Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4Polyhedra.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/specific/src/G4Polyhedra.cc (Version 11.3.0) and /geometry/solids/specific/src/G4Polyhedra.cc (Version 10.0.p4)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Implementation of G4Polyhedra, a CSG polyhe <<  26 //
 27 // as an inherited class of G4VCSGfaceted.     <<  27 // $Id: G4Polyhedra.cc 88514 2015-02-25 09:59:10Z gcosmo $
                                                   >>  28 //
                                                   >>  29 // 
                                                   >>  30 // --------------------------------------------------------------------
                                                   >>  31 // GEANT 4 class source file
                                                   >>  32 //
                                                   >>  33 //
                                                   >>  34 // G4Polyhedra.cc
                                                   >>  35 //
                                                   >>  36 // Implementation of a CSG polyhedra, as an inherited class of G4VCSGfaceted.
                                                   >>  37 //
                                                   >>  38 // To be done:
                                                   >>  39 //    * Cracks: there are probably small cracks in the seams between the
                                                   >>  40 //      phi face (G4PolyPhiFace) and sides (G4PolyhedraSide) that are not
                                                   >>  41 //      entirely leakproof. Also, I am not sure all vertices are leak proof.
                                                   >>  42 //    * Many optimizations are possible, but not implemented.
                                                   >>  43 //    * Visualization needs to be updated outside of this routine.
 28 //                                                 44 //
 29 // Utility classes:                                45 // Utility classes:
 30 //    * G4EnclosingCylinder: decided a quick c <<  46 //    * G4EnclosingCylinder: I decided a quick check of geometry would be a
 31 //      good idea (for CPU speed). If the quic     47 //      good idea (for CPU speed). If the quick check fails, the regular
 32 //      full-blown G4VCSGfaceted version is in     48 //      full-blown G4VCSGfaceted version is invoked.
 33 //    * G4ReduciblePolygon: Really meant as a      49 //    * G4ReduciblePolygon: Really meant as a check of input parameters,
 34 //      this utility class also "converts" the     50 //      this utility class also "converts" the GEANT3-like PGON/PCON
 35 //      arguments into the newer ones.             51 //      arguments into the newer ones.
 36 // Both these classes are implemented outside      52 // Both these classes are implemented outside this file because they are
 37 // shared with G4Polycone.                         53 // shared with G4Polycone.
 38 //                                                 54 //
 39 // Author: David C. Williams (davidw@scipp.ucs << 
 40 // -------------------------------------------     55 // --------------------------------------------------------------------
 41                                                    56 
 42 #include "G4Polyhedra.hh"                          57 #include "G4Polyhedra.hh"
 43                                                    58 
 44 #if !defined(G4GEOM_USE_UPOLYHEDRA)                59 #if !defined(G4GEOM_USE_UPOLYHEDRA)
 45                                                    60 
 46 #include "G4PolyhedraSide.hh"                      61 #include "G4PolyhedraSide.hh"
 47 #include "G4PolyPhiFace.hh"                        62 #include "G4PolyPhiFace.hh"
 48                                                    63 
 49 #include "G4GeomTools.hh"                      <<  64 #include "Randomize.hh"
 50 #include "G4VoxelLimits.hh"                    << 
 51 #include "G4AffineTransform.hh"                << 
 52 #include "G4BoundingEnvelope.hh"               << 
 53                                                << 
 54 #include "G4QuickRand.hh"                      << 
 55                                                    65 
 56 #include "G4EnclosingCylinder.hh"                  66 #include "G4EnclosingCylinder.hh"
 57 #include "G4ReduciblePolygon.hh"                   67 #include "G4ReduciblePolygon.hh"
 58 #include "G4VPVParameterisation.hh"                68 #include "G4VPVParameterisation.hh"
 59                                                    69 
 60 namespace                                      <<  70 #include <sstream>
 61 {                                              << 
 62   G4Mutex surface_elementsMutex = G4MUTEX_INIT << 
 63 }                                              << 
 64                                                    71 
 65 using namespace CLHEP;                             72 using namespace CLHEP;
 66                                                    73 
                                                   >>  74 //
 67 // Constructor (GEANT3 style parameters)           75 // Constructor (GEANT3 style parameters)
 68 //                                                 76 //
 69 // GEANT3 PGON radii are specified in the dist     77 // GEANT3 PGON radii are specified in the distance to the norm of each face.
 70 //                                             <<  78 //  
 71 G4Polyhedra::G4Polyhedra( const G4String& name <<  79 G4Polyhedra::G4Polyhedra( const G4String& name, 
 72                                 G4double phiSt     80                                 G4double phiStart,
 73                                 G4double thePh     81                                 G4double thePhiTotal,
 74                                 G4int theNumSi <<  82                                 G4int theNumSide,  
 75                                 G4int numZPlan     83                                 G4int numZPlanes,
 76                           const G4double zPlan     84                           const G4double zPlane[],
 77                           const G4double rInne     85                           const G4double rInner[],
 78                           const G4double rOute     86                           const G4double rOuter[]  )
 79   : G4VCSGfaceted( name )                      <<  87   : G4VCSGfaceted( name ), genericPgon(false)
 80 {                                                  88 {
 81   if (theNumSide <= 0)                             89   if (theNumSide <= 0)
 82   {                                                90   {
 83     std::ostringstream message;                    91     std::ostringstream message;
 84     message << "Solid must have at least one s     92     message << "Solid must have at least one side - " << GetName() << G4endl
 85             << "        No sides specified !";     93             << "        No sides specified !";
 86     G4Exception("G4Polyhedra::G4Polyhedra()",      94     G4Exception("G4Polyhedra::G4Polyhedra()", "GeomSolids0002",
 87                 FatalErrorInArgument, message)     95                 FatalErrorInArgument, message);
 88   }                                                96   }
 89                                                    97 
 90   //                                               98   //
 91   // Calculate conversion factor from G3 radiu     99   // Calculate conversion factor from G3 radius to G4 radius
 92   //                                              100   //
 93   G4double phiTotal = thePhiTotal;                101   G4double phiTotal = thePhiTotal;
 94   if ( (phiTotal <=0) || (phiTotal >= twopi*(1    102   if ( (phiTotal <=0) || (phiTotal >= twopi*(1-DBL_EPSILON)) )
 95     { phiTotal = twopi; }                         103     { phiTotal = twopi; }
 96   G4double convertRad = std::cos(0.5*phiTotal/    104   G4double convertRad = std::cos(0.5*phiTotal/theNumSide);
 97                                                   105 
 98   //                                              106   //
 99   // Some historical stuff                        107   // Some historical stuff
100   //                                              108   //
101   original_parameters = new G4PolyhedraHistori    109   original_parameters = new G4PolyhedraHistorical;
102                                                << 110   
103   original_parameters->numSide = theNumSide;      111   original_parameters->numSide = theNumSide;
104   original_parameters->Start_angle = phiStart;    112   original_parameters->Start_angle = phiStart;
105   original_parameters->Opening_angle = phiTota    113   original_parameters->Opening_angle = phiTotal;
106   original_parameters->Num_z_planes = numZPlan    114   original_parameters->Num_z_planes = numZPlanes;
107   original_parameters->Z_values = new G4double    115   original_parameters->Z_values = new G4double[numZPlanes];
108   original_parameters->Rmin = new G4double[num    116   original_parameters->Rmin = new G4double[numZPlanes];
109   original_parameters->Rmax = new G4double[num    117   original_parameters->Rmax = new G4double[numZPlanes];
110                                                   118 
111   for (G4int i=0; i<numZPlanes; ++i)           << 119   G4int i;
                                                   >> 120   for (i=0; i<numZPlanes; i++)
112   {                                               121   {
113     if (( i < numZPlanes-1) && ( zPlane[i] ==     122     if (( i < numZPlanes-1) && ( zPlane[i] == zPlane[i+1] ))
114     {                                             123     {
115       if( (rInner[i]   > rOuter[i+1])             124       if( (rInner[i]   > rOuter[i+1])
116         ||(rInner[i+1] > rOuter[i])   )           125         ||(rInner[i+1] > rOuter[i])   )
117       {                                           126       {
118         DumpInfo();                               127         DumpInfo();
119         std::ostringstream message;               128         std::ostringstream message;
120         message << "Cannot create a Polyhedra     129         message << "Cannot create a Polyhedra with no contiguous segments."
121                 << G4endl                         130                 << G4endl
122                 << "        Segments are not c    131                 << "        Segments are not contiguous !" << G4endl
123                 << "        rMin[" << i << "]     132                 << "        rMin[" << i << "] = " << rInner[i]
124                 << " -- rMax[" << i+1 << "] =     133                 << " -- rMax[" << i+1 << "] = " << rOuter[i+1] << G4endl
125                 << "        rMin[" << i+1 << "    134                 << "        rMin[" << i+1 << "] = " << rInner[i+1]
126                 << " -- rMax[" << i << "] = "     135                 << " -- rMax[" << i << "] = " << rOuter[i];
127         G4Exception("G4Polyhedra::G4Polyhedra(    136         G4Exception("G4Polyhedra::G4Polyhedra()", "GeomSolids0002",
128                     FatalErrorInArgument, mess    137                     FatalErrorInArgument, message);
129       }                                           138       }
130     }                                             139     }
131     original_parameters->Z_values[i] = zPlane[    140     original_parameters->Z_values[i] = zPlane[i];
132     original_parameters->Rmin[i] = rInner[i]/c    141     original_parameters->Rmin[i] = rInner[i]/convertRad;
133     original_parameters->Rmax[i] = rOuter[i]/c    142     original_parameters->Rmax[i] = rOuter[i]/convertRad;
134   }                                               143   }
135                                                << 144   
136                                                << 145   
137   //                                              146   //
138   // Build RZ polygon using special PCON/PGON     147   // Build RZ polygon using special PCON/PGON GEANT3 constructor
139   //                                              148   //
140   auto rz = new G4ReduciblePolygon( rInner, rO << 149   G4ReduciblePolygon *rz =
                                                   >> 150     new G4ReduciblePolygon( rInner, rOuter, zPlane, numZPlanes );
141   rz->ScaleA( 1/convertRad );                     151   rz->ScaleA( 1/convertRad );
142                                                << 152   
143   //                                              153   //
144   // Do the real work                             154   // Do the real work
145   //                                              155   //
146   Create( phiStart, phiTotal, theNumSide, rz )    156   Create( phiStart, phiTotal, theNumSide, rz );
147                                                << 157   
148   delete rz;                                      158   delete rz;
149 }                                                 159 }
150                                                   160 
                                                   >> 161 
                                                   >> 162 //
151 // Constructor (generic parameters)               163 // Constructor (generic parameters)
152 //                                                164 //
153 G4Polyhedra::G4Polyhedra( const G4String& name << 165 G4Polyhedra::G4Polyhedra( const G4String& name, 
154                                 G4double phiSt    166                                 G4double phiStart,
155                                 G4double phiTo    167                                 G4double phiTotal,
156                                 G4int    theNu << 168                                 G4int    theNumSide,  
157                                 G4int    numRZ    169                                 G4int    numRZ,
158                           const G4double r[],     170                           const G4double r[],
159                           const G4double z[]      171                           const G4double z[]   )
160   : G4VCSGfaceted( name ), genericPgon(true)      172   : G4VCSGfaceted( name ), genericPgon(true)
161 {                                              << 173 { 
162   if (theNumSide <= 0)                            174   if (theNumSide <= 0)
163   {                                               175   {
164     std::ostringstream message;                   176     std::ostringstream message;
165     message << "Solid must have at least one s    177     message << "Solid must have at least one side - " << GetName() << G4endl
166             << "        No sides specified !";    178             << "        No sides specified !";
167     G4Exception("G4Polyhedra::G4Polyhedra()",     179     G4Exception("G4Polyhedra::G4Polyhedra()", "GeomSolids0002",
168                 FatalErrorInArgument, message)    180                 FatalErrorInArgument, message);
169   }                                               181   }
170                                                   182 
171   auto rz = new G4ReduciblePolygon( r, z, numR << 183   G4ReduciblePolygon *rz = new G4ReduciblePolygon( r, z, numRZ );
172                                                << 184   
173   Create( phiStart, phiTotal, theNumSide, rz )    185   Create( phiStart, phiTotal, theNumSide, rz );
174                                                << 186   
175   // Set original_parameters struct for consis    187   // Set original_parameters struct for consistency
176   //                                              188   //
177   SetOriginalParameters(rz);                      189   SetOriginalParameters(rz);
