aFacet); 263 fFacetList.insert(value); 264 fFacetList.insert(value); 264 } 265 } 265 return true; 266 return true; 266 } 267 } 267 else 268 else 268 { 269 { 269 G4Exception("G4TessellatedSolid::AddFacet( 270 G4Exception("G4TessellatedSolid::AddFacet()", "GeomSolids1002", 270 JustWarning, "Attempt to add f << 271 JustWarning, "Attempt to add facet not properly defined."); 271 aFacet->StreamInfo(G4cout); 272 aFacet->StreamInfo(G4cout); 272 return false; 273 return false; 273 } 274 } 274 } 275 } 275 276 276 ////////////////////////////////////////////// 277 /////////////////////////////////////////////////////////////////////////////// 277 // 278 // 278 G4int G4TessellatedSolid::SetAllUsingStack(con 279 G4int G4TessellatedSolid::SetAllUsingStack(const std::vector<G4int>& voxel, 279 con 280 const std::vector<G4int>& max, 280 G4b 281 G4bool status, G4SurfBits& checked) 281 { 282 { 282 vector<G4int> xyz = voxel; 283 vector<G4int> xyz = voxel; 283 stack<vector<G4int> > pos; 284 stack<vector<G4int> > pos; 284 pos.push(xyz); 285 pos.push(xyz); 285 G4int filled = 0; 286 G4int filled = 0; >> 287 G4int cc = 0, nz = 0; 286 288 287 vector<G4int> candidates; 289 vector<G4int> candidates; 288 290 289 while (!pos.empty()) // Loop checking, 13 291 while (!pos.empty()) // Loop checking, 13.08.2015, G.Cosmo 290 { 292 { 291 xyz = pos.top(); 293 xyz = pos.top(); 292 pos.pop(); 294 pos.pop(); 293 G4int index = fVoxels.GetVoxelsIndex(xyz); 295 G4int index = fVoxels.GetVoxelsIndex(xyz); 294 if (!checked[index]) 296 if (!checked[index]) 295 { 297 { 296 checked.SetBitNumber(index, true); 298 checked.SetBitNumber(index, true); >> 299 ++cc; 297 300 298 if (fVoxels.IsEmpty(index)) 301 if (fVoxels.IsEmpty(index)) 299 { 302 { 300 ++filled; 303 ++filled; 301 304 302 fInsides.SetBitNumber(index, status); 305 fInsides.SetBitNumber(index, status); 303 306 304 for (auto i = 0; i <= 2; ++i) 307 for (auto i = 0; i <= 2; ++i) 305 { 308 { 306 if (xyz[i] < max[i] - 1) 309 if (xyz[i] < max[i] - 1) 307 { 310 { 308 xyz[i]++; 311 xyz[i]++; 309 pos.push(xyz); 312 pos.push(xyz); 310 xyz[i]--; 313 xyz[i]--; 311 } 314 } 312 315 313 if (xyz[i] > 0) 316 if (xyz[i] > 0) 314 { 317 { 315 xyz[i]--; 318 xyz[i]--; 316 pos.push(xyz); 319 pos.push(xyz); 317 xyz[i]++; 320 xyz[i]++; 318 } 321 } 319 } 322 } 320 } 323 } >> 324 else >> 325 { >> 326 ++nz; >> 327 } 321 } 328 } 322 } 329 } 323 return filled; 330 return filled; 324 } 331 } 325 332 326 ////////////////////////////////////////////// 333 /////////////////////////////////////////////////////////////////////////////// 327 // 334 // 328 void G4TessellatedSolid::PrecalculateInsides() 335 void G4TessellatedSolid::PrecalculateInsides() 329 { 336 { 330 vector<G4int> voxel(3), maxVoxels(3); 337 vector<G4int> voxel(3), maxVoxels(3); 331 for (auto i = 0; i <= 2; ++i) << 338 for (auto i = 0; i <= 2; ++i) maxVoxels[i] = fVoxels.GetBoundary(i).size(); 332 maxVoxels[i] = (G4int)fVoxels.GetBoundary( << 333 G4int size = maxVoxels[0] * maxVoxels[1] * m 339 G4int size = maxVoxels[0] * maxVoxels[1] * maxVoxels[2]; 334 340 335 G4SurfBits checked(size-1); 341 G4SurfBits checked(size-1); 336 fInsides.Clear(); 342 fInsides.Clear(); 337 fInsides.ResetBitNumber(size-1); 343 fInsides.ResetBitNumber(size-1); 338 344 339 G4ThreeVector point; 345 G4ThreeVector point; 340 for (voxel[2] = 0; voxel[2] < maxVoxels[2] - 346 for (voxel[2] = 0; voxel[2] < maxVoxels[2] - 1; ++voxel[2]) 341 { 347 { 342 for (voxel[1] = 0; voxel[1] < maxVoxels[1] 348 for (voxel[1] = 0; voxel[1] < maxVoxels[1] - 1; ++voxel[1]) 343 { 349 { 344 for (voxel[0] = 0; voxel[0] < maxVoxels[ 350 for (voxel[0] = 0; voxel[0] < maxVoxels[0] - 1; ++voxel[0]) 345 { 351 { 346 G4int index = fVoxels.GetVoxelsIndex(v 352 G4int index = fVoxels.GetVoxelsIndex(voxel); 347 if (!checked[index] && fVoxels.IsEmpty 353 if (!checked[index] && fVoxels.IsEmpty(index)) 348 { 354 { 349 for (auto i = 0; i <= 2; ++i) 355 for (auto i = 0; i <= 2; ++i) 350 { 356 { 351 point[i] = fVoxels.GetBoundary(i)[ 357 point[i] = fVoxels.GetBoundary(i)[voxel[i]]; 352 } 358 } 353 auto inside = (G4bool) (InsideNoVoxe << 359 G4bool inside = (G4bool) (InsideNoVoxels(point) == kInside); 354 SetAllUsingStack(voxel, maxVoxels, i 360 SetAllUsingStack(voxel, maxVoxels, inside, checked); 355 } 361 } 356 else checked.SetBitNumber(index); 362 else checked.SetBitNumber(index); 357 } 363 } 358 } 364 } 359 } 365 } 360 } 366 } 361 367 362 ////////////////////////////////////////////// 368 /////////////////////////////////////////////////////////////////////////////// 363 // 369 // 364 void G4TessellatedSolid::Voxelize () 370 void G4TessellatedSolid::Voxelize () 365 { 371 { 366 #ifdef G4SPECSDEBUG 372 #ifdef G4SPECSDEBUG 367 G4cout << "Voxelizing..." << G4endl; 373 G4cout << "Voxelizing..." << G4endl; 368 #endif 374 #endif 369 fVoxels.Voxelize(fFacets); 375 fVoxels.Voxelize(fFacets); 370 376 371 if (fVoxels.Empty().GetNbits() != 0u) << 377 if (fVoxels.Empty().GetNbits()) 372 { 378 { 373 #ifdef G4SPECSDEBUG 379 #ifdef G4SPECSDEBUG 374 G4cout << "Precalculating Insides..." << G 380 G4cout << "Precalculating Insides..." << G4endl; 375 #endif 381 #endif 376 PrecalculateInsides(); 382 PrecalculateInsides(); 377 } 383 } 378 } 384 } 379 385 380 ////////////////////////////////////////////// 386 /////////////////////////////////////////////////////////////////////////////// 381 // 387 // 382 // Compute extremeFacets, i.e. find those face 388 // Compute extremeFacets, i.e. find those facets that have surface 383 // planes that bound the volume. 389 // planes that bound the volume. 384 // Note that this is going to reject concaved 390 // Note that this is going to reject concaved surfaces as being extreme. Also 385 // note that if the vertex is on the facet, di 391 // note that if the vertex is on the facet, displacement is zero, so IsInside 386 // returns true. So will this work?? Need non 392 // returns true. So will this work?? Need non-equality 387 // "G4bool inside = displacement < 0.0;" 393 // "G4bool inside = displacement < 0.0;" 388 // or 394 // or 389 // "G4bool inside = displacement <= -0.5*kCarT << 395 // "G4bool inside = displacement <= -0.5*kCarTolerance" 390 // (Notes from PT 13/08/2007). 396 // (Notes from PT 13/08/2007). 391 // 397 // 392 void G4TessellatedSolid::SetExtremeFacets() 398 void G4TessellatedSolid::SetExtremeFacets() 393 { 399 { 394 // Copy vertices to local array << 400 G4int size = fFacets.size(); 395 std::size_t vsize = fVertexList.size(); << 401 for (G4int j = 0; j < size; ++j) 396 std::vector<G4ThreeVector> vertices(vsize); << 397 for (std::size_t i = 0; i < vsize; ++i) { ve << 398 << 399 // Shuffle vertices << 400 std::mt19937 gen(12345678); << 401 std::shuffle(vertices.begin(), vertices.end( << 402 << 403 // Select six extreme vertices in different << 404 G4ThreeVector points[6]; << 405 for (auto & point : points) { point = vertic << 406 for (std::size_t i=1; i < vsize; ++i) << 407 { << 408 if (vertices[i].x() < points[0].x()) point << 409 if (vertices[i].x() > points[1].x()) point << 410 if (vertices[i].y() < points[2].y()) point << 411 if (vertices[i].y() > points[3].y()) point << 412 if (vertices[i].z() < points[4].z()) point << 413 if (vertices[i].z() > points[5].z()) point << 414 } << 415 << 416 // Find extreme facets << 417 std::size_t size = fFacets.size(); << 418 for (std::size_t j = 0; j < size; ++j) << 419 { 402 { 420 G4VFacet &facet = *fFacets[j]; 403 G4VFacet &facet = *fFacets[j]; 421 404 422 // Check extreme vertices << 423 if (!facet.IsInside(points[0])) continue; << 424 if (!facet.IsInside(points[1])) continue; << 425 if (!facet.IsInside(points[2])) continue; << 426 if (!facet.IsInside(points[3])) continue; << 427 if (!facet.IsInside(points[4])) continue; << 428 if (!facet.IsInside(points[5])) continue; << 429 << 430 // Check vertices << 431 G4bool isExtreme = true; 405 G4bool isExtreme = true; 432 for (std::size_t i=0; i < vsize; ++i) << 406 G4int vsize = fVertexList.size(); >> 407 for (G4int i=0; i < vsize; ++i) 433 { 408 { 434 if (!facet.IsInside(vertices[i])) << 409 if (!facet.IsInside(fVertexList[i])) 435 { 410 { 436 isExtreme = false; 411 isExtreme = false; 437 break; 412 break; 438 } 413 } 439 } 414 } 440 if (isExtreme) fExtremeFacets.insert(&face 415 if (isExtreme) fExtremeFacets.insert(&facet); 441 } 416 } 442 } 417 } 443 418 444 ////////////////////////////////////////////// 419 /////////////////////////////////////////////////////////////////////////////// 445 // 420 // 446 void G4TessellatedSolid::CreateVertexList() 421 void G4TessellatedSolid::CreateVertexList() 447 { 422 { 448 // The algorithm: 423 // The algorithm: 449 // we will have additional vertexListSorted, 424 // we will have additional vertexListSorted, where all the items will be 450 // sorted by magnitude of vertice vector. 425 // sorted by magnitude of vertice vector. 451 // New candidate for fVertexList - we will d 426 // New candidate for fVertexList - we will determine the position fo first 452 // item which would be within its magnitude 427 // item which would be within its magnitude - 0.5*kCarTolerance. 453 // We will go trough until we will reach > + 428 // We will go trough until we will reach > +0.5 kCarTolerance. 454 // Comparison (q-p).mag() < 0.5*kCarToleranc 429 // Comparison (q-p).mag() < 0.5*kCarTolerance will be made. 455 // They can be just stored in std::vector, w 430 // They can be just stored in std::vector, with custom insertion based 456 // on binary search. 431 // on binary search. 457 432 458 set<G4VertexInfo,G4VertexComparator> vertexL 433 set<G4VertexInfo,G4VertexComparator> vertexListSorted; 459 set<G4VertexInfo,G4VertexComparator>::iterat 434 set<G4VertexInfo,G4VertexComparator>::iterator begin 460 = vertexListSorted.begin(), end = vertexL 435 = vertexListSorted.begin(), end = vertexListSorted.end(), pos, it; 461 G4ThreeVector p; 436 G4ThreeVector p; 462 G4VertexInfo value; 437 G4VertexInfo value; 463 438 464 fVertexList.clear(); 439 fVertexList.clear(); 465 std::size_t size = fFacets.size(); << 440 G4int size = fFacets.size(); 466 441 467 G4double kCarTolerance24 = kCarTolerance * k 442 G4double kCarTolerance24 = kCarTolerance * kCarTolerance / 4.0; 468 G4double kCarTolerance3 = 3 * kCarTolerance; 443 G4double kCarTolerance3 = 3 * kCarTolerance; 469 vector<G4int> newIndex(100); 444 vector<G4int> newIndex(100); 470 << 445 471 for (std::size_t k = 0; k < size; ++k) << 446 for (G4int k = 0; k < size; ++k) 472 { 447 { 473 G4VFacet &facet = *fFacets[k]; 448 G4VFacet &facet = *fFacets[k]; 474 G4int max = facet.GetNumberOfVertices(); 449 G4int max = facet.GetNumberOfVertices(); 475 450 476 for (G4int i = 0; i < max; ++i) 451 for (G4int i = 0; i < max; ++i) 477 { 452 { 478 p = facet.GetVertex(i); 453 p = facet.GetVertex(i); 479 value.id = (G4int)fVertexList.size(); << 454 value.id = fVertexList.size(); 480 value.mag2 = p.x() + p.y() + p.z(); 455 value.mag2 = p.x() + p.y() + p.z(); 481 456 482 G4bool found = false; 457 G4bool found = false; 483 G4int id = 0; 458 G4int id = 0; 484 if (!OutsideOfExtent(p, kCarTolerance)) 459 if (!OutsideOfExtent(p, kCarTolerance)) 485 { 460 { 486 pos = vertexListSorted.lower_bound(val 461 pos = vertexListSorted.lower_bound(value); 487 it = pos; 462 it = pos; 488 while (it != end) // Loop checking, 463 while (it != end) // Loop checking, 13.08.2015, G.Cosmo 489 { 464 { 490 id = (*it).id; 465 id = (*it).id; 491 G4ThreeVector q = fVertexList[id]; 466 G4ThreeVector q = fVertexList[id]; 492 G4double dif = (q-p).mag2(); 467 G4double dif = (q-p).mag2(); 493 found = (dif < kCarTolerance24); 468 found = (dif < kCarTolerance24); 494 if (found) break; 469 if (found) break; 495 dif = q.x() + q.y() + q.z() - value. 470 dif = q.x() + q.y() + q.z() - value.mag2; 496 if (dif > kCarTolerance3) break; 471 if (dif > kCarTolerance3) break; 497 ++it; << 472 it++; 498 } 473 } 499 474 500 if (!found && (fVertexList.size() > 1) 475 if (!found && (fVertexList.size() > 1)) 501 { 476 { 502 it = pos; 477 it = pos; 503 while (it != begin) // Loop check 478 while (it != begin) // Loop checking, 13.08.2015, G.Cosmo 504 { 479 { 505 --it; 480 --it; 506 id = (*it).id; 481 id = (*it).id; 507 G4ThreeVector q = fVertexList[id]; 482 G4ThreeVector q = fVertexList[id]; 508 G4double dif = (q-p).mag2(); 483 G4double dif = (q-p).mag2(); 509 found = (dif < kCarTolerance24); 484 found = (dif < kCarTolerance24); 510 if (found) break; 485 if (found) break; 511 dif = value.mag2 - (q.x() + q.y() 486 dif = value.mag2 - (q.x() + q.y() + q.z()); 512 if (dif > kCarTolerance3) break; 487 if (dif > kCarTolerance3) break; 513 } 488 } 514 } 489 } 515 } 490 } 516 491 517 if (!found) 492 if (!found) 518 { 493 { 519 #ifdef G4SPECSDEBUG 494 #ifdef G4SPECSDEBUG 520 G4cout << p.x() << ":" << p.y() << ":" 495 G4cout << p.x() << ":" << p.y() << ":" << p.z() << G4endl; 521 G4cout << "Adding new vertex #" << i < 496 G4cout << "Adding new vertex #" << i << " of facet " << k 522 << " id " << value.id << G4endl 497 << " id " << value.id << G4endl; 523 G4cout << "===" << G4endl; 498 G4cout << "===" << G4endl; 524 #endif 499 #endif 525 fVertexList.push_back(p); 500 fVertexList.push_back(p); 526 vertexListSorted.insert(value); 501 vertexListSorted.insert(value); 527 begin = vertexListSorted.begin(); 502 begin = vertexListSorted.begin(); 528 end = vertexListSorted.end(); 503 end = vertexListSorted.end(); 529 newIndex[i] = value.id; 504 newIndex[i] = value.id; 530 // 505 // 531 // Now update the maximum x, y and z l 506 // Now update the maximum x, y and z limits of the volume. 