Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4Polyhedra.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/specific/src/G4Polyhedra.cc (Version 11.3.0) and /geometry/solids/specific/src/G4Polyhedra.cc (Version 9.2.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Implementation of G4Polyhedra, a CSG polyhe <<  26 //
 27 // as an inherited class of G4VCSGfaceted.     <<  27 // $Id: G4Polyhedra.cc,v 1.42 2008/05/15 13:45:15 gcosmo Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-02 $
                                                   >>  29 //
                                                   >>  30 // 
                                                   >>  31 // --------------------------------------------------------------------
                                                   >>  32 // GEANT 4 class source file
                                                   >>  33 //
                                                   >>  34 //
                                                   >>  35 // G4Polyhedra.cc
                                                   >>  36 //
                                                   >>  37 // Implementation of a CSG polyhedra, as an inherited class of G4VCSGfaceted.
                                                   >>  38 //
                                                   >>  39 // To be done:
                                                   >>  40 //    * Cracks: there are probably small cracks in the seams between the
                                                   >>  41 //      phi face (G4PolyPhiFace) and sides (G4PolyhedraSide) that are not
                                                   >>  42 //      entirely leakproof. Also, I am not sure all vertices are leak proof.
                                                   >>  43 //    * Many optimizations are possible, but not implemented.
                                                   >>  44 //    * Visualization needs to be updated outside of this routine.
 28 //                                                 45 //
 29 // Utility classes:                                46 // Utility classes:
 30 //    * G4EnclosingCylinder: decided a quick c <<  47 //    * G4EnclosingCylinder: I decided a quick check of geometry would be a
 31 //      good idea (for CPU speed). If the quic     48 //      good idea (for CPU speed). If the quick check fails, the regular
 32 //      full-blown G4VCSGfaceted version is in     49 //      full-blown G4VCSGfaceted version is invoked.
 33 //    * G4ReduciblePolygon: Really meant as a      50 //    * G4ReduciblePolygon: Really meant as a check of input parameters,
 34 //      this utility class also "converts" the     51 //      this utility class also "converts" the GEANT3-like PGON/PCON
 35 //      arguments into the newer ones.             52 //      arguments into the newer ones.
 36 // Both these classes are implemented outside      53 // Both these classes are implemented outside this file because they are
 37 // shared with G4Polycone.                         54 // shared with G4Polycone.
 38 //                                                 55 //
 39 // Author: David C. Williams (davidw@scipp.ucs << 
 40 // -------------------------------------------     56 // --------------------------------------------------------------------
 41                                                    57 
 42 #include "G4Polyhedra.hh"                          58 #include "G4Polyhedra.hh"
 43                                                    59 
 44 #if !defined(G4GEOM_USE_UPOLYHEDRA)            << 
 45                                                << 
 46 #include "G4PolyhedraSide.hh"                      60 #include "G4PolyhedraSide.hh"
 47 #include "G4PolyPhiFace.hh"                        61 #include "G4PolyPhiFace.hh"
 48                                                    62 
 49 #include "G4GeomTools.hh"                      <<  63 #include "Randomize.hh"
 50 #include "G4VoxelLimits.hh"                    << 
 51 #include "G4AffineTransform.hh"                << 
 52 #include "G4BoundingEnvelope.hh"               << 
 53                                                << 
 54 #include "G4QuickRand.hh"                      << 
 55                                                    64 
                                                   >>  65 #include "G4Polyhedron.hh"
 56 #include "G4EnclosingCylinder.hh"                  66 #include "G4EnclosingCylinder.hh"
 57 #include "G4ReduciblePolygon.hh"                   67 #include "G4ReduciblePolygon.hh"
 58 #include "G4VPVParameterisation.hh"                68 #include "G4VPVParameterisation.hh"
 59                                                    69 
 60 namespace                                      <<  70 #include <sstream>
 61 {                                              << 
 62   G4Mutex surface_elementsMutex = G4MUTEX_INIT << 
 63 }                                              << 
 64                                                    71 
 65 using namespace CLHEP;                             72 using namespace CLHEP;
 66                                                    73 
                                                   >>  74 //
 67 // Constructor (GEANT3 style parameters)           75 // Constructor (GEANT3 style parameters)
 68 //                                                 76 //
 69 // GEANT3 PGON radii are specified in the dist     77 // GEANT3 PGON radii are specified in the distance to the norm of each face.
 70 //                                             <<  78 //  
 71 G4Polyhedra::G4Polyhedra( const G4String& name <<  79 G4Polyhedra::G4Polyhedra( const G4String& name, 
 72                                 G4double phiSt     80                                 G4double phiStart,
 73                                 G4double thePh     81                                 G4double thePhiTotal,
 74                                 G4int theNumSi <<  82                                 G4int theNumSide,  
 75                                 G4int numZPlan     83                                 G4int numZPlanes,
 76                           const G4double zPlan     84                           const G4double zPlane[],
 77                           const G4double rInne     85                           const G4double rInner[],
 78                           const G4double rOute     86                           const G4double rOuter[]  )
 79   : G4VCSGfaceted( name )                      <<  87   : G4VCSGfaceted( name ), genericPgon(false)
 80 {                                                  88 {
 81   if (theNumSide <= 0)                             89   if (theNumSide <= 0)
 82   {                                                90   {
 83     std::ostringstream message;                <<  91     G4cerr << "ERROR - G4Polyhedra::G4Polyhedra(): " << GetName() << G4endl
 84     message << "Solid must have at least one s <<  92            << "        No sides specified !"
 85             << "        No sides specified !"; <<  93            << G4endl;
 86     G4Exception("G4Polyhedra::G4Polyhedra()",  <<  94     G4Exception("G4Polyhedra::G4Polyhedra()", "InvalidSetup",
 87                 FatalErrorInArgument, message) <<  95                 FatalException, "Solid must have at least one side.");
 88   }                                                96   }
 89                                                    97 
 90   //                                               98   //
 91   // Calculate conversion factor from G3 radiu     99   // Calculate conversion factor from G3 radius to G4 radius
 92   //                                              100   //
 93   G4double phiTotal = thePhiTotal;                101   G4double phiTotal = thePhiTotal;
 94   if ( (phiTotal <=0) || (phiTotal >= twopi*(1    102   if ( (phiTotal <=0) || (phiTotal >= twopi*(1-DBL_EPSILON)) )
 95     { phiTotal = twopi; }                         103     { phiTotal = twopi; }
 96   G4double convertRad = std::cos(0.5*phiTotal/    104   G4double convertRad = std::cos(0.5*phiTotal/theNumSide);
 97                                                   105 
 98   //                                              106   //
 99   // Some historical stuff                        107   // Some historical stuff
100   //                                              108   //
101   original_parameters = new G4PolyhedraHistori    109   original_parameters = new G4PolyhedraHistorical;
102                                                << 110   
103   original_parameters->numSide = theNumSide;      111   original_parameters->numSide = theNumSide;
104   original_parameters->Start_angle = phiStart;    112   original_parameters->Start_angle = phiStart;
105   original_parameters->Opening_angle = phiTota    113   original_parameters->Opening_angle = phiTotal;
106   original_parameters->Num_z_planes = numZPlan    114   original_parameters->Num_z_planes = numZPlanes;
107   original_parameters->Z_values = new G4double    115   original_parameters->Z_values = new G4double[numZPlanes];
108   original_parameters->Rmin = new G4double[num    116   original_parameters->Rmin = new G4double[numZPlanes];
109   original_parameters->Rmax = new G4double[num    117   original_parameters->Rmax = new G4double[numZPlanes];
110                                                   118 
111   for (G4int i=0; i<numZPlanes; ++i)           << 119   G4int i;
                                                   >> 120   for (i=0; i<numZPlanes; i++)
112   {                                               121   {
113     if (( i < numZPlanes-1) && ( zPlane[i] ==     122     if (( i < numZPlanes-1) && ( zPlane[i] == zPlane[i+1] ))
114     {                                             123     {
115       if( (rInner[i]   > rOuter[i+1])             124       if( (rInner[i]   > rOuter[i+1])
116         ||(rInner[i+1] > rOuter[i])   )           125         ||(rInner[i+1] > rOuter[i])   )
117       {                                           126       {
118         DumpInfo();                               127         DumpInfo();
119         std::ostringstream message;            << 128         G4cerr << "ERROR - G4Polyhedra::G4Polyhedra()"
120         message << "Cannot create a Polyhedra  << 129                << G4endl
121                 << G4endl                      << 130                << "        Segments are not contiguous !" << G4endl
122                 << "        Segments are not c << 131                << "        rMin[" << i << "] = " << rInner[i]
123                 << "        rMin[" << i << "]  << 132                << " -- rMax[" << i+1 << "] = " << rOuter[i+1] << G4endl
124                 << " -- rMax[" << i+1 << "] =  << 133                << "        rMin[" << i+1 << "] = " << rInner[i+1]
125                 << "        rMin[" << i+1 << " << 134                << " -- rMax[" << i << "] = " << rOuter[i] << G4endl;
126                 << " -- rMax[" << i << "] = "  << 135         G4Exception("G4Polyhedra::G4Polyhedra()","InvalidSetup",FatalException, 
127         G4Exception("G4Polyhedra::G4Polyhedra( << 136                     "Cannot create a Polyhedra with no contiguous segments.");
128                     FatalErrorInArgument, mess << 
129       }                                           137       }
130     }                                             138     }
131     original_parameters->Z_values[i] = zPlane[    139     original_parameters->Z_values[i] = zPlane[i];
132     original_parameters->Rmin[i] = rInner[i]/c    140     original_parameters->Rmin[i] = rInner[i]/convertRad;
133     original_parameters->Rmax[i] = rOuter[i]/c    141     original_parameters->Rmax[i] = rOuter[i]/convertRad;
134   }                                               142   }
135                                                << 143   
136                                                << 144   
137   //                                              145   //
138   // Build RZ polygon using special PCON/PGON     146   // Build RZ polygon using special PCON/PGON GEANT3 constructor
139   //                                              147   //
140   auto rz = new G4ReduciblePolygon( rInner, rO << 148   G4ReduciblePolygon *rz =
                                                   >> 149     new G4ReduciblePolygon( rInner, rOuter, zPlane, numZPlanes );
141   rz->ScaleA( 1/convertRad );                     150   rz->ScaleA( 1/convertRad );
142                                                << 151   
143   //                                              152   //
144   // Do the real work                             153   // Do the real work
145   //                                              154   //
146   Create( phiStart, phiTotal, theNumSide, rz )    155   Create( phiStart, phiTotal, theNumSide, rz );
147                                                << 156   
148   delete rz;                                      157   delete rz;
149 }                                                 158 }
150                                                   159 
                                                   >> 160 
                                                   >> 161 //
151 // Constructor (generic parameters)               162 // Constructor (generic parameters)
152 //                                                163 //
153 G4Polyhedra::G4Polyhedra( const G4String& name << 164 G4Polyhedra::G4Polyhedra( const G4String& name, 
154                                 G4double phiSt    165                                 G4double phiStart,
155                                 G4double phiTo    166                                 G4double phiTotal,
156                                 G4int    theNu << 167                                 G4int    theNumSide,  
157                                 G4int    numRZ    168                                 G4int    numRZ,
158                           const G4double r[],     169                           const G4double r[],
159                           const G4double z[]      170                           const G4double z[]   )
160   : G4VCSGfaceted( name ), genericPgon(true)      171   : G4VCSGfaceted( name ), genericPgon(true)
161 {                                              << 172 { 
162   if (theNumSide <= 0)                         << 173   G4ReduciblePolygon *rz = new G4ReduciblePolygon( r, z, numRZ );
163   {                                            << 174   
164     std::ostringstream message;                << 
165     message << "Solid must have at least one s << 
166             << "        No sides specified !"; << 
167     G4Exception("G4Polyhedra::G4Polyhedra()",  << 
168                 FatalErrorInArgument, message) << 
169   }                                            << 
170                                                << 
171   auto rz = new G4ReduciblePolygon( r, z, numR << 
172                                                << 
173   Create( phiStart, phiTotal, theNumSide, rz )    175   Create( phiStart, phiTotal, theNumSide, rz );
174                                                << 176   
175   // Set original_parameters struct for consis    177   // Set original_parameters struct for consistency
176   //                                              178   //
177   SetOriginalParameters(rz);                   << 179   SetOriginalParameters();
178                                                << 180    
179   delete rz;                                      181   delete rz;
180 }                                                 182 }
181                                                   183 
                                                   >> 184 
                                                   >> 185 //
182 // Create                                         186 // Create
183 //                                                187 //
184 // Generic create routine, called by each cons    188 // Generic create routine, called by each constructor
185 // after conversion of arguments                  189 // after conversion of arguments
186 //                                                190 //
187 void G4Polyhedra::Create( G4double phiStart,      191 void G4Polyhedra::Create( G4double phiStart,
188                           G4double phiTotal,      192                           G4double phiTotal,
189                           G4int    theNumSide, << 193                           G4int    theNumSide,  
190                           G4ReduciblePolygon*  << 194                           G4ReduciblePolygon *rz  )
191 {                                                 195 {
192   //                                              196   //
193   // Perform checks of rz values                  197   // Perform checks of rz values
194   //                                              198   //
195   if (rz->Amin() < 0.0)                           199   if (rz->Amin() < 0.0)
196   {                                               200   {
197     std::ostringstream message;                << 201     G4cerr << "ERROR - G4Polyhedra::Create() " << GetName() << G4endl
198     message << "Illegal input parameters - " < << 202            << "        All R values must be >= 0 !"