178                                                << 190    
179   delete rz;                                      191   delete rz;
180 }                                                 192 }
181                                                   193 
                                                   >> 194 
                                                   >> 195 //
182 // Create                                         196 // Create
183 //                                                197 //
184 // Generic create routine, called by each cons    198 // Generic create routine, called by each constructor
185 // after conversion of arguments                  199 // after conversion of arguments
186 //                                                200 //
187 void G4Polyhedra::Create( G4double phiStart,      201 void G4Polyhedra::Create( G4double phiStart,
188                           G4double phiTotal,      202                           G4double phiTotal,
189                           G4int    theNumSide, << 203                           G4int    theNumSide,  
190                           G4ReduciblePolygon*  << 204                           G4ReduciblePolygon *rz  )
191 {                                                 205 {
192   //                                              206   //
193   // Perform checks of rz values                  207   // Perform checks of rz values
194   //                                              208   //
195   if (rz->Amin() < 0.0)                           209   if (rz->Amin() < 0.0)
196   {                                               210   {
197     std::ostringstream message;                   211     std::ostringstream message;
198     message << "Illegal input parameters - " <    212     message << "Illegal input parameters - " << GetName() << G4endl
199             << "        All R values must be >    213             << "        All R values must be >= 0 !";
200     G4Exception("G4Polyhedra::Create()", "Geom    214     G4Exception("G4Polyhedra::Create()", "GeomSolids0002",
201                 FatalErrorInArgument, message)    215                 FatalErrorInArgument, message);
202   }                                               216   }
203                                                   217 
204   G4double rzArea = rz->Area();                   218   G4double rzArea = rz->Area();
205   if (rzArea < -kCarTolerance)                    219   if (rzArea < -kCarTolerance)
206   {                                            << 
207     rz->ReverseOrder();                           220     rz->ReverseOrder();
208   }                                            << 221 
209   else if (rzArea < kCarTolerance)             << 222   else if (rzArea < -kCarTolerance)
210   {                                               223   {
211     std::ostringstream message;                   224     std::ostringstream message;
212     message << "Illegal input parameters - " <    225     message << "Illegal input parameters - " << GetName() << G4endl
213             << "        R/Z cross section is z    226             << "        R/Z cross section is zero or near zero: " << rzArea;
214     G4Exception("G4Polyhedra::Create()", "Geom    227     G4Exception("G4Polyhedra::Create()", "GeomSolids0002",
215                 FatalErrorInArgument, message)    228                 FatalErrorInArgument, message);
216   }                                               229   }
217                                                << 230     
218   if ( (!rz->RemoveDuplicateVertices( kCarTole    231   if ( (!rz->RemoveDuplicateVertices( kCarTolerance ))
219     || (!rz->RemoveRedundantVertices( kCarTole << 232     || (!rz->RemoveRedundantVertices( kCarTolerance )) ) 
220   {                                               233   {
221     std::ostringstream message;                   234     std::ostringstream message;
222     message << "Illegal input parameters - " <    235     message << "Illegal input parameters - " << GetName() << G4endl
223             << "        Too few unique R/Z val    236             << "        Too few unique R/Z values !";
224     G4Exception("G4Polyhedra::Create()", "Geom    237     G4Exception("G4Polyhedra::Create()", "GeomSolids0002",
225                 FatalErrorInArgument, message)    238                 FatalErrorInArgument, message);
226   }                                               239   }
227                                                   240 
228   if (rz->CrossesItself( 1/kInfinity ))        << 241   if (rz->CrossesItself( 1/kInfinity )) 
229   {                                               242   {
230     std::ostringstream message;                   243     std::ostringstream message;
231     message << "Illegal input parameters - " <    244     message << "Illegal input parameters - " << GetName() << G4endl
232             << "        R/Z segments cross !";    245             << "        R/Z segments cross !";
233     G4Exception("G4Polyhedra::Create()", "Geom    246     G4Exception("G4Polyhedra::Create()", "GeomSolids0002",
234                 FatalErrorInArgument, message)    247                 FatalErrorInArgument, message);
235   }                                               248   }
236                                                   249 
237   numCorner = rz->NumVertices();                  250   numCorner = rz->NumVertices();
238                                                   251 
239                                                   252 
240   startPhi = phiStart;                            253   startPhi = phiStart;
241   while( startPhi < 0 )    // Loop checking, 1 << 254   while( startPhi < 0 ) startPhi += twopi;
242     startPhi += twopi;                         << 
243   //                                              255   //
244   // Phi opening? Account for some possible ro    256   // Phi opening? Account for some possible roundoff, and interpret
245   // nonsense value as representing no phi ope    257   // nonsense value as representing no phi opening
246   //                                              258   //
247   if ( (phiTotal <= 0) || (phiTotal > twopi*(1    259   if ( (phiTotal <= 0) || (phiTotal > twopi*(1-DBL_EPSILON)) )
248   {                                               260   {
249     phiIsOpen = false;                            261     phiIsOpen = false;
250     endPhi = startPhi + twopi;                 << 262     endPhi = phiStart+twopi;
251   }                                               263   }
252   else                                            264   else
253   {                                               265   {
254     phiIsOpen = true;                             266     phiIsOpen = true;
255     endPhi = startPhi + phiTotal;              << 267     
                                                   >> 268     //
                                                   >> 269     // Convert phi into our convention
                                                   >> 270     //
                                                   >> 271     endPhi = phiStart+phiTotal;
                                                   >> 272     while( endPhi < startPhi ) endPhi += twopi;
256   }                                               273   }
257                                                << 274   
258   //                                              275   //
259   // Save number sides                            276   // Save number sides
260   //                                              277   //
261   numSide = theNumSide;                           278   numSide = theNumSide;
262                                                << 279   
263   //                                              280   //
264   // Allocate corner array.                    << 281   // Allocate corner array. 
265   //                                              282   //
266   corners = new G4PolyhedraSideRZ[numCorner];     283   corners = new G4PolyhedraSideRZ[numCorner];
267                                                   284 
268   //                                              285   //
269   // Copy corners                                 286   // Copy corners
270   //                                              287   //
271   G4ReduciblePolygonIterator iterRZ(rz);          288   G4ReduciblePolygonIterator iterRZ(rz);
272                                                << 289   
273   G4PolyhedraSideRZ *next = corners;              290   G4PolyhedraSideRZ *next = corners;
274   iterRZ.Begin();                                 291   iterRZ.Begin();
275   do    // Loop checking, 13.08.2015, G.Cosmo  << 292   do
276   {                                               293   {
277     next->r = iterRZ.GetA();                      294     next->r = iterRZ.GetA();
278     next->z = iterRZ.GetB();                      295     next->z = iterRZ.GetB();
279   } while( ++next, iterRZ.Next() );               296   } while( ++next, iterRZ.Next() );
280                                                << 297   
281   //                                              298   //
282   // Allocate face pointer array                  299   // Allocate face pointer array
283   //                                              300   //
284   numFace = phiIsOpen ? numCorner+2 : numCorne    301   numFace = phiIsOpen ? numCorner+2 : numCorner;
285   faces = new G4VCSGface*[numFace];               302   faces = new G4VCSGface*[numFace];
286                                                << 303   
287   //                                              304   //
288   // Construct side faces                         305   // Construct side faces
289   //                                              306   //
290   // To do so properly, we need to keep track     307   // To do so properly, we need to keep track of four successive RZ
291   // corners.                                     308   // corners.
292   //                                              309   //
293   // But! Don't construct a face if both point    310   // But! Don't construct a face if both points are at zero radius!
294   //                                              311   //
295   G4PolyhedraSideRZ* corner = corners,         << 312   G4PolyhedraSideRZ *corner = corners,
296                    * prev = corners + numCorne << 313                     *prev = corners + numCorner-1,
297                    * nextNext;                 << 314                     *nextNext;
298   G4VCSGface** face = faces;                   << 315   G4VCSGface   **face = faces;
299   do    // Loop checking, 13.08.2015, G.Cosmo  << 316   do
300   {                                               317   {
301     next = corner+1;                              318     next = corner+1;
302     if (next >= corners+numCorner) next = corn    319     if (next >= corners+numCorner) next = corners;
303     nextNext = next+1;                            320     nextNext = next+1;
304     if (nextNext >= corners+numCorner) nextNex    321     if (nextNext >= corners+numCorner) nextNext = corners;
305                                                << 322     
306     if (corner->r < 1/kInfinity && next->r < 1    323     if (corner->r < 1/kInfinity && next->r < 1/kInfinity) continue;
307 /*                                                324 /*
308     // We must decide here if we can dare decl    325     // We must decide here if we can dare declare one of our faces
309     // as having a "valid" normal (i.e. allBeh    326     // as having a "valid" normal (i.e. allBehind = true). This
310     // is never possible if the face faces "in    327     // is never possible if the face faces "inward" in r *unless*
311     // we have only one side                      328     // we have only one side
312     //                                            329     //
313     G4bool allBehind;                             330     G4bool allBehind;
314     if ((corner->z > next->z) && (numSide > 1)    331     if ((corner->z > next->z) && (numSide > 1))
315     {                                             332     {
316       allBehind = false;                          333       allBehind = false;
317     }                                             334     }
318     else                                          335     else
319     {                                             336     {
320       //                                          337       //
321       // Otherwise, it is only true if the lin    338       // Otherwise, it is only true if the line passing
322       // through the two points of the segment    339       // through the two points of the segment do not
323       // split the r/z cross section              340       // split the r/z cross section
324       //                                          341       //
325       allBehind = !rz->BisectedBy( corner->r,     342       allBehind = !rz->BisectedBy( corner->r, corner->z,
326                                    next->r, ne    343                                    next->r, next->z, kCarTolerance );
327     }                                             344     }
328 */                                                345 */
329     *face++ = new G4PolyhedraSide( prev, corne    346     *face++ = new G4PolyhedraSide( prev, corner, next, nextNext,
330                  numSide, startPhi, endPhi-sta    347                  numSide, startPhi, endPhi-startPhi, phiIsOpen );
331   } while( prev=corner, corner=next, corner >     348   } while( prev=corner, corner=next, corner > corners );
332                                                << 349   
333   if (phiIsOpen)                                  350   if (phiIsOpen)
334   {                                               351   {
335     //                                            352     //
336     // Construct phi open edges                   353     // Construct phi open edges
337     //                                            354     //
338     *face++ = new G4PolyPhiFace( rz, startPhi,    355     *face++ = new G4PolyPhiFace( rz, startPhi, phiTotal/numSide, endPhi );
339     *face++ = new G4PolyPhiFace( rz, endPhi,      356     *face++ = new G4PolyPhiFace( rz, endPhi,   phiTotal/numSide, startPhi );
340   }                                               357   }
341                                                << 358   
342   //                                              359   //
343   // We might have dropped a face or two: reca    360   // We might have dropped a face or two: recalculate numFace
344   //                                              361   //
345   numFace = (G4int)(face-faces);               << 362   numFace = face-faces;
346                                                << 363   
347   //                                              364   //
348   // Make enclosingCylinder                       365   // Make enclosingCylinder
349   //                                              366   //
350   enclosingCylinder =                             367   enclosingCylinder =
351     new G4EnclosingCylinder( rz, phiIsOpen, ph    368     new G4EnclosingCylinder( rz, phiIsOpen, phiStart, phiTotal );
352 }                                                 369 }
353                                                   370 
                                                   >> 371 
                                                   >> 372 //
354 // Fake default constructor - sets only member    373 // Fake default constructor - sets only member data and allocates memory
355 //                            for usage restri    374 //                            for usage restricted to object persistency.