532 // 507 // 533 if (value.id == 0) fMinExtent = fMaxEx << 508 if (value.id == 0) fMinExtent = fMaxExtent = p; 534 else 509 else 535 { 510 { 536 if (p.x() > fMaxExtent.x()) fMaxExte 511 if (p.x() > fMaxExtent.x()) fMaxExtent.setX(p.x()); 537 else if (p.x() < fMinExtent.x()) fMi 512 else if (p.x() < fMinExtent.x()) fMinExtent.setX(p.x()); 538 if (p.y() > fMaxExtent.y()) fMaxExte 513 if (p.y() > fMaxExtent.y()) fMaxExtent.setY(p.y()); 539 else if (p.y() < fMinExtent.y()) fMi 514 else if (p.y() < fMinExtent.y()) fMinExtent.setY(p.y()); 540 if (p.z() > fMaxExtent.z()) fMaxExte 515 if (p.z() > fMaxExtent.z()) fMaxExtent.setZ(p.z()); 541 else if (p.z() < fMinExtent.z()) fMi 516 else if (p.z() < fMinExtent.z()) fMinExtent.setZ(p.z()); 542 } 517 } 543 } 518 } 544 else 519 else 545 { 520 { 546 #ifdef G4SPECSDEBUG 521 #ifdef G4SPECSDEBUG 547 G4cout << p.x() << ":" << p.y() << ":" 522 G4cout << p.x() << ":" << p.y() << ":" << p.z() << G4endl; 548 G4cout << "Vertex #" << i << " of face 523 G4cout << "Vertex #" << i << " of facet " << k 549 << " found, redirecting to " << 524 << " found, redirecting to " << id << G4endl; 550 G4cout << "===" << G4endl; 525 G4cout << "===" << G4endl; 551 #endif 526 #endif 552 newIndex[i] = id; 527 newIndex[i] = id; 553 } 528 } 554 } 529 } 555 // only now it is possible to change verti 530 // only now it is possible to change vertices pointer 556 // 531 // 557 facet.SetVertices(&fVertexList); 532 facet.SetVertices(&fVertexList); 558 for (G4int i = 0; i < max; ++i) 533 for (G4int i = 0; i < max; ++i) 559 facet.SetVertexIndex(i,newIndex[i]); 534 facet.SetVertexIndex(i,newIndex[i]); 560 } 535 } 561 vector<G4ThreeVector>(fVertexList).swap(fVer 536 vector<G4ThreeVector>(fVertexList).swap(fVertexList); 562 << 537 563 #ifdef G4SPECSDEBUG 538 #ifdef G4SPECSDEBUG 564 G4double previousValue = 0.; 539 G4double previousValue = 0.; 565 for (auto res=vertexListSorted.cbegin(); res 540 for (auto res=vertexListSorted.cbegin(); res!=vertexListSorted.cend(); ++res) 566 { 541 { 567 G4int id = (*res).id; 542 G4int id = (*res).id; 568 G4ThreeVector vec = fVertexList[id]; 543 G4ThreeVector vec = fVertexList[id]; 569 G4double mvalue = vec.x() + vec.y() + vec. 544 G4double mvalue = vec.x() + vec.y() + vec.z(); 570 if (previousValue && (previousValue - 1e-9 545 if (previousValue && (previousValue - 1e-9 > mvalue)) 571 G4cout << "Error in CreateVertexList: pr << 546 G4cout << "Error in CreateVertexList: previousValue " << previousValue 572 << " is smaller than mvalue " << 547 << " is smaller than mvalue " << mvalue << G4endl; 573 previousValue = mvalue; 548 previousValue = mvalue; 574 } 549 } 575 #endif 550 #endif 576 } 551 } 577 552 578 ////////////////////////////////////////////// 553 /////////////////////////////////////////////////////////////////////////////// 579 // 554 // 580 void G4TessellatedSolid::DisplayAllocatedMemor 555 void G4TessellatedSolid::DisplayAllocatedMemory() 581 { 556 { 582 G4int without = AllocatedMemoryWithoutVoxels 557 G4int without = AllocatedMemoryWithoutVoxels(); 583 G4int with = AllocatedMemory(); 558 G4int with = AllocatedMemory(); 584 G4double ratio = (G4double) with / without; 559 G4double ratio = (G4double) with / without; 585 G4cout << "G4TessellatedSolid - Allocated me 560 G4cout << "G4TessellatedSolid - Allocated memory without voxel overhead " 586 << without << "; with " << with << "; << 561 << without << "; with " << with << "; ratio: " << ratio << G4endl; 587 } 562 } 588 563 589 ////////////////////////////////////////////// 564 /////////////////////////////////////////////////////////////////////////////// 590 // 565 // 591 void G4TessellatedSolid::SetSolidClosed (const 566 void G4TessellatedSolid::SetSolidClosed (const G4bool t) 592 { 567 { 593 if (t) 568 if (t) 594 { 569 { 595 #ifdef G4SPECSDEBUG << 570 #ifdef G4SPECSDEBUG 596 G4cout << "Creating vertex list..." << G4e 571 G4cout << "Creating vertex list..." << G4endl; 597 #endif 572 #endif 598 CreateVertexList(); 573 CreateVertexList(); 599 574 600 #ifdef G4SPECSDEBUG << 575 #ifdef G4SPECSDEBUG 601 G4cout << "Setting extreme facets..." << G 576 G4cout << "Setting extreme facets..." << G4endl; 602 #endif 577 #endif 603 SetExtremeFacets(); 578 SetExtremeFacets(); 604 << 579 605 #ifdef G4SPECSDEBUG << 580 #ifdef G4SPECSDEBUG 606 G4cout << "Voxelizing..." << G4endl; 581 G4cout << "Voxelizing..." << G4endl; 607 #endif 582 #endif 608 Voxelize(); 583 Voxelize(); 609 584 610 #ifdef G4SPECSDEBUG 585 #ifdef G4SPECSDEBUG 611 DisplayAllocatedMemory(); 586 DisplayAllocatedMemory(); 612 #endif 587 #endif 613 588 614 #ifdef G4SPECSDEBUG << 589 } 615 G4cout << "Checking Structure..." << G4end << 616 #endif << 617 G4int irep = CheckStructure(); << 618 if (irep != 0) << 619 { << 620 if ((irep & 1) != 0) << 621 { << 622 std::ostringstream message; << 623 message << "Defects in solid: " << Ge << 624 << " - negative cubic volume, << 625 G4Exception("G4TessellatedSolid::SetS << 626 "GeomSolids1001", JustWar << 627 } << 628 if ((irep & 2) != 0) << 629 { << 630 std::ostringstream message; << 631 message << "Defects in solid: " << Ge << 632 << " - some facets have wrong << 633 G4Exception("G4TessellatedSolid::SetS << 634 "GeomSolids1001", JustWar << 635 } << 636 if ((irep & 4) != 0) << 637 { << 638 std::ostringstream message; << 639 message << "Defects in solid: " << Ge << 640 << " - there are holes in the << 641 G4Exception("G4TessellatedSolid::SetS << 642 "GeomSolids1001", JustWar << 643 } << 644 } << 645 } << 646 fSolidClosed = t; 590 fSolidClosed = t; 647 } 591 } 648 592 649 ////////////////////////////////////////////// 593 /////////////////////////////////////////////////////////////////////////////// 650 // 594 // 651 // GetSolidClosed 595 // GetSolidClosed 652 // 596 // 653 // Used to determine whether the solid is clos 597 // Used to determine whether the solid is closed to adding further fFacets. 654 // 598 // 655 G4bool G4TessellatedSolid::GetSolidClosed () c 599 G4bool G4TessellatedSolid::GetSolidClosed () const 656 { 600 { 657 return fSolidClosed; 601 return fSolidClosed; 658 } 602 } 659 603 660 ////////////////////////////////////////////// 604 /////////////////////////////////////////////////////////////////////////////// 661 // 605 // 662 // CheckStructure << 663 // << 664 // Checks structure of the solid. Return value << 665 // defect indicators, if any (0 means no defec << 666 // 1 - cubic volume is negative, wrong orien << 667 // 2 - some facets have wrong orientation << 668 // 4 - holes in the surface << 669 // << 670 G4int G4TessellatedSolid::CheckStructure() con << 671 { << 672 G4int nedge = 0; << 673 std::size_t nface = fFacets.size(); << 674 << 675 // Calculate volume << 676 // << 677 G4double volume = 0.; << 678 for (std::size_t i = 0; i < nface; ++i) << 679 { << 680 G4VFacet& facet = *fFacets[i]; << 681 nedge += facet.GetNumberOfVertices(); << 682 volume += facet.GetArea()*(facet.GetVertex << 683 } << 684 auto ivolume = static_cast<G4int>(volume <= << 685 << 686 // Create sorted vector of edges << 687 // << 688 std::vector<int64_t> iedge(nedge); << 689 G4int kk = 0; << 690 for (std::size_t i = 0; i < nface; ++i) << 691 { << 692 G4VFacet& facet = *fFacets[i]; << 693 G4int nnode = facet.GetNumberOfVertices(); << 694 for (G4int k = 0; k < nnode; ++k) << 695 { << 696 int64_t i1 = facet.GetVertexIndex((k == << 697 int64_t i2 = facet.GetVertexIndex(k); << 698 auto inverse = static_cast<int64_t>(i2 << 699 if (inverse != 0) std::swap(i1, i2); << 700 iedge[kk++] = i1*1000000000 + i2*2 + inv << 701 } << 702 } << 703 std::sort(iedge.begin(), iedge.end()); << 704 << 705 // Check edges, correct structure should con << 706 // with different orientation << 707 // << 708 G4int iorder = 0; << 709 G4int ihole = 0; << 710 G4int i = 0; << 711 while (i < nedge - 1) << 712 { << 713 if (iedge[i + 1] - iedge[i] == 1) // paire << 714 { << 715 i += 2; << 716 } << 717 else if (iedge[i + 1] == iedge[i]) // pair << 718 { << 719 iorder = 2; << 720 i += 2; << 721 } << 722 else // unpaired edge << 723 { << 724 ihole = 4; << 725 i++; << 726 } << 727 } << 728 return ivolume + iorder + ihole; << 729 } << 730 << 731 ////////////////////////////////////////////// << 732 // << 733 // operator+= 606 // operator+= 734 // 607 // 735 // This operator allows the user to add two te 608 // This operator allows the user to add two tessellated solids together, so 736 // that the solid on the left then includes al 609 // that the solid on the left then includes all of the facets in the solid 737 // on the right. Note that copies of the face 610 // on the right. Note that copies of the facets are generated, rather than 738 // using the original facet set of the solid o 611 // using the original facet set of the solid on the right. 739 // 612 // 740 G4TessellatedSolid& 613 G4TessellatedSolid& 741 G4TessellatedSolid::operator+=(const G4Tessell 614 G4TessellatedSolid::operator+=(const G4TessellatedSolid& right) 742 { 615 { 743 G4int size = right.GetNumberOfFacets(); 616 G4int size = right.GetNumberOfFacets(); 744 for (G4int i = 0; i < size; ++i) 617 for (G4int i = 0; i < size; ++i) 745 AddFacet(right.GetFacet(i)->GetClone()); 618 AddFacet(right.GetFacet(i)->GetClone()); 746 619 747 return *this; 620 return *this; 748 } 621 } 749 622 750 ////////////////////////////////////////////// 623 /////////////////////////////////////////////////////////////////////////////// 751 // 624 // 752 // GetNumberOfFacets 625 // GetNumberOfFacets 753 // 626 // 754 G4int G4TessellatedSolid::GetNumberOfFacets() 627 G4int G4TessellatedSolid::GetNumberOfFacets() const 755 { 628 { 756 return (G4int)fFacets.size(); << 629 return fFacets.size(); 757 } 630 } 758 631 759 ////////////////////////////////////////////// 632 /////////////////////////////////////////////////////////////////////////////// 760 // 633 // 761 EInside G4TessellatedSolid::InsideVoxels(const 634 EInside G4TessellatedSolid::InsideVoxels(const G4ThreeVector& p) const 762 { 635 { 763 // 636 // 764 // First the simple test - check if we're ou 637 // First the simple test - check if we're outside of the X-Y-Z extremes 765 // of the tessellated solid. 638 // of the tessellated solid. 766 // 639 // 767 if (OutsideOfExtent(p, kCarTolerance)) 640 if (OutsideOfExtent(p, kCarTolerance)) 768 return kOutside; 641 return kOutside; 769 642 770 vector<G4int> startingVoxel(3); 643 vector<G4int> startingVoxel(3); 771 fVoxels.GetVoxel(startingVoxel, p); 644 fVoxels.GetVoxel(startingVoxel, p); 772 645 773 const G4double dirTolerance = 1.0E-14; 646 const G4double dirTolerance = 1.0E-14; 774 647 775 const vector<G4int> &startingCandidates = 648 const vector<G4int> &startingCandidates = 776 fVoxels.GetCandidates(startingVoxel); 649 fVoxels.GetCandidates(startingVoxel); 777 std::size_t limit = startingCandidates.size( << 650 G4int limit = startingCandidates.size(); 778 if (limit == 0 && (fInsides.GetNbits() != 0u << 651 if (limit == 0 && fInsides.GetNbits()) 779 { 652 { 780 G4int index = fVoxels.GetPointIndex(p); 653 G4int index = fVoxels.GetPointIndex(p); 781 EInside location = fInsides[index] ? kInsi 654 EInside location = fInsides[index] ? kInside : kOutside; 782 return location; 655 return location; 783 } 656 } 784 657 785 G4double minDist = kInfinity; 658 G4double minDist = kInfinity; 786 659 787 for(std::size_t i = 0; i < limit; ++i) << 660 for(G4int i = 0; i < limit; ++i) 788 { 661 { 789 G4int candidate = startingCandidates[i]; 662 G4int candidate = startingCandidates[i]; 790 G4VFacet &facet = *fFacets[candidate]; 663 G4VFacet &facet = *fFacets[candidate]; 791 G4double dist = facet.Distance(p,minDist); 664 G4double dist = facet.Distance(p,minDist); 792 if (dist < minDist) minDist = dist; 665 if (dist < minDist) minDist = dist; 793 if (dist <= kCarToleranceHalf) 666 if (dist <= kCarToleranceHalf) 794 return kSurface; 667 return kSurface; 795 } 668 } 796 669 797 // The following is something of an adaptati 670 // The following is something of an adaptation of the method implemented by 798 // Rickard Holmberg augmented with informati 671 // Rickard Holmberg augmented with information from Schneider & Eberly, 799 // "Geometric Tools for Computer Graphics," 672 // "Geometric Tools for Computer Graphics," pp700-701, 2003. In essence, 800 // we're trying to determine whether we're i 673 // we're trying to determine whether we're inside the volume by projecting 801 // a few rays and determining if the first s 674 // a few rays and determining if the first surface crossed is has a normal 802 // vector between 0 to pi/2 (out-going) or p 675 // vector between 0 to pi/2 (out-going) or pi/2 to pi (in-going). 803 // We should also avoid rays which are nearl 676 // We should also avoid rays which are nearly within the plane of the 804 // tessellated surface, and therefore produc 677 // tessellated surface, and therefore produce rays randomly. 805 // For the moment, this is a bit over-engine 678 // For the moment, this is a bit over-engineered (belt-braces-and-ducttape). 806 // 679 // 807 G4double distOut = kInfinity; 680 G4double distOut = kInfinity; 808 G4double distIn = kInfinity; 681 G4double distIn = kInfinity; 809 G4double distO = 0.0; 682 G4double distO = 0.0; 810 G4double distI = 0.0; 683 G4double distI = 0.0; 811 G4double distFromSurfaceO = 0.0; 684 G4double distFromSurfaceO = 0.0; 812 G4double distFromSurfaceI = 0.0; 685 G4double distFromSurfaceI = 0.0; 813 G4ThreeVector normalO, normalI; 686 G4ThreeVector normalO, normalI; 814 G4bool crossingO = false; 687 G4bool crossingO = false; 815 G4bool crossingI = false; 688 G4bool crossingI = false; 816 EInside location = kOutside; 689 EInside location = kOutside; 817 G4int sm = 0; 690 G4int sm = 0; 818 691 819 G4bool nearParallel = false; 692 G4bool nearParallel = false; 820 do // Loop checking, 13.08.2015, G.Cosmo 693 do // Loop checking, 13.08.2015, G.Cosmo 821 { 694 { 822 // We loop until we find direction where t 695 // We loop until we find direction where the vector is not nearly parallel 823 // to the surface of any facet since this 696 // to the surface of any facet since this causes ambiguities. The usual 824 // case is that the angles should be suffi 697 // case is that the angles should be sufficiently different, but there 825 // are 20 random directions to select from 698 // are 20 random directions to select from - hopefully sufficient. 