199             << "        All R values must be > << 203            << G4endl;
200     G4Exception("G4Polyhedra::Create()", "Geom << 204     G4Exception("G4Polyhedra::Create()", "InvalidSetup",
201                 FatalErrorInArgument, message) << 205                 FatalException, "Illegal input parameters.");
202   }                                               206   }
203                                                   207 
204   G4double rzArea = rz->Area();                   208   G4double rzArea = rz->Area();
205   if (rzArea < -kCarTolerance)                    209   if (rzArea < -kCarTolerance)
206   {                                            << 
207     rz->ReverseOrder();                           210     rz->ReverseOrder();
208   }                                            << 
209   else if (rzArea < kCarTolerance)             << 
210   {                                            << 
211     std::ostringstream message;                << 
212     message << "Illegal input parameters - " < << 
213             << "        R/Z cross section is z << 
214     G4Exception("G4Polyhedra::Create()", "Geom << 
215                 FatalErrorInArgument, message) << 
216   }                                            << 
217                                                   211 
218   if ( (!rz->RemoveDuplicateVertices( kCarTole << 212   else if (rzArea < -kCarTolerance)
219     || (!rz->RemoveRedundantVertices( kCarTole << 
220   {                                               213   {
221     std::ostringstream message;                << 214     G4cerr << "ERROR - G4Polyhedra::Create() " << GetName() << G4endl
222     message << "Illegal input parameters - " < << 215            << "        R/Z cross section is zero or near zero: "
223             << "        Too few unique R/Z val << 216            << rzArea << G4endl;
224     G4Exception("G4Polyhedra::Create()", "Geom << 217     G4Exception("G4Polyhedra::Create()", "InvalidSetup",
225                 FatalErrorInArgument, message) << 218                 FatalException, "Illegal input parameters.");
226   }                                               219   }
227                                                << 220     
228   if (rz->CrossesItself( 1/kInfinity ))        << 221   if ( (!rz->RemoveDuplicateVertices( kCarTolerance ))
                                                   >> 222     || (!rz->RemoveRedundantVertices( kCarTolerance )) ) 
229   {                                               223   {
230     std::ostringstream message;                << 224     G4cerr << "ERROR - G4Polyhedra::Create() " << GetName() << G4endl
231     message << "Illegal input parameters - " < << 225            << "        Too few unique R/Z values !"
232             << "        R/Z segments cross !"; << 226            << G4endl;
233     G4Exception("G4Polyhedra::Create()", "Geom << 227     G4Exception("G4Polyhedra::Create()", "InvalidSetup",
234                 FatalErrorInArgument, message) << 228                 FatalException, "Illegal input parameters.");
                                                   >> 229   }
                                                   >> 230 
                                                   >> 231   if (rz->CrossesItself( 1/kInfinity )) 
                                                   >> 232   {
                                                   >> 233     G4cerr << "ERROR - G4Polyhedra::Create() " << GetName() << G4endl
                                                   >> 234            << "        R/Z segments cross !"
                                                   >> 235            << G4endl;
                                                   >> 236     G4Exception("G4Polyhedra::Create()", "InvalidSetup",
                                                   >> 237                 FatalException, "Illegal input parameters.");
235   }                                               238   }
236                                                   239 
237   numCorner = rz->NumVertices();                  240   numCorner = rz->NumVertices();
238                                                   241 
239                                                   242 
240   startPhi = phiStart;                            243   startPhi = phiStart;
241   while( startPhi < 0 )    // Loop checking, 1 << 244   while( startPhi < 0 ) startPhi += twopi;
242     startPhi += twopi;                         << 
243   //                                              245   //
244   // Phi opening? Account for some possible ro    246   // Phi opening? Account for some possible roundoff, and interpret
245   // nonsense value as representing no phi ope    247   // nonsense value as representing no phi opening
246   //                                              248   //
247   if ( (phiTotal <= 0) || (phiTotal > twopi*(1    249   if ( (phiTotal <= 0) || (phiTotal > twopi*(1-DBL_EPSILON)) )
248   {                                               250   {
249     phiIsOpen = false;                            251     phiIsOpen = false;
250     endPhi = startPhi + twopi;                 << 252     endPhi = phiStart+twopi;
251   }                                               253   }
252   else                                            254   else
253   {                                               255   {
254     phiIsOpen = true;                             256     phiIsOpen = true;
255     endPhi = startPhi + phiTotal;              << 257     
                                                   >> 258     //
                                                   >> 259     // Convert phi into our convention
                                                   >> 260     //
                                                   >> 261     endPhi = phiStart+phiTotal;
                                                   >> 262     while( endPhi < startPhi ) endPhi += twopi;
256   }                                               263   }
257                                                << 264   
258   //                                              265   //
259   // Save number sides                            266   // Save number sides
260   //                                              267   //
261   numSide = theNumSide;                           268   numSide = theNumSide;
262                                                << 269   
263   //                                              270   //
264   // Allocate corner array.                    << 271   // Allocate corner array. 
265   //                                              272   //
266   corners = new G4PolyhedraSideRZ[numCorner];     273   corners = new G4PolyhedraSideRZ[numCorner];
267                                                   274 
268   //                                              275   //
269   // Copy corners                                 276   // Copy corners
270   //                                              277   //
271   G4ReduciblePolygonIterator iterRZ(rz);          278   G4ReduciblePolygonIterator iterRZ(rz);
272                                                << 279   
273   G4PolyhedraSideRZ *next = corners;              280   G4PolyhedraSideRZ *next = corners;
274   iterRZ.Begin();                                 281   iterRZ.Begin();
275   do    // Loop checking, 13.08.2015, G.Cosmo  << 282   do
276   {                                               283   {
277     next->r = iterRZ.GetA();                      284     next->r = iterRZ.GetA();
278     next->z = iterRZ.GetB();                      285     next->z = iterRZ.GetB();
279   } while( ++next, iterRZ.Next() );               286   } while( ++next, iterRZ.Next() );
280                                                << 287   
281   //                                              288   //
282   // Allocate face pointer array                  289   // Allocate face pointer array
283   //                                              290   //
284   numFace = phiIsOpen ? numCorner+2 : numCorne    291   numFace = phiIsOpen ? numCorner+2 : numCorner;
285   faces = new G4VCSGface*[numFace];               292   faces = new G4VCSGface*[numFace];
286                                                << 293   
287   //                                              294   //
288   // Construct side faces                         295   // Construct side faces
289   //                                              296   //
290   // To do so properly, we need to keep track     297   // To do so properly, we need to keep track of four successive RZ
291   // corners.                                     298   // corners.
292   //                                              299   //
293   // But! Don't construct a face if both point    300   // But! Don't construct a face if both points are at zero radius!
294   //                                              301   //
295   G4PolyhedraSideRZ* corner = corners,         << 302   G4PolyhedraSideRZ *corner = corners,
296                    * prev = corners + numCorne << 303                     *prev = corners + numCorner-1,
297                    * nextNext;                 << 304                     *nextNext;
298   G4VCSGface** face = faces;                   << 305   G4VCSGface   **face = faces;
299   do    // Loop checking, 13.08.2015, G.Cosmo  << 306   do
300   {                                               307   {
301     next = corner+1;                              308     next = corner+1;
302     if (next >= corners+numCorner) next = corn    309     if (next >= corners+numCorner) next = corners;
303     nextNext = next+1;                            310     nextNext = next+1;
304     if (nextNext >= corners+numCorner) nextNex    311     if (nextNext >= corners+numCorner) nextNext = corners;
305                                                << 312     
306     if (corner->r < 1/kInfinity && next->r < 1    313     if (corner->r < 1/kInfinity && next->r < 1/kInfinity) continue;
307 /*                                             << 314 
                                                   >> 315     //
308     // We must decide here if we can dare decl    316     // We must decide here if we can dare declare one of our faces
309     // as having a "valid" normal (i.e. allBeh    317     // as having a "valid" normal (i.e. allBehind = true). This
310     // is never possible if the face faces "in    318     // is never possible if the face faces "inward" in r *unless*
311     // we have only one side                      319     // we have only one side
312     //                                            320     //
313     G4bool allBehind;                             321     G4bool allBehind;
314     if ((corner->z > next->z) && (numSide > 1)    322     if ((corner->z > next->z) && (numSide > 1))
315     {                                             323     {
316       allBehind = false;                          324       allBehind = false;
317     }                                             325     }
318     else                                          326     else
319     {                                             327     {
320       //                                          328       //
321       // Otherwise, it is only true if the lin    329       // Otherwise, it is only true if the line passing
322       // through the two points of the segment    330       // through the two points of the segment do not
323       // split the r/z cross section              331       // split the r/z cross section
324       //                                          332       //
325       allBehind = !rz->BisectedBy( corner->r,     333       allBehind = !rz->BisectedBy( corner->r, corner->z,
326                                    next->r, ne    334                                    next->r, next->z, kCarTolerance );
327     }                                             335     }
328 */                                             << 336     
329     *face++ = new G4PolyhedraSide( prev, corne    337     *face++ = new G4PolyhedraSide( prev, corner, next, nextNext,
330                  numSide, startPhi, endPhi-sta    338                  numSide, startPhi, endPhi-startPhi, phiIsOpen );
331   } while( prev=corner, corner=next, corner >     339   } while( prev=corner, corner=next, corner > corners );
332                                                << 340   
333   if (phiIsOpen)                                  341   if (phiIsOpen)
334   {                                               342   {
335     //                                            343     //
336     // Construct phi open edges                   344     // Construct phi open edges
337     //                                            345     //
338     *face++ = new G4PolyPhiFace( rz, startPhi,    346     *face++ = new G4PolyPhiFace( rz, startPhi, phiTotal/numSide, endPhi );
339     *face++ = new G4PolyPhiFace( rz, endPhi,      347     *face++ = new G4PolyPhiFace( rz, endPhi,   phiTotal/numSide, startPhi );
340   }                                               348   }
341                                                << 349   
342   //                                              350   //
343   // We might have dropped a face or two: reca    351   // We might have dropped a face or two: recalculate numFace
344   //                                              352   //
345   numFace = (G4int)(face-faces);               << 353   numFace = face-faces;
346                                                << 354   
347   //                                              355   //
348   // Make enclosingCylinder                       356   // Make enclosingCylinder
349   //                                              357   //
350   enclosingCylinder =                             358   enclosingCylinder =
351     new G4EnclosingCylinder( rz, phiIsOpen, ph    359     new G4EnclosingCylinder( rz, phiIsOpen, phiStart, phiTotal );
352 }                                                 360 }
353                                                   361 
                                                   >> 362 
                                                   >> 363 //
354 // Fake default constructor - sets only member    364 // Fake default constructor - sets only member data and allocates memory
355 //                            for usage restri    365 //                            for usage restricted to object persistency.