356 //                                                375 //
357 G4Polyhedra::G4Polyhedra( __void__& a )           376 G4Polyhedra::G4Polyhedra( __void__& a )
358   : G4VCSGfaceted(a), startPhi(0.), endPhi(0.) << 377   : G4VCSGfaceted(a), numSide(0), startPhi(0.), endPhi(0.),
                                                   >> 378     phiIsOpen(false), genericPgon(false), numCorner(0), corners(0),
                                                   >> 379     original_parameters(0), enclosingCylinder(0)
359 {                                                 380 {
360 }                                                 381 }
361                                                   382 
                                                   >> 383 
                                                   >> 384 //
362 // Destructor                                     385 // Destructor
363 //                                                386 //
364 G4Polyhedra::~G4Polyhedra()                       387 G4Polyhedra::~G4Polyhedra()
365 {                                                 388 {
366   delete [] corners;                              389   delete [] corners;
367   delete original_parameters;                  << 390   if (original_parameters) delete original_parameters;
                                                   >> 391   
368   delete enclosingCylinder;                       392   delete enclosingCylinder;
369   delete fElements;                            << 
370   delete fpPolyhedron;                         << 
371   corners = nullptr;                           << 
372   original_parameters = nullptr;               << 
373   enclosingCylinder = nullptr;                 << 
374   fElements = nullptr;                         << 
375   fpPolyhedron = nullptr;                      << 
376 }                                                 393 }
377                                                   394 
                                                   >> 395 
                                                   >> 396 //
378 // Copy constructor                               397 // Copy constructor
379 //                                                398 //
380 G4Polyhedra::G4Polyhedra( const G4Polyhedra& s << 399 G4Polyhedra::G4Polyhedra( const G4Polyhedra &source )
381   : G4VCSGfaceted( source )                       400   : G4VCSGfaceted( source )
382 {                                                 401 {
383   CopyStuff( source );                            402   CopyStuff( source );
384 }                                                 403 }
385                                                   404 
                                                   >> 405 
                                                   >> 406 //
386 // Assignment operator                            407 // Assignment operator
387 //                                                408 //
388 G4Polyhedra &G4Polyhedra::operator=( const G4P << 409 G4Polyhedra &G4Polyhedra::operator=( const G4Polyhedra &source )
389 {                                                 410 {
390   if (this == &source) return *this;              411   if (this == &source) return *this;
391                                                   412 
392   G4VCSGfaceted::operator=( source );             413   G4VCSGfaceted::operator=( source );
393                                                << 414   
394   delete [] corners;                              415   delete [] corners;
395   delete original_parameters;                  << 416   if (original_parameters) delete original_parameters;
                                                   >> 417   
396   delete enclosingCylinder;                       418   delete enclosingCylinder;
397                                                << 419   
398   CopyStuff( source );                            420   CopyStuff( source );
399                                                << 421   
400   return *this;                                   422   return *this;
401 }                                                 423 }
402                                                   424 
                                                   >> 425 
                                                   >> 426 //
403 // CopyStuff                                      427 // CopyStuff
404 //                                                428 //
405 void G4Polyhedra::CopyStuff( const G4Polyhedra << 429 void G4Polyhedra::CopyStuff( const G4Polyhedra &source )
406 {                                                 430 {
407   //                                              431   //
408   // Simple stuff                                 432   // Simple stuff
409   //                                              433   //
410   numSide    = source.numSide;                    434   numSide    = source.numSide;
411   startPhi   = source.startPhi;                   435   startPhi   = source.startPhi;
412   endPhi     = source.endPhi;                     436   endPhi     = source.endPhi;
413   phiIsOpen  = source.phiIsOpen;                  437   phiIsOpen  = source.phiIsOpen;
414   numCorner  = source.numCorner;                  438   numCorner  = source.numCorner;
415   genericPgon= source.genericPgon;                439   genericPgon= source.genericPgon;
416                                                   440 
417   //                                              441   //
418   // The corner array                             442   // The corner array
419   //                                              443   //
420   corners = new G4PolyhedraSideRZ[numCorner];     444   corners = new G4PolyhedraSideRZ[numCorner];
421                                                << 445   
422   G4PolyhedraSideRZ* corn = corners,           << 446   G4PolyhedraSideRZ  *corn = corners,
423                    * sourceCorn = source.corne << 447         *sourceCorn = source.corners;
424   do    // Loop checking, 13.08.2015, G.Cosmo  << 448   do
425   {                                               449   {
426     *corn = *sourceCorn;                          450     *corn = *sourceCorn;
427   } while( ++sourceCorn, ++corn < corners+numC    451   } while( ++sourceCorn, ++corn < corners+numCorner );
428                                                << 452   
429   //                                              453   //
430   // Original parameters                          454   // Original parameters
431   //                                              455   //
432   if (source.original_parameters != nullptr)   << 456   if (source.original_parameters)
433   {                                               457   {
434     original_parameters =                         458     original_parameters =
435       new G4PolyhedraHistorical( *source.origi    459       new G4PolyhedraHistorical( *source.original_parameters );
436   }                                               460   }
437                                                << 461   
438   //                                              462   //
439   // Enclosing cylinder                           463   // Enclosing cylinder
440   //                                              464   //
441   enclosingCylinder = new G4EnclosingCylinder(    465   enclosingCylinder = new G4EnclosingCylinder( *source.enclosingCylinder );
442                                                   466 
443   //                                           << 
444   // Surface elements                          << 
445   //                                           << 
446   delete fElements;                            << 
447   fElements = nullptr;                         << 
448                                                << 
449   //                                           << 
450   // Polyhedron                                << 
451   //                                           << 
452   fRebuildPolyhedron = false;                     467   fRebuildPolyhedron = false;
453   delete fpPolyhedron;                         << 468   fpPolyhedron = 0;
454   fpPolyhedron = nullptr;                      << 
455 }                                                 469 }
456                                                   470 
                                                   >> 471 
                                                   >> 472 //
457 // Reset                                          473 // Reset
458 //                                                474 //
459 // Recalculates and reshapes the solid, given     475 // Recalculates and reshapes the solid, given pre-assigned scaled
460 // original_parameters.                           476 // original_parameters.
461 //                                                477 //
462 G4bool G4Polyhedra::Reset()                       478 G4bool G4Polyhedra::Reset()
463 {                                                 479 {
464   if (genericPgon)                                480   if (genericPgon)
465   {                                               481   {
466     std::ostringstream message;                   482     std::ostringstream message;
467     message << "Solid " << GetName() << " buil    483     message << "Solid " << GetName() << " built using generic construct."
468             << G4endl << "Not applicable to th    484             << G4endl << "Not applicable to the generic construct !";
469     G4Exception("G4Polyhedra::Reset()", "GeomS    485     G4Exception("G4Polyhedra::Reset()", "GeomSolids1001",
470                 JustWarning, message, "Paramet    486                 JustWarning, message, "Parameters NOT resetted.");
471     return true;                               << 487     return 1;
472   }                                               488   }
473                                                   489 
474   //                                              490   //
475   // Clear old setup                              491   // Clear old setup
476   //                                              492   //
477   G4VCSGfaceted::DeleteStuff();                   493   G4VCSGfaceted::DeleteStuff();
478   delete [] corners;                              494   delete [] corners;
479   delete enclosingCylinder;                       495   delete enclosingCylinder;
480   delete fElements;                            << 
481   corners = nullptr;                           << 
482   fElements = nullptr;                         << 
483   enclosingCylinder = nullptr;                 << 
484                                                   496 
485   //                                              497   //
486   // Rebuild polyhedra                            498   // Rebuild polyhedra
487   //                                              499   //
488   auto rz = new G4ReduciblePolygon( original_p << 500   G4ReduciblePolygon *rz =
489                                     original_p << 501     new G4ReduciblePolygon( original_parameters->Rmin,
490                                     original_p << 502                             original_parameters->Rmax,
491                                     original_p << 503                             original_parameters->Z_values,
                                                   >> 504                             original_parameters->Num_z_planes );
492   Create( original_parameters->Start_angle,       505   Create( original_parameters->Start_angle,
493           original_parameters->Opening_angle,     506           original_parameters->Opening_angle,
494           original_parameters->numSide, rz );     507           original_parameters->numSide, rz );
495   delete rz;                                      508   delete rz;
496                                                   509 
497   return false;                                << 510   return 0;
498 }                                                 511 }
499                                                   512 
                                                   >> 513 
                                                   >> 514 //
500 // Inside                                         515 // Inside
501 //                                                516 //
502 // This is an override of G4VCSGfaceted::Insid    517 // This is an override of G4VCSGfaceted::Inside, created in order
503 // to speed things up by first checking with G    518 // to speed things up by first checking with G4EnclosingCylinder.
504 //                                                519 //
505 EInside G4Polyhedra::Inside( const G4ThreeVect << 520 EInside G4Polyhedra::Inside( const G4ThreeVector &p ) const
506 {                                                 521 {
507   //                                              522   //
508   // Quick test                                   523   // Quick test
509   //                                              524   //
510   if (enclosingCylinder->MustBeOutside(p)) ret    525   if (enclosingCylinder->MustBeOutside(p)) return kOutside;
511                                                   526 
512   //                                              527   //
513   // Long answer                                  528   // Long answer
514   //                                              529   //
515   return G4VCSGfaceted::Inside(p);                530   return G4VCSGfaceted::Inside(p);
516 }                                                 531 }
517                                                   532 
                                                   >> 533 
                                                   >> 534 //
518 // DistanceToIn                                   535 // DistanceToIn
519 //                                                536 //
520 // This is an override of G4VCSGfaceted::Insid    537 // This is an override of G4VCSGfaceted::Inside, created in order
521 // to speed things up by first checking with G    538 // to speed things up by first checking with G4EnclosingCylinder.
522 //                                                539 //
523 G4double G4Polyhedra::DistanceToIn( const G4Th << 540 G4double G4Polyhedra::DistanceToIn( const G4ThreeVector &p,
524                                     const G4Th << 541                                     const G4ThreeVector &v ) const
525 {                                                 542 {
526   //                                              543   //
527   // Quick test                                   544   // Quick test
528   //                                              545   //
529   if (enclosingCylinder->ShouldMiss(p,v))         546   if (enclosingCylinder->ShouldMiss(p,v))
530     return kInfinity;                             547     return kInfinity;
531                                                << 548   
532   //                                              549   //
533   // Long answer                                  550   // Long answer
534   //                                              551   //
535   return G4VCSGfaceted::DistanceToIn( p, v );     552   return G4VCSGfaceted::DistanceToIn( p, v );
536 }                                                 553 }
537                                                   554 
                                                   >> 555 
                                                   >> 556 //
538 // DistanceToIn                                   557 // DistanceToIn
539 //                                                558 //
540 G4double G4Polyhedra::DistanceToIn( const G4Th << 559 G4double G4Polyhedra::DistanceToIn( const G4ThreeVector &p ) const
541 {                                                 560 {
542   return G4VCSGfaceted::DistanceToIn(p);          561   return G4VCSGfaceted::DistanceToIn(p);
543 }                                                 562 }
544                                                   563 
545 // Get bounding box                            << 
546 //                                             << 
547 void G4Polyhedra::BoundingLimits(G4ThreeVector << 
548                                  G4ThreeVector << 
549 {                                              << 
550   G4double rmin = kInfinity, rmax = -kInfinity << 
551   G4double zmin = kInfinity, zmax = -kInfinity << 
552   for (G4int i=0; i<GetNumRZCorner(); ++i)     << 
553   {                                            << 
554     G4PolyhedraSideRZ corner = GetCorner(i);   << 
555     if (corner.r < rmin) rmin = corner.r;      << 
556     if (corner.r > rmax) rmax = corner.r;      << 
557     if (corner.z < zmin) zmin = corner.z;      << 
558     if (corner.z > zmax) zmax = corner.z;      << 
559   }                                            << 
