Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Implementation of G4Polyhedra, a CSG polyhe << 26 // 27 // as an inherited class of G4VCSGfaceted. << 27 // $Id: G4Polyhedra.cc,v 1.29 2006/06/29 18:48:46 gunter Exp $ >> 28 // GEANT4 tag $Name: geant4-08-01 $ >> 29 // >> 30 // >> 31 // -------------------------------------------------------------------- >> 32 // GEANT 4 class source file >> 33 // >> 34 // >> 35 // G4Polyhedra.cc >> 36 // >> 37 // Implementation of a CSG polyhedra, as an inherited class of G4VCSGfaceted. >> 38 // >> 39 // To be done: >> 40 // * Cracks: there are probably small cracks in the seams between the >> 41 // phi face (G4PolyPhiFace) and sides (G4PolyhedraSide) that are not >> 42 // entirely leakproof. Also, I am not sure all vertices are leak proof. >> 43 // * Many optimizations are possible, but not implemented. >> 44 // * Visualization needs to be updated outside of this routine. 28 // 45 // 29 // Utility classes: 46 // Utility classes: 30 // * G4EnclosingCylinder: decided a quick c << 47 // * G4EnclosingCylinder: I decided a quick check of geometry would be a 31 // good idea (for CPU speed). If the quic 48 // good idea (for CPU speed). If the quick check fails, the regular 32 // full-blown G4VCSGfaceted version is in 49 // full-blown G4VCSGfaceted version is invoked. 33 // * G4ReduciblePolygon: Really meant as a 50 // * G4ReduciblePolygon: Really meant as a check of input parameters, 34 // this utility class also "converts" the 51 // this utility class also "converts" the GEANT3-like PGON/PCON 35 // arguments into the newer ones. 52 // arguments into the newer ones. 36 // Both these classes are implemented outside 53 // Both these classes are implemented outside this file because they are 37 // shared with G4Polycone. 54 // shared with G4Polycone. 38 // 55 // 39 // Author: David C. Williams (davidw@scipp.ucs << 40 // ------------------------------------------- 56 // -------------------------------------------------------------------- 41 57 42 #include "G4Polyhedra.hh" 58 #include "G4Polyhedra.hh" 43 59 44 #if !defined(G4GEOM_USE_UPOLYHEDRA) << 45 << 46 #include "G4PolyhedraSide.hh" 60 #include "G4PolyhedraSide.hh" 47 #include "G4PolyPhiFace.hh" 61 #include "G4PolyPhiFace.hh" 48 62 49 #include "G4GeomTools.hh" << 63 #include "Randomize.hh" 50 #include "G4VoxelLimits.hh" << 51 #include "G4AffineTransform.hh" << 52 #include "G4BoundingEnvelope.hh" << 53 << 54 #include "G4QuickRand.hh" << 55 64 >> 65 #include "G4Polyhedron.hh" 56 #include "G4EnclosingCylinder.hh" 66 #include "G4EnclosingCylinder.hh" 57 #include "G4ReduciblePolygon.hh" 67 #include "G4ReduciblePolygon.hh" 58 #include "G4VPVParameterisation.hh" 68 #include "G4VPVParameterisation.hh" 59 69 60 namespace << 61 { << 62 G4Mutex surface_elementsMutex = G4MUTEX_INIT << 63 } << 64 << 65 using namespace CLHEP; 70 using namespace CLHEP; 66 71 >> 72 // 67 // Constructor (GEANT3 style parameters) 73 // Constructor (GEANT3 style parameters) 68 // 74 // 69 // GEANT3 PGON radii are specified in the dist 75 // GEANT3 PGON radii are specified in the distance to the norm of each face. 70 // << 76 // 71 G4Polyhedra::G4Polyhedra( const G4String& name << 77 G4Polyhedra::G4Polyhedra( const G4String& name, 72 G4double phiSt 78 G4double phiStart, 73 G4double thePh 79 G4double thePhiTotal, 74 G4int theNumSi << 80 G4int theNumSide, 75 G4int numZPlan 81 G4int numZPlanes, 76 const G4double zPlan 82 const G4double zPlane[], 77 const G4double rInne 83 const G4double rInner[], 78 const G4double rOute 84 const G4double rOuter[] ) 79 : G4VCSGfaceted( name ) << 85 : G4VCSGfaceted( name ), genericPgon(false) 80 { 86 { 81 if (theNumSide <= 0) 87 if (theNumSide <= 0) 82 { 88 { 83 std::ostringstream message; << 89 G4cerr << "ERROR - G4Polyhedra::G4Polyhedra(): " << GetName() << G4endl 84 message << "Solid must have at least one s << 90 << " No sides specified !" 85 << " No sides specified !"; << 91 << G4endl; 86 G4Exception("G4Polyhedra::G4Polyhedra()", << 92 G4Exception("G4Polyhedra::G4Polyhedra()", "InvalidSetup", 87 FatalErrorInArgument, message) << 93 FatalException, "Solid must have at least one side."); 88 } 94 } 89 95 90 // 96 // 91 // Calculate conversion factor from G3 radiu 97 // Calculate conversion factor from G3 radius to G4 radius 92 // 98 // 93 G4double phiTotal = thePhiTotal; 99 G4double phiTotal = thePhiTotal; 94 if ( (phiTotal <=0) || (phiTotal >= twopi*(1 100 if ( (phiTotal <=0) || (phiTotal >= twopi*(1-DBL_EPSILON)) ) 95 { phiTotal = twopi; } << 101 phiTotal = twopi; 96 G4double convertRad = std::cos(0.5*phiTotal/ 102 G4double convertRad = std::cos(0.5*phiTotal/theNumSide); 97 103 98 // 104 // 99 // Some historical stuff 105 // Some historical stuff 100 // 106 // 101 original_parameters = new G4PolyhedraHistori 107 original_parameters = new G4PolyhedraHistorical; 102 << 108 103 original_parameters->numSide = theNumSide; 109 original_parameters->numSide = theNumSide; 104 original_parameters->Start_angle = phiStart; 110 original_parameters->Start_angle = phiStart; 105 original_parameters->Opening_angle = phiTota 111 original_parameters->Opening_angle = phiTotal; 106 original_parameters->Num_z_planes = numZPlan 112 original_parameters->Num_z_planes = numZPlanes; 107 original_parameters->Z_values = new G4double 113 original_parameters->Z_values = new G4double[numZPlanes]; 108 original_parameters->Rmin = new G4double[num 114 original_parameters->Rmin = new G4double[numZPlanes]; 109 original_parameters->Rmax = new G4double[num 115 original_parameters->Rmax = new G4double[numZPlanes]; 110 116 111 for (G4int i=0; i<numZPlanes; ++i) << 117 G4int i; >> 118 for (i=0; i<numZPlanes; i++) 112 { 119 { 113 if (( i < numZPlanes-1) && ( zPlane[i] == 120 if (( i < numZPlanes-1) && ( zPlane[i] == zPlane[i+1] )) 114 { 121 { 115 if( (rInner[i] > rOuter[i+1]) 122 if( (rInner[i] > rOuter[i+1]) 116 ||(rInner[i+1] > rOuter[i]) ) 123 ||(rInner[i+1] > rOuter[i]) ) 117 { 124 { 118 DumpInfo(); 125 DumpInfo(); 119 std::ostringstream message; << 126 G4cerr << "ERROR - G4Polyhedra::G4Polyhedra()" 120 message << "Cannot create a Polyhedra << 127 << G4endl 121 << G4endl << 128 << " Segments are not contiguous !" << G4endl 122 << " Segments are not c << 129 << " rMin[" << i << "] = " << rInner[i] 123 << " rMin[" << i << "] << 130 << " -- rMax[" << i+1 << "] = " << rOuter[i+1] << G4endl 124 << " -- rMax[" << i+1 << "] = << 131 << " rMin[" << i+1 << "] = " << rInner[i+1] 125 << " rMin[" << i+1 << " << 132 << " -- rMax[" << i << "] = " << rOuter[i] << G4endl; 126 << " -- rMax[" << i << "] = " << 133 G4Exception("G4Polyhedra::G4Polyhedra()","InvalidSetup",FatalException, 127 G4Exception("G4Polyhedra::G4Polyhedra( << 134 "Cannot create a Polyhedra with no contiguous segments."); 128 FatalErrorInArgument, mess << 129 } 135 } 130 } 136 } 131 original_parameters->Z_values[i] = zPlane[ 137 original_parameters->Z_values[i] = zPlane[i]; 132 original_parameters->Rmin[i] = rInner[i]/c 138 original_parameters->Rmin[i] = rInner[i]/convertRad; 133 original_parameters->Rmax[i] = rOuter[i]/c 139 original_parameters->Rmax[i] = rOuter[i]/convertRad; 134 } 140 } 135 << 141 136 << 142 137 // 143 // 138 // Build RZ polygon using special PCON/PGON 144 // Build RZ polygon using special PCON/PGON GEANT3 constructor 139 // 145 // 140 auto rz = new G4ReduciblePolygon( rInner, rO << 146 G4ReduciblePolygon *rz = >> 147 new G4ReduciblePolygon( rInner, rOuter, zPlane, numZPlanes ); 141 rz->ScaleA( 1/convertRad ); 