356 //                                                366 //
357 G4Polyhedra::G4Polyhedra( __void__& a )           367 G4Polyhedra::G4Polyhedra( __void__& a )
358   : G4VCSGfaceted(a), startPhi(0.), endPhi(0.) << 368   : G4VCSGfaceted(a), genericPgon(false), corners(0),
                                                   >> 369     original_parameters(0), enclosingCylinder(0)
359 {                                                 370 {
360 }                                                 371 }
361                                                   372 
                                                   >> 373 
                                                   >> 374 //
362 // Destructor                                     375 // Destructor
363 //                                                376 //
364 G4Polyhedra::~G4Polyhedra()                       377 G4Polyhedra::~G4Polyhedra()
365 {                                                 378 {
366   delete [] corners;                              379   delete [] corners;
367   delete original_parameters;                  << 380   if (original_parameters) delete original_parameters;
                                                   >> 381   
368   delete enclosingCylinder;                       382   delete enclosingCylinder;
369   delete fElements;                            << 
370   delete fpPolyhedron;                         << 
371   corners = nullptr;                           << 
372   original_parameters = nullptr;               << 
373   enclosingCylinder = nullptr;                 << 
374   fElements = nullptr;                         << 
375   fpPolyhedron = nullptr;                      << 
376 }                                                 383 }
377                                                   384 
                                                   >> 385 
                                                   >> 386 //
378 // Copy constructor                               387 // Copy constructor
379 //                                                388 //
380 G4Polyhedra::G4Polyhedra( const G4Polyhedra& s << 389 G4Polyhedra::G4Polyhedra( const G4Polyhedra &source )
381   : G4VCSGfaceted( source )                       390   : G4VCSGfaceted( source )
382 {                                                 391 {
383   CopyStuff( source );                            392   CopyStuff( source );
384 }                                                 393 }
385                                                   394 
                                                   >> 395 
                                                   >> 396 //
386 // Assignment operator                            397 // Assignment operator
387 //                                                398 //
388 G4Polyhedra &G4Polyhedra::operator=( const G4P << 399 const G4Polyhedra &G4Polyhedra::operator=( const G4Polyhedra &source )
389 {                                                 400 {
390   if (this == &source) return *this;              401   if (this == &source) return *this;
391                                                   402 
392   G4VCSGfaceted::operator=( source );             403   G4VCSGfaceted::operator=( source );
393                                                << 404   
394   delete [] corners;                              405   delete [] corners;
395   delete original_parameters;                  << 406   if (original_parameters) delete original_parameters;
                                                   >> 407   
396   delete enclosingCylinder;                       408   delete enclosingCylinder;
397                                                << 409   
398   CopyStuff( source );                            410   CopyStuff( source );
399                                                << 411   
400   return *this;                                   412   return *this;
401 }                                                 413 }
402                                                   414 
                                                   >> 415 
                                                   >> 416 //
403 // CopyStuff                                      417 // CopyStuff
404 //                                                418 //
405 void G4Polyhedra::CopyStuff( const G4Polyhedra << 419 void G4Polyhedra::CopyStuff( const G4Polyhedra &source )
406 {                                                 420 {
407   //                                              421   //
408   // Simple stuff                                 422   // Simple stuff
409   //                                              423   //
410   numSide    = source.numSide;                    424   numSide    = source.numSide;
411   startPhi   = source.startPhi;                   425   startPhi   = source.startPhi;
412   endPhi     = source.endPhi;                     426   endPhi     = source.endPhi;
413   phiIsOpen  = source.phiIsOpen;                  427   phiIsOpen  = source.phiIsOpen;
414   numCorner  = source.numCorner;                  428   numCorner  = source.numCorner;
415   genericPgon= source.genericPgon;                429   genericPgon= source.genericPgon;
416                                                   430 
417   //                                              431   //
418   // The corner array                             432   // The corner array
419   //                                              433   //
420   corners = new G4PolyhedraSideRZ[numCorner];     434   corners = new G4PolyhedraSideRZ[numCorner];
421                                                << 435   
422   G4PolyhedraSideRZ* corn = corners,           << 436   G4PolyhedraSideRZ  *corn = corners,
423                    * sourceCorn = source.corne << 437         *sourceCorn = source.corners;
424   do    // Loop checking, 13.08.2015, G.Cosmo  << 438   do
425   {                                               439   {
426     *corn = *sourceCorn;                          440     *corn = *sourceCorn;
427   } while( ++sourceCorn, ++corn < corners+numC    441   } while( ++sourceCorn, ++corn < corners+numCorner );
428                                                << 442   
429   //                                              443   //
430   // Original parameters                          444   // Original parameters
431   //                                              445   //
432   if (source.original_parameters != nullptr)   << 446   if (source.original_parameters)
433   {                                               447   {
434     original_parameters =                         448     original_parameters =
435       new G4PolyhedraHistorical( *source.origi    449       new G4PolyhedraHistorical( *source.original_parameters );
436   }                                               450   }
437                                                << 451   
438   //                                              452   //
439   // Enclosing cylinder                           453   // Enclosing cylinder
440   //                                              454   //
441   enclosingCylinder = new G4EnclosingCylinder(    455   enclosingCylinder = new G4EnclosingCylinder( *source.enclosingCylinder );
442                                                << 
443   //                                           << 
444   // Surface elements                          << 
445   //                                           << 
446   delete fElements;                            << 
447   fElements = nullptr;                         << 
448                                                << 
449   //                                           << 
450   // Polyhedron                                << 
451   //                                           << 
452   fRebuildPolyhedron = false;                  << 
453   delete fpPolyhedron;                         << 
454   fpPolyhedron = nullptr;                      << 
455 }                                                 456 }
456                                                   457 
                                                   >> 458 
                                                   >> 459 //
457 // Reset                                          460 // Reset
458 //                                                461 //
459 // Recalculates and reshapes the solid, given     462 // Recalculates and reshapes the solid, given pre-assigned scaled
460 // original_parameters.                           463 // original_parameters.
461 //                                                464 //
462 G4bool G4Polyhedra::Reset()                       465 G4bool G4Polyhedra::Reset()
463 {                                                 466 {
464   if (genericPgon)                                467   if (genericPgon)
465   {                                               468   {
466     std::ostringstream message;                << 469     G4cerr << "Solid " << GetName() << " built using generic construct."
467     message << "Solid " << GetName() << " buil << 470            << G4endl << "Not applicable to the generic construct !" << G4endl;
468             << G4endl << "Not applicable to th << 471     G4Exception("G4Polyhedra::Reset()", "NotApplicableConstruct",
469     G4Exception("G4Polyhedra::Reset()", "GeomS << 472                 JustWarning, "Parameters NOT resetted.");
470                 JustWarning, message, "Paramet << 473     return 1;
471     return true;                               << 
472   }                                               474   }
473                                                   475 
474   //                                              476   //
475   // Clear old setup                              477   // Clear old setup
476   //                                              478   //
477   G4VCSGfaceted::DeleteStuff();                   479   G4VCSGfaceted::DeleteStuff();
478   delete [] corners;                              480   delete [] corners;
479   delete enclosingCylinder;                       481   delete enclosingCylinder;
480   delete fElements;                            << 
481   corners = nullptr;                           << 
482   fElements = nullptr;                         << 
483   enclosingCylinder = nullptr;                 << 
484                                                   482 
485   //                                              483   //
486   // Rebuild polyhedra                            484   // Rebuild polyhedra
487   //                                              485   //
488   auto rz = new G4ReduciblePolygon( original_p << 486   G4ReduciblePolygon *rz =
489                                     original_p << 487     new G4ReduciblePolygon( original_parameters->Rmin,
490                                     original_p << 488                             original_parameters->Rmax,
491                                     original_p << 489                             original_parameters->Z_values,
                                                   >> 490                             original_parameters->Num_z_planes );
492   Create( original_parameters->Start_angle,       491   Create( original_parameters->Start_angle,
493           original_parameters->Opening_angle,     492           original_parameters->Opening_angle,
494           original_parameters->numSide, rz );     493           original_parameters->numSide, rz );
495   delete rz;                                      494   delete rz;
496                                                   495 
497   return false;                                << 496   return 0;
498 }                                                 497 }
499                                                   498 
                                                   >> 499 
                                                   >> 500 //
500 // Inside                                         501 // Inside
501 //                                                502 //
502 // This is an override of G4VCSGfaceted::Insid    503 // This is an override of G4VCSGfaceted::Inside, created in order
503 // to speed things up by first checking with G    504 // to speed things up by first checking with G4EnclosingCylinder.
504 //                                                505 //
505 EInside G4Polyhedra::Inside( const G4ThreeVect << 506 EInside G4Polyhedra::Inside( const G4ThreeVector &p ) const
506 {                                                 507 {
507   //                                              508   //
508   // Quick test                                   509   // Quick test
509   //                                              510   //
510   if (enclosingCylinder->MustBeOutside(p)) ret    511   if (enclosingCylinder->MustBeOutside(p)) return kOutside;
511                                                   512 
512   //                                              513   //
513   // Long answer                                  514   // Long answer
514   //                                              515   //
515   return G4VCSGfaceted::Inside(p);                516   return G4VCSGfaceted::Inside(p);
516 }                                                 517 }
517                                                   518 
                                                   >> 519 
                                                   >> 520 //
518 // DistanceToIn                                   521 // DistanceToIn
519 //                                                522 //
520 // This is an override of G4VCSGfaceted::Insid    523 // This is an override of G4VCSGfaceted::Inside, created in order
521 // to speed things up by first checking with G    524 // to speed things up by first checking with G4EnclosingCylinder.