560                                                << 
561   G4double sphi    = GetStartPhi();            << 
562   G4double ephi    = GetEndPhi();              << 
563   G4double dphi    = IsOpen() ? ephi-sphi : tw << 
564   G4int    ksteps  = GetNumSide();             << 
565   G4double astep   = dphi/ksteps;              << 
566   G4double sinStep = std::sin(astep);          << 
567   G4double cosStep = std::cos(astep);          << 
568                                                << 
569   G4double sinCur = GetSinStartPhi();          << 
570   G4double cosCur = GetCosStartPhi();          << 
571   if (!IsOpen()) rmin = 0.;                    << 
572   G4double xmin = rmin*cosCur, xmax = xmin;    << 
573   G4double ymin = rmin*sinCur, ymax = ymin;    << 
574   for (G4int k=0; k<ksteps+1; ++k)             << 
575   {                                            << 
576     G4double x = rmax*cosCur;                  << 
577     if (x < xmin) xmin = x;                    << 
578     if (x > xmax) xmax = x;                    << 
579     G4double y = rmax*sinCur;                  << 
580     if (y < ymin) ymin = y;                    << 
581     if (y > ymax) ymax = y;                    << 
582     if (rmin > 0)                              << 
583     {                                          << 
584       G4double xx = rmin*cosCur;               << 
585       if (xx < xmin) xmin = xx;                << 
586       if (xx > xmax) xmax = xx;                << 
587       G4double yy = rmin*sinCur;               << 
588       if (yy < ymin) ymin = yy;                << 
589       if (yy > ymax) ymax = yy;                << 
590     }                                          << 
591     G4double sinTmp = sinCur;                  << 
592     sinCur = sinCur*cosStep + cosCur*sinStep;  << 
593     cosCur = cosCur*cosStep - sinTmp*sinStep;  << 
594   }                                            << 
595   pMin.set(xmin,ymin,zmin);                    << 
596   pMax.set(xmax,ymax,zmax);                    << 
597                                                << 
598   // Check correctness of the bounding box     << 
599   //                                           << 
600   if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 
601   {                                            << 
602     std::ostringstream message;                << 
603     message << "Bad bounding box (min >= max)  << 
604             << GetName() << " !"               << 
605             << "\npMin = " << pMin             << 
606             << "\npMax = " << pMax;            << 
607     G4Exception("G4Polyhedra::BoundingLimits() << 
608                 JustWarning, message);         << 
609     DumpInfo();                                << 
610   }                                            << 
611 }                                              << 
612                                                   564 
613 // Calculate extent under transform and specif << 
614 //                                                565 //
615 G4bool G4Polyhedra::CalculateExtent(const EAxi << 
616                                     const G4Vo << 
617                                     const G4Af << 
618                                     G4double&  << 
619 {                                              << 
620   G4ThreeVector bmin, bmax;                    << 
621   G4bool exist;                                << 
622                                                << 
623   // Check bounding box (bbox)                 << 
624   //                                           << 
625   BoundingLimits(bmin,bmax);                   << 
626   G4BoundingEnvelope bbox(bmin,bmax);          << 
627 #ifdef G4BBOX_EXTENT                           << 
628   return bbox.CalculateExtent(pAxis,pVoxelLimi << 
629 #endif                                         << 
630   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 
631   {                                            << 
632     return exist = pMin < pMax;                << 
633   }                                            << 
634                                                << 
635   // To find the extent, RZ contour of the pol << 
636   // in triangles. The extent is calculated as << 
637   // all sub-polycones formed by rotation of t << 
638   //                                           << 
639   G4TwoVectorList contourRZ;                   << 
640   G4TwoVectorList triangles;                   << 
641   std::vector<G4int> iout;                     << 
642   G4double eminlim = pVoxelLimit.GetMinExtent( << 
643   G4double emaxlim = pVoxelLimit.GetMaxExtent( << 
644                                                << 
645   // get RZ contour, ensure anticlockwise orde << 
646   for (G4int i=0; i<GetNumRZCorner(); ++i)     << 
647   {                                            << 
648     G4PolyhedraSideRZ corner = GetCorner(i);   << 
649     contourRZ.emplace_back(corner.r,corner.z); << 
650   }                                            << 
651   G4GeomTools::RemoveRedundantVertices(contour << 
652   G4double area = G4GeomTools::PolygonArea(con << 
653   if (area < 0.) std::reverse(contourRZ.begin( << 
654                                                << 
655   // triangulate RZ countour                   << 
656   if (!G4GeomTools::TriangulatePolygon(contour << 
657   {                                            << 
658     std::ostringstream message;                << 
659     message << "Triangulation of RZ contour ha << 
660             << GetName() << " !"               << 
661             << "\nExtent has been calculated u << 
662     G4Exception("G4Polyhedra::CalculateExtent( << 
663                 "GeomMgt1002",JustWarning,mess << 
664     return bbox.CalculateExtent(pAxis,pVoxelLi << 
665   }                                            << 
666                                                << 
667   // set trigonometric values                  << 
668   G4double sphi     = GetStartPhi();           << 
669   G4double ephi     = GetEndPhi();             << 
670   G4double dphi     = IsOpen() ? ephi-sphi : t << 
671   G4int    ksteps   = GetNumSide();            << 
672   G4double astep    = dphi/ksteps;             << 
673   G4double sinStep  = std::sin(astep);         << 
674   G4double cosStep  = std::cos(astep);         << 
675   G4double sinStart = GetSinStartPhi();        << 
676   G4double cosStart = GetCosStartPhi();        << 
677                                                << 
678   // allocate vector lists                     << 
679   std::vector<const G4ThreeVectorList *> polyg << 
680   polygons.resize(ksteps+1);                   << 
681   for (G4int k=0; k<ksteps+1; ++k)             << 
682   {                                            << 
683     polygons[k] = new G4ThreeVectorList(3);    << 
684   }                                            << 
685                                                << 
686   // main loop along triangles                 << 
687   pMin =  kInfinity;                           << 
688   pMax = -kInfinity;                           << 
689   G4int ntria = (G4int)triangles.size()/3;     << 
690   for (G4int i=0; i<ntria; ++i)                << 
691   {                                            << 
692     G4double sinCur = sinStart;                << 
693     G4double cosCur = cosStart;                << 
694     G4int i3 = i*3;                            << 
695     for (G4int k=0; k<ksteps+1; ++k) // rotate << 
696     {                                          << 
697       auto ptr = const_cast<G4ThreeVectorList* << 
698       auto iter = ptr->begin();                << 
699       iter->set(triangles[i3+0].x()*cosCur,    << 
700                 triangles[i3+0].x()*sinCur,    << 
701                 triangles[i3+0].y());          << 
702       iter++;                                  << 
703       iter->set(triangles[i3+1].x()*cosCur,    << 
704                 triangles[i3+1].x()*sinCur,    << 
705                 triangles[i3+1].y());          << 
706       iter++;                                  << 
707       iter->set(triangles[i3+2].x()*cosCur,    << 
708                 triangles[i3+2].x()*sinCur,    << 
709                 triangles[i3+2].y());          << 
710                                                << 
711       G4double sinTmp = sinCur;                << 
712       sinCur = sinCur*cosStep + cosCur*sinStep << 
713       cosCur = cosCur*cosStep - sinTmp*sinStep << 
714     }                                          << 
715                                                << 
716     // set sub-envelope and adjust extent      << 
717     G4double emin,emax;                        << 
718     G4BoundingEnvelope benv(polygons);         << 
719     if (!benv.CalculateExtent(pAxis,pVoxelLimi << 
720     if (emin < pMin) pMin = emin;              << 
721     if (emax > pMax) pMax = emax;              << 
722     if (eminlim > pMin && emaxlim < pMax) brea << 
723   }                                            << 
724   // free memory                               << 
725   for (G4int k=0; k<ksteps+1; ++k) { delete po << 
726   return (pMin < pMax);                        << 
727 }                                              << 
728                                                << 
729 // ComputeDimensions                              566 // ComputeDimensions
730 //                                                567 //
731 void G4Polyhedra::ComputeDimensions(       G4V    568 void G4Polyhedra::ComputeDimensions(       G4VPVParameterisation* p,
732                                      const G4i    569                                      const G4int n,
733                                      const G4V    570                                      const G4VPhysicalVolume* pRep )
734 {                                                 571 {
735   p->ComputeDimensions(*this,n,pRep);             572   p->ComputeDimensions(*this,n,pRep);
736 }                                                 573 }
737                                                   574 
                                                   >> 575 
                                                   >> 576 //
738 // GetEntityType                                  577 // GetEntityType
739 //                                                578 //
740 G4GeometryType G4Polyhedra::GetEntityType() co    579 G4GeometryType G4Polyhedra::GetEntityType() const
741 {                                                 580 {
742   return {"G4Polyhedra"};                      << 581   return G4String("G4Polyhedra");
743 }                                                 582 }
744                                                   583 
745 // IsFaceted                                   << 
746 //                                             << 
747 G4bool G4Polyhedra::IsFaceted() const          << 
748 {                                              << 
749   return true;                                 << 
750 }                                              << 
751                                                   584 
                                                   >> 585 //
752 // Make a clone of the object                     586 // Make a clone of the object
753 //                                                587 //
754 G4VSolid* G4Polyhedra::Clone() const              588 G4VSolid* G4Polyhedra::Clone() const
755 {                                                 589 {
756   return new G4Polyhedra(*this);                  590   return new G4Polyhedra(*this);
757 }                                                 591 }
758                                                   592 
                                                   >> 593 
                                                   >> 594 //
759 // Stream object contents to an output stream     595 // Stream object contents to an output stream
760 //                                                596 //
761 std::ostream& G4Polyhedra::StreamInfo( std::os    597 std::ostream& G4Polyhedra::StreamInfo( std::ostream& os ) const
762 {                                                 598 {
763   G4long oldprc = os.precision(16);            << 599   G4int oldprc = os.precision(16);
764   os << "-------------------------------------    600   os << "-----------------------------------------------------------\n"
765      << "    *** Dump for solid - " << GetName    601      << "    *** Dump for solid - " << GetName() << " ***\n"
766      << "    =================================    602      << "    ===================================================\n"
767      << " Solid type: G4Polyhedra\n"              603      << " Solid type: G4Polyhedra\n"
768      << " Parameters: \n"                         604      << " Parameters: \n"
769      << "    starting phi angle : " << startPh    605      << "    starting phi angle : " << startPhi/degree << " degrees \n"
770      << "    ending phi angle   : " << endPhi/    606      << "    ending phi angle   : " << endPhi/degree << " degrees \n"
771      << "    number of sides    : " << numSide    607      << "    number of sides    : " << numSide << " \n";
772   G4int i=0;                                      608   G4int i=0;
773   if (!genericPgon)                               609   if (!genericPgon)
774   {                                               610   {
775     G4int numPlanes = original_parameters->Num    611     G4int numPlanes = original_parameters->Num_z_planes;
776     os << "    number of Z planes: " << numPla    612     os << "    number of Z planes: " << numPlanes << "\n"
777        << "              Z values: \n";           613        << "              Z values: \n";
778     for (i=0; i<numPlanes; ++i)                << 614     for (i=0; i<numPlanes; i++)
779     {                                             615     {
780       os << "              Z plane " << i << "    616       os << "              Z plane " << i << ": "
781          << original_parameters->Z_values[i] <    617          << original_parameters->Z_values[i] << "\n";
782     }                                             618     }
783     os << "              Tangent distances to     619     os << "              Tangent distances to inner surface (Rmin): \n";
784     for (i=0; i<numPlanes; ++i)                << 620     for (i=0; i<numPlanes; i++)
785     {                                             621     {
786       os << "              Z plane " << i << "    622       os << "              Z plane " << i << ": "
787          << original_parameters->Rmin[i] << "\    623          << original_parameters->Rmin[i] << "\n";
788     }                                             624     }
789     os << "              Tangent distances to     625     os << "              Tangent distances to outer surface (Rmax): \n";
790     for (i=0; i<numPlanes; ++i)                << 626     for (i=0; i<numPlanes; i++)
791     {                                             627     {
792       os << "              Z plane " << i << "    628       os << "              Z plane " << i << ": "
793          << original_parameters->Rmax[i] << "\    629          << original_parameters->Rmax[i] << "\n";
794     }                                             630     }
795   }                                               631   }
796   os << "    number of RZ points: " << numCorn    632   os << "    number of RZ points: " << numCorner << "\n"
797      << "              RZ values (corners): \n    633      << "              RZ values (corners): \n";
798      for (i=0; i<numCorner; ++i)               << 634      for (i=0; i<numCorner; i++)
799      {                                            635      {
800        os << "                         "          636        os << "                         "
801           << corners[i].r << ", " << corners[i    637           << corners[i].r << ", " << corners[i].z << "\n";
802      }                                            638      }
803   os << "-------------------------------------    639   os << "-----------------------------------------------------------\n";
804   os.precision(oldprc);                           640   os.precision(oldprc);
805                                                   641 
806   return os;                                      642   return os;
807 }                                                 643 }
808                                                   644 
809 ////////////////////////////////////////////// << 
810 //                                             << 
811 // Return volume                               << 
812                                                   645 