148 rz->ScaleA( 1/convertRad ); 142 << 149 143 // 150 // 144 // Do the real work 151 // Do the real work 145 // 152 // 146 Create( phiStart, phiTotal, theNumSide, rz ) 153 Create( phiStart, phiTotal, theNumSide, rz ); 147 << 154 148 delete rz; 155 delete rz; 149 } 156 } 150 157 >> 158 >> 159 // 151 // Constructor (generic parameters) 160 // Constructor (generic parameters) 152 // 161 // 153 G4Polyhedra::G4Polyhedra( const G4String& name << 162 G4Polyhedra::G4Polyhedra( const G4String& name, 154 G4double phiSt 163 G4double phiStart, 155 G4double phiTo 164 G4double phiTotal, 156 G4int theNu << 165 G4int theNumSide, 157 G4int numRZ 166 G4int numRZ, 158 const G4double r[], 167 const G4double r[], 159 const G4double z[] 168 const G4double z[] ) 160 : G4VCSGfaceted( name ), genericPgon(true) 169 : G4VCSGfaceted( name ), genericPgon(true) 161 { << 170 { 162 if (theNumSide <= 0) << 171 G4ReduciblePolygon *rz = new G4ReduciblePolygon( r, z, numRZ ); 163 { << 172 164 std::ostringstream message; << 165 message << "Solid must have at least one s << 166 << " No sides specified !"; << 167 G4Exception("G4Polyhedra::G4Polyhedra()", << 168 FatalErrorInArgument, message) << 169 } << 170 << 171 auto rz = new G4ReduciblePolygon( r, z, numR << 172 << 173 Create( phiStart, phiTotal, theNumSide, rz ) 173 Create( phiStart, phiTotal, theNumSide, rz ); 174 << 174 175 // Set original_parameters struct for consis 175 // Set original_parameters struct for consistency 176 // 176 // 177 SetOriginalParameters(rz); << 177 SetOriginalParameters(); 178 << 178 179 delete rz; 179 delete rz; 180 } 180 } 181 181 >> 182 >> 183 // 182 // Create 184 // Create 183 // 185 // 184 // Generic create routine, called by each cons 186 // Generic create routine, called by each constructor 185 // after conversion of arguments 187 // after conversion of arguments 186 // 188 // 187 void G4Polyhedra::Create( G4double phiStart, 189 void G4Polyhedra::Create( G4double phiStart, 188 G4double phiTotal, 190 G4double phiTotal, 189 G4int theNumSide, << 191 G4int theNumSide, 190 G4ReduciblePolygon* << 192 G4ReduciblePolygon *rz ) 191 { 193 { 192 // 194 // 193 // Perform checks of rz values 195 // Perform checks of rz values 194 // 196 // 195 if (rz->Amin() < 0.0) 197 if (rz->Amin() < 0.0) 196 { 198 { 197 std::ostringstream message; << 199 G4cerr << "ERROR - G4Polyhedra::Create() " << GetName() << G4endl 198 message << "Illegal input parameters - " < << 200 << " All R values must be >= 0 !" 199 << " All R values must be > << 201 << G4endl; 200 G4Exception("G4Polyhedra::Create()", "Geom << 202 G4Exception("G4Polyhedra::Create()", "InvalidSetup", 201 FatalErrorInArgument, message) << 203 FatalException, "Illegal input parameters."); 202 } 204 } 203 205 204 G4double rzArea = rz->Area(); 206 G4double rzArea = rz->Area(); 205 if (rzArea < -kCarTolerance) 207 if (rzArea < -kCarTolerance) 206 { << 207 rz->ReverseOrder(); 208 rz->ReverseOrder(); 208 } << 209 209 else if (rzArea < kCarTolerance) << 210 else if (rzArea < -kCarTolerance) 210 { 211 { 211 std::ostringstream message; << 212 G4cerr << "ERROR - G4Polyhedra::Create() " << GetName() << G4endl 212 message << "Illegal input parameters - " < << 213 << " R/Z cross section is zero or near zero: " 213 << " R/Z cross section is z << 214 << rzArea << G4endl; 214 G4Exception("G4Polyhedra::Create()", "Geom << 215 G4Exception("G4Polyhedra::Create()", "InvalidSetup", 215 FatalErrorInArgument, message) << 216 FatalException, "Illegal input parameters."); 216 } 217 } 217 << 218 218 if ( (!rz->RemoveDuplicateVertices( kCarTole 219 if ( (!rz->RemoveDuplicateVertices( kCarTolerance )) 219 || (!rz->RemoveRedundantVertices( kCarTole << 220 || (!rz->RemoveRedundantVertices( kCarTolerance )) ) 220 { 221 { 221 std::ostringstream message; << 222 G4cerr << "ERROR - G4Polyhedra::Create() " << GetName() << G4endl 222 message << "Illegal input parameters - " < << 223 << " Too few unique R/Z values !" 223 << " Too few unique R/Z val << 224 << G4endl; 224 G4Exception("G4Polyhedra::Create()", "Geom << 225 G4Exception("G4Polyhedra::Create()", "InvalidSetup", 225 FatalErrorInArgument, message) << 226 FatalException, "Illegal input parameters."); 226 } << 227 } 227 << 228 228 if (rz->CrossesItself( 1/kInfinity )) << 229 if (rz->CrossesItself( 1/kInfinity )) 229 { << 230 { 230 std::ostringstream message; << 231 G4cerr << "ERROR - G4Polyhedra::Create() " << GetName() << G4endl 231 message << "Illegal input parameters - " < << 232 << " R/Z segments cross !" 232 << " R/Z segments cross !"; << 233 << G4endl; 233 G4Exception("G4Polyhedra::Create()", "Geom << 234 G4Exception("G4Polyhedra::Create()", "InvalidSetup", 234 FatalErrorInArgument, message) << 235 FatalException, "Illegal input parameters."); 235 } 236 } 236 237 237 numCorner = rz->NumVertices(); 238 numCorner = rz->NumVertices(); 238 239 239 240 240 startPhi = phiStart; 241 startPhi = phiStart; 241 while( startPhi < 0 ) // Loop checking, 1 << 242 while( startPhi < 0 ) startPhi += twopi; 242 startPhi += twopi; << 243 // 243 // 244 // Phi opening? Account for some possible ro 244 // Phi opening? Account for some possible roundoff, and interpret 245 // nonsense value as representing no phi ope 245 // nonsense value as representing no phi opening 246 // 246 // 247 if ( (phiTotal <= 0) || (phiTotal > twopi*(1 247 if ( (phiTotal <= 0) || (phiTotal > twopi*(1-DBL_EPSILON)) ) 248 { 248 { 249 phiIsOpen = false; 249 phiIsOpen = false; 250 endPhi = startPhi + twopi; << 250 endPhi = phiStart+twopi; 251 } 251 } 252 else 252 else 253 { 253 { 254 phiIsOpen = true; 254 phiIsOpen = true; 255 endPhi = startPhi + phiTotal; << 255 >> 256 // >> 257 // Convert phi into our convention >> 258 // >> 259 endPhi = phiStart+phiTotal; >> 260 while( endPhi < startPhi ) endPhi += twopi; 256 } 261 } 257 << 262 258 // 263 // 259 // Save number sides 264 // Save number sides 260 // 265 // 261 numSide = theNumSide; 266 numSide = theNumSide; 262 << 267 263 // 268 // 264 // Allocate corner array. << 269 // Allocate corner array. 265 // 270 // 266 corners = new G4PolyhedraSideRZ[numCorner]; 271 corners = new G4PolyhedraSideRZ[numCorner]; 267 272 268 // 273 // 269 // Copy corners 274 // Copy corners 270 // 275 // 271 G4ReduciblePolygonIterator iterRZ(rz); 276 G4ReduciblePolygonIterator iterRZ(rz); 272 << 277 273 G4PolyhedraSideRZ *next = corners; 278 G4PolyhedraSideRZ *next = corners; 274 iterRZ.Begin(); 279 iterRZ.Begin(); 275 do // Loop checking, 13.08.2015, G.Cosmo << 280 do 276 { 281 { 277 next->r = iterRZ.GetA(); 282 next->r = iterRZ.GetA(); 278 next->z = iterRZ.GetB(); 283 next->z = iterRZ.GetB(); 279 } while( ++next, iterRZ.Next() ); 284 } while( ++next, iterRZ.Next() ); 280 << 285 281 // 286 // 282 // Allocate face pointer array 287 // Allocate face pointer array 283 // 288 // 284 numFace = phiIsOpen ? numCorner+2 : numCorne 289 numFace = phiIsOpen ? numCorner+2 : numCorner; 285 faces = new G4VCSGface*[numFace]; 290 faces = new G4VCSGface*[numFace]; 286 << 291 287 // 292 // 288 // Construct side faces 293 // Construct side faces 289 // 294 // 290 // To do so properly, we need to keep track 295 // To do so properly, we need to keep track of four successive RZ 291 // corners. 296 // corners. 292 // 297 // 293 // But! Don't construct a face if both point 298 // But! Don't construct a face if both points are at zero radius! 