522 //                                                525 //
523 G4double G4Polyhedra::DistanceToIn( const G4Th << 526 G4double G4Polyhedra::DistanceToIn( const G4ThreeVector &p,
524                                     const G4Th << 527                                     const G4ThreeVector &v ) const
525 {                                                 528 {
526   //                                              529   //
527   // Quick test                                   530   // Quick test
528   //                                              531   //
529   if (enclosingCylinder->ShouldMiss(p,v))         532   if (enclosingCylinder->ShouldMiss(p,v))
530     return kInfinity;                             533     return kInfinity;
531                                                << 534   
532   //                                              535   //
533   // Long answer                                  536   // Long answer
534   //                                              537   //
535   return G4VCSGfaceted::DistanceToIn( p, v );     538   return G4VCSGfaceted::DistanceToIn( p, v );
536 }                                                 539 }
537                                                   540 
                                                   >> 541 
                                                   >> 542 //
538 // DistanceToIn                                   543 // DistanceToIn
539 //                                                544 //
540 G4double G4Polyhedra::DistanceToIn( const G4Th << 545 G4double G4Polyhedra::DistanceToIn( const G4ThreeVector &p ) const
541 {                                                 546 {
542   return G4VCSGfaceted::DistanceToIn(p);          547   return G4VCSGfaceted::DistanceToIn(p);
543 }                                                 548 }
544                                                   549 
545 // Get bounding box                            << 
546 //                                             << 
547 void G4Polyhedra::BoundingLimits(G4ThreeVector << 
548                                  G4ThreeVector << 
549 {                                              << 
550   G4double rmin = kInfinity, rmax = -kInfinity << 
551   G4double zmin = kInfinity, zmax = -kInfinity << 
552   for (G4int i=0; i<GetNumRZCorner(); ++i)     << 
553   {                                            << 
554     G4PolyhedraSideRZ corner = GetCorner(i);   << 
555     if (corner.r < rmin) rmin = corner.r;      << 
556     if (corner.r > rmax) rmax = corner.r;      << 
557     if (corner.z < zmin) zmin = corner.z;      << 
558     if (corner.z > zmax) zmax = corner.z;      << 
559   }                                            << 
560                                                << 
561   G4double sphi    = GetStartPhi();            << 
562   G4double ephi    = GetEndPhi();              << 
563   G4double dphi    = IsOpen() ? ephi-sphi : tw << 
564   G4int    ksteps  = GetNumSide();             << 
565   G4double astep   = dphi/ksteps;              << 
566   G4double sinStep = std::sin(astep);          << 
567   G4double cosStep = std::cos(astep);          << 
568                                                << 
569   G4double sinCur = GetSinStartPhi();          << 
570   G4double cosCur = GetCosStartPhi();          << 
571   if (!IsOpen()) rmin = 0.;                    << 
572   G4double xmin = rmin*cosCur, xmax = xmin;    << 
573   G4double ymin = rmin*sinCur, ymax = ymin;    << 
574   for (G4int k=0; k<ksteps+1; ++k)             << 
575   {                                            << 
576     G4double x = rmax*cosCur;                  << 
577     if (x < xmin) xmin = x;                    << 
578     if (x > xmax) xmax = x;                    << 
579     G4double y = rmax*sinCur;                  << 
580     if (y < ymin) ymin = y;                    << 
581     if (y > ymax) ymax = y;                    << 
582     if (rmin > 0)                              << 
583     {                                          << 
584       G4double xx = rmin*cosCur;               << 
585       if (xx < xmin) xmin = xx;                << 
586       if (xx > xmax) xmax = xx;                << 
587       G4double yy = rmin*sinCur;               << 
588       if (yy < ymin) ymin = yy;                << 
589       if (yy > ymax) ymax = yy;                << 
590     }                                          << 
591     G4double sinTmp = sinCur;                  << 
592     sinCur = sinCur*cosStep + cosCur*sinStep;  << 
593     cosCur = cosCur*cosStep - sinTmp*sinStep;  << 
594   }                                            << 
595   pMin.set(xmin,ymin,zmin);                    << 
596   pMax.set(xmax,ymax,zmax);                    << 
597                                                << 
598   // Check correctness of the bounding box     << 
599   //                                           << 
600   if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 
601   {                                            << 
602     std::ostringstream message;                << 
603     message << "Bad bounding box (min >= max)  << 
604             << GetName() << " !"               << 
605             << "\npMin = " << pMin             << 
606             << "\npMax = " << pMax;            << 
607     G4Exception("G4Polyhedra::BoundingLimits() << 
608                 JustWarning, message);         << 
609     DumpInfo();                                << 
610   }                                            << 
611 }                                              << 
612                                                   550 
613 // Calculate extent under transform and specif << 
614 //                                                551 //
615 G4bool G4Polyhedra::CalculateExtent(const EAxi << 
616                                     const G4Vo << 
617                                     const G4Af << 
618                                     G4double&  << 
619 {                                              << 
620   G4ThreeVector bmin, bmax;                    << 
621   G4bool exist;                                << 
622                                                << 
623   // Check bounding box (bbox)                 << 
624   //                                           << 
625   BoundingLimits(bmin,bmax);                   << 
626   G4BoundingEnvelope bbox(bmin,bmax);          << 
627 #ifdef G4BBOX_EXTENT                           << 
628   return bbox.CalculateExtent(pAxis,pVoxelLimi << 
629 #endif                                         << 
630   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 
631   {                                            << 
632     return exist = pMin < pMax;                << 
633   }                                            << 
634                                                << 
635   // To find the extent, RZ contour of the pol << 
636   // in triangles. The extent is calculated as << 
637   // all sub-polycones formed by rotation of t << 
638   //                                           << 
639   G4TwoVectorList contourRZ;                   << 
640   G4TwoVectorList triangles;                   << 
641   std::vector<G4int> iout;                     << 
642   G4double eminlim = pVoxelLimit.GetMinExtent( << 
643   G4double emaxlim = pVoxelLimit.GetMaxExtent( << 
644                                                << 
645   // get RZ contour, ensure anticlockwise orde << 
646   for (G4int i=0; i<GetNumRZCorner(); ++i)     << 
647   {                                            << 
648     G4PolyhedraSideRZ corner = GetCorner(i);   << 
649     contourRZ.emplace_back(corner.r,corner.z); << 
650   }                                            << 
651   G4GeomTools::RemoveRedundantVertices(contour << 
652   G4double area = G4GeomTools::PolygonArea(con << 
653   if (area < 0.) std::reverse(contourRZ.begin( << 
654                                                << 
655   // triangulate RZ countour                   << 
656   if (!G4GeomTools::TriangulatePolygon(contour << 
657   {                                            << 
658     std::ostringstream message;                << 
659     message << "Triangulation of RZ contour ha << 
660             << GetName() << " !"               << 
661             << "\nExtent has been calculated u << 
662     G4Exception("G4Polyhedra::CalculateExtent( << 
663                 "GeomMgt1002",JustWarning,mess << 
664     return bbox.CalculateExtent(pAxis,pVoxelLi << 
665   }                                            << 
666                                                << 
667   // set trigonometric values                  << 
668   G4double sphi     = GetStartPhi();           << 
669   G4double ephi     = GetEndPhi();             << 
670   G4double dphi     = IsOpen() ? ephi-sphi : t << 
671   G4int    ksteps   = GetNumSide();            << 
672   G4double astep    = dphi/ksteps;             << 
673   G4double sinStep  = std::sin(astep);         << 
674   G4double cosStep  = std::cos(astep);         << 
675   G4double sinStart = GetSinStartPhi();        << 
676   G4double cosStart = GetCosStartPhi();        << 
677                                                << 
678   // allocate vector lists                     << 
679   std::vector<const G4ThreeVectorList *> polyg << 
680   polygons.resize(ksteps+1);                   << 
681   for (G4int k=0; k<ksteps+1; ++k)             << 
682   {                                            << 
683     polygons[k] = new G4ThreeVectorList(3);    << 
684   }                                            << 
685                                                << 
686   // main loop along triangles                 << 
687   pMin =  kInfinity;                           << 
688   pMax = -kInfinity;                           << 
689   G4int ntria = (G4int)triangles.size()/3;     << 
690   for (G4int i=0; i<ntria; ++i)                << 
691   {                                            << 
692     G4double sinCur = sinStart;                << 
693     G4double cosCur = cosStart;                << 
694     G4int i3 = i*3;                            << 
695     for (G4int k=0; k<ksteps+1; ++k) // rotate << 
696     {                                          << 
697       auto ptr = const_cast<G4ThreeVectorList* << 
698       auto iter = ptr->begin();                << 
699       iter->set(triangles[i3+0].x()*cosCur,    << 
700                 triangles[i3+0].x()*sinCur,    << 
701                 triangles[i3+0].y());          << 
702       iter++;                                  << 
703       iter->set(triangles[i3+1].x()*cosCur,    << 
704                 triangles[i3+1].x()*sinCur,    << 
705                 triangles[i3+1].y());          << 
706       iter++;                                  << 
707       iter->set(triangles[i3+2].x()*cosCur,    << 
708                 triangles[i3+2].x()*sinCur,    << 
709                 triangles[i3+2].y());          << 
710                                                << 
711       G4double sinTmp = sinCur;                << 
712       sinCur = sinCur*cosStep + cosCur*sinStep << 
713       cosCur = cosCur*cosStep - sinTmp*sinStep << 
714     }                                          << 
715                                                << 
716     // set sub-envelope and adjust extent      << 
717     G4double emin,emax;                        << 
718     G4BoundingEnvelope benv(polygons);         << 
719     if (!benv.CalculateExtent(pAxis,pVoxelLimi << 
720     if (emin < pMin) pMin = emin;              << 
721     if (emax > pMax) pMax = emax;              << 
722     if (eminlim > pMin && emaxlim < pMax) brea << 
723   }                                            << 
724   // free memory                               << 
725   for (G4int k=0; k<ksteps+1; ++k) { delete po << 
726   return (pMin < pMax);                        << 
727 }                                              << 
728                                                << 
729 // ComputeDimensions                              552 // ComputeDimensions
730 //                                                553 //
731 void G4Polyhedra::ComputeDimensions(       G4V    554 void G4Polyhedra::ComputeDimensions(       G4VPVParameterisation* p,
732                                      const G4i    555                                      const G4int n,
733                                      const G4V    556                                      const G4VPhysicalVolume* pRep )
734 {                                                 557 {
735   p->ComputeDimensions(*this,n,pRep);             558   p->ComputeDimensions(*this,n,pRep);
736 }                                                 559 }
737                                                   560 
                                                   >> 561 
                                                   >> 562 //
738 // GetEntityType                                  563 // GetEntityType
739 //                                                564 //
740 G4GeometryType G4Polyhedra::GetEntityType() co    565 G4GeometryType G4Polyhedra::GetEntityType() const
741 {                                                 566 {
742   return {"G4Polyhedra"};                      << 567   return G4String("G4Polyhedra");
743 }                                                 568 }
744                                                   569 
745 // IsFaceted                                   << 
746 //                                             << 
747 G4bool G4Polyhedra::IsFaceted() const          << 
748 {                                              << 
749   return true;                                 << 
750 }                                              << 
751                                                   570 
752 // Make a clone of the object                  << 
753 //                                                571 //
754 G4VSolid* G4Polyhedra::Clone() const           << 
755 {                                              << 
756   return new G4Polyhedra(*this);               << 
757 }                                              << 
758                                                << 
759 // Stream object contents to an output stream     572 // Stream object contents to an output stream
760 //                                                573 //
761 std::ostream& G4Polyhedra::StreamInfo( std::os    574 std::ostream& G4Polyhedra::StreamInfo( std::ostream& os ) const
762 {                                                 575 {
763   G4long oldprc = os.precision(16);            << 
764   os << "-------------------------------------    576   os << "-----------------------------------------------------------\n"
765      << "    *** Dump for solid - " << GetName    577      << "    *** Dump for solid - " << GetName() << " ***\n"
766      << "    =================================    578      << "    ===================================================\n"
767      << " Solid type: G4Polyhedra\n"              579      << " Solid type: G4Polyhedra\n"
768      << " Parameters: \n"                         580      << " Parameters: \n"
769      << "    starting phi angle : " << startPh    581      << "    starting phi angle : " << startPhi/degree << " degrees \n"
770      << "    ending phi angle   : " << endPhi/ << 582      << "    ending phi angle   : " << endPhi/degree << " degrees \n";