813 G4double G4Polyhedra::GetCubicVolume()         << 646 //
                                                   >> 647 // GetPointOnPlane
                                                   >> 648 //
                                                   >> 649 // Auxiliary method for get point on surface
                                                   >> 650 //
                                                   >> 651 G4ThreeVector G4Polyhedra::GetPointOnPlane(G4ThreeVector p0, G4ThreeVector p1, 
                                                   >> 652                                            G4ThreeVector p2, G4ThreeVector p3) const
814 {                                                 653 {
815   if (fCubicVolume == 0.)                      << 654   G4double lambda1, lambda2, chose,aOne,aTwo;
                                                   >> 655   G4ThreeVector t, u, v, w, Area, normal;
                                                   >> 656   aOne = 1.;
                                                   >> 657   aTwo = 1.;
                                                   >> 658 
                                                   >> 659   t = p1 - p0;
                                                   >> 660   u = p2 - p1;
                                                   >> 661   v = p3 - p2;
                                                   >> 662   w = p0 - p3;
                                                   >> 663 
                                                   >> 664   chose = RandFlat::shoot(0.,aOne+aTwo);
                                                   >> 665   if( (chose>=0.) && (chose < aOne) )
816   {                                               666   {
817     G4double total = 0.;                       << 667     lambda1 = RandFlat::shoot(0.,1.);
818     G4int nrz = GetNumRZCorner();              << 668     lambda2 = RandFlat::shoot(0.,lambda1);
819     G4PolyhedraSideRZ a = GetCorner(nrz - 1);  << 669     return (p2+lambda1*v+lambda2*w);    
820     for (G4int i=0; i<nrz; ++i)                << 
821     {                                          << 
822       G4PolyhedraSideRZ b = GetCorner(i);      << 
823       total += (b.r*b.r + b.r*a.r + a.r*a.r)*( << 
824       a = b;                                   << 
825     }                                          << 
826     fCubicVolume = std::abs(total)*            << 
827       std::sin((GetEndPhi() - GetStartPhi())/G << 
828   }                                               670   }
829   return fCubicVolume;                         << 671 
                                                   >> 672   lambda1 = RandFlat::shoot(0.,1.);
                                                   >> 673   lambda2 = RandFlat::shoot(0.,lambda1);
                                                   >> 674   return (p0+lambda1*t+lambda2*u);
830 }                                                 675 }
831                                                   676 
832 ////////////////////////////////////////////// << 677 
                                                   >> 678 //
                                                   >> 679 // GetPointOnTriangle
833 //                                                680 //
834 // Return surface area                         << 681 // Auxiliary method for get point on surface
                                                   >> 682 //
                                                   >> 683 G4ThreeVector G4Polyhedra::GetPointOnTriangle(G4ThreeVector p1,
                                                   >> 684                                               G4ThreeVector p2,
                                                   >> 685                                               G4ThreeVector p3) const
                                                   >> 686 {
                                                   >> 687   G4double lambda1,lambda2;
                                                   >> 688   G4ThreeVector v=p3-p1, w=p1-p2;
                                                   >> 689 
                                                   >> 690   lambda1 = RandFlat::shoot(0.,1.);
                                                   >> 691   lambda2 = RandFlat::shoot(0.,lambda1);
                                                   >> 692 
                                                   >> 693   return (p2 + lambda1*w + lambda2*v);
                                                   >> 694 }
                                                   >> 695 
835                                                   696 
836 G4double G4Polyhedra::GetSurfaceArea()         << 697 //
                                                   >> 698 // GetPointOnSurface
                                                   >> 699 //
                                                   >> 700 G4ThreeVector G4Polyhedra::GetPointOnSurface() const
837 {                                                 701 {
838   if (fSurfaceArea == 0.)                      << 702   if( !genericPgon )  // Polyhedra by faces
839   {                                               703   {
840     G4double total = 0.;                       << 704     G4int j, numPlanes = original_parameters->Num_z_planes, Flag=0;
841     G4int nrz = GetNumRZCorner();              << 705     G4double chose, totArea=0., Achose1, Achose2,
842     if (IsOpen())                              << 706              rad1, rad2, sinphi1, sinphi2, cosphi1, cosphi2; 
                                                   >> 707     G4double a, b, l2, rang, totalPhi, ksi,
                                                   >> 708              area, aTop=0., aBottom=0., zVal=0.;
                                                   >> 709 
                                                   >> 710     G4ThreeVector p0, p1, p2, p3;
                                                   >> 711     std::vector<G4double> aVector1;
                                                   >> 712     std::vector<G4double> aVector2;
                                                   >> 713     std::vector<G4double> aVector3;
                                                   >> 714 
                                                   >> 715     totalPhi= (phiIsOpen) ? (endPhi-startPhi) : twopi;
                                                   >> 716     ksi = totalPhi/numSide;
                                                   >> 717     G4double cosksi = std::cos(ksi/2.);
                                                   >> 718 
                                                   >> 719     // Below we generate the areas relevant to our solid
                                                   >> 720     //
                                                   >> 721     for(j=0; j<numPlanes-1; j++)
843     {                                             722     {
844       G4PolyhedraSideRZ a = GetCorner(nrz - 1) << 723       a = original_parameters->Rmax[j+1];
845       for (G4int i=0; i<nrz; ++i)              << 724       b = original_parameters->Rmax[j];
                                                   >> 725       l2 = sqr(original_parameters->Z_values[j]
                                                   >> 726               -original_parameters->Z_values[j+1]) + sqr(b-a);
                                                   >> 727       area = std::sqrt(l2-sqr((a-b)*cosksi))*(a+b)*cosksi;
                                                   >> 728       aVector1.push_back(area);
                                                   >> 729     }
                                                   >> 730 
                                                   >> 731     for(j=0; j<numPlanes-1; j++)
                                                   >> 732     {
                                                   >> 733       a = original_parameters->Rmin[j+1];//*cosksi;
                                                   >> 734       b = original_parameters->Rmin[j];//*cosksi;
                                                   >> 735       l2 = sqr(original_parameters->Z_values[j]
                                                   >> 736               -original_parameters->Z_values[j+1]) + sqr(b-a);
                                                   >> 737       area = std::sqrt(l2-sqr((a-b)*cosksi))*(a+b)*cosksi;
                                                   >> 738       aVector2.push_back(area);
                                                   >> 739     }
                                                   >> 740   
                                                   >> 741     for(j=0; j<numPlanes-1; j++)
                                                   >> 742     {
                                                   >> 743       if(phiIsOpen == true)
846       {                                           744       {
847         G4PolyhedraSideRZ b = GetCorner(i);    << 745         aVector3.push_back(0.5*(original_parameters->Rmax[j]
848         total += a.r*b.z - a.z*b.r;            << 746                                -original_parameters->Rmin[j]
849         a = b;                                 << 747                                +original_parameters->Rmax[j+1]
                                                   >> 748                                -original_parameters->Rmin[j+1])
                                                   >> 749         *std::fabs(original_parameters->Z_values[j+1]
                                                   >> 750                   -original_parameters->Z_values[j]));
850       }                                           751       }
851       total = std::abs(total);                 << 752       else { aVector3.push_back(0.); } 
852     }                                             753     }
853     G4double alp = (GetEndPhi() - GetStartPhi( << 754   
854     G4double cosa = std::cos(alp);             << 755     for(j=0; j<numPlanes-1; j++)
855     G4double sina = std::sin(alp);             << 756     {
856     G4PolyhedraSideRZ a = GetCorner(nrz - 1);  << 757       totArea += numSide*(aVector1[j]+aVector2[j])+2.*aVector3[j];
857     for (G4int i=0; i<nrz; ++i)                << 758     }
858     {                                          << 759   
859       G4PolyhedraSideRZ b = GetCorner(i);      << 760     // Must include top and bottom areas
860       G4ThreeVector p1(a.r, 0, a.z);           << 761     //
861       G4ThreeVector p2(a.r*cosa, a.r*sina, a.z << 762     if(original_parameters->Rmax[numPlanes-1] != 0.)
862       G4ThreeVector p3(b.r*cosa, b.r*sina, b.z << 763     {
863       G4ThreeVector p4(b.r, 0, b.z);           << 764       a = original_parameters->Rmax[numPlanes-1];
864       total += GetNumSide()*(G4GeomTools::Quad << 765       b = original_parameters->Rmin[numPlanes-1];
865       a = b;                                   << 766       l2 = sqr(a-b);
                                                   >> 767       aTop = std::sqrt(l2-sqr((a-b)*cosksi))*(a+b)*cosksi; 
                                                   >> 768     }
                                                   >> 769 
                                                   >> 770     if(original_parameters->Rmax[0] != 0.)
                                                   >> 771     {
                                                   >> 772       a = original_parameters->Rmax[0];
                                                   >> 773       b = original_parameters->Rmin[0];
                                                   >> 774       l2 = sqr(a-b);
                                                   >> 775       aBottom = std::sqrt(l2-sqr((a-b)*cosksi))*(a+b)*cosksi; 
                                                   >> 776     }
                                                   >> 777 
                                                   >> 778     Achose1 = 0.;
                                                   >> 779     Achose2 = numSide*(aVector1[0]+aVector2[0])+2.*aVector3[0];
                                                   >> 780 
                                                   >> 781     chose = RandFlat::shoot(0.,totArea+aTop+aBottom);
                                                   >> 782     if( (chose >= 0.) && (chose < aTop + aBottom) )
                                                   >> 783     {
                                                   >> 784       chose = RandFlat::shoot(startPhi,startPhi+totalPhi);
                                                   >> 785       rang = std::floor((chose-startPhi)/ksi-0.01);
                                                   >> 786       if(rang<0) { rang=0; }
                                                   >> 787       rang = std::fabs(rang);  
                                                   >> 788       sinphi1 = std::sin(startPhi+rang*ksi);
                                                   >> 789       sinphi2 = std::sin(startPhi+(rang+1)*ksi);
                                                   >> 790       cosphi1 = std::cos(startPhi+rang*ksi);
                                                   >> 791       cosphi2 = std::cos(startPhi+(rang+1)*ksi);
                                                   >> 792       chose = RandFlat::shoot(0., aTop + aBottom);
                                                   >> 793       if(chose>=0. && chose<aTop)
                                                   >> 794       {
                                                   >> 795         rad1 = original_parameters->Rmin[numPlanes-1];
                                                   >> 796         rad2 = original_parameters->Rmax[numPlanes-1];
                                                   >> 797         zVal = original_parameters->Z_values[numPlanes-1]; 
                                                   >> 798       }
                                                   >> 799       else 
                                                   >> 800       {
                                                   >> 801         rad1 = original_parameters->Rmin[0];
                                                   >> 802         rad2 = original_parameters->Rmax[0];
                                                   >> 803         zVal = original_parameters->Z_values[0]; 
                                                   >> 804       }
                                                   >> 805       p0 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1,zVal);
                                                   >> 806       p1 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1,zVal);
                                                   >> 807       p2 = G4ThreeVector(rad2*cosphi2,rad2*sinphi2,zVal);
                                                   >> 808       p3 = G4ThreeVector(rad1*cosphi2,rad1*sinphi2,zVal);
                                                   >> 809       return GetPointOnPlane(p0,p1,p2,p3); 
                                                   >> 810     }
                                                   >> 811     else
                                                   >> 812     {
                                                   >> 813       for (j=0; j<numPlanes-1; j++)
                                                   >> 814       {
                                                   >> 815         if( ((chose >= Achose1) && (chose < Achose2)) || (j == numPlanes-2) )
                                                   >> 816         { 
                                                   >> 817           Flag = j; break; 
                                                   >> 818         }
                                                   >> 819         Achose1 += numSide*(aVector1[j]+aVector2[j])+2.*aVector3[j];
                                                   >> 820         Achose2 = Achose1 + numSide*(aVector1[j+1]+aVector2[j+1])
                                                   >> 821                           + 2.*aVector3[j+1];
                                                   >> 822       }
866     }                                             823     }
867     fSurfaceArea = total;                      << 
868   }                                            << 
869   return fSurfaceArea;                         << 
870 }                                              << 
871                                                   824 
872 ////////////////////////////////////////////// << 825     // At this point we have chosen a subsection
873 //                                             << 826     // between to adjacent plane cuts...