294 // 299 // 295 G4PolyhedraSideRZ* corner = corners, << 300 G4PolyhedraSideRZ *corner = corners, 296 * prev = corners + numCorne << 301 *prev = corners + numCorner-1, 297 * nextNext; << 302 *nextNext; 298 G4VCSGface** face = faces; << 303 G4VCSGface **face = faces; 299 do // Loop checking, 13.08.2015, G.Cosmo << 304 do 300 { 305 { 301 next = corner+1; 306 next = corner+1; 302 if (next >= corners+numCorner) next = corn 307 if (next >= corners+numCorner) next = corners; 303 nextNext = next+1; 308 nextNext = next+1; 304 if (nextNext >= corners+numCorner) nextNex 309 if (nextNext >= corners+numCorner) nextNext = corners; 305 << 310 306 if (corner->r < 1/kInfinity && next->r < 1 311 if (corner->r < 1/kInfinity && next->r < 1/kInfinity) continue; 307 /* << 312 >> 313 // 308 // We must decide here if we can dare decl 314 // We must decide here if we can dare declare one of our faces 309 // as having a "valid" normal (i.e. allBeh 315 // as having a "valid" normal (i.e. allBehind = true). This 310 // is never possible if the face faces "in 316 // is never possible if the face faces "inward" in r *unless* 311 // we have only one side 317 // we have only one side 312 // 318 // 313 G4bool allBehind; 319 G4bool allBehind; 314 if ((corner->z > next->z) && (numSide > 1) 320 if ((corner->z > next->z) && (numSide > 1)) 315 { 321 { 316 allBehind = false; 322 allBehind = false; 317 } 323 } 318 else 324 else 319 { 325 { 320 // 326 // 321 // Otherwise, it is only true if the lin 327 // Otherwise, it is only true if the line passing 322 // through the two points of the segment 328 // through the two points of the segment do not 323 // split the r/z cross section 329 // split the r/z cross section 324 // 330 // 325 allBehind = !rz->BisectedBy( corner->r, 331 allBehind = !rz->BisectedBy( corner->r, corner->z, 326 next->r, ne 332 next->r, next->z, kCarTolerance ); 327 } 333 } 328 */ << 334 329 *face++ = new G4PolyhedraSide( prev, corne 335 *face++ = new G4PolyhedraSide( prev, corner, next, nextNext, 330 numSide, startPhi, endPhi-sta 336 numSide, startPhi, endPhi-startPhi, phiIsOpen ); 331 } while( prev=corner, corner=next, corner > 337 } while( prev=corner, corner=next, corner > corners ); 332 << 338 333 if (phiIsOpen) 339 if (phiIsOpen) 334 { 340 { 335 // 341 // 336 // Construct phi open edges 342 // Construct phi open edges 337 // 343 // 338 *face++ = new G4PolyPhiFace( rz, startPhi, 344 *face++ = new G4PolyPhiFace( rz, startPhi, phiTotal/numSide, endPhi ); 339 *face++ = new G4PolyPhiFace( rz, endPhi, 345 *face++ = new G4PolyPhiFace( rz, endPhi, phiTotal/numSide, startPhi ); 340 } 346 } 341 << 347 342 // 348 // 343 // We might have dropped a face or two: reca 349 // We might have dropped a face or two: recalculate numFace 344 // 350 // 345 numFace = (G4int)(face-faces); << 351 numFace = face-faces; 346 << 352 347 // 353 // 348 // Make enclosingCylinder 354 // Make enclosingCylinder 349 // 355 // 350 enclosingCylinder = 356 enclosingCylinder = 351 new G4EnclosingCylinder( rz, phiIsOpen, ph 357 new G4EnclosingCylinder( rz, phiIsOpen, phiStart, phiTotal ); 352 } 358 } 353 359 >> 360 >> 361 // 354 // Fake default constructor - sets only member 362 // Fake default constructor - sets only member data and allocates memory 355 // for usage restri 363 // for usage restricted to object persistency. 356 // 364 // 357 G4Polyhedra::G4Polyhedra( __void__& a ) 365 G4Polyhedra::G4Polyhedra( __void__& a ) 358 : G4VCSGfaceted(a), startPhi(0.), endPhi(0.) << 366 : G4VCSGfaceted(a), genericPgon(false), corners(0), >> 367 original_parameters(0), enclosingCylinder(0) 359 { 368 { 360 } 369 } 361 370 >> 371 >> 372 // 362 // Destructor 373 // Destructor 363 // 374 // 364 G4Polyhedra::~G4Polyhedra() 375 G4Polyhedra::~G4Polyhedra() 365 { 376 { 366 delete [] corners; 377 delete [] corners; 367 delete original_parameters; << 378 if (original_parameters) delete original_parameters; >> 379 368 delete enclosingCylinder; 380 delete enclosingCylinder; 369 delete fElements; << 370 delete fpPolyhedron; << 371 corners = nullptr; << 372 original_parameters = nullptr; << 373 enclosingCylinder = nullptr; << 374 fElements = nullptr; << 375 fpPolyhedron = nullptr; << 376 } 381 } 377 382 >> 383 >> 384 // 378 // Copy constructor 385 // Copy constructor 379 // 386 // 380 G4Polyhedra::G4Polyhedra( const G4Polyhedra& s << 387 G4Polyhedra::G4Polyhedra( const G4Polyhedra &source ) 381 : G4VCSGfaceted( source ) 388 : G4VCSGfaceted( source ) 382 { 389 { 383 CopyStuff( source ); 390 CopyStuff( source ); 384 } 391 } 385 392 >> 393 >> 394 // 386 // Assignment operator 395 // Assignment operator 387 // 396 // 388 G4Polyhedra &G4Polyhedra::operator=( const G4P << 397 const G4Polyhedra &G4Polyhedra::operator=( const G4Polyhedra &source ) 389 { 398 { 390 if (this == &source) return *this; 399 if (this == &source) return *this; 391 400 392 G4VCSGfaceted::operator=( source ); 401 G4VCSGfaceted::operator=( source ); 393 << 402 394 delete [] corners; 403 delete [] corners; 395 delete original_parameters; << 404 if (original_parameters) delete original_parameters; >> 405 396 delete enclosingCylinder; 406 delete enclosingCylinder; 397 << 407 398 CopyStuff( source ); 408 CopyStuff( source ); 399 << 409 400 return *this; 410 return *this; 401 } 411 } 402 412 >> 413 >> 414 // 403 // CopyStuff 415 // CopyStuff 404 // 416 // 405 void G4Polyhedra::CopyStuff( const G4Polyhedra << 417 void G4Polyhedra::CopyStuff( const G4Polyhedra &source ) 406 { 418 { 407 // 419 // 408 // Simple stuff 420 // Simple stuff 409 // 421 // 410 numSide = source.numSide; 422 numSide = source.numSide; 411 startPhi = source.startPhi; 423 startPhi = source.startPhi; 412 endPhi = source.endPhi; 424 endPhi = source.endPhi; 413 phiIsOpen = source.phiIsOpen; 425 phiIsOpen = source.phiIsOpen; 414 numCorner = source.numCorner; 426 numCorner = source.numCorner; 415 genericPgon= source.genericPgon; 427 genericPgon= source.genericPgon; 416 428 417 // 429 // 418 // The corner array 430 // The corner array 419 // 431 // 420 corners = new G4PolyhedraSideRZ[numCorner]; 432 corners = new G4PolyhedraSideRZ[numCorner]; 421 << 433 422 G4PolyhedraSideRZ* corn = corners, << 434 G4PolyhedraSideRZ *corn = corners, 423 * sourceCorn = source.corne << 435 *sourceCorn = source.corners; 424 do // Loop checking, 13.08.2015, G.Cosmo << 436 do 425 { 437 { 426 *corn = *sourceCorn; 438 *corn = *sourceCorn; 427 } while( ++sourceCorn, ++corn < corners+numC 439 } while( ++sourceCorn, ++corn < corners+numCorner ); 428 << 440 429 // 441 // 430 // Original parameters 442 // Original parameters 431 // 443 // 432 if (source.original_parameters != nullptr) << 444 if (source.original_parameters) 433 { 445 { 434 original_parameters = 446 original_parameters = 435 new G4PolyhedraHistorical( *source.origi 447 new G4PolyhedraHistorical( *source.original_parameters ); 436 } 448 } 437 << 449 438 // 450 // 439 // Enclosing cylinder 451 // Enclosing cylinder 440 // 452 // 441 enclosingCylinder = new G4EnclosingCylinder( 453 enclosingCylinder = new G4EnclosingCylinder( *source.enclosingCylinder ); 442 << 443 // << 444 // Surface elements << 445 // << 446 delete fElements; << 447 fElements = nullptr; << 448 << 449 // << 450 // Polyhedron << 451 // << 452 fRebuildPolyhedron = false; << 453 delete fpPolyhedron; << 454 fpPolyhedron = nullptr; << 455 } 454 } 456 455 >> 456 >> 457 // 457 // Reset 458 // Reset 458 // 459 // 459 // Recalculates and reshapes the solid, given << 460 // Recalculates and reshapes the solid, given pre-assigned 460 // original_parameters. 461 // original_parameters. 