771      << "    number of sides    : " << numSide << 
772   G4int i=0;                                      583   G4int i=0;
773   if (!genericPgon)                               584   if (!genericPgon)
774   {                                               585   {
775     G4int numPlanes = original_parameters->Num    586     G4int numPlanes = original_parameters->Num_z_planes;
776     os << "    number of Z planes: " << numPla    587     os << "    number of Z planes: " << numPlanes << "\n"
777        << "              Z values: \n";           588        << "              Z values: \n";
778     for (i=0; i<numPlanes; ++i)                << 589     for (i=0; i<numPlanes; i++)
779     {                                             590     {
780       os << "              Z plane " << i << "    591       os << "              Z plane " << i << ": "
781          << original_parameters->Z_values[i] <    592          << original_parameters->Z_values[i] << "\n";
782     }                                             593     }
783     os << "              Tangent distances to     594     os << "              Tangent distances to inner surface (Rmin): \n";
784     for (i=0; i<numPlanes; ++i)                << 595     for (i=0; i<numPlanes; i++)
785     {                                             596     {
786       os << "              Z plane " << i << "    597       os << "              Z plane " << i << ": "
787          << original_parameters->Rmin[i] << "\    598          << original_parameters->Rmin[i] << "\n";
788     }                                             599     }
789     os << "              Tangent distances to     600     os << "              Tangent distances to outer surface (Rmax): \n";
790     for (i=0; i<numPlanes; ++i)                << 601     for (i=0; i<numPlanes; i++)
791     {                                             602     {
792       os << "              Z plane " << i << "    603       os << "              Z plane " << i << ": "
793          << original_parameters->Rmax[i] << "\    604          << original_parameters->Rmax[i] << "\n";
794     }                                             605     }
795   }                                               606   }
796   os << "    number of RZ points: " << numCorn    607   os << "    number of RZ points: " << numCorner << "\n"
797      << "              RZ values (corners): \n    608      << "              RZ values (corners): \n";
798      for (i=0; i<numCorner; ++i)               << 609      for (i=0; i<numCorner; i++)
799      {                                            610      {
800        os << "                         "          611        os << "                         "
801           << corners[i].r << ", " << corners[i    612           << corners[i].r << ", " << corners[i].z << "\n";
802      }                                            613      }
803   os << "-------------------------------------    614   os << "-----------------------------------------------------------\n";
804   os.precision(oldprc);                        << 
805                                                   615 
806   return os;                                      616   return os;
807 }                                                 617 }
808                                                   618 
809 ////////////////////////////////////////////// << 
810 //                                             << 
811 // Return volume                               << 
812                                                   619 
813 G4double G4Polyhedra::GetCubicVolume()         << 620 //
                                                   >> 621 // GetPointOnPlane
                                                   >> 622 //
                                                   >> 623 // Auxiliary method for get point on surface
                                                   >> 624 //
                                                   >> 625 G4ThreeVector G4Polyhedra::GetPointOnPlane(G4ThreeVector p0, G4ThreeVector p1, 
                                                   >> 626                                            G4ThreeVector p2, G4ThreeVector p3) const
814 {                                                 627 {
815   if (fCubicVolume == 0.)                      << 628   G4double lambda1, lambda2, chose,aOne,aTwo;
                                                   >> 629   G4ThreeVector t, u, v, w, Area, normal;
                                                   >> 630   aOne = 1.;
                                                   >> 631   aTwo = 1.;
                                                   >> 632 
                                                   >> 633   t = p1 - p0;
                                                   >> 634   u = p2 - p1;
                                                   >> 635   v = p3 - p2;
                                                   >> 636   w = p0 - p3;
                                                   >> 637 
                                                   >> 638   chose = RandFlat::shoot(0.,aOne+aTwo);
                                                   >> 639   if( (chose>=0.) && (chose < aOne) )
816   {                                               640   {
817     G4double total = 0.;                       << 641     lambda1 = RandFlat::shoot(0.,1.);
818     G4int nrz = GetNumRZCorner();              << 642     lambda2 = RandFlat::shoot(0.,lambda1);
819     G4PolyhedraSideRZ a = GetCorner(nrz - 1);  << 643     return (p2+lambda1*v+lambda2*w);    
820     for (G4int i=0; i<nrz; ++i)                << 
821     {                                          << 
822       G4PolyhedraSideRZ b = GetCorner(i);      << 
823       total += (b.r*b.r + b.r*a.r + a.r*a.r)*( << 
824       a = b;                                   << 
825     }                                          << 
826     fCubicVolume = std::abs(total)*            << 
827       std::sin((GetEndPhi() - GetStartPhi())/G << 
828   }                                               644   }
829   return fCubicVolume;                         << 645 
                                                   >> 646   lambda1 = RandFlat::shoot(0.,1.);
                                                   >> 647   lambda2 = RandFlat::shoot(0.,lambda1);
                                                   >> 648   return (p0+lambda1*t+lambda2*u);
830 }                                                 649 }
831                                                   650 
832 ////////////////////////////////////////////// << 651 
                                                   >> 652 //
                                                   >> 653 // GetPointOnTriangle
833 //                                                654 //
834 // Return surface area                         << 655 // Auxiliary method for get point on surface
                                                   >> 656 //
                                                   >> 657 G4ThreeVector G4Polyhedra::GetPointOnTriangle(G4ThreeVector p1,
                                                   >> 658                                               G4ThreeVector p2,
                                                   >> 659                                               G4ThreeVector p3) const
                                                   >> 660 {
                                                   >> 661   G4double lambda1,lambda2;
                                                   >> 662   G4ThreeVector v=p3-p1, w=p1-p2;
                                                   >> 663 
                                                   >> 664   lambda1 = RandFlat::shoot(0.,1.);
                                                   >> 665   lambda2 = RandFlat::shoot(0.,lambda1);
                                                   >> 666 
                                                   >> 667   return (p2 + lambda1*w + lambda2*v);
                                                   >> 668 }
                                                   >> 669 
835                                                   670 
836 G4double G4Polyhedra::GetSurfaceArea()         << 671 //
                                                   >> 672 // GetPointOnSurface
                                                   >> 673 //
                                                   >> 674 G4ThreeVector G4Polyhedra::GetPointOnSurface() const
837 {                                                 675 {
838   if (fSurfaceArea == 0.)                      << 676   if( !genericPgon )  // Polyhedra by faces
839   {                                               677   {
840     G4double total = 0.;                       << 678     G4int j, numPlanes = original_parameters->Num_z_planes, Flag=0;
841     G4int nrz = GetNumRZCorner();              << 679     G4double chose, totArea=0., Achose1, Achose2,
842     if (IsOpen())                              << 680              rad1, rad2, sinphi1, sinphi2, cosphi1, cosphi2; 
                                                   >> 681     G4double a, b, l2, rang, totalPhi, ksi,
                                                   >> 682              area, aTop=0., aBottom=0., zVal=0.;
                                                   >> 683 
                                                   >> 684     G4ThreeVector p0, p1, p2, p3;
                                                   >> 685     std::vector<G4double> aVector1;
                                                   >> 686     std::vector<G4double> aVector2;
                                                   >> 687     std::vector<G4double> aVector3;
                                                   >> 688 
                                                   >> 689     totalPhi= (phiIsOpen) ? (endPhi-startPhi) : twopi;
                                                   >> 690     ksi = totalPhi/numSide;
                                                   >> 691     G4double cosksi = std::cos(ksi/2.);
                                                   >> 692 
                                                   >> 693     // Below we generate the areas relevant to our solid
                                                   >> 694     //
                                                   >> 695     for(j=0; j<numPlanes-1; j++)
                                                   >> 696     {
                                                   >> 697       a = original_parameters->Rmax[j+1];
                                                   >> 698       b = original_parameters->Rmax[j];
                                                   >> 699       l2 = sqr(original_parameters->Z_values[j]
                                                   >> 700               -original_parameters->Z_values[j+1]) + sqr(b-a);
                                                   >> 701       area = std::sqrt(l2-sqr((a-b)*cosksi))*(a+b)*cosksi;
                                                   >> 702       aVector1.push_back(area);
                                                   >> 703     }
                                                   >> 704 
                                                   >> 705     for(j=0; j<numPlanes-1; j++)
                                                   >> 706     {
                                                   >> 707       a = original_parameters->Rmin[j+1];//*cosksi;
                                                   >> 708       b = original_parameters->Rmin[j];//*cosksi;
                                                   >> 709       l2 = sqr(original_parameters->Z_values[j]
                                                   >> 710               -original_parameters->Z_values[j+1]) + sqr(b-a);
                                                   >> 711       area = std::sqrt(l2-sqr((a-b)*cosksi))*(a+b)*cosksi;
                                                   >> 712       aVector2.push_back(area);
                                                   >> 713     }
                                                   >> 714   
                                                   >> 715     for(j=0; j<numPlanes-1; j++)
843     {                                             716     {
844       G4PolyhedraSideRZ a = GetCorner(nrz - 1) << 717       if(phiIsOpen == true)
845       for (G4int i=0; i<nrz; ++i)              << 
846       {                                           718       {
847         G4PolyhedraSideRZ b = GetCorner(i);    << 719         aVector3.push_back(0.5*(original_parameters->Rmax[j]
848         total += a.r*b.z - a.z*b.r;            << 720                                -original_parameters->Rmin[j]
849         a = b;                                 << 721                                +original_parameters->Rmax[j+1]
                                                   >> 722                                -original_parameters->Rmin[j+1])
                                                   >> 723         *std::fabs(original_parameters->Z_values[j+1]
                                                   >> 724                   -original_parameters->Z_values[j]));
850       }                                           725       }
851       total = std::abs(total);                 << 726       else { aVector3.push_back(0.); } 
852     }                                             727     }
853     G4double alp = (GetEndPhi() - GetStartPhi( << 728   
854     G4double cosa = std::cos(alp);             << 729     for(j=0; j<numPlanes-1; j++)
855     G4double sina = std::sin(alp);             << 730     {
856     G4PolyhedraSideRZ a = GetCorner(nrz - 1);  << 731       totArea += numSide*(aVector1[j]+aVector2[j])+2.*aVector3[j];
857     for (G4int i=0; i<nrz; ++i)                << 
858     {                                          << 
859       G4PolyhedraSideRZ b = GetCorner(i);      << 
860       G4ThreeVector p1(a.r, 0, a.z);           << 
861       G4ThreeVector p2(a.r*cosa, a.r*sina, a.z << 
862       G4ThreeVector p3(b.r*cosa, b.r*sina, b.z << 
863       G4ThreeVector p4(b.r, 0, b.z);           << 
864       total += GetNumSide()*(G4GeomTools::Quad << 
865       a = b;                                   << 
866     }                                             732     }
867     fSurfaceArea = total;                      << 733   
868   }                                            << 734     // Must include top and bottom areas
869   return fSurfaceArea;                         << 735     //
870 }                                              << 736     if(original_parameters->Rmax[numPlanes-1] != 0.)
871                                                << 737     {
872 ////////////////////////////////////////////// << 738       a = original_parameters->Rmax[numPlanes-1];
873 //                                             << 739       b = original_parameters->Rmin[numPlanes-1];
874 // Set vector of surface elements, auxiliary m << 740       l2 = sqr(a-b);
875 // random points on surface                    << 741       aTop = std::sqrt(l2-sqr((a-b)*cosksi))*(a+b)*cosksi; 
876                                                << 742     }
877 void G4Polyhedra::SetSurfaceElements() const   << 743 
878 {                                              << 744     if(original_parameters->Rmax[0] != 0.)