826 // 699 // 827 distOut = distIn = kInfinity; 700 distOut = distIn = kInfinity; 828 const G4ThreeVector& v = fRandir[sm]; 701 const G4ThreeVector& v = fRandir[sm]; 829 ++sm; 702 ++sm; 830 // 703 // 831 // This code could be voxelized by the sam 704 // This code could be voxelized by the same algorithm, which is used for 832 // DistanceToOut(). We will traverse throu 705 // DistanceToOut(). We will traverse through fVoxels. we will call 833 // intersect only for those, which would b 706 // intersect only for those, which would be candidates and was not 834 // checked before. 707 // checked before. 835 // 708 // 836 G4ThreeVector currentPoint = p; 709 G4ThreeVector currentPoint = p; 837 G4ThreeVector direction = v.unit(); 710 G4ThreeVector direction = v.unit(); 838 // G4SurfBits exclusion(fVoxels.GetBitsPer 711 // G4SurfBits exclusion(fVoxels.GetBitsPerSlice()); 839 vector<G4int> curVoxel(3); 712 vector<G4int> curVoxel(3); 840 curVoxel = startingVoxel; 713 curVoxel = startingVoxel; 841 G4double shiftBonus = kCarTolerance; 714 G4double shiftBonus = kCarTolerance; 842 715 843 G4bool crossed = false; 716 G4bool crossed = false; 844 G4bool started = true; 717 G4bool started = true; 845 718 846 do // Loop checking, 13.08.2015, G.Cosm 719 do // Loop checking, 13.08.2015, G.Cosmo 847 { 720 { 848 const vector<G4int> &candidates = 721 const vector<G4int> &candidates = 849 started ? startingCandidates : fVoxels 722 started ? startingCandidates : fVoxels.GetCandidates(curVoxel); 850 started = false; 723 started = false; 851 if (auto candidatesCount = (G4int)candid << 724 if (G4int candidatesCount = candidates.size()) 852 { << 725 { 853 for (G4int i = 0 ; i < candidatesCount 726 for (G4int i = 0 ; i < candidatesCount; ++i) 854 { 727 { 855 G4int candidate = candidates[i]; 728 G4int candidate = candidates[i]; 856 // bits.SetBitNumber(candidate); 729 // bits.SetBitNumber(candidate); 857 G4VFacet& facet = *fFacets[candidate 730 G4VFacet& facet = *fFacets[candidate]; 858 731 859 crossingO = facet.Intersect(p,v,true 732 crossingO = facet.Intersect(p,v,true,distO,distFromSurfaceO,normalO); 860 crossingI = facet.Intersect(p,v,fals 733 crossingI = facet.Intersect(p,v,false,distI,distFromSurfaceI,normalI); 861 734 862 if (crossingO || crossingI) 735 if (crossingO || crossingI) 863 { 736 { 864 crossed = true; 737 crossed = true; 865 738 866 nearParallel = (crossingO 739 nearParallel = (crossingO 867 && std::fabs(normalO.dot( 740 && std::fabs(normalO.dot(v))<dirTolerance) 868 || (crossingI && std::fab 741 || (crossingI && std::fabs(normalI.dot(v))<dirTolerance); 869 if (!nearParallel) 742 if (!nearParallel) 870 { 743 { 871 if (crossingO && distO > 0.0 && << 744 if (crossingO && distO > 0.0 && distO < distOut) 872 distOut = distO; 745 distOut = distO; 873 if (crossingI && distI > 0.0 && << 746 if (crossingI && distI > 0.0 && distI < distIn) 874 distIn = distI; 747 distIn = distI; 875 } 748 } 876 else break; 749 else break; 877 } 750 } 878 } 751 } 879 if (nearParallel) break; 752 if (nearParallel) break; 880 } 753 } 881 else 754 else 882 { 755 { 883 if (!crossed) 756 if (!crossed) 884 { 757 { 885 G4int index = fVoxels.GetVoxelsIndex 758 G4int index = fVoxels.GetVoxelsIndex(curVoxel); 886 G4bool inside = fInsides[index]; 759 G4bool inside = fInsides[index]; 887 location = inside ? kInside : kOutsi 760 location = inside ? kInside : kOutside; 888 return location; 761 return location; 889 } 762 } 890 } 763 } 891 764 892 G4double shift=fVoxels.DistanceToNext(cu 765 G4double shift=fVoxels.DistanceToNext(currentPoint, direction, curVoxel); 893 if (shift == kInfinity) break; 766 if (shift == kInfinity) break; 894 767 895 currentPoint += direction * (shift + shi 768 currentPoint += direction * (shift + shiftBonus); 896 } 769 } 897 while (fVoxels.UpdateCurrentVoxel(currentP 770 while (fVoxels.UpdateCurrentVoxel(currentPoint, direction, curVoxel)); 898 771 899 } 772 } 900 while (nearParallel && sm != fMaxTries); 773 while (nearParallel && sm != fMaxTries); 901 // 774 // 902 // Here we loop through the facets to find o 775 // Here we loop through the facets to find out if there is an intersection 903 // between the ray and that facet. The test 776 // between the ray and that facet. The test if performed separately whether 904 // the ray is entering the facet or exiting. 777 // the ray is entering the facet or exiting. 905 // 778 // 906 #ifdef G4VERBOSE 779 #ifdef G4VERBOSE 907 if (sm == fMaxTries) 780 if (sm == fMaxTries) 908 { 781 { 909 // 782 // 910 // We've run out of random vector directio 783 // We've run out of random vector directions. If nTries is set sufficiently 911 // low (nTries <= 0.5*maxTries) then this 784 // low (nTries <= 0.5*maxTries) then this would indicate that there is 912 // something wrong with geometry. 785 // something wrong with geometry. 913 // 786 // 914 std::ostringstream message; 787 std::ostringstream message; 915 G4long oldprc = message.precision(16); << 788 G4int oldprc = message.precision(16); 916 message << "Cannot determine whether point 789 message << "Cannot determine whether point is inside or outside volume!" 917 << G4endl 790 << G4endl 918 << "Solid name = " << GetName() < 791 << "Solid name = " << GetName() << G4endl 919 << "Geometry Type = " << fGeometryTyp 792 << "Geometry Type = " << fGeometryType << G4endl 920 << "Number of facets = " << fFacets.size 793 << "Number of facets = " << fFacets.size() << G4endl 921 << "Position:" << G4endl << G4endl 794 << "Position:" << G4endl << G4endl 922 << "p.x() = " << p.x()/mm << " mm" << 795 << "p.x() = " << p.x()/mm << " mm" << G4endl 923 << "p.y() = " << p.y()/mm << " mm" << 796 << "p.y() = " << p.y()/mm << " mm" << G4endl 924 << "p.z() = " << p.z()/mm << " mm"; 797 << "p.z() = " << p.z()/mm << " mm"; 925 message.precision(oldprc); 798 message.precision(oldprc); 926 G4Exception("G4TessellatedSolid::Inside()" 799 G4Exception("G4TessellatedSolid::Inside()", 927 "GeomSolids1002", JustWarning, 800 "GeomSolids1002", JustWarning, message); 928 } 801 } 929 #endif 802 #endif 930 803 931 // In the next if-then-elseif G4String the l 804 // In the next if-then-elseif G4String the logic is as follows: 932 // (1) You don't hit anything so cannot be i 805 // (1) You don't hit anything so cannot be inside volume, provided volume 933 // constructed correctly! 806 // constructed correctly! 934 // (2) Distance to inside (ie. nearest facet 807 // (2) Distance to inside (ie. nearest facet such that you enter facet) is 935 // shorter than distance to outside (nea 808 // shorter than distance to outside (nearest facet such that you exit 936 // facet) - on condition of safety dista 809 // facet) - on condition of safety distance - therefore we're outside. 937 // (3) Distance to outside is shorter than d 810 // (3) Distance to outside is shorter than distance to inside therefore 938 // we're inside. 811 // we're inside. 939 // 812 // 940 if (distIn == kInfinity && distOut == kInfin 813 if (distIn == kInfinity && distOut == kInfinity) 941 location = kOutside; 814 location = kOutside; 942 else if (distIn <= distOut - kCarToleranceHa 815 else if (distIn <= distOut - kCarToleranceHalf) 943 location = kOutside; 816 location = kOutside; 944 else if (distOut <= distIn - kCarToleranceHa 817 else if (distOut <= distIn - kCarToleranceHalf) 945 location = kInside; 818 location = kInside; 946 819 947 return location; 820 return location; 948 } 821 } 949 << 822 950 ////////////////////////////////////////////// 823 /////////////////////////////////////////////////////////////////////////////// 951 // 824 // 952 EInside G4TessellatedSolid::InsideNoVoxels (co 825 EInside G4TessellatedSolid::InsideNoVoxels (const G4ThreeVector &p) const 953 { 826 { 954 // 827 // 955 // First the simple test - check if we're ou 828 // First the simple test - check if we're outside of the X-Y-Z extremes 956 // of the tessellated solid. 829 // of the tessellated solid. 957 // 830 // 958 if (OutsideOfExtent(p, kCarTolerance)) 831 if (OutsideOfExtent(p, kCarTolerance)) 959 return kOutside; 832 return kOutside; 960 833 961 const G4double dirTolerance = 1.0E-14; 834 const G4double dirTolerance = 1.0E-14; 962 835 963 G4double minDist = kInfinity; 836 G4double minDist = kInfinity; 964 // 837 // 965 // Check if we are close to a surface 838 // Check if we are close to a surface 966 // 839 // 967 std::size_t size = fFacets.size(); << 840 G4int size = fFacets.size(); 968 for (std::size_t i = 0; i < size; ++i) << 841 for (G4int i = 0; i < size; ++i) 969 { 842 { 970 G4VFacet& facet = *fFacets[i]; 843 G4VFacet& facet = *fFacets[i]; 971 G4double dist = facet.Distance(p,minDist); 844 G4double dist = facet.Distance(p,minDist); 972 if (dist < minDist) minDist = dist; 845 if (dist < minDist) minDist = dist; 973 if (dist <= kCarToleranceHalf) 846 if (dist <= kCarToleranceHalf) 974 { 847 { 975 return kSurface; 848 return kSurface; 976 } 849 } 977 } 850 } 978 // 851 // 979 // The following is something of an adaptati 852 // The following is something of an adaptation of the method implemented by 980 // Rickard Holmberg augmented with informati 853 // Rickard Holmberg augmented with information from Schneider & Eberly, 981 // "Geometric Tools for Computer Graphics," 854 // "Geometric Tools for Computer Graphics," pp700-701, 2003. In essence, we're 982 // trying to determine whether we're inside 855 // trying to determine whether we're inside the volume by projecting a few 983 // rays and determining if the first surface 856 // rays and determining if the first surface crossed is has a normal vector 984 // between 0 to pi/2 (out-going) or pi/2 to 857 // between 0 to pi/2 (out-going) or pi/2 to pi (in-going). We should also 985 // avoid rays which are nearly within the pl 858 // avoid rays which are nearly within the plane of the tessellated surface, 986 // and therefore produce rays randomly. For 859 // and therefore produce rays randomly. For the moment, this is a bit 987 // over-engineered (belt-braces-and-ducttape 860 // over-engineered (belt-braces-and-ducttape). 988 // 861 // 989 #if G4SPECSDEBUG 862 #if G4SPECSDEBUG 990 G4int nTry = 7; 863 G4int nTry = 7; 991 #else 864 #else 992 G4int nTry = 3; 865 G4int nTry = 3; 993 #endif 866 #endif 994 G4double distOut = kInfinity; 867 G4double distOut = kInfinity; 995 G4double distIn = kInfinity; 868 G4double distIn = kInfinity; 996 G4double distO = 0.0; 869 G4double distO = 0.0; 997 G4double distI = 0.0; 870 G4double distI = 0.0; 998 G4double distFromSurfaceO = 0.0; 871 G4double distFromSurfaceO = 0.0; 999 G4double distFromSurfaceI = 0.0; 872 G4double distFromSurfaceI = 0.0; 1000 G4ThreeVector normalO(0.0,0.0,0.0); 873 G4ThreeVector normalO(0.0,0.0,0.0); 1001 G4ThreeVector normalI(0.0,0.0,0.0); 874 G4ThreeVector normalI(0.0,0.0,0.0); 1002 G4bool crossingO = false; 875 G4bool crossingO = false; 1003 G4bool crossingI = false; 876 G4bool crossingI = false; 1004 EInside location = kOutside; 877 EInside location = kOutside; 1005 EInside locationprime = kOutside; 878 EInside locationprime = kOutside; 1006 G4int sm = 0; 879 G4int sm = 0; 1007 880 1008 for (G4int i=0; i<nTry; ++i) 881 for (G4int i=0; i<nTry; ++i) 1009 { 882 { 1010 G4bool nearParallel = false; 883 G4bool nearParallel = false; 1011 do // Loop checking, 13.08.2015, G.Cos 884 do // Loop checking, 13.08.2015, G.Cosmo 1012 { 885 { 1013 // 886 // 1014 // We loop until we find direction wher 887 // We loop until we find direction where the vector is not nearly parallel 1015 // to the surface of any facet since th 888 // to the surface of any facet since this causes ambiguities. The usual 1016 // case is that the angles should be su 889 // case is that the angles should be sufficiently different, but there 1017 // are 20 random directions to select f 890 // are 20 random directions to select from - hopefully sufficient. 1018 // 891 // 1019 distOut = distIn = kInfinity; 892 distOut = distIn = kInfinity; 1020 G4ThreeVector v = fRandir[sm]; 893 G4ThreeVector v = fRandir[sm]; 1021 sm++; 894 sm++; 1022 auto f = fFacets.cbegin(); << 895 vector<G4VFacet*>::const_iterator f = fFacets.begin(); 1023 896 1024 do // Loop checking, 13.08.2015, G.C 897 do // Loop checking, 13.08.2015, G.Cosmo 1025 { 898 { 1026 // 899 // 1027 // Here we loop through the facets to 900 // Here we loop through the facets to find out if there is an 1028 // intersection between the ray and t 901 // intersection between the ray and that facet. The test if performed 1029 // separately whether the ray is ente 902 // separately whether the ray is entering the facet or exiting. 