461 // 462 // 462 G4bool G4Polyhedra::Reset() 463 G4bool G4Polyhedra::Reset() 463 { 464 { 464 if (genericPgon) 465 if (genericPgon) 465 { 466 { 466 std::ostringstream message; << 467 G4Exception("G4Polyhedra::Reset()", "NotApplicableConstruct", 467 message << "Solid " << GetName() << " buil << 468 JustWarning, "Parameters NOT resetted."); 468 << G4endl << "Not applicable to th << 469 G4cerr << "Solid " << GetName() << " built using generic construct." 469 G4Exception("G4Polyhedra::Reset()", "GeomS << 470 << G4endl << "Specify original parameters first !" << G4endl; 470 JustWarning, message, "Paramet << 471 return 1; 471 return true; << 472 } 472 } 473 473 474 // 474 // 475 // Clear old setup 475 // Clear old setup 476 // 476 // 477 G4VCSGfaceted::DeleteStuff(); 477 G4VCSGfaceted::DeleteStuff(); 478 delete [] corners; 478 delete [] corners; 479 delete enclosingCylinder; 479 delete enclosingCylinder; 480 delete fElements; << 481 corners = nullptr; << 482 fElements = nullptr; << 483 enclosingCylinder = nullptr; << 484 480 485 // 481 // 486 // Rebuild polyhedra 482 // Rebuild polyhedra 487 // 483 // 488 auto rz = new G4ReduciblePolygon( original_p << 484 G4ReduciblePolygon *rz = 489 original_p << 485 new G4ReduciblePolygon( original_parameters->Rmin, 490 original_p << 486 original_parameters->Rmax, 491 original_p << 487 original_parameters->Z_values, 492 Create( original_parameters->Start_angle, << 488 original_parameters->Num_z_planes ); 493 original_parameters->Opening_angle, << 489 // >> 490 // Calculate conversion factor >> 491 // >> 492 G4double phiTotal = original_parameters->Opening_angle; >> 493 if ( (phiTotal <=0) || (phiTotal >= twopi*(1-DBL_EPSILON)) ) >> 494 phiTotal = twopi; >> 495 G4double convertRad = std::cos(0.5*phiTotal/original_parameters->numSide); >> 496 rz->ScaleA( 1/convertRad ); >> 497 >> 498 Create( original_parameters->Start_angle, phiTotal, 494 original_parameters->numSide, rz ); 499 original_parameters->numSide, rz ); 495 delete rz; 500 delete rz; 496 501 497 return false; << 502 return 0; 498 } 503 } 499 504 >> 505 >> 506 // 500 // Inside 507 // Inside 501 // 508 // 502 // This is an override of G4VCSGfaceted::Insid 509 // This is an override of G4VCSGfaceted::Inside, created in order 503 // to speed things up by first checking with G 510 // to speed things up by first checking with G4EnclosingCylinder. 504 // 511 // 505 EInside G4Polyhedra::Inside( const G4ThreeVect << 512 EInside G4Polyhedra::Inside( const G4ThreeVector &p ) const 506 { 513 { 507 // 514 // 508 // Quick test 515 // Quick test 509 // 516 // 510 if (enclosingCylinder->MustBeOutside(p)) ret 517 if (enclosingCylinder->MustBeOutside(p)) return kOutside; 511 518 512 // 519 // 513 // Long answer 520 // Long answer 514 // 521 // 515 return G4VCSGfaceted::Inside(p); 522 return G4VCSGfaceted::Inside(p); 516 } 523 } 517 524 >> 525 >> 526 // 518 // DistanceToIn 527 // DistanceToIn 519 // 528 // 520 // This is an override of G4VCSGfaceted::Insid 529 // This is an override of G4VCSGfaceted::Inside, created in order 521 // to speed things up by first checking with G 530 // to speed things up by first checking with G4EnclosingCylinder. 522 // 531 // 523 G4double G4Polyhedra::DistanceToIn( const G4Th << 532 G4double G4Polyhedra::DistanceToIn( const G4ThreeVector &p, 524 const G4Th << 533 const G4ThreeVector &v ) const 525 { 534 { 526 // 535 // 527 // Quick test 536 // Quick test 528 // 537 // 529 if (enclosingCylinder->ShouldMiss(p,v)) 538 if (enclosingCylinder->ShouldMiss(p,v)) 530 return kInfinity; 539 return kInfinity; 531 << 540 532 // 541 // 533 // Long answer 542 // Long answer 534 // 543 // 535 return G4VCSGfaceted::DistanceToIn( p, v ); 544 return G4VCSGfaceted::DistanceToIn( p, v ); 536 } 545 } 537 546 >> 547 >> 548 // 538 // DistanceToIn 549 // DistanceToIn 539 // 550 // 540 G4double G4Polyhedra::DistanceToIn( const G4Th << 551 G4double G4Polyhedra::DistanceToIn( const G4ThreeVector &p ) const 541 { 552 { 542 return G4VCSGfaceted::DistanceToIn(p); 553 return G4VCSGfaceted::DistanceToIn(p); 543 } 554 } 544 555 545 // Get bounding box << 546 // << 547 void G4Polyhedra::BoundingLimits(G4ThreeVector << 548 G4ThreeVector << 549 { << 550 G4double rmin = kInfinity, rmax = -kInfinity << 551 G4double zmin = kInfinity, zmax = -kInfinity << 552 for (G4int i=0; i<GetNumRZCorner(); ++i) << 553 { << 554 G4PolyhedraSideRZ corner = GetCorner(i); << 555 if (corner.r < rmin) rmin = corner.r; << 556 if (corner.r > rmax) rmax = corner.r; << 557 if (corner.z < zmin) zmin = corner.z; << 558 if (corner.z > zmax) zmax = corner.z; << 559 } << 560 << 561 G4double sphi = GetStartPhi(); << 562 G4double ephi = GetEndPhi(); << 563 G4double dphi = IsOpen() ? ephi-sphi : tw << 564 G4int ksteps = GetNumSide(); << 565 G4double astep = dphi/ksteps; << 566 G4double sinStep = std::sin(astep); << 567 G4double cosStep = std::cos(astep); << 568 << 569 G4double sinCur = GetSinStartPhi(); << 570 G4double cosCur = GetCosStartPhi(); << 571 if (!IsOpen()) rmin = 0.; << 572 G4double xmin = rmin*cosCur, xmax = xmin; << 573 G4double ymin = rmin*sinCur, ymax = ymin; << 574 for (G4int k=0; k<ksteps+1; ++k) << 575 { << 576 G4double x = rmax*cosCur; << 577 if (x < xmin) xmin = x; << 578 if (x > xmax) xmax = x; << 579 G4double y = rmax*sinCur; << 580 if (y < ymin) ymin = y; << 581 if (y > ymax) ymax = y; << 582 if (rmin > 0) << 583 { << 584 G4double xx = rmin*cosCur; << 585 if (xx < xmin) xmin = xx; << 586 if (xx > xmax) xmax = xx; << 587 G4double yy = rmin*sinCur; << 588 if (yy < ymin) ymin = yy; << 589 if (yy > ymax) ymax = yy; << 590 } << 591 G4double sinTmp = sinCur; << 592 sinCur = sinCur*cosStep + cosCur*sinStep; << 593 cosCur = cosCur*cosStep - sinTmp*sinStep; << 594 } << 595 pMin.set(xmin,ymin,zmin); << 596 pMax.set(xmax,ymax,zmax); << 597 << 598 // Check correctness of the bounding box << 599 // << 600 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 601 { << 602 std::ostringstream message; << 603 message << "Bad bounding box (min >= max) << 604 << GetName() << " !" << 605 << "\npMin = " << pMin << 606 << "\npMax = " << pMax; << 607 G4Exception("G4Polyhedra::BoundingLimits() << 608 JustWarning, message); << 609 DumpInfo(); << 610 } << 611 } << 612 556 613 // Calculate extent under transform and specif << 614 // 557 // 615 G4bool G4Polyhedra::CalculateExtent(const EAxi << 616 const G4Vo << 617 const G4Af << 618 G4double& << 619 { << 620 G4ThreeVector bmin, bmax; << 621 G4bool exist; << 622 << 623 // Check bounding box (bbox) << 624 // << 625 BoundingLimits(bmin,bmax); << 626 G4BoundingEnvelope bbox(bmin,bmax); << 627 #ifdef G4BBOX_EXTENT << 628 return bbox.CalculateExtent(pAxis,pVoxelLimi << 629 #endif << 630 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 631 { << 632 return exist = pMin < pMax; << 633 } << 634 << 635 // To find the extent, RZ contour of the pol << 636 // in triangles. The extent is calculated as << 637 // all sub-polycones formed by rotation of t << 638 // << 639 G4TwoVectorList contourRZ; << 640 G4TwoVectorList triangles; << 641 std::vector<G4int> iout; << 642 G4double eminlim = pVoxelLimit.GetMinExtent( << 643 G4double emaxlim = pVoxelLimit.GetMaxExtent( << 644 << 645 // get RZ contour, ensure anticlockwise orde << 646 for (G4int i=0; i<GetNumRZCorner(); ++i) << 647 { << 648 G4PolyhedraSideRZ corner = GetCorner(i); << 649 contourRZ.emplace_back(corner.r,corner.z); << 650 } << 651 G4GeomTools::RemoveRedundantVertices(contour << 652 G4double area = G4GeomTools::PolygonArea(con << 653 if (area < 0.) std::reverse(contourRZ.begin( << 654 << 655 // triangulate RZ countour << 656 if (!G4GeomTools::TriangulatePolygon(contour << 657 { << 658 std::ostringstream message; << 659 message << "Triangulation of RZ contour ha << 660 << GetName() << " !" << 661 << "\nExtent has been calculated u << 662 G4Exception("G4Polyhedra::CalculateExtent( << 663 "GeomMgt1002",JustWarning,mess << 664 return bbox.CalculateExtent(pAxis,pVoxelLi << 665 } << 666 << 667 // set trigonometric values << 668 G4double sphi = GetStartPhi(); << 669 G4double ephi = GetEndPhi(); << 670 G4double dphi = IsOpen() ? ephi-sphi : t << 671 G4int ksteps = GetNumSide(); << 672 G4double astep = dphi/ksteps; << 673 G4double sinStep = std::sin(astep); << 674 G4double cosStep = std::cos(astep); << 675 G4double sinStart = GetSinStartPhi(); << 676 G4double cosStart = GetCosStartPhi(); << 677 << 678 // allocate vector lists << 679 std::vector<const G4ThreeVectorList *> polyg << 680 polygons.resize(ksteps+1); << 681 for (G4int k=0; k<ksteps+1; ++k) << 682 { << 683 polygons[k] = new G4ThreeVectorList(3); << 684 } << 685 << 686 // main loop along triangles << 687 pMin = kInfinity; << 688 pMax = -kInfinity; << 689 G4int ntria = (G4int)triangles.size()/3; << 690 for (G4int i=0; i<ntria; ++i) << 691 { << 692 G4double sinCur = sinStart; << 693 G4double cosCur = cosStart; << 694 G4int i3 = i*3; << 695 for (G4int k=0; k<ksteps+1; ++k) // rotate << 696 { << 697 auto ptr = const_cast<G4ThreeVectorList* << 698 auto iter = ptr->begin(); << 699 iter->set(triangles[i3+0].x()*cosCur, << 700 triangles[i3+0].x()*sinCur, << 701 triangles[i3+0].y()); << 702 iter++; << 703 iter->set(triangles[i3+1].x()*cosCur, << 704 triangles[i3+1].x()*sinCur, << 705 triangles[i3+1].y()); << 706 iter++; << 707 iter->set(triangles[i3+2].x()*cosCur, << 708 triangles[i3+2].x()*sinCur, << 709 triangles[i3+2].y()); << 710 << 711 G4double sinTmp = sinCur; << 712 sinCur = sinCur*cosStep + cosCur*sinStep << 713 cosCur = cosCur*cosStep - sinTmp*sinStep << 714 } << 715 << 716 // set sub-envelope and adjust extent << 717 G4double emin,emax; << 718 G4BoundingEnvelope benv(polygons); << 719 if (!benv.CalculateExtent(pAxis,pVoxelLimi << 720 if (emin < pMin) pMin = emin; << 721 if (emax > pMax) pMax = emax; << 722 if (eminlim > pMin && emaxlim < pMax) brea << 723 } << 724 // free memory << 725 for (G4int k=0; k<ksteps+1; ++k) { delete po << 726 return (pMin < pMax); << 727 } << 728 << 729 // ComputeDimensions 558 // ComputeDimensions 730 // 559 // 731 void G4Polyhedra::ComputeDimensions( G4V 560 void G4Polyhedra::ComputeDimensions( G4VPVParameterisation* p, 732 const G4i 561 const G4int n, 733 const G4V 562 const G4VPhysicalVolume* pRep ) 734 { 563 { 735 p->ComputeDimensions(*this,n,pRep); 564 p->ComputeDimensions(*this,n,pRep); 736 } 565 } 737 566 >> 567 >> 568 // 738 // GetEntityType 569 // GetEntityType 739 // 570 // 740 G4GeometryType G4Polyhedra::GetEntityType() co 571 G4GeometryType G4Polyhedra::GetEntityType() const 741 { 572 { 742 return {"G4Polyhedra"}; << 573 return G4String("G4Polyhedra"); 743 } 574 } 744 575 745 // IsFaceted << 746 // << 747 G4bool G4Polyhedra::IsFaceted() const << 748 { << 749 return true; << 750 } << 751 576 752 // Make a clone of the object << 753 // 577 // 754 G4VSolid* G4Polyhedra::Clone() const << 755 { << 756 return new G4Polyhedra(*this); << 757 } << 758 << 759 // Stream object contents to an output stream 578 // Stream object contents to an output stream 760 // 579 // 761 std::ostream& G4Polyhedra::StreamInfo( std::os 580 std::ostream& G4Polyhedra::StreamInfo( std::ostream& os ) const 762 { 581 { 763 G4long oldprc = os.precision(16); << 764 os << "------------------------------------- 582 os << "-----------------------------------------------------------\n" 765 << " *** Dump for solid - " << GetName 583 << " *** Dump for solid - " << GetName() << " ***\n" 766 << " ================================= 584 << " ===================================================\n" 767 << " Solid type: G4Polyhedra\n" 585 << " Solid type: G4Polyhedra\n" 768 << " Parameters: \n" 586 << " Parameters: \n" 769 << " starting phi angle : " << startPh 587 << " starting phi angle : " << startPhi/degree << " degrees \n" 770 << " ending phi angle : " << endPhi/ << 588 << " ending phi angle : " << endPhi/degree << " degrees \n"; 771 << " number of sides : " << numSide << 772 G4int i=0; 589 G4int i=0; 773 if (!genericPgon) 590 if (!genericPgon) 774 { 591 { 775 G4int numPlanes = original_parameters->Num 592 G4int numPlanes = original_parameters->Num_z_planes; 776 os << " number of Z planes: " << numPla 593 os << " number of Z planes: " << numPlanes << "\n" 777 << " Z values: \n"; 594 << " Z values: \n"; 778 for (i=0; i<numPlanes; ++i) << 595 for (i=0; i<numPlanes; i++) 779 { 596 { 780 os << " Z plane " << i << " 597 os << " Z plane " << i << ": " 781 << original_parameters->Z_values[i] < 598 << original_parameters->Z_values[i] << "\n"; 782 } 599 } 783 os << " Tangent distances to 600 os << " Tangent distances to inner surface (Rmin): \n"; 784 for (i=0; i<numPlanes; ++i) << 601 for (i=0; i<numPlanes; i++) 785 { 602 { 786 os << " Z plane " << i << " 603 os << " Z plane " << i << ": " 787 << original_parameters->Rmin[i] << "\ 604 << original_parameters->Rmin[i] << "\n"; 788 } 605 } 789 os << " Tangent distances to 606 os << " Tangent distances to outer surface (Rmax): \n"; 790 for (i=0; i<numPlanes; ++i) << 607 for (i=0; i<numPlanes; i++) 791 { 608 { 792 os << " Z plane " << i << " 609 os << " Z plane " << i << ": " 793 << original_parameters->Rmax[i] << "\ 610 << original_parameters->Rmax[i] << "\n"; 794 } 611 } 795 } 612 } 796 os << " number of RZ points: " << numCorn 613 os << " number of RZ points: " << numCorner << "\n" 797 << " RZ values (corners): \n 614 << " RZ values (corners): \n"; 798 for (i=0; i<numCorner; ++i) << 615 for (i=0; i<numCorner; i++) 799 { 616 { 800 os << " " 617 os << " " 801 << corners[i].r << ", " << corners[i 618 << corners[i].r << ", " << corners[i].z << "\n"; 802 } 619 } 803 os << "------------------------------------- 620 os << "-----------------------------------------------------------\n"; 804 os.precision(oldprc); << 805 621 806 return os; 622 return os; 807 } 623 } 808 624 809 ////////////////////////////////////////////// << 810 // << 811 // Return volume << 812 625 813 G4double G4Polyhedra::GetCubicVolume() << 626 // >> 627 // GetPointOnPlane >> 628 // >> 629 // Auxiliary method for get point on surface >> 630 // >> 631 G4ThreeVector G4Polyhedra::GetPointOnPlane(G4ThreeVector p0, G4ThreeVector p1, >> 632 G4ThreeVector p2, G4ThreeVector p3) const 814 { 633 { 815 if (fCubicVolume == 0.) << 634 G4double lambda1, lambda2, chose,aOne,aTwo; 816 { << 635 G4ThreeVector t, u, v, w, Area, normal; 817 G4double total = 0.; << 636 aOne = 1.; 818 G4int nrz = GetNumRZCorner(); << 637 aTwo = 1.; 819 G4PolyhedraSideRZ a = GetCorner(nrz - 1); << 820 for (G4int i=0; i<nrz; ++i) << 821 { << 822 G4PolyhedraSideRZ b = GetCorner(i); << 823 total += (b.r*b.r + b.r*a.r + a.r*a.r)*( << 824 a = b; << 825 } << 826 fCubicVolume = std::abs(total)* << 827 std::sin((GetEndPhi() - GetStartPhi())/G << 828 } << 829 return fCubicVolume; << 830 } << 831 638 832 ////////////////////////////////////////////// << 639 t = p1 - p0; 833 // << 640 u = p2 - p1; 834 // Return surface area << 641 v = p3 - p2; >> 642 w = p0 - p3; 835 643 836 G4double G4Polyhedra::GetSurfaceArea() << 644 chose = RandFlat::shoot(0.,aOne+aTwo); 