879   fElements = new std::vector<G4Polyhedra::sur << 745     {
880   G4double total = 0.;                         << 746       a = original_parameters->Rmax[0];
881   G4int nrz = GetNumRZCorner();                << 747       b = original_parameters->Rmin[0];
882                                                << 748       l2 = sqr(a-b);
883   // set lateral surface elements              << 749       aBottom = std::sqrt(l2-sqr((a-b)*cosksi))*(a+b)*cosksi; 
884   G4double dphi = (GetEndPhi() - GetStartPhi() << 750     }
885   G4double cosa = std::cos(dphi);              << 751 
886   G4double sina = std::sin(dphi);              << 752     Achose1 = 0.;
887   G4int ia = nrz - 1;                          << 753     Achose2 = numSide*(aVector1[0]+aVector2[0])+2.*aVector3[0];
888   for (G4int ib=0; ib<nrz; ++ib)               << 754 
889   {                                            << 755     chose = RandFlat::shoot(0.,totArea+aTop+aBottom);
890     G4PolyhedraSideRZ a = GetCorner(ia);       << 756     if( (chose >= 0.) && (chose < aTop + aBottom) )
891     G4PolyhedraSideRZ b = GetCorner(ib);       << 757     {
892     G4Polyhedra::surface_element selem;        << 758       chose = RandFlat::shoot(startPhi,startPhi+totalPhi);
893     selem.i0 = ia;                             << 759       rang = std::floor((chose-startPhi)/ksi-0.01);
894     selem.i1 = ib;                             << 760       if(rang<0) { rang=0; }
895     ia = ib;                                   << 761       rang = std::fabs(rang);  
896     if (a.r == 0. && b.r == 0.) continue;      << 762       sinphi1 = std::sin(startPhi+rang*ksi);
897     G4ThreeVector p1(a.r, 0, a.z);             << 763       sinphi2 = std::sin(startPhi+(rang+1)*ksi);
898     G4ThreeVector p2(a.r*cosa, a.r*sina, a.z); << 764       cosphi1 = std::cos(startPhi+rang*ksi);
899     G4ThreeVector p3(b.r*cosa, b.r*sina, b.z); << 765       cosphi2 = std::cos(startPhi+(rang+1)*ksi);
900     G4ThreeVector p4(b.r, 0, b.z);             << 766       chose = RandFlat::shoot(0., aTop + aBottom);
901     if (a.r > 0.)                              << 767       if(chose>=0. && chose<aTop)
902     {                                          << 768       {
903       selem.i2 = -1;                           << 769         rad1 = original_parameters->Rmin[numPlanes-1];
904       total += GetNumSide()*(G4GeomTools::Tria << 770         rad2 = original_parameters->Rmax[numPlanes-1];
905       selem.area = total;                      << 771         zVal = original_parameters->Z_values[numPlanes-1]; 
906       fElements->push_back(selem);             << 772       }
907     }                                          << 773       else 
908     if (b.r > 0.)                              << 774       {
909     {                                          << 775         rad1 = original_parameters->Rmin[0];
910       selem.i2 = -2;                           << 776         rad2 = original_parameters->Rmax[0];
911       total += GetNumSide()*(G4GeomTools::Tria << 777         zVal = original_parameters->Z_values[0]; 
912       selem.area = total;                      << 778       }
913       fElements->push_back(selem);             << 779       p0 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1,zVal);
                                                   >> 780       p1 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1,zVal);
                                                   >> 781       p2 = G4ThreeVector(rad2*cosphi2,rad2*sinphi2,zVal);
                                                   >> 782       p3 = G4ThreeVector(rad1*cosphi2,rad1*sinphi2,zVal);
                                                   >> 783       return GetPointOnPlane(p0,p1,p2,p3); 
914     }                                             784     }
915   }                                            << 785     else
916                                                << 786     {
917   // set elements for phi cuts                 << 787       for (j=0; j<numPlanes-1; j++)
918   if (IsOpen())                                << 788       {
919   {                                            << 789         if( ((chose >= Achose1) && (chose < Achose2)) || (j == numPlanes-2) )
920     G4TwoVectorList contourRZ;                 << 790         { 
921     std::vector<G4int> triangles;              << 791           Flag = j; break; 
922     for (G4int i=0; i<nrz; ++i)                << 792         }
923     {                                          << 793         Achose1 += numSide*(aVector1[j]+aVector2[j])+2.*aVector3[j];
924       G4PolyhedraSideRZ corner = GetCorner(i); << 794         Achose2 = Achose1 + numSide*(aVector1[j+1]+aVector2[j+1])
925       contourRZ.emplace_back(corner.r, corner. << 795                           + 2.*aVector3[j+1];
926     }                                          << 796       }
927     G4GeomTools::TriangulatePolygon(contourRZ, << 
928     auto ntria = (G4int)triangles.size();      << 
929     for (G4int i=0; i<ntria; i+=3)             << 
930     {                                          << 
931       G4Polyhedra::surface_element selem;      << 
932       selem.i0 = triangles[i];                 << 
933       selem.i1 = triangles[i+1];               << 
934       selem.i2 = triangles[i+2];               << 
935       G4PolyhedraSideRZ a = GetCorner(selem.i0 << 
936       G4PolyhedraSideRZ b = GetCorner(selem.i1 << 
937       G4PolyhedraSideRZ c = GetCorner(selem.i2 << 
938       G4double stria =                         << 
939         std::abs(G4GeomTools::TriangleArea(a.r << 
940       total += stria;                          << 
941       selem.area = total;                      << 
942       fElements->push_back(selem); // start ph << 
943       total += stria;                          << 
944       selem.area = total;                      << 
945       selem.i0 += nrz;                         << 
946       fElements->push_back(selem); // end phi  << 
947     }                                             797     }
948   }                                            << 
949 }                                              << 
950                                                   798 
951 ////////////////////////////////////////////// << 799     // At this point we have chosen a subsection
952 //                                             << 800     // between to adjacent plane cuts...
953 // Generate random point on surface            << 
954                                                   801 
955 G4ThreeVector G4Polyhedra::GetPointOnSurface() << 802     j = Flag; 
956 {                                              << 803     
957   // Set surface elements                      << 804     totArea = numSide*(aVector1[j]+aVector2[j])+2.*aVector3[j];
958   if (fElements == nullptr)                    << 805     chose = RandFlat::shoot(0.,totArea);
959   {                                            << 806   
960     G4AutoLock l(&surface_elementsMutex);      << 807     if( (chose>=0.) && (chose<numSide*aVector1[j]) )
961     SetSurfaceElements();                      << 808     {
962     l.unlock();                                << 809       chose = RandFlat::shoot(startPhi,startPhi+totalPhi);
963   }                                            << 810       rang = std::floor((chose-startPhi)/ksi-0.01);
                                                   >> 811       if(rang<0) { rang=0; }
                                                   >> 812       rang = std::fabs(rang);
                                                   >> 813       rad1 = original_parameters->Rmax[j];
                                                   >> 814       rad2 = original_parameters->Rmax[j+1];
                                                   >> 815       sinphi1 = std::sin(startPhi+rang*ksi);
                                                   >> 816       sinphi2 = std::sin(startPhi+(rang+1)*ksi);
                                                   >> 817       cosphi1 = std::cos(startPhi+rang*ksi);
                                                   >> 818       cosphi2 = std::cos(startPhi+(rang+1)*ksi);
                                                   >> 819       zVal = original_parameters->Z_values[j];
                                                   >> 820     
                                                   >> 821       p0 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1,zVal);
                                                   >> 822       p1 = G4ThreeVector(rad1*cosphi2,rad1*sinphi2,zVal);
                                                   >> 823 
                                                   >> 824       zVal = original_parameters->Z_values[j+1];
                                                   >> 825 
                                                   >> 826       p2 = G4ThreeVector(rad2*cosphi2,rad2*sinphi2,zVal);
                                                   >> 827       p3 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1,zVal);
                                                   >> 828       return GetPointOnPlane(p0,p1,p2,p3);
                                                   >> 829     }
                                                   >> 830     else if ( (chose >= numSide*aVector1[j])
                                                   >> 831            && (chose <= numSide*(aVector1[j]+aVector2[j])) )
                                                   >> 832     {
                                                   >> 833       chose = RandFlat::shoot(startPhi,startPhi+totalPhi);
                                                   >> 834       rang = std::floor((chose-startPhi)/ksi-0.01);
                                                   >> 835       if(rang<0) { rang=0; }
                                                   >> 836       rang = std::fabs(rang);
                                                   >> 837       rad1 = original_parameters->Rmin[j];
                                                   >> 838       rad2 = original_parameters->Rmin[j+1];
                                                   >> 839       sinphi1 = std::sin(startPhi+rang*ksi);
                                                   >> 840       sinphi2 = std::sin(startPhi+(rang+1)*ksi);
                                                   >> 841       cosphi1 = std::cos(startPhi+rang*ksi);
                                                   >> 842       cosphi2 = std::cos(startPhi+(rang+1)*ksi);
                                                   >> 843       zVal = original_parameters->Z_values[j];
                                                   >> 844 
                                                   >> 845       p0 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1,zVal);
                                                   >> 846       p1 = G4ThreeVector(rad1*cosphi2,rad1*sinphi2,zVal);
                                                   >> 847 
                                                   >> 848       zVal = original_parameters->Z_values[j+1];
                                                   >> 849     
                                                   >> 850       p2 = G4ThreeVector(rad2*cosphi2,rad2*sinphi2,zVal);
                                                   >> 851       p3 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1,zVal);
                                                   >> 852       return GetPointOnPlane(p0,p1,p2,p3);
                                                   >> 853     }
964                                                   854 
965   // Select surface element                    << 855     chose = RandFlat::shoot(0.,2.2);
966   G4Polyhedra::surface_element selem;          << 856     if( (chose>=0.) && (chose < 1.) )
967   selem = fElements->back();                   << 857     {
968   G4double select = selem.area*G4QuickRand();  << 858       rang = startPhi;
969   auto it = std::lower_bound(fElements->begin( << 
970                              [](const G4Polyhe << 
971                              -> G4bool { retur << 
972                                                << 
973   // Generate random point                     << 
974   G4double x = 0, y = 0, z = 0;                << 
975   G4double u = G4QuickRand();                  << 
976   G4double v = G4QuickRand();                  << 
977   if (u + v > 1.) { u = 1. - u; v = 1. - v; }  << 
978   G4int i0 = (*it).i0;                         << 
979   G4int i1 = (*it).i1;                         << 
980   G4int i2 = (*it).i2;                         << 
981   if (i2 < 0) // lateral surface               << 
982   {                                            << 
983     // sample point                            << 
984     G4int nside = GetNumSide();                << 
985     G4double dphi = (GetEndPhi() - GetStartPhi << 
986     G4double cosa = std::cos(dphi);            << 
987     G4double sina = std::sin(dphi);            << 
988     G4PolyhedraSideRZ a = GetCorner(i0);       << 
989     G4PolyhedraSideRZ b = GetCorner(i1);       << 
990     G4ThreeVector p0(a.r, 0, a.z);             << 
991     G4ThreeVector p1(b.r, 0, b.z);             << 
992     G4ThreeVector p2(b.r*cosa, b.r*sina, b.z); << 
993     if (i2 == -1) p1.set(a.r*cosa, a.r*sina, a << 
994     p0 += (p1 - p0)*u + (p2 - p0)*v;           << 
995     // find selected side and rotate point     << 
996     G4double scurr = (*it).area;               << 
997     G4double sprev = (it == fElements->begin() << 
998     G4int iside = nside*(select - sprev)/(scur << 
999     if (iside == 0 && GetStartPhi() == 0.)     << 
1000     {                                         << 
1001       x = p0.x();                             << 
1002       y = p0.y();                             << 
1003       z = p0.z();                             << 
1004     }                                            859     }
1005     else                                         860     else
1006     {                                            861     {
1007       if (iside == nside) --iside; // iside m << 862       rang = endPhi;
1008       G4double phi = iside*dphi + GetStartPhi << 863     } 
1009       G4double cosphi = std::cos(phi);        << 864 
1010       G4double sinphi = std::sin(phi);        << 865     cosphi1 = std::cos(rang); rad1 = original_parameters->Rmin[j];
1011       x = p0.x()*cosphi - p0.y()*sinphi;      << 866     sinphi1 = std::sin(rang); rad2 = original_parameters->Rmax[j];
1012       y = p0.x()*sinphi + p0.y()*cosphi;      << 867 
1013       z = p0.z();                             << 868     p0 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1,
1014     }                                         << 869                        original_parameters->Z_values[j]);
                                                   >> 870     p1 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1,
                                                   >> 871                        original_parameters->Z_values[j]);
                                                   >> 872 
                                                   >> 873     rad1 = original_parameters->Rmax[j+1];
                                                   >> 874     rad2 = original_parameters->Rmin[j+1];
                                                   >> 875 
                                                   >> 876     p2 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1,
                                                   >> 877                        original_parameters->Z_values[j+1]);
                                                   >> 878     p3 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1,
                                                   >> 879                        original_parameters->Z_values[j+1]);
                                                   >> 880     return GetPointOnPlane(p0,p1,p2,p3);
1015   }                                              881   }
1016   else // phi cut                             << 882   else  // Generic polyhedra
1017   {                                              883   {
1018     G4int nrz = GetNumRZCorner();             << 884     return GetPointOnSurfaceGeneric(); 
1019     G4double phi = (i0 < nrz) ? GetStartPhi() << 
1020     if (i0 >= nrz) { i0 -= nrz; }             << 
1021     G4PolyhedraSideRZ p0 = GetCorner(i0);     << 
1022     G4PolyhedraSideRZ p1 = GetCorner(i1);     << 
1023     G4PolyhedraSideRZ p2 = GetCorner(i2);     << 
1024     G4double r = (p1.r - p0.r)*u + (p2.r - p0 << 
1025     x = r*std::cos(phi);                      << 
1026     y = r*std::sin(phi);                      << 
1027     z = (p1.z - p0.z)*u + (p2.z - p0.z)*v + p << 
1028   }                                              885   }
1029   return {x, y, z};                           << 
1030 }                                                886 }
1031                                                  887 
1032 ///////////////////////////////////////////// << 
1033 //                                               888 //
1034 // CreatePolyhedron                              889 // CreatePolyhedron
1035                                               << 
1036 G4Polyhedron* G4Polyhedra::CreatePolyhedron() << 
1037 {                                             << 
1038   std::vector<G4TwoVector> rz(numCorner);     << 
1039   for (G4int i = 0; i < numCorner; ++i)       << 
1040     rz[i].set(corners[i].r, corners[i].z);    << 
1041   return new G4PolyhedronPgon(startPhi, endPh << 
1042 }                                             << 
1043                                               << 
1044 // SetOriginalParameters                      << 
1045 //                                               890 //
1046 void G4Polyhedra::SetOriginalParameters(G4Red << 891 G4Polyhedron* G4Polyhedra::CreatePolyhedron() const
1047 {                                             << 892 { 
1048   G4int numPlanes = numCorner;                << 893   if (!genericPgon)
1049   G4bool isConvertible = true;                << 
1050   G4double Zmax=rz->Bmax();                   << 
1051   rz->StartWithZMin();                        << 
1052                                               << 
1053   // Prepare vectors for storage              << 
1054   //                                          << 
1055   std::vector<G4double> Z;                    << 
1056   std::vector<G4double> Rmin;                 << 
1057   std::vector<G4double> Rmax;                 << 
1058                                               << 
1059   G4int countPlanes=1;                        << 
1060   G4int icurr=0;                              << 
1061   G4int icurl=0;                              << 
1062                                               << 
1063   // first plane Z=Z[0]                       << 
1064   //                                          << 
1065   Z.push_back(corners[0].z);                  << 
1066   G4double Zprev=Z[0];                        << 
1067   if (Zprev == corners[1].z)                  << 
1068   {                                           << 
1069     Rmin.push_back(corners[0].r);             << 
1070     Rmax.push_back (corners[1].r);icurr=1;    << 
1071   }                                           << 
1072   else if (Zprev == corners[numPlanes-1].z)   << 
1073   {                                              894   {
1074     Rmin.push_back(corners[numPlanes-1].r);   << 895     return new G4PolyhedronPgon( original_parameters->Start_angle,
1075     Rmax.push_back (corners[0].r);            << 896                                  original_parameters->Opening_angle,
1076     icurl=numPlanes-1;                        << 897                                  original_parameters->numSide,
                                                   >> 898                                  original_parameters->Num_z_planes,
                                                   >> 899                                  original_parameters->Z_values,
                                                   >> 900                                  original_parameters->Rmin,
                                                   >> 901                                  original_parameters->Rmax);
1077   }                                              902   }
1078   else                                           903   else
1079   {                                              904   {
1080     Rmin.push_back(corners[0].r);             << 905     // The following code prepares for:
1081     Rmax.push_back (corners[0].r);            << 906     // HepPolyhedron::createPolyhedron(int Nnodes, int Nfaces,
1082   }                                           << 907     //                                 const double xyz[][3],
1083                                               << 908     //                                 const int faces_vec[][4])
1084   // next planes until last                   << 909     // Here is an extract from the header file HepPolyhedron.h:
1085   //                                          << 910     /**
1086   G4int inextr=0, inextl=0;                   << 911      * Creates user defined polyhedron.
1087   for (G4int i=0; i < numPlanes-2; ++i)       << 912      * This function allows to the user to define arbitrary polyhedron.
1088   {                                           << 913      * The faces of the polyhedron should be either triangles or planar
1089     inextr=1+icurr;                           << 914      * quadrilateral. Nodes of a face are defined by indexes pointing to
1090     inextl=(icurl <= 0)? numPlanes-1 : icurl- << 915      * the elements in the xyz array. Numeration of the elements in the
1091                                               << 916      * array starts from 1 (like in fortran). The indexes can be positive
1092     if((corners[inextr].z >= Zmax) & (corners << 917      * or negative. Negative sign means that the corresponding edge is
1093                                               << 918      * invisible. The normal of the face should be directed to exterior
1094     G4double Zleft = corners[inextl].z;       << 919      * of the polyhedron. 
1095     G4double Zright = corners[inextr].z;      << 920      * 
1096     if(Zright>Zleft)                          << 921      * @param  Nnodes number of nodes
                                                   >> 922      * @param  Nfaces number of faces
                                                   >> 923      * @param  xyz    nodes
                                                   >> 924      * @param  faces_vec  faces (quadrilaterals or triangles)
                                                   >> 925      * @return status of the operation - is non-zero in case of problem
                                                   >> 926      */
                                                   >> 927     G4int nNodes;
                                                   >> 928     G4int nFaces;
                                                   >> 929     typedef G4double double3[3];
                                                   >> 930     double3* xyz;
                                                   >> 931     typedef G4int int4[4];
                                                   >> 932     int4* faces_vec;
                                                   >> 933     if (phiIsOpen)
1097     {                                            934     {
1098       Z.push_back(Zleft);                     << 935       // Triangulate open ends.  Simple ear-chopping algorithm...
1099       countPlanes++;                          << 936       // I'm not sure how robust this algorithm is (J.Allison).
1100       G4double difZr=corners[inextr].z - corn << 937       //
1101       G4double difZl=corners[inextl].z - corn << 938       std::vector<G4bool> chopped(numCorner, false);
1102                                               << 939       std::vector<G4int*> triQuads;
1103       if(std::fabs(difZl) < kCarTolerance)    << 940       G4int remaining = numCorner;
                                                   >> 941       G4int iStarter = 0;
                                                   >> 942       while (remaining >= 3)
1104       {                                          943       {
1105         if(std::fabs(difZr) < kCarTolerance)  << 944         // Find unchopped corners...
                                                   >> 945         //
                                                   >> 946         G4int A = -1, B = -1, C = -1;
                                                   >> 947         G4int iStepper = iStarter;
                                                   >> 948         do
                                                   >> 949         {
                                                   >> 950           if (A < 0)      { A = iStepper; }
                                                   >> 951           else if (B < 0) { B = iStepper; }
                                                   >> 952           else if (C < 0) { C = iStepper; }
                                                   >> 953           do
                                                   >> 954           {
                                                   >> 955             if (++iStepper >= numCorner) iStepper = 0;
                                                   >> 956           }
                                                   >> 957           while (chopped[iStepper]);
                                                   >> 958         }
                                                   >> 959         while (C < 0 && iStepper != iStarter);
                                                   >> 960 
                                                   >> 961         // Check triangle at B is pointing outward (an "ear").
                                                   >> 962         // Sign of z cross product determines...
                                                   >> 963 
                                                   >> 964         G4double BAr = corners[A].r - corners[B].r;
                                                   >> 965         G4double BAz = corners[A].z - corners[B].z;
                                                   >> 966         G4double BCr = corners[C].r - corners[B].r;
                                                   >> 967         G4double BCz = corners[C].z - corners[B].z;
                                                   >> 968         if (BAr * BCz - BAz * BCr < kCarTolerance)
1106         {                                        969         {
1107           Rmin.push_back(corners[inextl].r);  << 970           G4int* tq = new G4int[3];
1108           Rmax.push_back(corners[icurr].r);   << 971           tq[0] = A + 1;
                                                   >> 972           tq[1] = B + 1;
                                                   >> 973           tq[2] = C + 1;
                                                   >> 974           triQuads.push_back(tq);
                                                   >> 975           chopped[B] = true;
                                                   >> 976           --remaining;
1109         }                                        977         }
1110         else                                     978         else
1111         {                                        979         {
1112           Rmin.push_back(corners[inextl].r);  << 980           do
1113           Rmax.push_back(corners[icurr].r + ( << 981           {
1114                                 *(corners[ine << 982             if (++iStarter >= numCorner) { iStarter = 0; }
                                                   >> 983           }
                                                   >> 984           while (chopped[iStarter]);
1115         }                                        985         }
1116       }                                          986       }
1117       else if (difZl >= kCarTolerance)        << 987 
                                                   >> 988       // Transfer to faces...
                                                   >> 989 
                                                   >> 990       nNodes = (numSide + 1) * numCorner;
                                                   >> 991       nFaces = numSide * numCorner + 2 * triQuads.size();
                                                   >> 992       faces_vec = new int4[nFaces];
                                                   >> 993       G4int iface = 0;
                                                   >> 994       G4int addition = numCorner * numSide;
                                                   >> 995       G4int d = numCorner - 1;
                                                   >> 996       for (G4int iEnd = 0; iEnd < 2; ++iEnd)
1118       {                                          997       {
1119         if(std::fabs(difZr) < kCarTolerance)  << 998         for (size_t i = 0; i < triQuads.size(); ++i)
1120         {                                     << 
1121           Rmin.push_back(corners[icurl].r);   << 
1122           Rmax.push_back(corners[icurr].r);   << 
1123         }                                     << 
1124         else                                  << 
1125         {                                        999         {
1126           Rmin.push_back(corners[icurl].r);   << 1000           // Negative for soft/auxiliary/normally invisible edges...
1127           Rmax.push_back(corners[icurr].r + ( << 1001           //
1128                                 *(corners[ine << 1002           G4int a, b, c;
                                                   >> 1003           if (iEnd == 0)
                                                   >> 1004           {
                                                   >> 1005             a = triQuads[i][0];
                                                   >> 1006             b = triQuads[i][1];
                                                   >> 1007             c = triQuads[i][2];
                                                   >> 1008           }
                                                   >> 1009           else
                                                   >> 1010           {
                                                   >> 1011             a = triQuads[i][0] + addition;
                                                   >> 1012             b = triQuads[i][2] + addition;
                                                   >> 1013             c = triQuads[i][1] + addition;
                                                   >> 1014           }
                                                   >> 1015           G4int ab = std::abs(b - a);
                                                   >> 1016           G4int bc = std::abs(c - b);
                                                   >> 1017           G4int ca = std::abs(a - c);
                                                   >> 1018           faces_vec[iface][0] = (ab == 1 || ab == d)? a: -a;
                                                   >> 1019           faces_vec[iface][1] = (bc == 1 || bc == d)? b: -b;
                                                   >> 1020           faces_vec[iface][2] = (ca == 1 || ca == d)? c: -c;
                                                   >> 1021           faces_vec[iface][3] = 0;
                                                   >> 1022           ++iface;
1129         }                                        1023         }
1130       }                                          1024       }
1131       else                                    << 1025 
                                                   >> 1026       // Continue with sides...
                                                   >> 1027 
                                                   >> 1028       xyz = new double3[nNodes];
                                                   >> 1029       const G4double dPhi = (endPhi - startPhi) / numSide;
                                                   >> 1030       G4double phi = startPhi;
                                                   >> 1031       G4int ixyz = 0;
                                                   >> 1032       for (G4int iSide = 0; iSide < numSide; ++iSide)
1132       {                                          1033       {
1133         isConvertible=false; break;           << 1034         for (G4int iCorner = 0; iCorner < numCorner; ++iCorner)
                                                   >> 1035         {
                                                   >> 1036           xyz[ixyz][0] = corners[iCorner].r * std::cos(phi);
                                                   >> 1037           xyz[ixyz][1] = corners[iCorner].r * std::sin(phi);
                                                   >> 1038           xyz[ixyz][2] = corners[iCorner].z;
                                                   >> 1039           if (iCorner < numCorner - 1)
                                                   >> 1040           {
                                                   >> 1041             faces_vec[iface][0] = ixyz + 1;
                                                   >> 1042             faces_vec[iface][1] = ixyz + numCorner + 1;
                                                   >> 1043             faces_vec[iface][2] = ixyz + numCorner + 2;
                                                   >> 1044             faces_vec[iface][3] = ixyz + 2;
                                                   >> 1045           }
                                                   >> 1046           else
                                                   >> 1047           {
                                                   >> 1048             faces_vec[iface][0] = ixyz + 1;
                                                   >> 1049             faces_vec[iface][1] = ixyz + numCorner + 1;
                                                   >> 1050             faces_vec[iface][2] = ixyz + 2;
                                                   >> 1051             faces_vec[iface][3] = ixyz - numCorner + 2;
                                                   >> 1052           }
                                                   >> 1053           ++iface;
                                                   >> 1054           ++ixyz;
                                                   >> 1055         }
                                                   >> 1056         phi += dPhi;
1134       }                                          1057       }
1135       icurl=(icurl == 0)? numPlanes-1 : icurl << 
1136     }                                         << 
1137     else if(std::fabs(Zright-Zleft)<kCarToler << 
1138     {                                         << 
1139       Z.push_back(Zleft);                     << 
1140       ++countPlanes;                          << 
1141       ++icurr;                                << 
1142                                                  1058 
1143       icurl=(icurl == 0)? numPlanes-1 : icurl << 1059       // Last corners...