874 // Set vector of surface elements, auxiliary m << 
875 // random points on surface                    << 
876                                                   827 
877 void G4Polyhedra::SetSurfaceElements() const   << 828     j = Flag; 
878 {                                              << 829     
879   fElements = new std::vector<G4Polyhedra::sur << 830     totArea = numSide*(aVector1[j]+aVector2[j])+2.*aVector3[j];
880   G4double total = 0.;                         << 831     chose = RandFlat::shoot(0.,totArea);
881   G4int nrz = GetNumRZCorner();                << 832   
882                                                << 833     if( (chose>=0.) && (chose<numSide*aVector1[j]) )
883   // set lateral surface elements              << 834     {
884   G4double dphi = (GetEndPhi() - GetStartPhi() << 835       chose = RandFlat::shoot(startPhi,startPhi+totalPhi);
885   G4double cosa = std::cos(dphi);              << 836       rang = std::floor((chose-startPhi)/ksi-0.01);
886   G4double sina = std::sin(dphi);              << 837       if(rang<0) { rang=0; }
887   G4int ia = nrz - 1;                          << 838       rang = std::fabs(rang);
888   for (G4int ib=0; ib<nrz; ++ib)               << 839       rad1 = original_parameters->Rmax[j];
889   {                                            << 840       rad2 = original_parameters->Rmax[j+1];
890     G4PolyhedraSideRZ a = GetCorner(ia);       << 841       sinphi1 = std::sin(startPhi+rang*ksi);
891     G4PolyhedraSideRZ b = GetCorner(ib);       << 842       sinphi2 = std::sin(startPhi+(rang+1)*ksi);
892     G4Polyhedra::surface_element selem;        << 843       cosphi1 = std::cos(startPhi+rang*ksi);
893     selem.i0 = ia;                             << 844       cosphi2 = std::cos(startPhi+(rang+1)*ksi);
894     selem.i1 = ib;                             << 845       zVal = original_parameters->Z_values[j];
895     ia = ib;                                   << 846     
896     if (a.r == 0. && b.r == 0.) continue;      << 847       p0 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1,zVal);
897     G4ThreeVector p1(a.r, 0, a.z);             << 848       p1 = G4ThreeVector(rad1*cosphi2,rad1*sinphi2,zVal);
898     G4ThreeVector p2(a.r*cosa, a.r*sina, a.z); << 849 
899     G4ThreeVector p3(b.r*cosa, b.r*sina, b.z); << 850       zVal = original_parameters->Z_values[j+1];
900     G4ThreeVector p4(b.r, 0, b.z);             << 851 
901     if (a.r > 0.)                              << 852       p2 = G4ThreeVector(rad2*cosphi2,rad2*sinphi2,zVal);
902     {                                          << 853       p3 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1,zVal);
903       selem.i2 = -1;                           << 854       return GetPointOnPlane(p0,p1,p2,p3);
904       total += GetNumSide()*(G4GeomTools::Tria << 855     }
905       selem.area = total;                      << 856     else if ( (chose >= numSide*aVector1[j])
906       fElements->push_back(selem);             << 857            && (chose <= numSide*(aVector1[j]+aVector2[j])) )
907     }                                          << 858     {
908     if (b.r > 0.)                              << 859       chose = RandFlat::shoot(startPhi,startPhi+totalPhi);
909     {                                          << 860       rang = std::floor((chose-startPhi)/ksi-0.01);
910       selem.i2 = -2;                           << 861       if(rang<0) { rang=0; }
911       total += GetNumSide()*(G4GeomTools::Tria << 862       rang = std::fabs(rang);
912       selem.area = total;                      << 863       rad1 = original_parameters->Rmin[j];
913       fElements->push_back(selem);             << 864       rad2 = original_parameters->Rmin[j+1];
914     }                                          << 865       sinphi1 = std::sin(startPhi+rang*ksi);
915   }                                            << 866       sinphi2 = std::sin(startPhi+(rang+1)*ksi);
916                                                << 867       cosphi1 = std::cos(startPhi+rang*ksi);
917   // set elements for phi cuts                 << 868       cosphi2 = std::cos(startPhi+(rang+1)*ksi);
918   if (IsOpen())                                << 869       zVal = original_parameters->Z_values[j];
919   {                                            << 870 
920     G4TwoVectorList contourRZ;                 << 871       p0 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1,zVal);
921     std::vector<G4int> triangles;              << 872       p1 = G4ThreeVector(rad1*cosphi2,rad1*sinphi2,zVal);
922     for (G4int i=0; i<nrz; ++i)                << 873 
923     {                                          << 874       zVal = original_parameters->Z_values[j+1];
924       G4PolyhedraSideRZ corner = GetCorner(i); << 875     
925       contourRZ.emplace_back(corner.r, corner. << 876       p2 = G4ThreeVector(rad2*cosphi2,rad2*sinphi2,zVal);
926     }                                          << 877       p3 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1,zVal);
927     G4GeomTools::TriangulatePolygon(contourRZ, << 878       return GetPointOnPlane(p0,p1,p2,p3);
928     auto ntria = (G4int)triangles.size();      << 
929     for (G4int i=0; i<ntria; i+=3)             << 
930     {                                          << 
931       G4Polyhedra::surface_element selem;      << 
932       selem.i0 = triangles[i];                 << 
933       selem.i1 = triangles[i+1];               << 
934       selem.i2 = triangles[i+2];               << 
935       G4PolyhedraSideRZ a = GetCorner(selem.i0 << 
936       G4PolyhedraSideRZ b = GetCorner(selem.i1 << 
937       G4PolyhedraSideRZ c = GetCorner(selem.i2 << 
938       G4double stria =                         << 
939         std::abs(G4GeomTools::TriangleArea(a.r << 
940       total += stria;                          << 
941       selem.area = total;                      << 
942       fElements->push_back(selem); // start ph << 
943       total += stria;                          << 
944       selem.area = total;                      << 
945       selem.i0 += nrz;                         << 
946       fElements->push_back(selem); // end phi  << 
947     }                                             879     }
948   }                                            << 
949 }                                              << 
950                                                   880 
951 ////////////////////////////////////////////// << 881     chose = RandFlat::shoot(0.,2.2);
952 //                                             << 882     if( (chose>=0.) && (chose < 1.) )
953 // Generate random point on surface            << 883     {
954                                                << 884       rang = startPhi;
955 G4ThreeVector G4Polyhedra::GetPointOnSurface() << 
956 {                                              << 
957   // Set surface elements                      << 
958   if (fElements == nullptr)                    << 
959   {                                            << 
960     G4AutoLock l(&surface_elementsMutex);      << 
961     SetSurfaceElements();                      << 
962     l.unlock();                                << 
963   }                                            << 
964                                                << 
965   // Select surface element                    << 
966   G4Polyhedra::surface_element selem;          << 
967   selem = fElements->back();                   << 
968   G4double select = selem.area*G4QuickRand();  << 
969   auto it = std::lower_bound(fElements->begin( << 
970                              [](const G4Polyhe << 
971                              -> G4bool { retur << 
972                                                << 
973   // Generate random point                     << 
974   G4double x = 0, y = 0, z = 0;                << 
975   G4double u = G4QuickRand();                  << 
976   G4double v = G4QuickRand();                  << 
977   if (u + v > 1.) { u = 1. - u; v = 1. - v; }  << 
978   G4int i0 = (*it).i0;                         << 
979   G4int i1 = (*it).i1;                         << 
980   G4int i2 = (*it).i2;                         << 
981   if (i2 < 0) // lateral surface               << 
982   {                                            << 
983     // sample point                            << 
984     G4int nside = GetNumSide();                << 
985     G4double dphi = (GetEndPhi() - GetStartPhi << 
986     G4double cosa = std::cos(dphi);            << 
987     G4double sina = std::sin(dphi);            << 
988     G4PolyhedraSideRZ a = GetCorner(i0);       << 
989     G4PolyhedraSideRZ b = GetCorner(i1);       << 
990     G4ThreeVector p0(a.r, 0, a.z);             << 
991     G4ThreeVector p1(b.r, 0, b.z);             << 
992     G4ThreeVector p2(b.r*cosa, b.r*sina, b.z); << 
993     if (i2 == -1) p1.set(a.r*cosa, a.r*sina, a << 
994     p0 += (p1 - p0)*u + (p2 - p0)*v;           << 
995     // find selected side and rotate point     << 
996     G4double scurr = (*it).area;               << 
997     G4double sprev = (it == fElements->begin() << 
998     G4int iside = nside*(select - sprev)/(scur << 
999     if (iside == 0 && GetStartPhi() == 0.)     << 
1000     {                                         << 
1001       x = p0.x();                             << 
1002       y = p0.y();                             << 
1003       z = p0.z();                             << 
1004     }                                            885     }
1005     else                                         886     else
1006     {                                            887     {
1007       if (iside == nside) --iside; // iside m << 888       rang = endPhi;
1008       G4double phi = iside*dphi + GetStartPhi << 889     } 
1009       G4double cosphi = std::cos(phi);        << 890 
1010       G4double sinphi = std::sin(phi);        << 891     cosphi1 = std::cos(rang); rad1 = original_parameters->Rmin[j];
1011       x = p0.x()*cosphi - p0.y()*sinphi;      << 892     sinphi1 = std::sin(rang); rad2 = original_parameters->Rmax[j];
1012       y = p0.x()*sinphi + p0.y()*cosphi;      << 893 
1013       z = p0.z();                             << 894     p0 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1,
1014     }                                         << 895                        original_parameters->Z_values[j]);
1015   }                                           << 896     p1 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1,
1016   else // phi cut                             << 897                        original_parameters->Z_values[j]);
1017   {                                           << 898 
1018     G4int nrz = GetNumRZCorner();             << 899     rad1 = original_parameters->Rmax[j+1];
1019     G4double phi = (i0 < nrz) ? GetStartPhi() << 900     rad2 = original_parameters->Rmin[j+1];
1020     if (i0 >= nrz) { i0 -= nrz; }             << 901 
1021     G4PolyhedraSideRZ p0 = GetCorner(i0);     << 902     p2 = G4ThreeVector(rad1*cosphi1,rad1*sinphi1,
1022     G4PolyhedraSideRZ p1 = GetCorner(i1);     << 903                        original_parameters->Z_values[j+1]);
1023     G4PolyhedraSideRZ p2 = GetCorner(i2);     << 904     p3 = G4ThreeVector(rad2*cosphi1,rad2*sinphi1,
1024     G4double r = (p1.r - p0.r)*u + (p2.r - p0 << 905                        original_parameters->Z_values[j+1]);
1025     x = r*std::cos(phi);                      << 906     return GetPointOnPlane(p0,p1,p2,p3);
1026     y = r*std::sin(phi);                      << 907   }
1027     z = (p1.z - p0.z)*u + (p2.z - p0.z)*v + p << 908   else  // Generic polyhedra
                                                   >> 909   {
                                                   >> 910     return GetPointOnSurfaceGeneric(); 
1028   }                                              911   }
1029   return {x, y, z};                           << 
1030 }                                                912 }
1031                                                  913 
1032 ///////////////////////////////////////////// << 
1033 //                                               914 //
1034 // CreatePolyhedron                              915 // CreatePolyhedron
1035                                               << 916 //
1036 G4Polyhedron* G4Polyhedra::CreatePolyhedron()    917 G4Polyhedron* G4Polyhedra::CreatePolyhedron() const
1037 {                                             << 918 { 
1038   std::vector<G4TwoVector> rz(numCorner);     << 919   if (!genericPgon)
1039   for (G4int i = 0; i < numCorner; ++i)       << 920   {
1040     rz[i].set(corners[i].r, corners[i].z);    << 921     return new G4PolyhedronPgon( original_parameters->Start_angle,
1041   return new G4PolyhedronPgon(startPhi, endPh << 922                                  original_parameters->Opening_angle,
                                                   >> 923                                  original_parameters->numSide,
                                                   >> 924                                  original_parameters->Num_z_planes,
                                                   >> 925                                  original_parameters->Z_values,
                                                   >> 926                                  original_parameters->Rmin,
                                                   >> 927                                  original_parameters->Rmax);
                                                   >> 928   }
                                                   >> 929   else
                                                   >> 930   {
                                                   >> 931     // The following code prepares for:
                                                   >> 932     // HepPolyhedron::createPolyhedron(int Nnodes, int Nfaces,
                                                   >> 933     //                                 const double xyz[][3],
                                                   >> 934     //                                 const int faces_vec[][4])
                                                   >> 935     // Here is an extract from the header file HepPolyhedron.h:
                                                   >> 936     /**
                                                   >> 937      * Creates user defined polyhedron.
                                                   >> 938      * This function allows to the user to define arbitrary polyhedron.
                                                   >> 939      * The faces of the polyhedron should be either triangles or planar
                                                   >> 940      * quadrilateral. Nodes of a face are defined by indexes pointing to
                                                   >> 941      * the elements in the xyz array. Numeration of the elements in the
                                                   >> 942      * array starts from 1 (like in fortran). The indexes can be positive
                                                   >> 943      * or negative. Negative sign means that the corresponding edge is
                                                   >> 944      * invisible. The normal of the face should be directed to exterior
                                                   >> 945      * of the polyhedron. 
                                                   >> 946      * 
                                                   >> 947      * @param  Nnodes number of nodes
                                                   >> 948      * @param  Nfaces number of faces
                                                   >> 949      * @param  xyz    nodes
                                                   >> 950      * @param  faces_vec  faces (quadrilaterals or triangles)
                                                   >> 951      * @return status of the operation - is non-zero in case of problem
                                                   >> 952      */
                                                   >> 953     G4int nNodes;
                                                   >> 954     G4int nFaces;
                                                   >> 955     typedef G4double double3[3];
                                                   >> 956     double3* xyz;
                                                   >> 957     typedef G4int int4[4];
                                                   >> 958     int4* faces_vec;
                                                   >> 959     if (phiIsOpen)
                                                   >> 960     {
                                                   >> 961       // Triangulate open ends.  Simple ear-chopping algorithm...
                                                   >> 962       // I'm not sure how robust this algorithm is (J.Allison).
                                                   >> 963       //
                                                   >> 964       std::vector<G4bool> chopped(numCorner, false);
                                                   >> 965       std::vector<G4int*> triQuads;
                                                   >> 966       G4int remaining = numCorner;
                                                   >> 967       G4int iStarter = 0;
                                                   >> 968       while (remaining >= 3)
                                                   >> 969       {
                                                   >> 970         // Find unchopped corners...
                                                   >> 971         //
                                                   >> 972         G4int A = -1, B = -1, C = -1;
                                                   >> 973         G4int iStepper = iStarter;
                                                   >> 974         do
                                                   >> 975         {
                                                   >> 976           if (A < 0)      { A = iStepper; }
                                                   >> 977           else if (B < 0) { B = iStepper; }
                                                   >> 978           else if (C < 0) { C = iStepper; }
                                                   >> 979           do
                                                   >> 980           {
                                                   >> 981             if (++iStepper >= numCorner) iStepper = 0;
                                                   >> 982           }
                                                   >> 983           while (chopped[iStepper]);
                                                   >> 984         }
                                                   >> 985         while (C < 0 && iStepper != iStarter);
                                                   >> 986 
                                                   >> 987         // Check triangle at B is pointing outward (an "ear").
                                                   >> 988         // Sign of z cross product determines...