1030 // 903 // 1031 crossingO = ((*f)->Intersect(p,v,true 904 crossingO = ((*f)->Intersect(p,v,true,distO,distFromSurfaceO,normalO)); 1032 crossingI = ((*f)->Intersect(p,v,fals 905 crossingI = ((*f)->Intersect(p,v,false,distI,distFromSurfaceI,normalI)); 1033 if (crossingO || crossingI) 906 if (crossingO || crossingI) 1034 { 907 { 1035 nearParallel = (crossingO && std::f 908 nearParallel = (crossingO && std::fabs(normalO.dot(v))<dirTolerance) 1036 || (crossingI && std::f 909 || (crossingI && std::fabs(normalI.dot(v))<dirTolerance); 1037 if (!nearParallel) 910 if (!nearParallel) 1038 { 911 { 1039 if (crossingO && distO > 0.0 && d 912 if (crossingO && distO > 0.0 && distO < distOut) distOut = distO; 1040 if (crossingI && distI > 0.0 && d 913 if (crossingI && distI > 0.0 && distI < distIn) distIn = distI; 1041 } 914 } 1042 } 915 } 1043 } while (!nearParallel && ++f != fFacet << 916 } while (!nearParallel && ++f != fFacets.end()); 1044 } while (nearParallel && sm != fMaxTries) 917 } while (nearParallel && sm != fMaxTries); 1045 918 1046 #ifdef G4VERBOSE 919 #ifdef G4VERBOSE 1047 if (sm == fMaxTries) 920 if (sm == fMaxTries) 1048 { 921 { 1049 // 922 // 1050 // We've run out of random vector direc 923 // We've run out of random vector directions. If nTries is set 1051 // sufficiently low (nTries <= 0.5*maxT 924 // sufficiently low (nTries <= 0.5*maxTries) then this would indicate 1052 // that there is something wrong with g 925 // that there is something wrong with geometry. 1053 // 926 // 1054 std::ostringstream message; 927 std::ostringstream message; 1055 G4long oldprc = message.precision(16); << 928 G4int oldprc = message.precision(16); 1056 message << "Cannot determine whether po 929 message << "Cannot determine whether point is inside or outside volume!" 1057 << G4endl 930 << G4endl 1058 << "Solid name = " << GetName() 931 << "Solid name = " << GetName() << G4endl 1059 << "Geometry Type = " << fGeometry 932 << "Geometry Type = " << fGeometryType << G4endl 1060 << "Number of facets = " << fFacets.s 933 << "Number of facets = " << fFacets.size() << G4endl 1061 << "Position:" << G4endl << G4endl 934 << "Position:" << G4endl << G4endl 1062 << "p.x() = " << p.x()/mm << " mm" 935 << "p.x() = " << p.x()/mm << " mm" << G4endl 1063 << "p.y() = " << p.y()/mm << " mm" 936 << "p.y() = " << p.y()/mm << " mm" << G4endl 1064 << "p.z() = " << p.z()/mm << " mm"; 937 << "p.z() = " << p.z()/mm << " mm"; 1065 message.precision(oldprc); 938 message.precision(oldprc); 1066 G4Exception("G4TessellatedSolid::Inside 939 G4Exception("G4TessellatedSolid::Inside()", 1067 "GeomSolids1002", JustWarning, messag 940 "GeomSolids1002", JustWarning, message); 1068 } 941 } 1069 #endif 942 #endif 1070 // 943 // 1071 // In the next if-then-elseif G4String th 944 // In the next if-then-elseif G4String the logic is as follows: 1072 // (1) You don't hit anything so cannot b 945 // (1) You don't hit anything so cannot be inside volume, provided volume 1073 // constructed correctly! 946 // constructed correctly! 1074 // (2) Distance to inside (ie. nearest fa 947 // (2) Distance to inside (ie. nearest facet such that you enter facet) is 1075 // shorter than distance to outside ( 948 // shorter than distance to outside (nearest facet such that you exit 1076 // facet) - on condition of safety di 949 // facet) - on condition of safety distance - therefore we're outside. 1077 // (3) Distance to outside is shorter tha 950 // (3) Distance to outside is shorter than distance to inside therefore 1078 // we're inside. 951 // we're inside. 1079 // 952 // 1080 if (distIn == kInfinity && distOut == kIn 953 if (distIn == kInfinity && distOut == kInfinity) 1081 locationprime = kOutside; 954 locationprime = kOutside; 1082 else if (distIn <= distOut - kCarToleranc 955 else if (distIn <= distOut - kCarToleranceHalf) 1083 locationprime = kOutside; 956 locationprime = kOutside; 1084 else if (distOut <= distIn - kCarToleranc 957 else if (distOut <= distIn - kCarToleranceHalf) 1085 locationprime = kInside; 958 locationprime = kInside; 1086 959 1087 if (i == 0) location = locationprime; 960 if (i == 0) location = locationprime; 1088 } 961 } 1089 962 1090 return location; 963 return location; 1091 } 964 } 1092 965 1093 ///////////////////////////////////////////// 966 /////////////////////////////////////////////////////////////////////////////// 1094 // 967 // 1095 // Return index of the facet closest to the p << 1096 // be located on the surface. Return -1 if no << 1097 // << 1098 G4int G4TessellatedSolid::GetFacetIndex (cons << 1099 { << 1100 G4int index = -1; << 1101 << 1102 if (fVoxels.GetCountOfVoxels() > 1) << 1103 { << 1104 vector<G4int> curVoxel(3); << 1105 fVoxels.GetVoxel(curVoxel, p); << 1106 const vector<G4int> &candidates = fVoxels << 1107 if (auto limit = (G4int)candidates.size() << 1108 { << 1109 G4double minDist = kInfinity; << 1110 for(G4int i = 0 ; i < limit ; ++i) << 1111 { << 1112 G4int candidate = candidates[i]; << 1113 G4VFacet& facet = *fFacets[candidate] << 1114 G4double dist = facet.Distance(p, min << 1115 if (dist <= kCarToleranceHalf) return << 1116 if (dist < minDist) << 1117 { << 1118 minDist = dist; << 1119 index = candidate; << 1120 } << 1121 } << 1122 } << 1123 } << 1124 else << 1125 { << 1126 G4double minDist = kInfinity; << 1127 std::size_t size = fFacets.size(); << 1128 for (std::size_t i = 0; i < size; ++i) << 1129 { << 1130 G4VFacet& facet = *fFacets[i]; << 1131 G4double dist = facet.Distance(p, minDi << 1132 if (dist < minDist) << 1133 { << 1134 minDist = dist; << 1135 index = (G4int)i; << 1136 } << 1137 } << 1138 } << 1139 return index; << 1140 } << 1141 << 1142 ///////////////////////////////////////////// << 1143 // << 1144 // Return the outwards pointing unit normal o 968 // Return the outwards pointing unit normal of the shape for the 1145 // surface closest to the point at offset p. 969 // surface closest to the point at offset p. 1146 // 970 // 1147 G4bool G4TessellatedSolid::Normal (const G4Th 971 G4bool G4TessellatedSolid::Normal (const G4ThreeVector& p, 1148 G4Th 972 G4ThreeVector& aNormal) const 1149 { 973 { 1150 G4double minDist; 974 G4double minDist; 1151 G4VFacet* facet = nullptr; 975 G4VFacet* facet = nullptr; 1152 976 1153 if (fVoxels.GetCountOfVoxels() > 1) 977 if (fVoxels.GetCountOfVoxels() > 1) 1154 { 978 { 1155 vector<G4int> curVoxel(3); 979 vector<G4int> curVoxel(3); 1156 fVoxels.GetVoxel(curVoxel, p); 980 fVoxels.GetVoxel(curVoxel, p); 1157 const vector<G4int> &candidates = fVoxels 981 const vector<G4int> &candidates = fVoxels.GetCandidates(curVoxel); 1158 // fVoxels.GetCandidatesVoxelArray(p, can 982 // fVoxels.GetCandidatesVoxelArray(p, candidates, 0); 1159 983 1160 if (auto limit = (G4int)candidates.size() << 984 if (G4int limit = candidates.size()) 1161 { 985 { 1162 minDist = kInfinity; 986 minDist = kInfinity; 1163 for(G4int i = 0 ; i < limit ; ++i) 987 for(G4int i = 0 ; i < limit ; ++i) 1164 { << 988 { 1165 G4int candidate = candidates[i]; 989 G4int candidate = candidates[i]; 1166 G4VFacet &fct = *fFacets[candidate]; 990 G4VFacet &fct = *fFacets[candidate]; 1167 G4double dist = fct.Distance(p,minDis 991 G4double dist = fct.Distance(p,minDist); 1168 if (dist < minDist) minDist = dist; 992 if (dist < minDist) minDist = dist; 1169 if (dist <= kCarToleranceHalf) 993 if (dist <= kCarToleranceHalf) 1170 { 994 { 1171 aNormal = fct.GetSurfaceNormal(); 995 aNormal = fct.GetSurfaceNormal(); 1172 return true; 996 return true; 1173 } 997 } 1174 } 998 } 1175 } 999 } 1176 minDist = MinDistanceFacet(p, true, facet 1000 minDist = MinDistanceFacet(p, true, facet); 1177 } 1001 } 1178 else 1002 else 1179 { 1003 { 1180 minDist = kInfinity; 1004 minDist = kInfinity; 1181 std::size_t size = fFacets.size(); << 1005 G4int size = fFacets.size(); 1182 for (std::size_t i = 0; i < size; ++i) << 1006 for (G4int i = 0; i < size; ++i) 1183 { 1007 { 1184 G4VFacet& f = *fFacets[i]; 1008 G4VFacet& f = *fFacets[i]; 1185 G4double dist = f.Distance(p, minDist); 1009 G4double dist = f.Distance(p, minDist); 1186 if (dist < minDist) 1010 if (dist < minDist) 1187 { 1011 { 1188 minDist = dist; 1012 minDist = dist; 1189 facet = &f; 1013 facet = &f; 1190 } 1014 } 1191 } 1015 } 1192 } 1016 } 1193 1017 1194 if (minDist != kInfinity) 1018 if (minDist != kInfinity) 1195 { 1019 { 1196 if (facet != nullptr) { aNormal = facet- << 1020 if (facet) { aNormal = facet->GetSurfaceNormal(); } 1197 return minDist <= kCarToleranceHalf; 1021 return minDist <= kCarToleranceHalf; 1198 } 1022 } 1199 else 1023 else 1200 { 1024 { 1201 #ifdef G4VERBOSE 1025 #ifdef G4VERBOSE 1202 std::ostringstream message; 1026 std::ostringstream message; 1203 message << "Point p is not on surface !?" 1027 message << "Point p is not on surface !?" << G4endl 1204 << " No facets found for point 1028 << " No facets found for point: " << p << " !" << G4endl 1205 << " Returning approximated va 1029 << " Returning approximated value for normal."; 1206 1030 1207 G4Exception("G4TessellatedSolid::SurfaceN 1031 G4Exception("G4TessellatedSolid::SurfaceNormal(p)", 1208 "GeomSolids1002", JustWarning 1032 "GeomSolids1002", JustWarning, message ); 1209 #endif 1033 #endif 1210 aNormal = (p.z() > 0 ? G4ThreeVector(0,0, 1034 aNormal = (p.z() > 0 ? G4ThreeVector(0,0,1) : G4ThreeVector(0,0,-1)); 1211 return false; 1035 return false; 1212 } 1036 } 1213 } 1037 } 1214 1038 1215 ///////////////////////////////////////////// 1039 /////////////////////////////////////////////////////////////////////////////// 1216 // 1040 // 1217 // G4double DistanceToIn(const G4ThreeVector& 1041 // G4double DistanceToIn(const G4ThreeVector& p, const G4ThreeVector& v) 1218 // 1042 // 1219 // Return the distance along the normalised v 1043 // Return the distance along the normalised vector v to the shape, 1220 // from the point at offset p. If there is no 1044 // from the point at offset p. If there is no intersection, return 1221 // kInfinity. The first intersection resultin 1045 // kInfinity. The first intersection resulting from 'leaving' a 1222 // surface/volume is discarded. Hence, this i 1046 // surface/volume is discarded. Hence, this is tolerant of points on 1223 // surface of shape. 1047 // surface of shape. 1224 // 1048 // 1225 G4double 1049 G4double 1226 G4TessellatedSolid::DistanceToInNoVoxels (con 1050 G4TessellatedSolid::DistanceToInNoVoxels (const G4ThreeVector& p, 1227 con 1051 const G4ThreeVector& v, 1228 1052 G4double /*aPstep*/) const 1229 { 1053 { 1230 G4double minDist = kInfinity; 1054 G4double minDist = kInfinity; 1231 G4double dist = 0.0; 1055 G4double dist = 0.0; 1232 G4double distFromSurface = 0.0; 1056 G4double distFromSurface = 0.0; 1233 G4ThreeVector normal; 1057 G4ThreeVector normal; 1234 1058 1235 #if G4SPECSDEBUG 1059 #if G4SPECSDEBUG 1236 if (Inside(p) == kInside ) 1060 if (Inside(p) == kInside ) 1237 { 1061 { 1238 std::ostringstream message; 1062 std::ostringstream message; 1239 G4int oldprc = message.precision(16) ; 1063 G4int oldprc = message.precision(16) ; 1240 message << "Point p is already inside!?" 1064 message << "Point p is already inside!?" << G4endl 1241 << "Position:" << G4endl << G4endl 1065 << "Position:" << G4endl << G4endl 1242 << " p.x() = " << p.x()/mm << " mm" 1066 << " p.x() = " << p.x()/mm << " mm" << G4endl 1243 << " p.y() = " << p.y()/mm << " mm" 1067 << " p.y() = " << p.y()/mm << " mm" << G4endl 1244 << " p.z() = " << p.z()/mm << " mm" 1068 << " p.z() = " << p.z()/mm << " mm" << G4endl 1245 << "DistanceToOut(p) == " << DistanceTo 1069 << "DistanceToOut(p) == " << DistanceToOut(p); 1246 message.precision(oldprc) ; 1070 message.precision(oldprc) ; 1247 G4Exception("G4TriangularFacet::DistanceT 1071 G4Exception("G4TriangularFacet::DistanceToIn(p,v)", 1248 "GeomSolids1002", JustWarning 1072 "GeomSolids1002", JustWarning, message); 1249 } 1073 } 1250 #endif 1074 #endif 1251 1075 1252 std::size_t size = fFacets.size(); << 1076 G4int size = fFacets.size(); 1253 for (std::size_t i = 0; i < size; ++i) << 1077 for (G4int i = 0; i < size; ++i) 1254 { 1078 { 1255 G4VFacet& facet = *fFacets[i]; 1079 G4VFacet& facet = *fFacets[i]; 1256 if (facet.Intersect(p,v,false,dist,distFr 1080 if (facet.Intersect(p,v,false,dist,distFromSurface,normal)) 1257 { 1081 { 1258 // 1082 // 1259 // set minDist to the new distance to c 1083 // set minDist to the new distance to current facet if distFromSurface 1260 // is in positive direction and point i 1084 // is in positive direction and point is not at surface. If the point is 1261 // within 0.5*kCarTolerance of the surf 1085 // within 0.5*kCarTolerance of the surface, then force distance to be 1262 // zero and leave member function immed 1086 // zero and leave member function immediately (for efficiency), as 1263 // proposed by & credit to Akira Okumur 1087 // proposed by & credit to Akira Okumura. 1264 // 1088 // 1265 if (distFromSurface > kCarToleranceHalf 1089 if (distFromSurface > kCarToleranceHalf && dist >= 0.0 && dist < minDist) 1266 { 1090 { 1267 minDist = dist; 1091 minDist = dist; 1268 } 1092 } 1269 else 1093 else 1270 { 1094 { 1271 if (-kCarToleranceHalf <= dist && dis 1095 if (-kCarToleranceHalf <= dist && dist <= kCarToleranceHalf) 1272 { 1096 { 1273 return 0.0; 1097 return 0.0; 1274 } 1098 } 1275 else 1099 else 1276 { 1100 { 1277 if (distFromSurface > -kCarToleran 1101 if (distFromSurface > -kCarToleranceHalf 1278 && distFromSurface < kCarToleran 1102 && distFromSurface < kCarToleranceHalf) 1279 { 1103 { 1280 minDist = dist; 1104 minDist = dist; 1281 } 1105 } 1282 } 1106 } 1283 } 1107 } 1284 } 1108 } 1285 } 1109 } 1286 return minDist; 1110 return minDist; 1287 } 1111 } 1288 1112 1289 ///////////////////////////////////////////// 1113 /////////////////////////////////////////////////////////////////////////////// 1290 // 1114 // 1291 G4double 1115 G4double 1292 G4TessellatedSolid::DistanceToOutNoVoxels (co 1116 G4TessellatedSolid::DistanceToOutNoVoxels (const G4ThreeVector& p, 1293 co 1117 const G4ThreeVector& v, 1294 1118 G4ThreeVector& aNormalVector, 1295 1119 G4bool& aConvex, 1296 1120 G4double /*aPstep*/) const 1297 { 1121 { 1298 G4double minDist = kInfinity; 1122 G4double minDist = kInfinity; 1299 G4double dist = 0.0; 1123 G4double dist = 0.0; 1300 G4double distFromSurface = 0.0; 1124 G4double distFromSurface = 0.0; 1301 G4ThreeVector normal, minNormal; 1125 G4ThreeVector normal, minNormal; 1302 1126 1303 #if G4SPECSDEBUG 1127 #if G4SPECSDEBUG 1304 if ( Inside(p) == kOutside ) 1128 if ( Inside(p) == kOutside ) 1305 { 1129 { 1306 std::ostringstream message; 1130 std::ostringstream message; 1307 G4int oldprc = message.precision(16) ; 1131 G4int oldprc = message.precision(16) ; 1308 message << "Point p is already outside!?" 