837 { << 645 if( (chose>=0.) && (chose < aOne) ) 838 if (fSurfaceArea == 0.) << 839 { 646 { 840 G4double total = 0.; << 647 lambda1 = RandFlat::shoot(0.,1.); 841 G4int nrz = GetNumRZCorner(); << 648 lambda2 = RandFlat::shoot(0.,lambda1); 842 if (IsOpen()) << 649 return (p2+lambda1*v+lambda2*w); 843 { << 844 G4PolyhedraSideRZ a = GetCorner(nrz - 1) << 845 for (G4int i=0; i<nrz; ++i) << 846 { << 847 G4PolyhedraSideRZ b = GetCorner(i); << 848 total += a.r*b.z - a.z*b.r; << 849 a = b; << 850 } << 851 total = std::abs(total); << 852 } << 853 G4double alp = (GetEndPhi() - GetStartPhi( << 854 G4double cosa = std::cos(alp); << 855 G4double sina = std::sin(alp); << 856 G4PolyhedraSideRZ a = GetCorner(nrz - 1); << 857 for (G4int i=0; i<nrz; ++i) << 858 { << 859 G4PolyhedraSideRZ b = GetCorner(i); << 860 G4ThreeVector p1(a.r, 0, a.z); << 861 G4ThreeVector p2(a.r*cosa, a.r*sina, a.z << 862 G4ThreeVector p3(b.r*cosa, b.r*sina, b.z << 863 G4ThreeVector p4(b.r, 0, b.z); << 864 total += GetNumSide()*(G4GeomTools::Quad << 865 a = b; << 866 } << 867 fSurfaceArea = total; << 868 } 650 } 869 return fSurfaceArea; << 651 >> 652 lambda1 = RandFlat::shoot(0.,1.); >> 653 lambda2 = RandFlat::shoot(0.,lambda1); >> 654 return (p0+lambda1*t+lambda2*u); 870 } 655 } 871 656 872 ////////////////////////////////////////////// << 657 873 // 658 // 874 // Set vector of surface elements, auxiliary m << 659 // GetPointOnTriangle 875 // random points on surface << 660 // 876 << 661 // Auxiliary method for get point on surface 877 void G4Polyhedra::SetSurfaceElements() const << 662 // 878 { << 663 G4ThreeVector G4Polyhedra::GetPointOnTriangle(G4ThreeVector p1, 879 fElements = new std::vector<G4Polyhedra::sur << 664 G4ThreeVector p2, 880 G4double total = 0.; << 665 G4ThreeVector p3) const 881 G4int nrz = GetNumRZCorner(); << 666 { 882 << 667 G4double lambda1,lambda2; 883 // set lateral surface elements << 668 G4ThreeVector v=p3-p1, w=p1-p2; 884 G4double dphi = (GetEndPhi() - GetStartPhi() << 885 G4double cosa = std::cos(dphi); << 886 G4double sina = std::sin(dphi); << 887 G4int ia = nrz - 1; << 888 for (G4int ib=0; ib<nrz; ++ib) << 889 { << 890 G4PolyhedraSideRZ a = GetCorner(ia); << 891 G4PolyhedraSideRZ b = GetCorner(ib); << 892 G4Polyhedra::surface_element selem; << 893 selem.i0 = ia; << 894 selem.i1 = ib; << 895 ia = ib; << 896 if (a.r == 0. && b.r == 0.) continue; << 897 G4ThreeVector p1(a.r, 0, a.z); << 898 G4ThreeVector p2(a.r*cosa, a.r*sina, a.z); << 899 G4ThreeVector p3(b.r*cosa, b.r*sina, b.z); << 900 G4ThreeVector p4(b.r, 0, b.z); << 901 if (a.r > 0.) << 902 { << 903 selem.i2 = -1; << 904 total += GetNumSide()*(G4GeomTools::Tria << 905 selem.area = total; << 906 fElements->push_back(selem); << 907 } << 908 if (b.r > 0.) << 909 { << 910 selem.i2 = -2; << 911 total += GetNumSide()*(G4GeomTools::Tria << 912 selem.area = total; << 913 fElements->push_back(selem); << 914 } << 915 } << 916 669 917 // set elements for phi cuts << 670 lambda1 = RandFlat::shoot(0.,1.); 918 if (IsOpen()) << 671 lambda2 = RandFlat::shoot(0.,lambda1); 919 { << 672 920 G4TwoVectorList contourRZ; << 673 return (p2 + lambda1*w + lambda2*v); 921 std::vector<G4int> triangles; << 922 for (G4int i=0; i<nrz; ++i) << 923 { << 924 G4PolyhedraSideRZ corner = GetCorner(i); << 925 contourRZ.emplace_back(corner.r, corner. << 926 } << 927 G4GeomTools::TriangulatePolygon(contourRZ, << 928 auto ntria = (G4int)triangles.size(); << 929 for (G4int i=0; i<ntria; i+=3) << 930 { << 931 G4Polyhedra::surface_element selem; << 932 selem.i0 = triangles[i]; << 933 selem.i1 = triangles[i+1]; << 934 selem.i2 = triangles[i+2]; << 935 G4PolyhedraSideRZ a = GetCorner(selem.i0 << 936 G4PolyhedraSideRZ b = GetCorner(selem.i1 << 937 G4PolyhedraSideRZ c = GetCorner(selem.i2 << 938 G4double stria = << 939 std::abs(G4GeomTools::TriangleArea(a.r << 940 total += stria; << 941 selem.area = total; << 942 fElements->push_back(selem); // start ph << 943 total += stria; << 944 selem.area = total; << 945 selem.i0 += nrz; << 946 fElements->push_back(selem); // end phi << 947 } << 948 } << 949 } 674 } 950 675 951 ////////////////////////////////////////////// << 952 // << 953 // Generate random point on surface << 954 676 >> 677 // >> 678 // GetPointOnSurface >> 679 // 955 G4ThreeVector G4Polyhedra::GetPointOnSurface() 680 G4ThreeVector G4Polyhedra::GetPointOnSurface() const 956 { 681 { 957 // Set surface elements << 682 G4int j, numPlanes = original_parameters->Num_z_planes, Flag=0; 958 if (fElements == nullptr) << 683 G4double chose, totArea=0., Achose1, Achose2, >> 684 rad1, rad2, sinphi1, sinphi2, cosphi1, cosphi2; >> 685 G4double a, b, l2, rang, >> 686 ksi = (endPhi-startPhi)/(double)numSide, >> 687 area, aTop=0., aBottom=0.,zVal=0.; >> 688 G4ThreeVector p0, p1, p2, p3; >> 689 std::vector<G4double> aVector1; >> 690 std::vector<G4double> aVector2; >> 691 std::vector<G4double> aVector3; >> 692 >> 693 G4double cosksi = std::cos(ksi/2.); >> 694 >> 695 // below we generate the areas relevant to our solid >> 696 // >> 697 for(j=0; j<numPlanes-1; j++) >> 698 { >> 699 a = original_parameters->Rmax[j+1]; >> 700 b = original_parameters->Rmax[j]; >> 701 l2 = sqr(original_parameters->Z_values[j] >> 702 -original_parameters->Z_values[j+1]) + sqr(b-a); >> 703 area = std::sqrt(l2-sqr((a-b)*cosksi))*(a+b)*cosksi; >> 704 aVector1.push_back(area); >> 705 } >> 706 >> 707 for(j=0; j<numPlanes-1; j++) >> 708 { >> 709 a = original_parameters->Rmin[j+1];//*cosksi; >> 710 b = original_parameters->Rmin[j];//*cosksi; >> 711 l2 = sqr(original_parameters->Z_values[j] >> 712 -original_parameters->Z_values[j+1]) + sqr(b-a); >> 713 area = std::sqrt(l2-sqr((a-b)*cosksi))*(a+b)*cosksi; >> 714 aVector2.push_back(area); >> 715 } >> 716 >> 717 for(j=0; j<numPlanes-1; j++) >> 718 { >> 719 if(phiIsOpen == true) >> 720 { >> 721 aVector3.push_back(0.5*(original_parameters->Rmax[j] >> 722 -original_parameters->Rmin[j] >> 723 +original_parameters->Rmax[j+1] >> 724 -original_parameters->Rmin[j+1]) >> 725 *std::fabs(original_parameters->Z_values[j+1] >> 726 -original_parameters->Z_values[j])); >> 727 } >> 728 else { aVector3.push_back(0.); } >> 729 } >> 730 >> 731 for(j=0; j<numPlanes-1; j++) >> 732 { >> 733 totArea += numSide*(aVector1[j]+aVector2[j])+2.*aVector3[j]; >> 734 } >> 735 >> 736 // must include top and bottom areas >> 737 if(original_parameters->Rmax[numPlanes-1] != 0.) >> 738 { >> 739 a = original_parameters->Rmax[numPlanes-1]; >> 740 b = original_parameters->Rmin[numPlanes-1]; >> 741 l2 = sqr(a-b); >> 742 aTop = std::sqrt(l2-sqr((a-b)*cosksi))*(a+b)*cosksi; >> 743 } >> 744 >> 745 if(original_parameters->Rmax[0] != 0.) >> 746 { >> 747 a = original_parameters->Rmax[0]; >> 748 b = original_parameters->Rmin[0]; >> 749 l2 = sqr(a-b); >> 750 aBottom = std::sqrt(l2-sqr((a-b)*cosksi))*(a+b)*cosksi; >> 751 } >> 752 >> 753 Achose1 = 0.; >> 754 Achose2 = numSide*(aVector1[0]+aVector2[0])+2.