1144                                                  1060 
1145       Rmin.push_back(corners[inextl].r);      << 1061       for (G4int iCorner = 0; iCorner < numCorner; ++iCorner)
1146       Rmax.push_back (corners[inextr].r);     << 1062       {
                                                   >> 1063         xyz[ixyz][0] = corners[iCorner].r * std::cos(phi);
                                                   >> 1064         xyz[ixyz][1] = corners[iCorner].r * std::sin(phi);
                                                   >> 1065         xyz[ixyz][2] = corners[iCorner].z;
                                                   >> 1066         ++ixyz;
                                                   >> 1067       }
1147     }                                            1068     }
1148     else  // Zright<Zleft                     << 1069     else  // !phiIsOpen - i.e., a complete 360 degrees.
1149     {                                            1070     {
1150       Z.push_back(Zright);                    << 1071       nNodes = numSide * numCorner;
1151       ++countPlanes;                          << 1072       nFaces = numSide * numCorner;;
1152                                               << 1073       xyz = new double3[nNodes];
1153       G4double difZr=corners[inextr].z - corn << 1074       faces_vec = new int4[nFaces];
1154       G4double difZl=corners[inextl].z - corn << 1075       // const G4double dPhi = (endPhi - startPhi) / numSide;
1155       if(std::fabs(difZr) < kCarTolerance)    << 1076       const G4double dPhi = twopi / numSide; // !phiIsOpen endPhi-startPhi = 360 degrees.
1156       {                                       << 1077       G4double phi = startPhi;
1157         if(std::fabs(difZl) < kCarTolerance)  << 1078       G4int ixyz = 0, iface = 0;
1158         {                                     << 1079       for (G4int iSide = 0; iSide < numSide; ++iSide)
1159           Rmax.push_back(corners[inextr].r);  << 
1160           Rmin.push_back(corners[icurr].r);   << 
1161         }                                     << 
1162         else                                  << 
1163         {                                     << 
1164           Rmin.push_back(corners[icurl].r + ( << 
1165                                 * (corners[in << 
1166           Rmax.push_back(corners[inextr].r);  << 
1167         }                                     << 
1168         ++icurr;                              << 
1169       }           // plate                    << 
1170       else if (difZr >= kCarTolerance)        << 
1171       {                                          1080       {
1172         if(std::fabs(difZl) < kCarTolerance)  << 1081         for (G4int iCorner = 0; iCorner < numCorner; ++iCorner)
1173         {                                     << 
1174           Rmax.push_back(corners[inextr].r);  << 
1175           Rmin.push_back (corners[icurr].r);  << 
1176         }                                     << 
1177         else                                  << 
1178         {                                        1082         {
1179           Rmax.push_back(corners[inextr].r);  << 1083           xyz[ixyz][0] = corners[iCorner].r * std::cos(phi);
1180           Rmin.push_back (corners[icurl].r+(Z << 1084           xyz[ixyz][1] = corners[iCorner].r * std::sin(phi);
1181                                   * (corners[ << 1085           xyz[ixyz][2] = corners[iCorner].z;
                                                   >> 1086           if (iSide < numSide - 1)
                                                   >> 1087           {
                                                   >> 1088             if (iCorner < numCorner - 1)
                                                   >> 1089             {
                                                   >> 1090               faces_vec[iface][0] = ixyz + 1;
                                                   >> 1091               faces_vec[iface][1] = ixyz + numCorner + 1;
                                                   >> 1092               faces_vec[iface][2] = ixyz + numCorner + 2;
                                                   >> 1093               faces_vec[iface][3] = ixyz + 2;
                                                   >> 1094             }
                                                   >> 1095             else
                                                   >> 1096             {
                                                   >> 1097               faces_vec[iface][0] = ixyz + 1;
                                                   >> 1098               faces_vec[iface][1] = ixyz + numCorner + 1;
                                                   >> 1099               faces_vec[iface][2] = ixyz + 2;
                                                   >> 1100               faces_vec[iface][3] = ixyz - numCorner + 2;
                                                   >> 1101             }
                                                   >> 1102           }
                                                   >> 1103           else   // Last side joins ends...
                                                   >> 1104           {
                                                   >> 1105             if (iCorner < numCorner - 1)
                                                   >> 1106             {
                                                   >> 1107               faces_vec[iface][0] = ixyz + 1;
                                                   >> 1108               faces_vec[iface][1] = ixyz + numCorner - nFaces + 1;
                                                   >> 1109               faces_vec[iface][2] = ixyz + numCorner - nFaces + 2;
                                                   >> 1110               faces_vec[iface][3] = ixyz + 2;
                                                   >> 1111             }
                                                   >> 1112             else
                                                   >> 1113             {
                                                   >> 1114               faces_vec[iface][0] = ixyz + 1;
                                                   >> 1115               faces_vec[iface][1] = ixyz - nFaces + numCorner + 1;
                                                   >> 1116               faces_vec[iface][2] = ixyz - nFaces + 2;
                                                   >> 1117               faces_vec[iface][3] = ixyz - numCorner + 2;
                                                   >> 1118             }
                                                   >> 1119           }
                                                   >> 1120           ++ixyz;
                                                   >> 1121           ++iface;
1182         }                                        1122         }
1183         ++icurr;                              << 1123         phi += dPhi;
1184       }                                       << 
1185       else                                    << 
1186       {                                       << 
1187         isConvertible=false; break;           << 
1188       }                                          1124       }
1189     }                                            1125     }
1190   }   // end for loop                         << 1126     G4Polyhedron* polyhedron = new G4Polyhedron;
                                                   >> 1127     G4int problem = polyhedron->createPolyhedron(nNodes, nFaces, xyz, faces_vec);
                                                   >> 1128     delete faces_vec;
                                                   >> 1129     delete xyz;
                                                   >> 1130     if (problem)
                                                   >> 1131     {
                                                   >> 1132       std::ostringstream oss;
                                                   >> 1133       oss << "Problem creating G4Polyhedron for: " << GetName();
                                                   >> 1134       G4Exception("G4Polyhedra::CreatePolyhedron()", "BadPolyhedron",
                                                   >> 1135                   JustWarning, oss.str().c_str());
                                                   >> 1136       delete polyhedron;
                                                   >> 1137       return 0;
                                                   >> 1138     }
                                                   >> 1139     else
                                                   >> 1140     {
                                                   >> 1141       return polyhedron;
                                                   >> 1142     }
                                                   >> 1143   }
                                                   >> 1144 }
1191                                                  1145 
1192   // last plane Z=Zmax                        << 1146 //
1193   //                                          << 1147 // CreateNURBS
1194   Z.push_back(Zmax);                          << 1148 //
1195   ++countPlanes;                              << 1149 G4NURBS *G4Polyhedra::CreateNURBS() const
1196   inextr=1+icurr;                             << 1150 {
1197   inextl=(icurl <= 0)? numPlanes-1 : icurl-1; << 1151   return 0;
1198                                               << 1152 }
1199   Rmax.push_back(corners[inextr].r);          << 
1200   Rmin.push_back(corners[inextl].r);          << 
1201                                               << 
1202   // Set original parameters Rmin,Rmax,Z      << 
1203   //                                          << 
1204   if(isConvertible)                           << 
1205   {                                           << 
1206    original_parameters = new G4PolyhedraHisto << 
1207    original_parameters->numSide = numSide;    << 
1208    original_parameters->Z_values = new G4doub << 
1209    original_parameters->Rmin = new G4double[c << 
1210    original_parameters->Rmax = new G4double[c << 
1211                                               << 
1212    for(G4int j=0; j < countPlanes; ++j)       << 
1213    {                                          << 
1214      original_parameters->Z_values[j] = Z[j]; << 
1215      original_parameters->Rmax[j] = Rmax[j];  << 
1216      original_parameters->Rmin[j] = Rmin[j];  << 
1217    }                                          << 
1218    original_parameters->Start_angle = startPh << 
1219    original_parameters->Opening_angle = endPh << 
1220    original_parameters->Num_z_planes = countP << 
1221                                                  1153 
1222   }                                           << 1154 
1223   else  // Set parameters(r,z) with Rmin==0 a << 1155 //
                                                   >> 1156 // G4PolyhedraHistorical stuff
                                                   >> 1157 //
                                                   >> 1158 G4PolyhedraHistorical::G4PolyhedraHistorical()
                                                   >> 1159   : Z_values(0), Rmin(0), Rmax(0)
                                                   >> 1160 {
                                                   >> 1161 }
                                                   >> 1162 
                                                   >> 1163 G4PolyhedraHistorical::~G4PolyhedraHistorical()
                                                   >> 1164 {
                                                   >> 1165   delete [] Z_values;
                                                   >> 1166   delete [] Rmin;
                                                   >> 1167   delete [] Rmax;
                                                   >> 1168 }
                                                   >> 1169 
                                                   >> 1170 G4PolyhedraHistorical::
                                                   >> 1171 G4PolyhedraHistorical( const G4PolyhedraHistorical& source )
                                                   >> 1172 {
                                                   >> 1173   Start_angle   = source.Start_angle;
                                                   >> 1174   Opening_angle = source.Opening_angle;
                                                   >> 1175   numSide       = source.numSide;
                                                   >> 1176   Num_z_planes  = source.Num_z_planes;
                                                   >> 1177   
                                                   >> 1178   Z_values = new G4double[Num_z_planes];
                                                   >> 1179   Rmin     = new G4double[Num_z_planes];
                                                   >> 1180   Rmax     = new G4double[Num_z_planes];
                                                   >> 1181   
                                                   >> 1182   for( G4int i = 0; i < Num_z_planes; i++)
1224   {                                              1183   {
1225 #ifdef G4SPECSDEBUG                           << 1184     Z_values[i] = source.Z_values[i];
1226     std::ostringstream message;               << 1185     Rmin[i]     = source.Rmin[i];
1227     message << "Polyhedra " << GetName() << G << 1186     Rmax[i]     = source.Rmax[i];
1228       << "cannot be converted to Polyhedra wi << 
1229     G4Exception("G4Polyhedra::SetOriginalPara << 
1230                 "GeomSolids0002", JustWarning << 
1231 #endif                                        << 
1232     original_parameters = new G4PolyhedraHist << 
1233     original_parameters->numSide = numSide;   << 
1234     original_parameters->Z_values = new G4dou << 
1235     original_parameters->Rmin = new G4double[ << 
1236     original_parameters->Rmax = new G4double[ << 
1237                                               << 
1238     for(G4int j=0; j < numPlanes; ++j)        << 
1239     {                                         << 
1240       original_parameters->Z_values[j] = corn << 
1241       original_parameters->Rmax[j] = corners[ << 
1242       original_parameters->Rmin[j] = 0.0;     << 
1243     }                                         << 
1244     original_parameters->Start_angle = startP << 
1245     original_parameters->Opening_angle = endP << 
1246     original_parameters->Num_z_planes = numPl << 
1247   }                                              1187   }
1248 }                                                1188 }
1249                                                  1189 
1250 #endif                                        << 1190 G4PolyhedraHistorical&
                                                   >> 1191 G4PolyhedraHistorical::operator=( const G4PolyhedraHistorical& right )
                                                   >> 1192 {
                                                   >> 1193   if ( &right == this ) return *this;
                                                   >> 1194 
                                                   >> 1195   if (&right)
                                                   >> 1196   {
                                                   >> 1197     Start_angle   = right.Start_angle;
                                                   >> 1198     Opening_angle = right.Opening_angle;
                                                   >> 1199     numSide       = right.numSide;
                                                   >> 1200     Num_z_planes  = right.Num_z_planes;
                                                   >> 1201   
                                                   >> 1202     delete [] Z_values;
                                                   >> 1203     delete [] Rmin;
                                                   >> 1204     delete [] Rmax;
                                                   >> 1205     Z_values = new G4double[Num_z_planes];
                                                   >> 1206     Rmin     = new G4double[Num_z_planes];
                                                   >> 1207     Rmax     = new G4double[Num_z_planes];
                                                   >> 1208   
                                                   >> 1209     for( G4int i = 0; i < Num_z_planes; i++)
                                                   >> 1210     {
                                                   >> 1211       Z_values[i] = right.Z_values[i];
                                                   >> 1212       Rmin[i]     = right.Rmin[i];
                                                   >> 1213       Rmax[i]     = right.Rmax[i];
                                                   >> 1214     }
                                                   >> 1215   }
                                                   >> 1216   return *this;
                                                   >> 1217 }
1251                                                  1218