1132 message << "Point p is already outside!?" << G4endl 1309 << "Position:" << G4endl << G4endl 1133 << "Position:" << G4endl << G4endl 1310 << " p.x() = " << p.x()/mm << " mm" 1134 << " p.x() = " << p.x()/mm << " mm" << G4endl 1311 << " p.y() = " << p.y()/mm << " mm" 1135 << " p.y() = " << p.y()/mm << " mm" << G4endl 1312 << " p.z() = " << p.z()/mm << " mm" 1136 << " p.z() = " << p.z()/mm << " mm" << G4endl 1313 << "DistanceToIn(p) == " << DistanceToI 1137 << "DistanceToIn(p) == " << DistanceToIn(p); 1314 message.precision(oldprc) ; 1138 message.precision(oldprc) ; 1315 G4Exception("G4TriangularFacet::DistanceT 1139 G4Exception("G4TriangularFacet::DistanceToOut(p)", 1316 "GeomSolids1002", JustWarning 1140 "GeomSolids1002", JustWarning, message); 1317 } 1141 } 1318 #endif 1142 #endif 1319 1143 1320 G4bool isExtreme = false; 1144 G4bool isExtreme = false; 1321 std::size_t size = fFacets.size(); << 1145 G4int size = fFacets.size(); 1322 for (std::size_t i = 0; i < size; ++i) << 1146 for (G4int i = 0; i < size; ++i) 1323 { 1147 { 1324 G4VFacet& facet = *fFacets[i]; 1148 G4VFacet& facet = *fFacets[i]; 1325 if (facet.Intersect(p,v,true,dist,distFro 1149 if (facet.Intersect(p,v,true,dist,distFromSurface,normal)) 1326 { 1150 { 1327 if (distFromSurface > 0.0 && distFromSu 1151 if (distFromSurface > 0.0 && distFromSurface <= kCarToleranceHalf 1328 && facet.Distance(p,kCarTolerance) <= 1152 && facet.Distance(p,kCarTolerance) <= kCarToleranceHalf) 1329 { 1153 { 1330 // We are on a surface. Return zero. 1154 // We are on a surface. Return zero. 1331 aConvex = (fExtremeFacets.find(&facet 1155 aConvex = (fExtremeFacets.find(&facet) != fExtremeFacets.end()); 1332 // Normal(p, aNormalVector); 1156 // Normal(p, aNormalVector); 1333 // aNormalVector = facet.GetSurfaceNo 1157 // aNormalVector = facet.GetSurfaceNormal(); 1334 aNormalVector = normal; 1158 aNormalVector = normal; 1335 return 0.0; 1159 return 0.0; 1336 } 1160 } 1337 if (dist >= 0.0 && dist < minDist) 1161 if (dist >= 0.0 && dist < minDist) 1338 { 1162 { 1339 minDist = dist; 1163 minDist = dist; 1340 minNormal = normal; 1164 minNormal = normal; 1341 isExtreme = (fExtremeFacets.find(&fac 1165 isExtreme = (fExtremeFacets.find(&facet) != fExtremeFacets.end()); 1342 } 1166 } 1343 } 1167 } 1344 } 1168 } 1345 if (minDist < kInfinity) 1169 if (minDist < kInfinity) 1346 { 1170 { 1347 aNormalVector = minNormal; 1171 aNormalVector = minNormal; 1348 aConvex = isExtreme; 1172 aConvex = isExtreme; 1349 return minDist; 1173 return minDist; 1350 } 1174 } 1351 else 1175 else 1352 { 1176 { 1353 // No intersection found 1177 // No intersection found 1354 aConvex = false; 1178 aConvex = false; 1355 Normal(p, aNormalVector); 1179 Normal(p, aNormalVector); 1356 return 0.0; 1180 return 0.0; 1357 } 1181 } 1358 } 1182 } 1359 1183 1360 ///////////////////////////////////////////// 1184 /////////////////////////////////////////////////////////////////////////////// 1361 // 1185 // 1362 void G4TessellatedSolid:: 1186 void G4TessellatedSolid:: 1363 DistanceToOutCandidates(const std::vector<G4i 1187 DistanceToOutCandidates(const std::vector<G4int>& candidates, 1364 const G4ThreeVector& 1188 const G4ThreeVector& aPoint, 1365 const G4ThreeVector& 1189 const G4ThreeVector& direction, 1366 G4double& minDi 1190 G4double& minDist, G4ThreeVector& minNormal, 1367 G4int& minCandi 1191 G4int& minCandidate ) const 1368 { 1192 { 1369 auto candidatesCount = (G4int)candidates.si << 1193 G4int candidatesCount = candidates.size(); 1370 G4double dist = 0.0; 1194 G4double dist = 0.0; 1371 G4double distFromSurface = 0.0; 1195 G4double distFromSurface = 0.0; 1372 G4ThreeVector normal; 1196 G4ThreeVector normal; 1373 1197 1374 for (G4int i = 0 ; i < candidatesCount; ++i 1198 for (G4int i = 0 ; i < candidatesCount; ++i) 1375 { 1199 { 1376 G4int candidate = candidates[i]; 1200 G4int candidate = candidates[i]; 1377 G4VFacet& facet = *fFacets[candidate]; 1201 G4VFacet& facet = *fFacets[candidate]; 1378 if (facet.Intersect(aPoint,direction,true 1202 if (facet.Intersect(aPoint,direction,true,dist,distFromSurface,normal)) 1379 { 1203 { 1380 if (distFromSurface > 0.0 && distFromSu 1204 if (distFromSurface > 0.0 && distFromSurface <= kCarToleranceHalf 1381 && facet.Distance(aPoint,kCarTolerance 1205 && facet.Distance(aPoint,kCarTolerance) <= kCarToleranceHalf) 1382 { 1206 { 1383 // We are on a surface 1207 // We are on a surface 1384 // 1208 // 1385 minDist = 0.0; 1209 minDist = 0.0; 1386 minNormal = normal; 1210 minNormal = normal; 1387 minCandidate = candidate; 1211 minCandidate = candidate; 1388 break; 1212 break; 1389 } 1213 } 1390 if (dist >= 0.0 && dist < minDist) 1214 if (dist >= 0.0 && dist < minDist) 1391 { 1215 { 1392 minDist = dist; 1216 minDist = dist; 1393 minNormal = normal; 1217 minNormal = normal; 1394 minCandidate = candidate; 1218 minCandidate = candidate; 1395 } 1219 } 1396 } 1220 } 1397 } 1221 } 1398 } 1222 } 1399 1223 1400 ///////////////////////////////////////////// 1224 /////////////////////////////////////////////////////////////////////////////// 1401 // 1225 // 1402 G4double 1226 G4double 1403 G4TessellatedSolid::DistanceToOutCore(const G 1227 G4TessellatedSolid::DistanceToOutCore(const G4ThreeVector& aPoint, 1404 const G 1228 const G4ThreeVector& aDirection, 1405 G 1229 G4ThreeVector& aNormalVector, 1406 G 1230 G4bool &aConvex, 1407 G 1231 G4double aPstep) const 1408 { 1232 { 1409 G4double minDistance; 1233 G4double minDistance; 1410 1234 1411 if (fVoxels.GetCountOfVoxels() > 1) 1235 if (fVoxels.GetCountOfVoxels() > 1) 1412 { 1236 { 1413 minDistance = kInfinity; 1237 minDistance = kInfinity; 1414 1238 1415 G4ThreeVector currentPoint = aPoint; 1239 G4ThreeVector currentPoint = aPoint; 1416 G4ThreeVector direction = aDirection.unit 1240 G4ThreeVector direction = aDirection.unit(); 1417 G4double totalShift = 0.; 1241 G4double totalShift = 0.; 1418 vector<G4int> curVoxel(3); 1242 vector<G4int> curVoxel(3); 1419 if (!fVoxels.Contains(aPoint)) return 0.; 1243 if (!fVoxels.Contains(aPoint)) return 0.; 1420 1244 1421 fVoxels.GetVoxel(curVoxel, currentPoint); 1245 fVoxels.GetVoxel(curVoxel, currentPoint); 1422 1246 1423 G4double shiftBonus = kCarTolerance; 1247 G4double shiftBonus = kCarTolerance; 1424 1248 1425 const vector<G4int>* old = nullptr; 1249 const vector<G4int>* old = nullptr; 1426 1250 1427 G4int minCandidate = -1; 1251 G4int minCandidate = -1; 1428 do // Loop checking, 13.08.2015, G.Cos 1252 do // Loop checking, 13.08.2015, G.Cosmo 1429 { 1253 { 1430 const vector<G4int>& candidates = fVoxe 1254 const vector<G4int>& candidates = fVoxels.GetCandidates(curVoxel); 1431 if (old == &candidates) 1255 if (old == &candidates) 1432 ++old; 1256 ++old; 1433 if (old != &candidates && !candidates.e << 1257 if (old != &candidates && candidates.size()) 1434 { 1258 { 1435 DistanceToOutCandidates(candidates, a 1259 DistanceToOutCandidates(candidates, aPoint, direction, minDistance, 1436 aNormalVector << 1260 aNormalVector, minCandidate); 1437 if (minDistance <= totalShift) break; << 1261 if (minDistance <= totalShift) break; 1438 } 1262 } 1439 1263 1440 G4double shift=fVoxels.DistanceToNext(c 1264 G4double shift=fVoxels.DistanceToNext(currentPoint, direction, curVoxel); 1441 if (shift == kInfinity) break; 1265 if (shift == kInfinity) break; 1442 1266 1443 totalShift += shift; 1267 totalShift += shift; 1444 if (minDistance <= totalShift) break; 1268 if (minDistance <= totalShift) break; 1445 1269 1446 currentPoint += direction * (shift + sh 1270 currentPoint += direction * (shift + shiftBonus); 1447 1271 1448 old = &candidates; 1272 old = &candidates; 1449 } 1273 } 1450 while (fVoxels.UpdateCurrentVoxel(current 1274 while (fVoxels.UpdateCurrentVoxel(currentPoint, direction, curVoxel)); 1451 1275 1452 if (minCandidate < 0) 1276 if (minCandidate < 0) 1453 { 1277 { 1454 // No intersection found 1278 // No intersection found 1455 minDistance = 0.; 1279 minDistance = 0.; 1456 aConvex = false; 1280 aConvex = false; 1457 Normal(aPoint, aNormalVector); 1281 Normal(aPoint, aNormalVector); 1458 } 1282 } 1459 else 1283 else 1460 { 1284 { 1461 aConvex = (fExtremeFacets.find(fFacets[ 1285 aConvex = (fExtremeFacets.find(fFacets[minCandidate]) 1462 != fExtremeFacets.end()); 1286 != fExtremeFacets.end()); 1463 } 1287 } 1464 } 1288 } 1465 else 1289 else 1466 { 1290 { 1467 minDistance = DistanceToOutNoVoxels(aPoin 1291 minDistance = DistanceToOutNoVoxels(aPoint, aDirection, aNormalVector, 1468 aConv 1292 aConvex, aPstep); 1469 } 1293 } 1470 return minDistance; 1294 return minDistance; 1471 } 1295 } 1472 1296 1473 ///////////////////////////////////////////// 1297 /////////////////////////////////////////////////////////////////////////////// 1474 // 1298 // 1475 G4double G4TessellatedSolid:: 1299 G4double G4TessellatedSolid:: 1476 DistanceToInCandidates(const std::vector<G4in 1300 DistanceToInCandidates(const std::vector<G4int>& candidates, 1477 const G4ThreeVector& a 1301 const G4ThreeVector& aPoint, 1478 const G4ThreeVector& d 1302 const G4ThreeVector& direction) const 1479 { 1303 { 1480 auto candidatesCount = (G4int)candidates.si << 1304 G4int candidatesCount = candidates.size(); 1481 G4double dist = 0.0; 1305 G4double dist = 0.0; 1482 G4double distFromSurface = 0.0; 1306 G4double distFromSurface = 0.0; 1483 G4ThreeVector normal; 1307 G4ThreeVector normal; 1484 1308 1485 G4double minDistance = kInfinity; << 1309 G4double minDistance = kInfinity; 1486 for (G4int i = 0 ; i < candidatesCount; ++i 1310 for (G4int i = 0 ; i < candidatesCount; ++i) 1487 { 1311 { 1488 G4int candidate = candidates[i]; 1312 G4int candidate = candidates[i]; 1489 G4VFacet& facet = *fFacets[candidate]; 1313 G4VFacet& facet = *fFacets[candidate]; 1490 if (facet.Intersect(aPoint,direction,fals 1314 if (facet.Intersect(aPoint,direction,false,dist,distFromSurface,normal)) 1491 { 1315 { 1492 // 1316 // 1493 // Set minDist to the new distance to c 1317 // Set minDist to the new distance to current facet if distFromSurface is 1494 // in positive direction and point is n 1318 // in positive direction and point is not at surface. If the point is 1495 // within 0.5*kCarTolerance of the surf 1319 // within 0.5*kCarTolerance of the surface, then force distance to be 1496 // zero and leave member function immed 1320 // zero and leave member function immediately (for efficiency), as 1497 // proposed by & credit to Akira Okumur 1321 // proposed by & credit to Akira Okumura. 1498 // 1322 // 1499 if ( (distFromSurface > kCarToleranceHa 1323 if ( (distFromSurface > kCarToleranceHalf) 1500 && (dist >= 0.0) && (dist < minDistan 1324 && (dist >= 0.0) && (dist < minDistance)) 1501 { 1325 { 1502 minDistance = dist; 1326 minDistance = dist; 1503 } 1327 } 1504 else 1328 else 1505 { 1329 { 1506 if (-kCarToleranceHalf <= dist && dis 1330 if (-kCarToleranceHalf <= dist && dist <= kCarToleranceHalf) 1507 { 1331 { 1508 return 0.0; 1332 return 0.0; 1509 } 1333 } 1510 else if (distFromSurface > -kCarTole 1334 else if (distFromSurface > -kCarToleranceHalf 1511 && distFromSurface < kCarTole 1335 && distFromSurface < kCarToleranceHalf) 1512 { 1336 { 1513 minDistance = dist; << 1337 minDistance = dist; 1514 } 1338 } 1515 } 1339 } 1516 } 1340 } 1517 } 1341 } 1518 return minDistance; 1342 return minDistance; 1519 } 1343 } 1520 1344 1521 ///////////////////////////////////////////// 1345 /////////////////////////////////////////////////////////////////////////////// 1522 // 1346 // 1523 G4double 1347 G4double 1524 G4TessellatedSolid::DistanceToInCore(const G4 1348 G4TessellatedSolid::DistanceToInCore(const G4ThreeVector& aPoint, 1525 const G4 1349 const G4ThreeVector& aDirection, 1526 G4 1350 G4double aPstep) const 1527 { 1351 { 1528 G4double minDistance; 1352 G4double minDistance; 1529 1353 1530 if (fVoxels.GetCountOfVoxels() > 1) 1354 if (fVoxels.GetCountOfVoxels() > 1) 1531 { 1355 { 1532 minDistance = kInfinity; 1356 minDistance = kInfinity; 1533 G4ThreeVector currentPoint = aPoint; 1357 G4ThreeVector currentPoint = aPoint; 1534 G4ThreeVector direction = aDirection.unit 1358 G4ThreeVector direction = aDirection.unit(); 1535 G4double shift = fVoxels.DistanceToFirst( 1359 G4double shift = fVoxels.DistanceToFirst(currentPoint, direction); 1536 if (shift == kInfinity) return shift; 1360 if (shift == kInfinity) return shift; 1537 G4double shiftBonus = kCarTolerance; 1361 G4double shiftBonus = kCarTolerance; 1538 if (shift != 0.0) << 1362 if (shift) 1539 currentPoint += direction * (shift + sh 1363 currentPoint += direction * (shift + shiftBonus); 1540 // if (!fVoxels.Contains(currentPoint)) 1364 // if (!fVoxels.Contains(currentPoint)) return minDistance; 1541 G4double totalShift = shift; 1365 G4double totalShift = shift; 1542 1366 1543 // G4SurfBits exclusion; // (1/*fVoxels.G 1367 // G4SurfBits exclusion; // (1/*fVoxels.GetBitsPerSlice()*/); 1544 vector<G4int> curVoxel(3); 1368 vector<G4int> curVoxel(3); 1545 1369 