*aVector3[0]; >> 755 >> 756 chose = RandFlat::shoot(0.,totArea+aTop+aBottom); >> 757 if( (chose >= 0.) && (chose < aTop + aBottom) ) >> 758 { >> 759 chose = RandFlat::shoot(startPhi,endPhi); >> 760 rang = std::floor((chose-startPhi)/ksi-0.01); >> 761 rang = std::fabs(rang); >> 762 sinphi1 = std::sin(startPhi+rang*ksi); >> 763 sinphi2 = std::sin(startPhi+(rang+1)*ksi); >> 764 cosphi1 = std::cos(startPhi+rang*ksi); >> 765 cosphi2 = std::cos(startPhi+(rang+1)*ksi); >> 766 >> 767 chose = RandFlat::shoot(0., aTop + aBottom); >> 768 if(chose>=0. && chose<aTop) >> 769 { >> 770 rad1 = original_parameters->Rmin[numPlanes-1]; >> 771 rad2 = original_parameters->Rmax[numPlanes-1]; >> 772 zVal = original_parameters->Z_values[numPlanes-1]; >> 773 } >> 774 else >> 775 { >> 776 rad1 = original_parameters->Rmin[0]; >> 777 rad2 = original_parameters->Rmax[0]; >> 778 zVal = original_parameters->Z_values[0]; >> 779 } >> 780 p0 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1,zVal); >> 781 p1 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1,zVal); >> 782 p2 = G4ThreeVector(rad2*cosphi2,rad2*sinphi2,zVal); >> 783 p3 = G4ThreeVector(rad1*cosphi2,rad1*sinphi2,zVal); >> 784 return GetPointOnPlane(p0,p1,p2,p3); >> 785 } >> 786 else 959 { 787 { 960 G4AutoLock l(&surface_elementsMutex); << 788 for (j=0; j< numPlanes-1; j++) 961 SetSurfaceElements(); << 962 l.unlock(); << 963 } << 964 << 965 // Select surface element << 966 G4Polyhedra::surface_element selem; << 967 selem = fElements->back(); << 968 G4double select = selem.area*G4QuickRand(); << 969 auto it = std::lower_bound(fElements->begin( << 970 [](const G4Polyhe << 971 -> G4bool { retur << 972 << 973 // Generate random point << 974 G4double x = 0, y = 0, z = 0; << 975 G4double u = G4QuickRand(); << 976 G4double v = G4QuickRand(); << 977 if (u + v > 1.) { u = 1. - u; v = 1. - v; } << 978 G4int i0 = (*it).i0; << 979 G4int i1 = (*it).i1; << 980 G4int i2 = (*it).i2; << 981 if (i2 < 0) // lateral surface << 982 { << 983 // sample point << 984 G4int nside = GetNumSide(); << 985 G4double dphi = (GetEndPhi() - GetStartPhi << 986 G4double cosa = std::cos(dphi); << 987 G4double sina = std::sin(dphi); << 988 G4PolyhedraSideRZ a = GetCorner(i0); << 989 G4PolyhedraSideRZ b = GetCorner(i1); << 990 G4ThreeVector p0(a.r, 0, a.z); << 991 G4ThreeVector p1(b.r, 0, b.z); << 992 G4ThreeVector p2(b.r*cosa, b.r*sina, b.z); << 993 if (i2 == -1) p1.set(a.r*cosa, a.r*sina, a << 994 p0 += (p1 - p0)*u + (p2 - p0)*v; << 995 // find selected side and rotate point << 996 G4double scurr = (*it).area; << 997 G4double sprev = (it == fElements->begin() << 998 G4int iside = nside*(select - sprev)/(scur << 999 if (iside == 0 && GetStartPhi() == 0.) << 1000 { 789 { 1001 x = p0.x(); << 790 if(chose>=Achose1 && chose < Achose2){ Flag = j; } 1002 y = p0.y(); << 791 Achose1 += numSide*(aVector1[j]+aVector2[j])+2.*aVector3[j]; 1003 z = p0.z(); << 792 Achose2 = Achose1 + numSide*(aVector1[j+1]+aVector2[j+1]) 1004 } << 793 + 2.*aVector3[j+1]; 1005 else << 794 } 1006 { << 795 } 1007 if (iside == nside) --iside; // iside m << 796 1008 G4double phi = iside*dphi + GetStartPhi << 797 // at this point we have chosen a subsection 1009 G4double cosphi = std::cos(phi); << 798 // between to adjacent plane cuts... 1010 G4double sinphi = std::sin(phi); << 799 1011 x = p0.x()*cosphi - p0.y()*sinphi; << 800 j = Flag; 1012 y = p0.x()*sinphi + p0.y()*cosphi; << 801 1013 z = p0.z(); << 802 totArea = numSide*(aVector1[j]+aVector2[j])+2.*aVector3[j]; 1014 } << 803 chose = RandFlat::shoot(0.,totArea); >> 804 >> 805 if( (chose>=0.) && (chose<numSide*aVector1[j]) ) >> 806 { >> 807 chose = RandFlat::shoot(startPhi,endPhi); >> 808 rang = std::floor((chose-startPhi)/ksi-0.01); >> 809 rang = std::fabs(rang); >> 810 rad1 = original_parameters->Rmax[j]; >> 811 rad2 = original_parameters->Rmax[j+1]; >> 812 sinphi1 = std::sin(startPhi+rang*ksi); >> 813 sinphi2 = std::sin(startPhi+(rang+1)*ksi); >> 814 cosphi1 = std::cos(startPhi+rang*ksi); >> 815 cosphi2 = std::cos(startPhi+(rang+1)*ksi); >> 816 zVal = original_parameters->Z_values[j]; >> 817 >> 818 p0 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1,zVal); >> 819 p1 = G4ThreeVector(rad1*cosphi2,rad1*sinphi2,zVal); >> 820 >> 821 zVal = original_parameters->Z_values[j+1]; >> 822 >> 823 p2 = G4ThreeVector(rad2*cosphi2,rad2*sinphi2,zVal); >> 824 p3 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1,zVal); >> 825 >> 826 return GetPointOnPlane(p0,p1,p2,p3); >> 827 } >> 828 else if ( (chose >= numSide*aVector1[j]) >> 829 && (chose <= numSide*(aVector1[j]+aVector2[j])) ) >> 830 { >> 831 chose = RandFlat::shoot(startPhi,endPhi); >> 832 rang = std::floor((chose-startPhi)/ksi-0.01); >> 833 rang = std::fabs(rang); >> 834 rad1 = original_parameters->Rmin[j]; >> 835 rad2 = original_parameters->Rmin[j+1]; >> 836 sinphi1 = std::sin(startPhi+rang*ksi); >> 837 sinphi2 = std::sin(startPhi+(rang+1)*ksi); >> 838 cosphi1 = std::cos(startPhi+rang*ksi); >> 839 cosphi2 = std::cos(startPhi+(rang+1)*ksi); >> 840 zVal = original_parameters->Z_values[j]; >> 841 >> 842 p0 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1,zVal); >> 843 p1 = G4ThreeVector(rad1*cosphi2,rad1*sinphi2,zVal); >> 844 >> 845 zVal = original_parameters->Z_values[j+1]; >> 846 >> 847 p2 = G4ThreeVector(rad2*cosphi2,rad2*sinphi2,zVal); >> 848 p3 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1,zVal); >> 849 >> 850 return GetPointOnPlane(p0,p1,p2,p3); 1015 } 851 } 1016 else // phi cut << 852 >> 853 chose = RandFlat::shoot(0.,2.2); >> 854 if( (chose>=0.) && (chose < 1.) ) 1017 { 855 { 1018 G4int nrz = GetNumRZCorner(); << 856 rang = startPhi; 1019 G4double phi = (i0 < nrz) ? GetStartPhi() << 1020 if (i0 >= nrz) { i0 -= nrz; } << 1021 G4PolyhedraSideRZ p0 = GetCorner(i0); << 1022 G4PolyhedraSideRZ p1 = GetCorner(i1); << 1023 G4PolyhedraSideRZ p2 = GetCorner(i2); << 1024 G4double r = (p1.r - p0.r)*u + (p2.r - p0 << 1025 x = r*std::cos(phi); << 1026 y = r*std::sin(phi); << 1027 z = (p1.z - p0.z)*u + (p2.z - p0.z)*v + p << 1028 } 857 } 1029 return {x, y, z}; << 858 else >> 859 { >> 860 rang = endPhi; >> 861 } >> 862 >> 863 cosphi1 = std::cos(rang); rad1 = original_parameters->Rmin[j]; >> 864 sinphi1 = std::sin(rang); rad2 = original_parameters->Rmax[j]; >> 865 >> 866 p0 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1, >> 867 original_parameters->Z_values[j]); >> 868 p1 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1, >> 869 original_parameters->Z_values[j]); >> 870 >> 871 rad1 = original_parameters->Rmax[j+1]; >> 872 rad2 = original_parameters->Rmin[j+1]; >> 873 >> 874 p2 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1, >> 875 original_parameters->Z_values[j+1]); >> 876 p3 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1, >> 877 original_parameters->Z_values[j+1]); >> 878 >> 879 return GetPointOnPlane(p0,p1,p2,p3); 1030 } 880 } 1031 881 1032 ///////////////////////////////////////////// << 882 1033 // 883 // 1034 // CreatePolyhedron 884 // CreatePolyhedron 1035 << 1036 G4Polyhedron* G4Polyhedra::CreatePolyhedron() << 1037 { << 1038 std::vector<G4TwoVector> rz(numCorner); << 1039 for (G4int i = 0; i < numCorner; ++i) << 1040 rz[i].set(corners[i].r, corners[i].z); << 1041 return new G4PolyhedronPgon(startPhi, endPh << 1042 } << 1043 << 1044 // SetOriginalParameters << 1045 // 885 // 1046 void G4Polyhedra::SetOriginalParameters(G4Red << 886 G4Polyhedron* G4Polyhedra::CreatePolyhedron() const 1047 { << 887 { 1048 G4int numPlanes = numCorner; << 1049 G4bool isConvertible = true; << 1050 G4double Zmax=rz->Bmax(); << 1051 rz->StartWithZMin(); << 1052 << 1053 // Prepare vectors for storage << 1054 // 888 // 1055 std::vector<G4double> Z; << 889 // This has to be fixed in visualization. Fake it for the moment. 