                                                   >> 989 
                                                   >> 990         G4double BAr = corners[A].r - corners[B].r;
                                                   >> 991         G4double BAz = corners[A].z - corners[B].z;
                                                   >> 992         G4double BCr = corners[C].r - corners[B].r;
                                                   >> 993         G4double BCz = corners[C].z - corners[B].z;
                                                   >> 994         if (BAr * BCz - BAz * BCr < kCarTolerance)
                                                   >> 995         {
                                                   >> 996           G4int* tq = new G4int[3];
                                                   >> 997           tq[0] = A + 1;
                                                   >> 998           tq[1] = B + 1;
                                                   >> 999           tq[2] = C + 1;
                                                   >> 1000           triQuads.push_back(tq);
                                                   >> 1001           chopped[B] = true;
                                                   >> 1002           --remaining;
                                                   >> 1003         }
                                                   >> 1004         else
                                                   >> 1005         {
                                                   >> 1006           do
                                                   >> 1007           {
                                                   >> 1008             if (++iStarter >= numCorner) { iStarter = 0; }
                                                   >> 1009           }
                                                   >> 1010           while (chopped[iStarter]);
                                                   >> 1011         }
                                                   >> 1012       }
                                                   >> 1013 
                                                   >> 1014       // Transfer to faces...
                                                   >> 1015 
                                                   >> 1016       nNodes = (numSide + 1) * numCorner;
                                                   >> 1017       nFaces = numSide * numCorner + 2 * triQuads.size();
                                                   >> 1018       faces_vec = new int4[nFaces];
                                                   >> 1019       G4int iface = 0;
                                                   >> 1020       G4int addition = numCorner * numSide;
                                                   >> 1021       G4int d = numCorner - 1;
                                                   >> 1022       for (G4int iEnd = 0; iEnd < 2; ++iEnd)
                                                   >> 1023       {
                                                   >> 1024         for (size_t i = 0; i < triQuads.size(); ++i)
                                                   >> 1025         {
                                                   >> 1026           // Negative for soft/auxiliary/normally invisible edges...
                                                   >> 1027           //
                                                   >> 1028           G4int a, b, c;
                                                   >> 1029           if (iEnd == 0)
                                                   >> 1030           {
                                                   >> 1031             a = triQuads[i][0];
                                                   >> 1032             b = triQuads[i][1];
                                                   >> 1033             c = triQuads[i][2];
                                                   >> 1034           }
                                                   >> 1035           else
                                                   >> 1036           {
                                                   >> 1037             a = triQuads[i][0] + addition;
                                                   >> 1038             b = triQuads[i][2] + addition;
                                                   >> 1039             c = triQuads[i][1] + addition;
                                                   >> 1040           }
                                                   >> 1041           G4int ab = std::abs(b - a);
                                                   >> 1042           G4int bc = std::abs(c - b);
                                                   >> 1043           G4int ca = std::abs(a - c);
                                                   >> 1044           faces_vec[iface][0] = (ab == 1 || ab == d)? a: -a;
                                                   >> 1045           faces_vec[iface][1] = (bc == 1 || bc == d)? b: -b;
                                                   >> 1046           faces_vec[iface][2] = (ca == 1 || ca == d)? c: -c;
                                                   >> 1047           faces_vec[iface][3] = 0;
                                                   >> 1048           ++iface;
                                                   >> 1049         }
                                                   >> 1050       }
                                                   >> 1051 
                                                   >> 1052       // Continue with sides...
                                                   >> 1053 
                                                   >> 1054       xyz = new double3[nNodes];
                                                   >> 1055       const G4double dPhi = (endPhi - startPhi) / numSide;
                                                   >> 1056       G4double phi = startPhi;
                                                   >> 1057       G4int ixyz = 0;
                                                   >> 1058       for (G4int iSide = 0; iSide < numSide; ++iSide)
                                                   >> 1059       {
                                                   >> 1060         for (G4int iCorner = 0; iCorner < numCorner; ++iCorner)
                                                   >> 1061         {
                                                   >> 1062           xyz[ixyz][0] = corners[iCorner].r * std::cos(phi);
                                                   >> 1063           xyz[ixyz][1] = corners[iCorner].r * std::sin(phi);
                                                   >> 1064           xyz[ixyz][2] = corners[iCorner].z;
                                                   >> 1065           if (iCorner < numCorner - 1)
                                                   >> 1066           {
                                                   >> 1067             faces_vec[iface][0] = ixyz + 1;
                                                   >> 1068             faces_vec[iface][1] = ixyz + numCorner + 1;
                                                   >> 1069             faces_vec[iface][2] = ixyz + numCorner + 2;
                                                   >> 1070             faces_vec[iface][3] = ixyz + 2;
                                                   >> 1071           }
                                                   >> 1072           else
                                                   >> 1073           {
                                                   >> 1074             faces_vec[iface][0] = ixyz + 1;
                                                   >> 1075             faces_vec[iface][1] = ixyz + numCorner + 1;
                                                   >> 1076             faces_vec[iface][2] = ixyz + 2;
                                                   >> 1077             faces_vec[iface][3] = ixyz - numCorner + 2;
                                                   >> 1078           }
                                                   >> 1079           ++iface;
                                                   >> 1080           ++ixyz;
                                                   >> 1081         }
                                                   >> 1082         phi += dPhi;
                                                   >> 1083       }
                                                   >> 1084 
                                                   >> 1085       // Last corners...
                                                   >> 1086 
                                                   >> 1087       for (G4int iCorner = 0; iCorner < numCorner; ++iCorner)
                                                   >> 1088       {
                                                   >> 1089         xyz[ixyz][0] = corners[iCorner].r * std::cos(phi);
                                                   >> 1090         xyz[ixyz][1] = corners[iCorner].r * std::sin(phi);
                                                   >> 1091         xyz[ixyz][2] = corners[iCorner].z;
                                                   >> 1092         ++ixyz;
                                                   >> 1093       }
                                                   >> 1094     }
                                                   >> 1095     else  // !phiIsOpen - i.e., a complete 360 degrees.
                                                   >> 1096     {
                                                   >> 1097       nNodes = numSide * numCorner;
                                                   >> 1098       nFaces = numSide * numCorner;;
                                                   >> 1099       xyz = new double3[nNodes];
                                                   >> 1100       faces_vec = new int4[nFaces];
                                                   >> 1101       // const G4double dPhi = (endPhi - startPhi) / numSide;
                                                   >> 1102       const G4double dPhi = twopi / numSide; // !phiIsOpen endPhi-startPhi = 360 degrees.
                                                   >> 1103       G4double phi = startPhi;
                                                   >> 1104       G4int ixyz = 0, iface = 0;
                                                   >> 1105       for (G4int iSide = 0; iSide < numSide; ++iSide)
                                                   >> 1106       {
                                                   >> 1107         for (G4int iCorner = 0; iCorner < numCorner; ++iCorner)
                                                   >> 1108         {
                                                   >> 1109           xyz[ixyz][0] = corners[iCorner].r * std::cos(phi);
                                                   >> 1110           xyz[ixyz][1] = corners[iCorner].r * std::sin(phi);
                                                   >> 1111           xyz[ixyz][2] = corners[iCorner].z;
                                                   >> 1112           if (iSide < numSide - 1)
                                                   >> 1113           {
                                                   >> 1114             if (iCorner < numCorner - 1)
                                                   >> 1115             {
                                                   >> 1116               faces_vec[iface][0] = ixyz + 1;
                                                   >> 1117               faces_vec[iface][1] = ixyz + numCorner + 1;
                                                   >> 1118               faces_vec[iface][2] = ixyz + numCorner + 2;
                                                   >> 1119               faces_vec[iface][3] = ixyz + 2;
                                                   >> 1120             }
                                                   >> 1121             else
                                                   >> 1122             {
                                                   >> 1123               faces_vec[iface][0] = ixyz + 1;
                                                   >> 1124               faces_vec[iface][1] = ixyz + numCorner + 1;
                                                   >> 1125               faces_vec[iface][2] = ixyz + 2;
                                                   >> 1126               faces_vec[iface][3] = ixyz - numCorner + 2;
                                                   >> 1127             }
                                                   >> 1128           }
                                                   >> 1129           else   // Last side joins ends...
                                                   >> 1130           {
                                                   >> 1131             if (iCorner < numCorner - 1)
                                                   >> 1132             {
                                                   >> 1133               faces_vec[iface][0] = ixyz + 1;
                                                   >> 1134               faces_vec[iface][1] = ixyz + numCorner - nFaces + 1;
                                                   >> 1135               faces_vec[iface][2] = ixyz + numCorner - nFaces + 2;
                                                   >> 1136               faces_vec[iface][3] = ixyz + 2;
                                                   >> 1137             }
                                                   >> 1138             else
                                                   >> 1139             {
                                                   >> 1140               faces_vec[iface][0] = ixyz + 1;
                                                   >> 1141               faces_vec[iface][1] = ixyz - nFaces + numCorner + 1;
                                                   >> 1142               faces_vec[iface][2] = ixyz - nFaces + 2;
                                                   >> 1143               faces_vec[iface][3] = ixyz - numCorner + 2;
                                                   >> 1144             }
                                                   >> 1145           }
                                                   >> 1146           ++ixyz;
                                                   >> 1147           ++iface;
                                                   >> 1148         }
                                                   >> 1149         phi += dPhi;
                                                   >> 1150       }
                                                   >> 1151     }
                                                   >> 1152     G4Polyhedron* polyhedron = new G4Polyhedron;
                                                   >> 1153     G4int problem = polyhedron->createPolyhedron(nNodes, nFaces, xyz, faces_vec);
                                                   >> 1154     delete [] faces_vec;
                                                   >> 1155     delete [] xyz;
                                                   >> 1156     if (problem)
                                                   >> 1157     {
                                                   >> 1158       std::ostringstream message;
                                                   >> 1159       message << "Problem creating G4Polyhedron for: " << GetName();
                                                   >> 1160       G4Exception("G4Polyhedra::CreatePolyhedron()", "GeomSolids1002",
                                                   >> 1161                   JustWarning, message);
                                                   >> 1162       delete polyhedron;
                                                   >> 1163       return 0;
                                                   >> 1164     }
                                                   >> 1165     else
                                                   >> 1166     {
                                                   >> 1167       return polyhedron;
                                                   >> 1168     }
                                                   >> 1169   }
1042 }                                                1170 }
1043                                                  1171 
1044 // SetOriginalParameters                      << 1172 
1045 //                                            << 1173 void  G4Polyhedra::SetOriginalParameters(G4ReduciblePolygon *rz)
1046 void G4Polyhedra::SetOriginalParameters(G4Red << 
1047 {                                                1174 {
1048   G4int numPlanes = numCorner;                << 1175   G4int numPlanes = (G4int)numCorner;  
1049   G4bool isConvertible = true;                << 1176   G4bool isConvertible=true;
1050   G4double Zmax=rz->Bmax();                      1177   G4double Zmax=rz->Bmax();
1051   rz->StartWithZMin();                           1178   rz->StartWithZMin();
1052                                                  1179 
1053   // Prepare vectors for storage              << 1180   // Prepare vectors for storage 
1054   //                                             1181   //
1055   std::vector<G4double> Z;                       1182   std::vector<G4double> Z;
1056   std::vector<G4double> Rmin;                    1183   std::vector<G4double> Rmin;
1057   std::vector<G4double> Rmax;                    1184   std::vector<G4double> Rmax;