1546 fVoxels.GetVoxel(curVoxel, currentPoint); 1370 fVoxels.GetVoxel(curVoxel, currentPoint); 1547 do // Loop checking, 13.08.2015, G.Cos 1371 do // Loop checking, 13.08.2015, G.Cosmo 1548 { 1372 { 1549 const vector<G4int>& candidates = fVoxe 1373 const vector<G4int>& candidates = fVoxels.GetCandidates(curVoxel); 1550 if (!candidates.empty()) << 1374 if (candidates.size()) 1551 { 1375 { 1552 G4double distance=DistanceToInCandida 1376 G4double distance=DistanceToInCandidates(candidates, aPoint, direction); 1553 if (minDistance > distance) minDistan 1377 if (minDistance > distance) minDistance = distance; 1554 if (distance < totalShift) break; 1378 if (distance < totalShift) break; 1555 } 1379 } 1556 1380 1557 shift = fVoxels.DistanceToNext(currentP 1381 shift = fVoxels.DistanceToNext(currentPoint, direction, curVoxel); 1558 if (shift == kInfinity /*|| shift == 0* 1382 if (shift == kInfinity /*|| shift == 0*/) break; 1559 1383 1560 totalShift += shift; 1384 totalShift += shift; 1561 if (minDistance < totalShift) break; 1385 if (minDistance < totalShift) break; 1562 1386 1563 currentPoint += direction * (shift + sh 1387 currentPoint += direction * (shift + shiftBonus); 1564 } 1388 } 1565 while (fVoxels.UpdateCurrentVoxel(current 1389 while (fVoxels.UpdateCurrentVoxel(currentPoint, direction, curVoxel)); 1566 } 1390 } 1567 else 1391 else 1568 { 1392 { 1569 minDistance = DistanceToInNoVoxels(aPoint 1393 minDistance = DistanceToInNoVoxels(aPoint, aDirection, aPstep); 1570 } 1394 } 1571 1395 1572 return minDistance; 1396 return minDistance; 1573 } 1397 } 1574 1398 1575 ///////////////////////////////////////////// 1399 /////////////////////////////////////////////////////////////////////////////// 1576 // 1400 // 1577 G4bool 1401 G4bool 1578 G4TessellatedSolid::CompareSortedVoxel(const 1402 G4TessellatedSolid::CompareSortedVoxel(const std::pair<G4int, G4double>& l, 1579 const 1403 const std::pair<G4int, G4double>& r) 1580 { 1404 { 1581 return l.second < r.second; 1405 return l.second < r.second; 1582 } 1406 } 1583 1407 1584 ///////////////////////////////////////////// 1408 /////////////////////////////////////////////////////////////////////////////// 1585 // 1409 // 1586 G4double 1410 G4double 1587 G4TessellatedSolid::MinDistanceFacet(const G4 1411 G4TessellatedSolid::MinDistanceFacet(const G4ThreeVector& p, 1588 G4 1412 G4bool simple, 1589 G4 1413 G4VFacet* &minFacet) const 1590 { 1414 { 1591 G4double minDist = kInfinity; 1415 G4double minDist = kInfinity; 1592 1416 1593 G4int size = fVoxels.GetVoxelBoxesSize(); 1417 G4int size = fVoxels.GetVoxelBoxesSize(); 1594 vector<pair<G4int, G4double> > voxelsSorted 1418 vector<pair<G4int, G4double> > voxelsSorted(size); 1595 << 1419 1596 pair<G4int, G4double> info; 1420 pair<G4int, G4double> info; 1597 1421 1598 for (G4int i = 0; i < size; ++i) 1422 for (G4int i = 0; i < size; ++i) 1599 { 1423 { 1600 const G4VoxelBox& voxelBox = fVoxels.GetV 1424 const G4VoxelBox& voxelBox = fVoxels.GetVoxelBox(i); 1601 1425 1602 G4ThreeVector pointShifted = p - voxelBox 1426 G4ThreeVector pointShifted = p - voxelBox.pos; 1603 G4double safety = fVoxels.MinDistanceToBo 1427 G4double safety = fVoxels.MinDistanceToBox(pointShifted, voxelBox.hlen); 1604 info.first = i; 1428 info.first = i; 1605 info.second = safety; 1429 info.second = safety; 1606 voxelsSorted[i] = info; 1430 voxelsSorted[i] = info; 1607 } 1431 } 1608 1432 1609 std::sort(voxelsSorted.begin(), voxelsSorte 1433 std::sort(voxelsSorted.begin(), voxelsSorted.end(), 1610 &G4TessellatedSolid::CompareSorte 1434 &G4TessellatedSolid::CompareSortedVoxel); 1611 1435 1612 for (G4int i = 0; i < size; ++i) 1436 for (G4int i = 0; i < size; ++i) 1613 { 1437 { 1614 const pair<G4int,G4double>& inf = voxelsS 1438 const pair<G4int,G4double>& inf = voxelsSorted[i]; 1615 G4double dist = inf.second; 1439 G4double dist = inf.second; 1616 if (dist > minDist) break; 1440 if (dist > minDist) break; 1617 1441 1618 const vector<G4int>& candidates = fVoxels 1442 const vector<G4int>& candidates = fVoxels.GetVoxelBoxCandidates(inf.first); 1619 auto csize = (G4int)candidates.size(); << 1443 G4int csize = candidates.size(); 1620 for (G4int j = 0; j < csize; ++j) 1444 for (G4int j = 0; j < csize; ++j) 1621 { 1445 { 1622 G4int candidate = candidates[j]; 1446 G4int candidate = candidates[j]; 1623 G4VFacet& facet = *fFacets[candidate]; 1447 G4VFacet& facet = *fFacets[candidate]; 1624 dist = simple ? facet.Distance(p,minDis 1448 dist = simple ? facet.Distance(p,minDist) 1625 : facet.Distance(p,minDis 1449 : facet.Distance(p,minDist,false); 1626 if (dist < minDist) 1450 if (dist < minDist) 1627 { 1451 { 1628 minDist = dist; 1452 minDist = dist; 1629 minFacet = &facet; 1453 minFacet = &facet; 1630 } 1454 } 1631 } 1455 } 1632 } 1456 } 1633 return minDist; 1457 return minDist; 1634 } 1458 } 1635 1459 1636 ///////////////////////////////////////////// 1460 /////////////////////////////////////////////////////////////////////////////// 1637 // 1461 // 1638 G4double G4TessellatedSolid::SafetyFromOutsid 1462 G4double G4TessellatedSolid::SafetyFromOutside (const G4ThreeVector& p, 1639 1463 G4bool aAccurate) const 1640 { 1464 { 1641 #if G4SPECSDEBUG 1465 #if G4SPECSDEBUG 1642 if ( Inside(p) == kInside ) 1466 if ( Inside(p) == kInside ) 1643 { 1467 { 1644 std::ostringstream message; 1468 std::ostringstream message; 1645 G4int oldprc = message.precision(16) ; 1469 G4int oldprc = message.precision(16) ; 1646 message << "Point p is already inside!?" 1470 message << "Point p is already inside!?" << G4endl 1647 << "Position:" << G4endl << G4endl 1471 << "Position:" << G4endl << G4endl 1648 << "p.x() = " << p.x()/mm << " mm" << 1472 << "p.x() = " << p.x()/mm << " mm" << G4endl 1649 << "p.y() = " << p.y()/mm << " mm" << 1473 << "p.y() = " << p.y()/mm << " mm" << G4endl 1650 << "p.z() = " << p.z()/mm << " mm" << 1474 << "p.z() = " << p.z()/mm << " mm" << G4endl 1651 << "DistanceToOut(p) == " << DistanceTo 1475 << "DistanceToOut(p) == " << DistanceToOut(p); 1652 message.precision(oldprc) ; 1476 message.precision(oldprc) ; 1653 G4Exception("G4TriangularFacet::DistanceT 1477 G4Exception("G4TriangularFacet::DistanceToIn(p)", 1654 "GeomSolids1002", JustWarning 1478 "GeomSolids1002", JustWarning, message); 1655 } 1479 } 1656 #endif 1480 #endif 1657 1481 1658 G4double minDist; 1482 G4double minDist; 1659 1483 1660 if (fVoxels.GetCountOfVoxels() > 1) 1484 if (fVoxels.GetCountOfVoxels() > 1) 1661 { 1485 { 1662 if (!aAccurate) 1486 if (!aAccurate) 1663 return fVoxels.DistanceToBoundingBox(p) 1487 return fVoxels.DistanceToBoundingBox(p); 1664 1488 1665 if (!OutsideOfExtent(p, kCarTolerance)) 1489 if (!OutsideOfExtent(p, kCarTolerance)) 1666 { 1490 { 1667 vector<G4int> startingVoxel(3); 1491 vector<G4int> startingVoxel(3); 1668 fVoxels.GetVoxel(startingVoxel, p); 1492 fVoxels.GetVoxel(startingVoxel, p); 1669 const vector<G4int> &candidates = fVoxe 1493 const vector<G4int> &candidates = fVoxels.GetCandidates(startingVoxel); 1670 if (candidates.empty() && (fInsides.Get << 1494 if (candidates.size() == 0 && fInsides.GetNbits()) 1671 { 1495 { 1672 G4int index = fVoxels.GetPointIndex(p 1496 G4int index = fVoxels.GetPointIndex(p); 1673 if (fInsides[index]) return 0.; 1497 if (fInsides[index]) return 0.; 1674 } 1498 } 1675 } 1499 } 1676 1500 1677 G4VFacet* facet; 1501 G4VFacet* facet; 1678 minDist = MinDistanceFacet(p, true, facet 1502 minDist = MinDistanceFacet(p, true, facet); 1679 } 1503 } 1680 else 1504 else 1681 { 1505 { 1682 minDist = kInfinity; 1506 minDist = kInfinity; 1683 std::size_t size = fFacets.size(); << 1507 G4int size = fFacets.size(); 1684 for (std::size_t i = 0; i < size; ++i) << 1508 for (G4int i = 0; i < size; ++i) 1685 { 1509 { 1686 G4VFacet& facet = *fFacets[i]; 1510 G4VFacet& facet = *fFacets[i]; 1687 G4double dist = facet.Distance(p,minDis 1511 G4double dist = facet.Distance(p,minDist); 1688 if (dist < minDist) minDist = dist; 1512 if (dist < minDist) minDist = dist; 1689 } 1513 } 1690 } 1514 } 1691 return minDist; 1515 return minDist; 1692 } 1516 } 1693 1517 1694 ///////////////////////////////////////////// 1518 /////////////////////////////////////////////////////////////////////////////// 1695 // 1519 // 1696 G4double 1520 G4double 1697 G4TessellatedSolid::SafetyFromInside (const G 1521 G4TessellatedSolid::SafetyFromInside (const G4ThreeVector& p, G4bool) const 1698 { << 1522 { 1699 #if G4SPECSDEBUG 1523 #if G4SPECSDEBUG 1700 if ( Inside(p) == kOutside ) 1524 if ( Inside(p) == kOutside ) 1701 { 1525 { 1702 std::ostringstream message; 1526 std::ostringstream message; 1703 G4int oldprc = message.precision(16) ; 1527 G4int oldprc = message.precision(16) ; 1704 message << "Point p is already outside!?" 1528 message << "Point p is already outside!?" << G4endl 1705 << "Position:" << G4endl << G4endl 1529 << "Position:" << G4endl << G4endl 1706 << "p.x() = " << p.x()/mm << " mm" << 1530 << "p.x() = " << p.x()/mm << " mm" << G4endl 1707 << "p.y() = " << p.y()/mm << " mm" << 1531 << "p.y() = " << p.y()/mm << " mm" << G4endl 1708 << "p.z() = " << p.z()/mm << " mm" << 1532 << "p.z() = " << p.z()/mm << " mm" << G4endl 1709 << "DistanceToIn(p) == " << DistanceToI 1533 << "DistanceToIn(p) == " << DistanceToIn(p); 1710 message.precision(oldprc) ; 1534 message.precision(oldprc) ; 1711 G4Exception("G4TriangularFacet::DistanceT 1535 G4Exception("G4TriangularFacet::DistanceToOut(p)", 1712 "GeomSolids1002", JustWarning 1536 "GeomSolids1002", JustWarning, message); 1713 } 1537 } 1714 #endif 1538 #endif 1715 1539 1716 G4double minDist; 1540 G4double minDist; 1717 1541 1718 if (OutsideOfExtent(p, kCarTolerance)) retu 1542 if (OutsideOfExtent(p, kCarTolerance)) return 0.0; 1719 1543 1720 if (fVoxels.GetCountOfVoxels() > 1) 1544 if (fVoxels.GetCountOfVoxels() > 1) 1721 { 1545 { 1722 G4VFacet* facet; 1546 G4VFacet* facet; 1723 minDist = MinDistanceFacet(p, true, facet 1547 minDist = MinDistanceFacet(p, true, facet); 1724 } 1548 } 1725 else 1549 else 1726 { 1550 { 1727 minDist = kInfinity; 1551 minDist = kInfinity; 1728 G4double dist = 0.0; 1552 G4double dist = 0.0; 1729 std::size_t size = fFacets.size(); << 1553 G4int size = fFacets.size(); 1730 for (std::size_t i = 0; i < size; ++i) << 1554 for (G4int i = 0; i < size; ++i) 1731 { 1555 { 1732 G4VFacet& facet = *fFacets[i]; 1556 G4VFacet& facet = *fFacets[i]; 1733 dist = facet.Distance(p,minDist); 1557 dist = facet.Distance(p,minDist); 1734 if (dist < minDist) minDist = dist; 1558 if (dist < minDist) minDist = dist; 1735 } 1559 } 1736 } 1560 } 1737 return minDist; 1561 return minDist; 1738 } 1562 } 1739 1563 1740 ///////////////////////////////////////////// 1564 /////////////////////////////////////////////////////////////////////////////// 1741 // 1565 // 1742 // G4GeometryType GetEntityType() const; 1566 // G4GeometryType GetEntityType() const; 1743 // 1567 // 1744 // Provide identification of the class of an 1568 // Provide identification of the class of an object 1745 // 1569 // 1746 G4GeometryType G4TessellatedSolid::GetEntityT 1570 G4GeometryType G4TessellatedSolid::GetEntityType () const 1747 { 1571 { 1748 return fGeometryType; 1572 return fGeometryType; 1749 } 1573 } 1750 1574 1751 ///////////////////////////////////////////// 1575 /////////////////////////////////////////////////////////////////////////////// 1752 // 1576 // 1753 // IsFaceted << 1754 // << 1755 G4bool G4TessellatedSolid::IsFaceted () const << 1756 { << 1757 return true; << 1758 } << 1759 << 1760 ///////////////////////////////////////////// << 1761 // << 1762 std::ostream &G4TessellatedSolid::StreamInfo( 1577 std::ostream &G4TessellatedSolid::StreamInfo(std::ostream &os) const 1763 { 1578 { 1764 os << G4endl; 1579 os << G4endl; 1765 os << "Solid name = " << GetName() 1580 os << "Solid name = " << GetName() << G4endl; 1766 os << "Geometry Type = " << fGeometryTyp 1581 os << "Geometry Type = " << fGeometryType << G4endl; 1767 os << "Number of facets = " << fFacets.size 1582 os << "Number of facets = " << fFacets.size() << G4endl; 1768 1583 1769 std::size_t size = fFacets.size(); << 1584 G4int size = fFacets.size(); 1770 for (std::size_t i = 0; i < size; ++i) << 1585 for (G4int i = 0; i < size; ++i) 1771 { 1586 { 1772 os << "FACET # = " << i + 1 << G 1587 os << "FACET # = " << i + 1 << G4endl; 1773 G4VFacet &facet = *fFacets[i]; 1588 G4VFacet &facet = *fFacets[i]; 1774 facet.StreamInfo(os); 1589 facet.StreamInfo(os); 1775 } 1590 } 1776 os << G4endl; 1591 os << G4endl; 1777 1592 1778 return os; 1593 return os; 1779 } 1594 } 1780 1595 1781 ///////////////////////////////////////////// 1596 /////////////////////////////////////////////////////////////////////////////// 1782 // 1597 // 1783 // Make a clone of the object 1598 // Make a clone of the object 1784 // 1599 // 1785 G4VSolid* G4TessellatedSolid::Clone() const 1600 G4VSolid* G4TessellatedSolid::Clone() const 1786 { 1601 { 1787 return new G4TessellatedSolid(*this); 1602 return new G4TessellatedSolid(*this); 1788 } 1603 } 1789 1604 1790 ///////////////////////////////////////////// 1605 /////////////////////////////////////////////////////////////////////////////// 1791 // 1606 // 1792 // EInside G4TessellatedSolid::Inside (const 1607 // EInside G4TessellatedSolid::Inside (const G4ThreeVector &p) const 1793 // 1608 // 1794 // This method must return: 1609 // This method must return: 1795 // * kOutside if the point at offset p is 1610 // * kOutside if the point at offset p is outside the shape 1796 // boundaries plus kCarTolerance/2, 1611 // boundaries plus kCarTolerance/2, 1797 // * kSurface if the point is <= kCarToler 1612 // * kSurface if the point is <= kCarTolerance/2 from a surface, or 1798 // * kInside otherwise. 