1056 std::vector<G4double> Rmin; << 1057 std::vector<G4double> Rmax; << 1058 << 1059 G4int countPlanes=1; << 1060 G4int icurr=0; << 1061 G4int icurl=0; << 1062 << 1063 // first plane Z=Z[0] << 1064 // 890 // 1065 Z.push_back(corners[0].z); << 891 if (!genericPgon) 1066 G4double Zprev=Z[0]; << 1067 if (Zprev == corners[1].z) << 1068 { << 1069 Rmin.push_back(corners[0].r); << 1070 Rmax.push_back (corners[1].r);icurr=1; << 1071 } << 1072 else if (Zprev == corners[numPlanes-1].z) << 1073 { 892 { 1074 Rmin.push_back(corners[numPlanes-1].r); << 893 return new G4PolyhedronPgon( original_parameters->Start_angle, 1075 Rmax.push_back (corners[0].r); << 894 original_parameters->Opening_angle, 1076 icurl=numPlanes-1; << 895 original_parameters->numSide, >> 896 original_parameters->Num_z_planes, >> 897 original_parameters->Z_values, >> 898 original_parameters->Rmin, >> 899 original_parameters->Rmax); 1077 } 900 } 1078 else 901 else 1079 { 902 { 1080 Rmin.push_back(corners[0].r); << 903 G4cerr << "ERROR - G4Polyhedra::CreatePolyhedron() " << GetName() << G4endl 1081 Rmax.push_back (corners[0].r); << 904 << " Visualization of the 'generic' G4Polyhedra type" >> 905 << G4endl >> 906 << " is not supported at this time !" << G4endl >> 907 << " Use the alternative constructor instead." << G4endl; >> 908 return 0; 1082 } 909 } >> 910 } 1083 911 1084 // next planes until last << 1085 // << 1086 G4int inextr=0, inextl=0; << 1087 for (G4int i=0; i < numPlanes-2; ++i) << 1088 { << 1089 inextr=1+icurr; << 1090 inextl=(icurl <= 0)? numPlanes-1 : icurl- << 1091 << 1092 if((corners[inextr].z >= Zmax) & (corners << 1093 912 1094 G4double Zleft = corners[inextl].z; << 913 // 1095 G4double Zright = corners[inextr].z; << 914 // CreateNURBS 1096 if(Zright>Zleft) << 915 // 1097 { << 916 G4NURBS *G4Polyhedra::CreateNURBS() const 1098 Z.push_back(Zleft); << 917 { 1099 countPlanes++; << 918 return 0; 1100 G4double difZr=corners[inextr].z - corn << 919 } 1101 G4double difZl=corners[inextl].z - corn << 1102 920 1103 if(std::fabs(difZl) < kCarTolerance) << 1104 { << 1105 if(std::fabs(difZr) < kCarTolerance) << 1106 { << 1107 Rmin.push_back(corners[inextl].r); << 1108 Rmax.push_back(corners[icurr].r); << 1109 } << 1110 else << 1111 { << 1112 Rmin.push_back(corners[inextl].r); << 1113 Rmax.push_back(corners[icurr].r + ( << 1114 *(corners[ine << 1115 } << 1116 } << 1117 else if (difZl >= kCarTolerance) << 1118 { << 1119 if(std::fabs(difZr) < kCarTolerance) << 1120 { << 1121 Rmin.push_back(corners[icurl].r); << 1122 Rmax.push_back(corners[icurr].r); << 1123 } << 1124 else << 1125 { << 1126 Rmin.push_back(corners[icurl].r); << 1127 Rmax.push_back(corners[icurr].r + ( << 1128 *(corners[ine << 1129 } << 1130 } << 1131 else << 1132 { << 1133 isConvertible=false; break; << 1134 } << 1135 icurl=(icurl == 0)? numPlanes-1 : icurl << 1136 } << 1137 else if(std::fabs(Zright-Zleft)<kCarToler << 1138 { << 1139 Z.push_back(Zleft); << 1140 ++countPlanes; << 1141 ++icurr; << 1142 921 1143 icurl=(icurl == 0)? numPlanes-1 : icurl << 922 // >> 923 // G4PolyhedraHistorical stuff >> 924 // >> 925 G4PolyhedraHistorical::G4PolyhedraHistorical() >> 926 : Z_values(0), Rmin(0), Rmax(0) >> 927 { >> 928 } 1144 929 1145 Rmin.push_back(corners[inextl].r); << 930 G4PolyhedraHistorical::~G4PolyhedraHistorical() 1146 Rmax.push_back (corners[inextr].r); << 931 { 1147 } << 932 delete [] Z_values; 1148 else // Zright<Zleft << 933 delete [] Rmin; 1149 { << 934 delete [] Rmax; 1150 Z.push_back(Zright); << 935 } 1151 ++countPlanes; << 1152 936 1153 G4double difZr=corners[inextr].z - corn << 937 G4PolyhedraHistorical:: 1154 G4double difZl=corners[inextl].z - corn << 938 G4PolyhedraHistorical( const G4PolyhedraHistorical& source ) 1155 if(std::fabs(difZr) < kCarTolerance) << 939 { 1156 { << 940 Start_angle = source.Start_angle; 1157 if(std::fabs(difZl) < kCarTolerance) << 941 Opening_angle = source.Opening_angle; 1158 { << 942 numSide = source.numSide; 1159 Rmax.push_back(corners[inextr].r); << 943 Num_z_planes = source.Num_z_planes; 1160 Rmin.push_back(corners[icurr].r); << 944 1161 } << 945 Z_values = new G4double[Num_z_planes]; 1162 else << 946 Rmin = new G4double[Num_z_planes]; 1163 { << 947 Rmax = new G4double[Num_z_planes]; 1164 Rmin.push_back(corners[icurl].r + ( << 948 1165 * (corners[in << 949 for( G4int i = 0; i < Num_z_planes; i++) 1166 Rmax.push_back(corners[inextr].r); << 950 { 1167 } << 951 Z_values[i] = source.Z_values[i]; 1168 ++icurr; << 952 Rmin[i] = source.Rmin[i]; 1169 } // plate << 953 Rmax[i] = source.Rmax[i]; 1170 else if (difZr >= kCarTolerance) << 954 } 1171 { << 955 } 1172 if(std::fabs(difZl) < kCarTolerance) << 1173 { << 1174 Rmax.push_back(corners[inextr].r); << 1175 Rmin.push_back (corners[icurr].r); << 1176 } << 1177 else << 1178 { << 1179 Rmax.push_back(corners[inextr].r); << 1180 Rmin.push_back (corners[icurl].r+(Z << 1181 * (corners[ << 1182 } << 1183 ++icurr; << 1184 } << 1185 else << 1186 { << 1187 isConvertible=false; break; << 1188 } << 1189 } << 1190 } // end for loop << 1191 956 1192 // last plane Z=Zmax << 957 G4PolyhedraHistorical& 1193 // << 958 G4PolyhedraHistorical::operator=( const G4PolyhedraHistorical& right ) 1194 Z.push_back(Zmax); << 959 { 1195 ++countPlanes; << 960 if ( &right == this ) return *this; 1196 inextr=1+icurr; << 1197 inextl=(icurl <= 0)? numPlanes-1 : icurl-1; << 1198 << 1199 Rmax.push_back(corners[inextr].r); << 1200 Rmin.push_back(corners[inextl].r); << 1201 << 1202 // Set original parameters Rmin,Rmax,Z << 1203 // << 1204 if(isConvertible) << 1205 { << 1206 original_parameters = new G4PolyhedraHisto << 1207 original_parameters->numSide = numSide; << 1208 original_parameters->Z_values = new G4doub << 1209 original_parameters->Rmin = new G4double[c << 1210 original_parameters->Rmax = new G4double[c << 1211 << 1212 for(G4int j=0; j < countPlanes; ++j) << 1213 { << 1214 original_parameters->Z_values[j] = Z[j]; << 1215 original_parameters->Rmax[j] = Rmax[j]; << 1216 original_parameters->Rmin[j] = Rmin[j]; << 1217 } << 1218 original_parameters->Start_angle = startPh << 1219 original_parameters->Opening_angle = endPh << 1220 original_parameters->Num_z_planes = countP << 1221 << 1222 } << 1223 else // Set parameters(r,z) with Rmin==0 a << 1224 { << 1225 #ifdef G4SPECSDEBUG << 1226 std::ostringstream message; << 1227 message << "Polyhedra " << GetName() << G << 1228 << "cannot be converted to Polyhedra wi << 1229 G4Exception("G4Polyhedra::SetOriginalPara << 1230 "GeomSolids0002", JustWarning << 1231 #endif << 1232 original_parameters = new G4PolyhedraHist << 1233 original_parameters->numSide = numSide; << 1234 original_parameters->Z_values = new G4dou << 1235 original_parameters->Rmin = new G4double[ << 1236 original_parameters->Rmax = new G4double[ << 1237 961 1238 for(G4int j=0; j < numPlanes; ++j) << 962 if (&right) >> 963 { >> 964 Start_angle = right.Start_angle; >> 965 Opening_angle = right.Opening_angle; >> 966 numSide = right.numSide; >> 967 Num_z_planes = right.Num_z_planes; >> 968 >> 969 delete [] Z_values; >> 970 delete [] Rmin; >> 971 delete [] Rmax; >> 972 Z_values = new G4double[Num_z_planes]; >> 973 Rmin = new G4double[Num_z_planes]; >> 974 Rmax = new G4double[Num_z_planes]; >> 975 >> 976 for( G4int i = 0; i < Num_z_planes; i++) 1239 { 977 { 1240 original_parameters->Z_values[j] = corn << 978 Z_values[i] = right.Z_values[i]; 1241 original_parameters->Rmax[j] = corners[ << 979 Rmin[i] = right.Rmin[i]; 1242 original_parameters->Rmin[j] = 0.0; << 980 Rmax[i] = right.Rmax[i]; 1243 } 981 } 1244 original_parameters->Start_angle = startP << 1245 original_parameters->Opening_angle = endP << 1246 original_parameters->Num_z_planes = numPl << 1247 } 982 } >> 983 return *this; 1248 } 984 } 1249 << 1250 #endif << 1251 985