1058                                                  1185 
1059   G4int countPlanes=1;                           1186   G4int countPlanes=1;
1060   G4int icurr=0;                                 1187   G4int icurr=0;
1061   G4int icurl=0;                                 1188   G4int icurl=0;
1062                                                  1189 
1063   // first plane Z=Z[0]                          1190   // first plane Z=Z[0]
1064   //                                             1191   //
1065   Z.push_back(corners[0].z);                     1192   Z.push_back(corners[0].z);
1066   G4double Zprev=Z[0];                           1193   G4double Zprev=Z[0];
1067   if (Zprev == corners[1].z)                     1194   if (Zprev == corners[1].z)
1068   {                                              1195   {
1069     Rmin.push_back(corners[0].r);             << 1196     Rmin.push_back(corners[0].r);  
1070     Rmax.push_back (corners[1].r);icurr=1;    << 1197     Rmax.push_back (corners[1].r);icurr=1; 
1071   }                                              1198   }
1072   else if (Zprev == corners[numPlanes-1].z)      1199   else if (Zprev == corners[numPlanes-1].z)
1073   {                                              1200   {
1074     Rmin.push_back(corners[numPlanes-1].r);   << 1201     Rmin.push_back(corners[numPlanes-1].r);  
1075     Rmax.push_back (corners[0].r);               1202     Rmax.push_back (corners[0].r);
1076     icurl=numPlanes-1;                        << 1203     icurl=numPlanes-1;  
1077   }                                              1204   }
1078   else                                           1205   else
1079   {                                              1206   {
1080     Rmin.push_back(corners[0].r);             << 1207     Rmin.push_back(corners[0].r);  
1081     Rmax.push_back (corners[0].r);               1208     Rmax.push_back (corners[0].r);
1082   }                                              1209   }
1083                                                  1210 
1084   // next planes until last                      1211   // next planes until last
1085   //                                             1212   //
1086   G4int inextr=0, inextl=0;                   << 1213   G4int inextr=0, inextl=0; 
1087   for (G4int i=0; i < numPlanes-2; ++i)       << 1214   for (G4int i=0; i < numPlanes-2; i++)
1088   {                                              1215   {
1089     inextr=1+icurr;                              1216     inextr=1+icurr;
1090     inextl=(icurl <= 0)? numPlanes-1 : icurl-    1217     inextl=(icurl <= 0)? numPlanes-1 : icurl-1;
1091                                                  1218 
1092     if((corners[inextr].z >= Zmax) & (corners    1219     if((corners[inextr].z >= Zmax) & (corners[inextl].z >= Zmax))  { break; }
1093                                                  1220 
1094     G4double Zleft = corners[inextl].z;          1221     G4double Zleft = corners[inextl].z;
1095     G4double Zright = corners[inextr].z;         1222     G4double Zright = corners[inextr].z;
1096     if(Zright>Zleft)                             1223     if(Zright>Zleft)
1097     {                                            1224     {
1098       Z.push_back(Zleft);                     << 1225       Z.push_back(Zleft);  
1099       countPlanes++;                             1226       countPlanes++;
1100       G4double difZr=corners[inextr].z - corn    1227       G4double difZr=corners[inextr].z - corners[icurr].z;
1101       G4double difZl=corners[inextl].z - corn    1228       G4double difZl=corners[inextl].z - corners[icurl].z;
1102                                                  1229 
1103       if(std::fabs(difZl) < kCarTolerance)       1230       if(std::fabs(difZl) < kCarTolerance)
1104       {                                          1231       {
1105         if(std::fabs(difZr) < kCarTolerance)     1232         if(std::fabs(difZr) < kCarTolerance)
1106         {                                        1233         {
1107           Rmin.push_back(corners[inextl].r);     1234           Rmin.push_back(corners[inextl].r);
1108           Rmax.push_back(corners[icurr].r);      1235           Rmax.push_back(corners[icurr].r);
1109         }                                        1236         }
1110         else                                     1237         else
1111         {                                        1238         {
1112           Rmin.push_back(corners[inextl].r);     1239           Rmin.push_back(corners[inextl].r);
1113           Rmax.push_back(corners[icurr].r + (    1240           Rmax.push_back(corners[icurr].r + (Zleft-corners[icurr].z)/difZr
1114                                 *(corners[ine << 1241                                 *(corners[inextr].r - corners[icurr].r)); 
1115         }                                        1242         }
1116       }                                          1243       }
1117       else if (difZl >= kCarTolerance)           1244       else if (difZl >= kCarTolerance)
1118       {                                          1245       {
1119         if(std::fabs(difZr) < kCarTolerance)     1246         if(std::fabs(difZr) < kCarTolerance)
1120         {                                        1247         {
1121           Rmin.push_back(corners[icurl].r);      1248           Rmin.push_back(corners[icurl].r);
1122           Rmax.push_back(corners[icurr].r);      1249           Rmax.push_back(corners[icurr].r);
1123         }                                        1250         }
1124         else                                     1251         else
1125         {                                        1252         {
1126           Rmin.push_back(corners[icurl].r);      1253           Rmin.push_back(corners[icurl].r);
1127           Rmax.push_back(corners[icurr].r + (    1254           Rmax.push_back(corners[icurr].r + (Zleft-corners[icurr].z)/difZr
1128                                 *(corners[ine    1255                                 *(corners[inextr].r - corners[icurr].r));
1129         }                                        1256         }
1130       }                                          1257       }
1131       else                                       1258       else
1132       {                                          1259       {
1133         isConvertible=false; break;              1260         isConvertible=false; break;
1134       }                                          1261       }
1135       icurl=(icurl == 0)? numPlanes-1 : icurl    1262       icurl=(icurl == 0)? numPlanes-1 : icurl-1;
1136     }                                            1263     }
1137     else if(std::fabs(Zright-Zleft)<kCarToler    1264     else if(std::fabs(Zright-Zleft)<kCarTolerance)  // Zright=Zleft
1138     {                                            1265     {
1139       Z.push_back(Zleft);                     << 1266       Z.push_back(Zleft);  
1140       ++countPlanes;                          << 1267       countPlanes++;
1141       ++icurr;                                << 1268       icurr++;
1142                                                  1269 
1143       icurl=(icurl == 0)? numPlanes-1 : icurl    1270       icurl=(icurl == 0)? numPlanes-1 : icurl-1;
1144                                                  1271 
1145       Rmin.push_back(corners[inextl].r);      << 1272       Rmin.push_back(corners[inextl].r);  
1146       Rmax.push_back (corners[inextr].r);        1273       Rmax.push_back (corners[inextr].r);
1147     }                                            1274     }
1148     else  // Zright<Zleft                        1275     else  // Zright<Zleft
1149     {                                            1276     {
1150       Z.push_back(Zright);                    << 1277       Z.push_back(Zright);  
1151       ++countPlanes;                          << 1278       countPlanes++;
1152                                                  1279 
1153       G4double difZr=corners[inextr].z - corn    1280       G4double difZr=corners[inextr].z - corners[icurr].z;
1154       G4double difZl=corners[inextl].z - corn    1281       G4double difZl=corners[inextl].z - corners[icurl].z;
1155       if(std::fabs(difZr) < kCarTolerance)       1282       if(std::fabs(difZr) < kCarTolerance)
1156       {                                          1283       {
1157         if(std::fabs(difZl) < kCarTolerance)     1284         if(std::fabs(difZl) < kCarTolerance)
1158         {                                        1285         {
1159           Rmax.push_back(corners[inextr].r);     1286           Rmax.push_back(corners[inextr].r);
1160           Rmin.push_back(corners[icurr].r);   << 1287           Rmin.push_back(corners[icurr].r); 
1161         }                                     << 1288         } 
1162         else                                     1289         else
1163         {                                        1290         {
1164           Rmin.push_back(corners[icurl].r + (    1291           Rmin.push_back(corners[icurl].r + (Zright-corners[icurl].z)/difZl
1165                                 * (corners[in    1292                                 * (corners[inextl].r - corners[icurl].r));
1166           Rmax.push_back(corners[inextr].r);     1293           Rmax.push_back(corners[inextr].r);
1167         }                                        1294         }
1168         ++icurr;                              << 1295         icurr++;
1169       }           // plate                       1296       }           // plate
1170       else if (difZr >= kCarTolerance)           1297       else if (difZr >= kCarTolerance)
1171       {                                          1298       {
1172         if(std::fabs(difZl) < kCarTolerance)     1299         if(std::fabs(difZl) < kCarTolerance)
1173         {                                        1300         {
1174           Rmax.push_back(corners[inextr].r);     1301           Rmax.push_back(corners[inextr].r);
1175           Rmin.push_back (corners[icurr].r);  << 1302           Rmin.push_back (corners[icurr].r); 
1176         }                                     << 1303         } 
1177         else                                     1304         else
1178         {                                        1305         {
1179           Rmax.push_back(corners[inextr].r);     1306           Rmax.push_back(corners[inextr].r);
1180           Rmin.push_back (corners[icurl].r+(Z    1307           Rmin.push_back (corners[icurl].r+(Zright-corners[icurl].z)/difZl
1181                                   * (corners[    1308                                   * (corners[inextl].r - corners[icurl].r));
1182         }                                        1309         }
1183         ++icurr;                              << 1310         icurr++;
1184       }                                          1311       }
1185       else                                       1312       else
1186       {                                          1313       {
1187         isConvertible=false; break;              1314         isConvertible=false; break;
1188       }                                          1315       }
1189     }                                            1316     }
1190   }   // end for loop                            1317   }   // end for loop
1191                                                  1318 
1192   // last plane Z=Zmax                           1319   // last plane Z=Zmax
1193   //                                             1320   //
1194   Z.push_back(Zmax);                             1321   Z.push_back(Zmax);
1195   ++countPlanes;                              << 1322   countPlanes++;
1196   inextr=1+icurr;                                1323   inextr=1+icurr;
1197   inextl=(icurl <= 0)? numPlanes-1 : icurl-1;    1324   inextl=(icurl <= 0)? numPlanes-1 : icurl-1;
1198                                               << 1325  
1199   Rmax.push_back(corners[inextr].r);          << 1326   if(corners[inextr].z==corners[inextl].z)
1200   Rmin.push_back(corners[inextl].r);          << 1327   {
                                                   >> 1328     Rmax.push_back(corners[inextr].r);
                                                   >> 1329     Rmin.push_back(corners[inextl].r);
                                                   >> 1330   }
                                                   >> 1331   else
                                                   >> 1332   {
                                                   >> 1333     Rmax.push_back(corners[inextr].r);
                                                   >> 1334     Rmin.push_back(corners[inextl].r);
                                                   >> 1335   }
1201                                                  1336 
1202   // Set original parameters Rmin,Rmax,Z         1337   // Set original parameters Rmin,Rmax,Z
1203   //                                             1338   //
1204   if(isConvertible)                              1339   if(isConvertible)
1205   {                                              1340   {
1206    original_parameters = new G4PolyhedraHisto    1341    original_parameters = new G4PolyhedraHistorical;
1207    original_parameters->numSide = numSide;       1342    original_parameters->numSide = numSide;
1208    original_parameters->Z_values = new G4doub    1343    original_parameters->Z_values = new G4double[countPlanes];
1209    original_parameters->Rmin = new G4double[c    1344    original_parameters->Rmin = new G4double[countPlanes];
1210    original_parameters->Rmax = new G4double[c    1345    original_parameters->Rmax = new G4double[countPlanes];
1211                                               << 1346   
1212    for(G4int j=0; j < countPlanes; ++j)       << 1347    for(G4int j=0; j < countPlanes; j++)
1213    {                                             1348    {
1214      original_parameters->Z_values[j] = Z[j];    1349      original_parameters->Z_values[j] = Z[j];
1215      original_parameters->Rmax[j] = Rmax[j];     1350      original_parameters->Rmax[j] = Rmax[j];
1216      original_parameters->Rmin[j] = Rmin[j];     1351      original_parameters->Rmin[j] = Rmin[j];
1217    }                                             1352    }
1218    original_parameters->Start_angle = startPh    1353    original_parameters->Start_angle = startPhi;
1219    original_parameters->Opening_angle = endPh    1354    original_parameters->Opening_angle = endPhi-startPhi;
1220    original_parameters->Num_z_planes = countP    1355    original_parameters->Num_z_planes = countPlanes;
1221                                               << 1356  
1222   }                                              1357   }
1223   else  // Set parameters(r,z) with Rmin==0 a    1358   else  // Set parameters(r,z) with Rmin==0 as convention
1224   {                                              1359   {
1225 #ifdef G4SPECSDEBUG                              1360 #ifdef G4SPECSDEBUG
1226     std::ostringstream message;                  1361     std::ostringstream message;
1227     message << "Polyhedra " << GetName() << G    1362     message << "Polyhedra " << GetName() << G4endl
1228       << "cannot be converted to Polyhedra wi    1363       << "cannot be converted to Polyhedra with (Rmin,Rmaz,Z) parameters!";
1229     G4Exception("G4Polyhedra::SetOriginalPara    1364     G4Exception("G4Polyhedra::SetOriginalParameters()",
1230                 "GeomSolids0002", JustWarning    1365                 "GeomSolids0002", JustWarning, message);
1231 #endif                                           1366 #endif
1232     original_parameters = new G4PolyhedraHist    1367     original_parameters = new G4PolyhedraHistorical;
1233     original_parameters->numSide = numSide;      1368     original_parameters->numSide = numSide;
1234     original_parameters->Z_values = new G4dou    1369     original_parameters->Z_values = new G4double[numPlanes];
1235     original_parameters->Rmin = new G4double[    1370     original_parameters->Rmin = new G4double[numPlanes];
1236     original_parameters->Rmax = new G4double[    1371     original_parameters->Rmax = new G4double[numPlanes];
1237                                               << 1372   
1238     for(G4int j=0; j < numPlanes; ++j)        << 1373     for(G4int j=0; j < numPlanes; j++)
1239     {                                            1374     {
1240       original_parameters->Z_values[j] = corn    1375       original_parameters->Z_values[j] = corners[j].z;
1241       original_parameters->Rmax[j] = corners[    1376       original_parameters->Rmax[j] = corners[j].r;
1242       original_parameters->Rmin[j] = 0.0;        1377       original_parameters->Rmin[j] = 0.0;
1243     }                                            1378     }
1244     original_parameters->Start_angle = startP    1379     original_parameters->Start_angle = startPhi;
1245     original_parameters->Opening_angle = endP    1380     original_parameters->Opening_angle = endPhi-startPhi;
1246     original_parameters->Num_z_planes = numPl    1381     original_parameters->Num_z_planes = numPlanes;
1247   }                                              1382   }
                                                   >> 1383   //return isConvertible;
1248 }                                                1384 }
1249                                                  1385 
1250 #endif                                           1386 #endif
1251                                                  1387