1613 // * kInside otherwise. 1799 // 1614 // 1800 EInside G4TessellatedSolid::Inside (const G4T 1615 EInside G4TessellatedSolid::Inside (const G4ThreeVector& aPoint) const 1801 { 1616 { 1802 EInside location; 1617 EInside location; 1803 1618 1804 if (fVoxels.GetCountOfVoxels() > 1) 1619 if (fVoxels.GetCountOfVoxels() > 1) 1805 { 1620 { 1806 location = InsideVoxels(aPoint); 1621 location = InsideVoxels(aPoint); 1807 } 1622 } 1808 else 1623 else 1809 { 1624 { 1810 location = InsideNoVoxels(aPoint); 1625 location = InsideNoVoxels(aPoint); 1811 } 1626 } 1812 return location; 1627 return location; 1813 } 1628 } 1814 1629 1815 ///////////////////////////////////////////// 1630 /////////////////////////////////////////////////////////////////////////////// 1816 // 1631 // 1817 G4ThreeVector G4TessellatedSolid::SurfaceNorm 1632 G4ThreeVector G4TessellatedSolid::SurfaceNormal(const G4ThreeVector& p) const 1818 { 1633 { 1819 G4ThreeVector n; 1634 G4ThreeVector n; 1820 Normal(p, n); 1635 Normal(p, n); 1821 return n; 1636 return n; 1822 } 1637 } 1823 1638 1824 ///////////////////////////////////////////// 1639 /////////////////////////////////////////////////////////////////////////////// 1825 // 1640 // 1826 // G4double DistanceToIn(const G4ThreeVector& 1641 // G4double DistanceToIn(const G4ThreeVector& p) 1827 // 1642 // 1828 // Calculate distance to nearest surface of s 1643 // Calculate distance to nearest surface of shape from an outside point p. The 1829 // distance can be an underestimate. 1644 // distance can be an underestimate. 1830 // 1645 // 1831 G4double G4TessellatedSolid::DistanceToIn(con 1646 G4double G4TessellatedSolid::DistanceToIn(const G4ThreeVector& p) const 1832 { 1647 { 1833 return SafetyFromOutside(p, false); 1648 return SafetyFromOutside(p, false); 1834 } 1649 } 1835 1650 1836 ///////////////////////////////////////////// 1651 /////////////////////////////////////////////////////////////////////////////// 1837 // 1652 // 1838 G4double G4TessellatedSolid::DistanceToIn(con 1653 G4double G4TessellatedSolid::DistanceToIn(const G4ThreeVector& p, 1839 con 1654 const G4ThreeVector& v)const 1840 { 1655 { 1841 G4double dist = DistanceToInCore(p,v,kInfin 1656 G4double dist = DistanceToInCore(p,v,kInfinity); 1842 #ifdef G4SPECSDEBUG 1657 #ifdef G4SPECSDEBUG 1843 if (dist < kInfinity) 1658 if (dist < kInfinity) 1844 { 1659 { 1845 if (Inside(p + dist*v) != kSurface) 1660 if (Inside(p + dist*v) != kSurface) 1846 { 1661 { 1847 std::ostringstream message; 1662 std::ostringstream message; 1848 message << "Invalid response from facet 1663 message << "Invalid response from facet in solid '" << GetName() << "'," 1849 << G4endl 1664 << G4endl 1850 << "at point: " << p << "and d 1665 << "at point: " << p << "and direction: " << v; 1851 G4Exception("G4TessellatedSolid::Distan 1666 G4Exception("G4TessellatedSolid::DistanceToIn(p,v)", 1852 "GeomSolids1002", JustWarni 1667 "GeomSolids1002", JustWarning, message); 1853 } 1668 } 1854 } 1669 } 1855 #endif 1670 #endif 1856 return dist; 1671 return dist; 1857 } 1672 } 1858 1673 1859 ///////////////////////////////////////////// 1674 /////////////////////////////////////////////////////////////////////////////// 1860 // 1675 // 1861 // G4double DistanceToOut(const G4ThreeVector 1676 // G4double DistanceToOut(const G4ThreeVector& p) 1862 // 1677 // 1863 // Calculate distance to nearest surface of s 1678 // Calculate distance to nearest surface of shape from an inside 1864 // point. The distance can be an underestimat 1679 // point. The distance can be an underestimate. 1865 // 1680 // 1866 G4double G4TessellatedSolid::DistanceToOut(co 1681 G4double G4TessellatedSolid::DistanceToOut(const G4ThreeVector& p) const 1867 { 1682 { 1868 return SafetyFromInside(p, false); 1683 return SafetyFromInside(p, false); 1869 } 1684 } 1870 1685 1871 ///////////////////////////////////////////// 1686 /////////////////////////////////////////////////////////////////////////////// 1872 // 1687 // 1873 // G4double DistanceToOut(const G4ThreeVector 1688 // G4double DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v, 1874 // const G4bool calcNo 1689 // const G4bool calcNorm=false, 1875 // G4bool *validNorm=0 1690 // G4bool *validNorm=0, G4ThreeVector *n=0); 1876 // 1691 // 1877 // Return distance along the normalised vecto 1692 // Return distance along the normalised vector v to the shape, from a 1878 // point at an offset p inside or on the surf 1693 // point at an offset p inside or on the surface of the 1879 // shape. Intersections with surfaces, when t 1694 // shape. Intersections with surfaces, when the point is not greater 1880 // than kCarTolerance/2 from a surface, must 1695 // than kCarTolerance/2 from a surface, must be ignored. 1881 // If calcNorm is true, then it must also 1696 // If calcNorm is true, then it must also set validNorm to either 1882 // * true, if the solid lies entirely beh 1697 // * true, if the solid lies entirely behind or on the exiting 1883 // surface. Then it must set n to the 1698 // surface. Then it must set n to the outwards normal vector 1884 // (the Magnitude of the vector is not 1699 // (the Magnitude of the vector is not defined). 1885 // * false, if the solid does not lie ent 1700 // * false, if the solid does not lie entirely behind or on the 1886 // exiting surface. 1701 // exiting surface. 1887 // If calcNorm is false, then validNorm and n 1702 // If calcNorm is false, then validNorm and n are unused. 1888 // 1703 // 1889 G4double G4TessellatedSolid::DistanceToOut(co 1704 G4double G4TessellatedSolid::DistanceToOut(const G4ThreeVector& p, 1890 co 1705 const G4ThreeVector& v, 1891 co 1706 const G4bool calcNorm, 1892 1707 G4bool* validNorm, 1893 1708 G4ThreeVector* norm) const 1894 { 1709 { 1895 G4ThreeVector n; 1710 G4ThreeVector n; 1896 G4bool valid; 1711 G4bool valid; 1897 1712 1898 G4double dist = DistanceToOutCore(p, v, n, 1713 G4double dist = DistanceToOutCore(p, v, n, valid); 1899 if (calcNorm) 1714 if (calcNorm) 1900 { 1715 { 1901 *norm = n; 1716 *norm = n; 1902 *validNorm = valid; 1717 *validNorm = valid; 1903 } 1718 } 1904 #ifdef G4SPECSDEBUG 1719 #ifdef G4SPECSDEBUG 1905 if (dist < kInfinity) 1720 if (dist < kInfinity) 1906 { 1721 { 1907 if (Inside(p + dist*v) != kSurface) 1722 if (Inside(p + dist*v) != kSurface) 1908 { 1723 { 1909 std::ostringstream message; 1724 std::ostringstream message; 1910 message << "Invalid response from facet 1725 message << "Invalid response from facet in solid '" << GetName() << "'," 1911 << G4endl 1726 << G4endl 1912 << "at point: " << p << "and d 1727 << "at point: " << p << "and direction: " << v; 1913 G4Exception("G4TessellatedSolid::Distan 1728 G4Exception("G4TessellatedSolid::DistanceToOut(p,v,..)", 1914 "GeomSolids1002", JustWarni 1729 "GeomSolids1002", JustWarning, message); 1915 } 1730 } 1916 } 1731 } 1917 #endif 1732 #endif 1918 return dist; 1733 return dist; 1919 } 1734 } 1920 1735 1921 ///////////////////////////////////////////// 1736 /////////////////////////////////////////////////////////////////////////////// 1922 // 1737 // 1923 void G4TessellatedSolid::DescribeYourselfTo ( 1738 void G4TessellatedSolid::DescribeYourselfTo (G4VGraphicsScene& scene) const 1924 { 1739 { 1925 scene.AddSolid (*this); 1740 scene.AddSolid (*this); 1926 } 1741 } 1927 1742 1928 ///////////////////////////////////////////// 1743 /////////////////////////////////////////////////////////////////////////////// 1929 // 1744 // 1930 G4Polyhedron* G4TessellatedSolid::CreatePolyh << 1745 G4Polyhedron *G4TessellatedSolid::CreatePolyhedron () const 1931 { 1746 { 1932 auto nVertices = (G4int)fVertexList.size(); << 1747 G4int nVertices = fVertexList.size(); 1933 auto nFacets = (G4int)fFacets.size(); << 1748 G4int nFacets = fFacets.size(); 1934 auto polyhedron = new G4Polyhedron(nVertice << 1749 G4PolyhedronArbitrary* polyhedron = 1935 for (auto i = 0; i < nVertices; ++i) << 1750 new G4PolyhedronArbitrary (nVertices, nFacets); >> 1751 for (auto v= fVertexList.cbegin(); v!=fVertexList.cend(); ++v) 1936 { 1752 { 1937 polyhedron->SetVertex(i+1, fVertexList[i] << 1753 polyhedron->AddVertex(*v); 1938 } 1754 } 1939 1755 1940 for (auto i = 0; i < nFacets; ++i) << 1756 G4int size = fFacets.size(); >> 1757 for (G4int i = 0; i < size; ++i) 1941 { 1758 { 1942 G4VFacet* facet = fFacets[i]; 1759 G4VFacet* facet = fFacets[i]; 1943 G4int v[4] = {0}; 1760 G4int v[4] = {0}; 1944 G4int n = facet->GetNumberOfVertices(); 1761 G4int n = facet->GetNumberOfVertices(); 1945 if (n > 4) n = 4; 1762 if (n > 4) n = 4; 1946 for (auto j = 0; j < n; ++j) << 1763 for (G4int j=0; j<n; ++j) 1947 { 1764 { 1948 v[j] = facet->GetVertexIndex(j) + 1; << 1765 G4int k = facet->GetVertexIndex(j); >> 1766 v[j] = k+1; 1949 } 1767 } 1950 polyhedron->SetFacet(i+1, v[0], v[1], v[2 << 1768 polyhedron->AddFacet(v[0],v[1],v[2],v[3]); 1951 } 1769 } 1952 polyhedron->SetReferences(); << 1770 polyhedron->SetReferences(); 1953 1771 1954 return polyhedron; << 1772 return (G4Polyhedron*) polyhedron; 1955 } 1773 } 1956 1774 1957 ///////////////////////////////////////////// 1775 /////////////////////////////////////////////////////////////////////////////// 1958 // 1776 // 1959 // GetPolyhedron 1777 // GetPolyhedron 1960 // 1778 // 1961 G4Polyhedron* G4TessellatedSolid::GetPolyhedr 1779 G4Polyhedron* G4TessellatedSolid::GetPolyhedron() const 1962 { 1780 { 1963 if (fpPolyhedron == nullptr || 1781 if (fpPolyhedron == nullptr || 1964 fRebuildPolyhedron || 1782 fRebuildPolyhedron || 1965 fpPolyhedron->GetNumberOfRotationStepsA 1783 fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != 1966 fpPolyhedron->GetNumberOfRotationSteps( 1784 fpPolyhedron->GetNumberOfRotationSteps()) 1967 { 1785 { 1968 G4AutoLock l(&polyhedronMutex); 1786 G4AutoLock l(&polyhedronMutex); 1969 delete fpPolyhedron; 1787 delete fpPolyhedron; 1970 fpPolyhedron = CreatePolyhedron(); 1788 fpPolyhedron = CreatePolyhedron(); 1971 fRebuildPolyhedron = false; 1789 fRebuildPolyhedron = false; 1972 l.unlock(); 1790 l.unlock(); 1973 } 1791 } 1974 return fpPolyhedron; 1792 return fpPolyhedron; 1975 } 1793 } 1976 1794 1977 ///////////////////////////////////////////// 1795 /////////////////////////////////////////////////////////////////////////////// 1978 // 1796 // 1979 // Get bounding box 1797 // Get bounding box 1980 // 1798 // 1981 void G4TessellatedSolid::BoundingLimits(G4Thr 1799 void G4TessellatedSolid::BoundingLimits(G4ThreeVector& pMin, 1982 G4Thr 1800 G4ThreeVector& pMax) const 1983 { 1801 { 1984 pMin = fMinExtent; 1802 pMin = fMinExtent; 1985 pMax = fMaxExtent; 1803 pMax = fMaxExtent; 1986 1804 1987 // Check correctness of the bounding box 1805 // Check correctness of the bounding box 1988 // 1806 // 1989 if (pMin.x() >= pMax.x() || pMin.y() >= pMa 1807 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 1990 { 1808 { 1991 std::ostringstream message; 1809 std::ostringstream message; 1992 message << "Bad bounding box (min >= max) 1810 message << "Bad bounding box (min >= max) for solid: " 1993 << GetName() << " !" 1811 << GetName() << " !" 1994 << "\npMin = " << pMin 1812 << "\npMin = " << pMin 1995 << "\npMax = " << pMax; 1813 << "\npMax = " << pMax; 1996 G4Exception("G4TessellatedSolid::Bounding 1814 G4Exception("G4TessellatedSolid::BoundingLimits()", 1997 "GeomMgt0001", JustWarning, m 1815 "GeomMgt0001", JustWarning, message); 1998 DumpInfo(); 1816 DumpInfo(); 1999 } 1817 } 2000 } 1818 } 2001 1819 2002 ///////////////////////////////////////////// 1820 /////////////////////////////////////////////////////////////////////////////// 2003 // 1821 // 2004 // Calculate extent under transform and speci 1822 // Calculate extent under transform and specified limit 2005 // 1823 // 2006 G4bool 1824 G4bool 2007 G4TessellatedSolid::CalculateExtent(const EAx 1825 G4TessellatedSolid::CalculateExtent(const EAxis pAxis, 2008 const G4V 1826 const G4VoxelLimits& pVoxelLimit, 2009 const G4A 1827 const G4AffineTransform& pTransform, 2010 G4d 1828 G4double& pMin, G4double& pMax) const 2011 { 1829 { 2012 G4ThreeVector bmin, bmax; 1830 G4ThreeVector bmin, bmax; 2013 1831 2014 // Check bounding box (bbox) 1832 // Check bounding box (bbox) 2015 // 1833 // 2016 BoundingLimits(bmin,bmax); 1834 BoundingLimits(bmin,bmax); 2017 G4BoundingEnvelope bbox(bmin,bmax); 1835 G4BoundingEnvelope bbox(bmin,bmax); 2018 1836 2019 // Use simple bounding-box to help in the c 1837 // Use simple bounding-box to help in the case of complex meshes 2020 // 1838 // 2021 return bbox.CalculateExtent(pAxis,pVoxelLim 1839 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 2022 1840 2023 #if 0 1841 #if 0 2024 // Precise extent computation (disabled by 1842 // Precise extent computation (disabled by default for this shape) 2025 // 1843 // 2026 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVo 1844 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax)) 2027 { 1845 { 2028 return (pMin < pMax) ? true : false; 1846 return (pMin < pMax) ? true : false; 2029 } 1847 } 2030 1848 2031 // The extent is calculated as cumulative e 1849 // The extent is calculated as cumulative extent of the pyramids 2032 // formed by facets and the center of the b 1850 // formed by facets and the center of the bounding box. 2033 // 1851 // 2034 G4double eminlim = pVoxelLimit.GetMinExtent 1852 G4double eminlim = pVoxelLimit.GetMinExtent(pAxis); 2035 G4double emaxlim = pVoxelLimit.GetMaxExtent 1853 G4double emaxlim = pVoxelLimit.GetMaxExtent(pAxis); 2036 1854 2037 G4ThreeVectorList base; 1855 G4ThreeVectorList base; 2038 G4ThreeVectorList apex(1); 1856 G4ThreeVectorList apex(1); 2039 std::vector<const G4ThreeVectorList *> pyra 1857 std::vector<const G4ThreeVectorList *> pyramid(2); 2040 pyramid[0] = &base; 1858 pyramid[0] = &base; 2041 pyramid[1] = &apex; 1859 pyramid[1] = &apex; 2042 apex[0] = (bmin+bmax)*0.5; 1860 apex[0] = (bmin+bmax)*0.5; 2043 1861 2044 // main loop along facets 1862 // main loop along facets 2045 pMin = kInfinity; 1863 pMin = kInfinity; 2046 pMax = -kInfinity; 1864 pMax = -kInfinity; 2047 for (G4int i=0; i<GetNumberOfFacets(); ++i) 1865 for (G4int i=0; i<GetNumberOfFacets(); ++i) 2048 { 1866 { 2049 G4VFacet* facet = GetFacet(i); 1867 G4VFacet* facet = GetFacet(i); 2050 if (std::abs((facet->GetSurfaceNormal()). 1868 if (std::abs((facet->GetSurfaceNormal()).dot(facet->GetVertex(0)-apex[0])) 2051 < kCarToleranceHalf) continue; 1869 < kCarToleranceHalf) continue; 2052 1870 2053 G4int nv = facet->GetNumberOfVertices(); 1871 G4int nv = facet->GetNumberOfVertices(); 2054 base.resize(nv); 1872 base.resize(nv); 2055 for (G4int k=0; k<nv; ++k) { base[k] = fa 1873 for (G4int k=0; k<nv; ++k) { base[k] = facet->GetVertex(k); } 2056 1874 2057 G4double emin,emax; 1875 G4double emin,emax; 2058 G4BoundingEnvelope benv(pyramid); 1876 G4BoundingEnvelope benv(pyramid); 2059 if (!benv.CalculateExtent(pAxis,pVoxelLim 1877 if (!benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,emin,emax)) continue; 2060 if (emin < pMin) pMin = emin; 1878 if (emin < pMin) pMin = emin; 2061 if (emax > pMax) pMax = emax; 1879 if (emax > pMax) pMax = emax; 2062 if (eminlim > pMin && emaxlim < pMax) bre 1880 if (eminlim > pMin && emaxlim < pMax) break; // max possible extent 2063 } 1881 } 2064 return (pMin < pMax); 1882 return (pMin < pMax); 2065 #endif 1883 #endif 2066 } 1884 } 2067 1885 2068 ///////////////////////////////////////////// 1886 /////////////////////////////////////////////////////////////////////////////// 2069 // 1887 // 2070 G4double G4TessellatedSolid::GetMinXExtent () 1888 G4double G4TessellatedSolid::GetMinXExtent () const 2071 { 1889 { 2072 return fMinExtent.x(); 1890 return fMinExtent.x(); 2073 } 1891 } 2074 1892 2075 ///////////////////////////////////////////// 1893 /////////////////////////////////////////////////////////////////////////////// 2076 // 1894 // 2077 G4double G4TessellatedSolid::GetMaxXExtent () 1895 G4double G4TessellatedSolid::GetMaxXExtent () const 2078 { 1896 { 2079 return fMaxExtent.x(); 1897 return fMaxExtent.x(); 2080 } 1898 } 2081 1899 2082 ///////////////////////////////////////////// 1900 /////////////////////////////////////////////////////////////////////////////// 2083 // 1901 // 2084 G4double G4TessellatedSolid::GetMinYExtent () 1902 G4double G4TessellatedSolid::GetMinYExtent () const 2085 { 1903 { 2086 return fMinExtent.y(); 1904 return fMinExtent.y(); 2087 } 1905 } 2088 1906 2089 ///////////////////////////////////////////// 1907 /////////////////////////////////////////////////////////////////////////////// 2090 // 1908 // 2091 G4double G4TessellatedSolid::GetMaxYExtent () 1909 G4double G4TessellatedSolid::GetMaxYExtent () const 2092 { 1910 { 2093 return fMaxExtent.y(); 1911 return fMaxExtent.y(); 2094 } 1912 } 2095 1913 2096 ///////////////////////////////////////////// 1914 /////////////////////////////////////////////////////////////////////////////// 2097 // 1915 // 2098 G4double G4TessellatedSolid::GetMinZExtent () 1916 G4double G4TessellatedSolid::GetMinZExtent () const 2099 { 1917 { 2100 return fMinExtent.z(); 1918 return fMinExtent.z(); 2101 } 1919 } 2102 1920 2103 ///////////////////////////////////////////// 1921 /////////////////////////////////////////////////////////////////////////////// 2104 // 1922 // 2105 G4double G4TessellatedSolid::GetMaxZExtent () 1923 G4double G4TessellatedSolid::GetMaxZExtent () const 2106 { 1924 { 2107 return fMaxExtent.z(); 1925 return fMaxExtent.z(); 2108 } 1926 } 2109 1927 2110 ///////////////////////////////////////////// 1928 /////////////////////////////////////////////////////////////////////////////// 2111 // 1929 // 2112 G4VisExtent G4TessellatedSolid::GetExtent () 1930 G4VisExtent G4TessellatedSolid::GetExtent () const 2113 { 1931 { 2114 return { fMinExtent.x(), fMaxExtent.x(), << 1932 return G4VisExtent (fMinExtent.x(), fMaxExtent.x(), 2115 fMinExtent.y(), fMaxExtent.y(), << 1933 fMinExtent.y(), fMaxExtent.y(), 2116 fMinExtent.z(), fMaxExtent.z() }; << 1934 fMinExtent.z(), fMaxExtent.z()); 2117 } 1935 } 2118 1936 2119 ///////////////////////////////////////////// 1937 /////////////////////////////////////////////////////////////////////////////// 2120 // 1938 // 2121 G4double G4TessellatedSolid::GetCubicVolume ( 1939 G4double G4TessellatedSolid::GetCubicVolume () 2122 { 1940 { 2123 if (fCubicVolume != 0.) return fCubicVolume 1941 if (fCubicVolume != 0.) return fCubicVolume; 2124 1942 2125 // For explanation of the following algorit 1943 // For explanation of the following algorithm see: 2126 // https://en.wikipedia.org/wiki/Polyhedron 1944 // https://en.wikipedia.org/wiki/Polyhedron#Volume 2127 // http://wwwf.imperial.ac.uk/~rn/centroid. 1945 // http://wwwf.imperial.ac.uk/~rn/centroid.pdf 2128 1946 2129 std::size_t size = fFacets.size(); << 1947 G4int size = fFacets.size(); 2130 for (std::size_t i = 0; i < size; ++i) << 1948 for (G4int i = 0; i < size; ++i) 2131 { 1949 { 2132 G4VFacet &facet = *fFacets[i]; 1950 G4VFacet &facet = *fFacets[i]; 2133 G4double area = facet.GetArea(); 1951 G4double area = facet.GetArea(); 2134 G4ThreeVector unit_normal = facet.GetSurf 1952 G4ThreeVector unit_normal = facet.GetSurfaceNormal(); 2135 fCubicVolume += area * (facet.GetVertex(0 1953 fCubicVolume += area * (facet.GetVertex(0).dot(unit_normal)); 2136 } 1954 } 2137 fCubicVolume /= 3.; 1955 fCubicVolume /= 3.; 2138 return fCubicVolume; 1956 return fCubicVolume; 2139 } 1957 } 2140 1958 2141 ///////////////////////////////////////////// 1959 /////////////////////////////////////////////////////////////////////////////// 2142 // 1960 // 2143 G4double G4TessellatedSolid::GetSurfaceArea ( 1961 G4double G4TessellatedSolid::GetSurfaceArea () 2144 { 1962 { 2145 if (fSurfaceArea != 0.) return fSurfaceArea 1963 if (fSurfaceArea != 0.) return fSurfaceArea; 2146 1964 2147 std::size_t size = fFacets.size(); << 1965 G4int size = fFacets.size(); 2148 for (std::size_t i = 0; i < size; ++i) << 1966 for (G4int i = 0; i < size; ++i) 2149 { 1967 { 2150 G4VFacet &facet = *fFacets[i]; 1968 G4VFacet &facet = *fFacets[i]; 2151 fSurfaceArea += facet.GetArea(); 1969 fSurfaceArea += facet.GetArea(); 2152 } 1970 } 2153 return fSurfaceArea; 1971 return fSurfaceArea; 2154 } 1972 } 2155 1973 2156 ///////////////////////////////////////////// 1974 /////////////////////////////////////////////////////////////////////////////// 2157 // 1975 // 2158 G4ThreeVector G4TessellatedSolid::GetPointOnS 1976 G4ThreeVector G4TessellatedSolid::GetPointOnSurface() const 2159 { 1977 { 2160 // Select randomly a facet and return a ran 1978 // Select randomly a facet and return a random point on it 2161 1979 2162 auto i = (G4int) G4RandFlat::shoot(0., fFac << 1980 G4int i = (G4int) G4RandFlat::shoot(0., fFacets.size()); 2163 return fFacets[i]->GetPointOnFace(); 1981 return fFacets[i]->GetPointOnFace(); 2164 } 1982 } 2165 1983 2166 ///////////////////////////////////////////// 1984 /////////////////////////////////////////////////////////////////////////////// 2167 // 1985 // 2168 // SetRandomVectorSet 1986 // SetRandomVectorSet 2169 // 1987 // 2170 // This is a set of predefined random vectors 1988 // This is a set of predefined random vectors (if that isn't a contradition 2171 // in terms!) used to generate rays from a us 1989 // in terms!) used to generate rays from a user-defined point. The member 2172 // function Inside uses these to determine wh 1990 // function Inside uses these to determine whether the point is inside or 2173 // outside of the tessellated solid. All vec 1991 // outside of the tessellated solid. All vectors should be unit vectors. 2174 // 1992 // 2175 void G4TessellatedSolid::SetRandomVectors () 1993 void G4TessellatedSolid::SetRandomVectors () 2176 { 1994 { 2177 fRandir.resize(20); 1995 fRandir.resize(20); 2178 fRandir[0] = 1996 fRandir[0] = 2179 G4ThreeVector(-0.9577428892113370, 0.2732 1997 G4ThreeVector(-0.9577428892113370, 0.2732676269591740, 0.0897405271949221); 2180 fRandir[1] = 1998 fRandir[1] = 2181 G4ThreeVector(-0.8331264504940770,-0.5162 1999 G4ThreeVector(-0.8331264504940770,-0.5162067214954600,-0.1985722492445700); 2182 fRandir[2] = 2000 fRandir[2] = 2183 G4ThreeVector(-0.1516671651108820, 0.9666 2001 G4ThreeVector(-0.1516671651108820, 0.9666292616127460, 0.2064580868390110); 2184 fRandir[3] = 2002 fRandir[3] = 2185 G4ThreeVector( 0.6570250350323190,-0.6944 2003 G4ThreeVector( 0.6570250350323190,-0.6944539025883300, 0.2933460081893360); 2186 fRandir[4] = 2004 fRandir[4] = 2187 G4ThreeVector(-0.4820456281280320,-0.6331 2005 G4ThreeVector(-0.4820456281280320,-0.6331060000098690,-0.6056474264406270); 2188 fRandir[5] = 2006 fRandir[5] = 2189 G4ThreeVector( 0.7629032554236800 , 0.101 2007 G4ThreeVector( 0.7629032554236800 , 0.1016854697539910,-0.6384658864065180); 2190 fRandir[6] = 2008 fRandir[6] = 2191 G4ThreeVector( 0.7689540409061150, 0.5034 2009 G4ThreeVector( 0.7689540409061150, 0.5034929891988220, 0.3939600142169160); 2192 fRandir[7] = 2010 fRandir[7] = 2193 G4ThreeVector( 0.5765188359255740, 0.5997 2011 G4ThreeVector( 0.5765188359255740, 0.5997271636278330,-0.5549354566343150); 2194 fRandir[8] = 2012 fRandir[8] = 2195 G4ThreeVector( 0.6660632777862070,-0.6362 2013 G4ThreeVector( 0.6660632777862070,-0.6362809868288380, 0.3892379937580790); 2196 fRandir[9] = 2014 fRandir[9] = 2197 G4ThreeVector( 0.3824415020414780, 0.6541 2015 G4ThreeVector( 0.3824415020414780, 0.6541792713761380,-0.6525243125110690); 2198 fRandir[10] = 2016 fRandir[10] = 2199 G4ThreeVector(-0.5107726564526760, 0.6020 2017 G4ThreeVector(-0.5107726564526760, 0.6020905056811610, 0.6136760679616570); 2200 fRandir[11] = 2018 fRandir[11] = 2201 G4ThreeVector( 0.7459135439578050, 0.6618 2019 G4ThreeVector( 0.7459135439578050, 0.6618796061649330, 0.0743530220183488); 2202 fRandir[12] = 2020 fRandir[12] = 2203 G4ThreeVector( 0.1536405855311580, 0.8117 2021 G4ThreeVector( 0.1536405855311580, 0.8117477913978260,-0.5634359711967240); 2204 fRandir[13] = 2022 fRandir[13] = 2205 G4ThreeVector( 0.0744395301705579,-0.8707 2023 G4ThreeVector( 0.0744395301705579,-0.8707110101772920,-0.4861286795736560); 2206 fRandir[14] = 2024 fRandir[14] = 2207 G4ThreeVector(-0.1665874645185400, 0.6018 2025 G4ThreeVector(-0.1665874645185400, 0.6018553940549240,-0.7810369397872780); 2208 fRandir[15] = 2026 fRandir[15] = 2209 G4ThreeVector( 0.7766902003633100, 0.6014 2027 G4ThreeVector( 0.7766902003633100, 0.6014617505959970,-0.1870724331097450); 2210 fRandir[16] = 2028 fRandir[16] = 2211 G4ThreeVector(-0.8710128685847430,-0.1434 2029 G4ThreeVector(-0.8710128685847430,-0.1434320216603030,-0.4698551243971010); 2212 fRandir[17] = 2030 fRandir[17] = 2213 G4ThreeVector( 0.8901082092766820,-0.4388 2031 G4ThreeVector( 0.8901082092766820,-0.4388411398893870, 0.1229871120030100); 2214 fRandir[18] = 2032 fRandir[18] = 2215 G4ThreeVector(-0.6430417431544370,-0.3295 2033 G4ThreeVector(-0.6430417431544370,-0.3295938228697690, 0.6912779675984150); 2216 fRandir[19] = 2034 fRandir[19] = 2217 G4ThreeVector( 0.6331124368380410, 0.6306 2035 G4ThreeVector( 0.6331124368380410, 0.6306211461665000, 0.4488714875425340); 2218 2036 2219 fMaxTries = 20; 2037 fMaxTries = 20; 2220 } 2038 } 2221 2039 2222 ///////////////////////////////////////////// 2040 /////////////////////////////////////////////////////////////////////////////// 2223 // 2041 // 2224 G4int G4TessellatedSolid::AllocatedMemoryWith 2042 G4int G4TessellatedSolid::AllocatedMemoryWithoutVoxels() 2225 { 2043 { 2226 G4int base = sizeof(*this); 2044 G4int base = sizeof(*this); 2227 base += fVertexList.capacity() * sizeof(G4T 2045 base += fVertexList.capacity() * sizeof(G4ThreeVector); 2228 base += fRandir.capacity() * sizeof(G4Three 2046 base += fRandir.capacity() * sizeof(G4ThreeVector); 2229 2047 2230 std::size_t limit = fFacets.size(); << 2048 G4int limit = fFacets.size(); 2231 for (std::size_t i = 0; i < limit; ++i) << 2049 for (G4int i = 0; i < limit; ++i) 2232 { 2050 { 2233 G4VFacet& facet = *fFacets[i]; 2051 G4VFacet& facet = *fFacets[i]; 2234 base += facet.AllocatedMemory(); 2052 base += facet.AllocatedMemory(); 2235 } 2053 } 2236 2054 2237 for (const auto & fExtremeFacet : fExtremeF << 2055 for (auto it = fExtremeFacets.cbegin(); it != fExtremeFacets.cend(); ++it) 2238 { 2056 { 2239 G4VFacet &facet = *fExtremeFacet; << 2057 G4VFacet &facet = *(*it); 2240 base += facet.AllocatedMemory(); 2058 base += facet.AllocatedMemory(); 2241 } 2059 } 2242 return base; 2060 return base; 2243 } 2061 } 2244 2062 2245 ///////////////////////////////////////////// 2063 /////////////////////////////////////////////////////////////////////////////// 2246 // 2064 // 2247 G4int G4TessellatedSolid::AllocatedMemory() 2065 G4int G4TessellatedSolid::AllocatedMemory() 2248 { 2066 { 2249 G4int size = AllocatedMemoryWithoutVoxels() 2067 G4int size = AllocatedMemoryWithoutVoxels(); 2250 G4int sizeInsides = fInsides.GetNbytes(); 2068 G4int sizeInsides = fInsides.GetNbytes(); 2251 G4int sizeVoxels = fVoxels.AllocatedMemory( 2069 G4int sizeVoxels = fVoxels.AllocatedMemory(); 2252 size += sizeInsides + sizeVoxels; 2070 size += sizeInsides + sizeVoxels; 2253 return size; 2071 return size; 2254 } 2072 } 2255 2073 2256 #endif 2074 #endif 2257 2075