Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4UCutTubs.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/CSG/src/G4UCutTubs.cc (Version 11.3.0) and /geometry/solids/CSG/src/G4UCutTubs.cc (Version 10.7.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Implementation for G4UCutTubs wrapper class     26 // Implementation for G4UCutTubs wrapper class
 27 //                                                 27 //
 28 // 07.07.17 G.Cosmo, CERN/PH                       28 // 07.07.17 G.Cosmo, CERN/PH
 29 // -------------------------------------------     29 // --------------------------------------------------------------------
 30                                                    30 
 31 #include "G4CutTubs.hh"                            31 #include "G4CutTubs.hh"
 32 #include "G4UCutTubs.hh"                           32 #include "G4UCutTubs.hh"
 33                                                    33 
 34 #if ( defined(G4GEOM_USE_USOLIDS) || defined(G     34 #if ( defined(G4GEOM_USE_USOLIDS) || defined(G4GEOM_USE_PARTIAL_USOLIDS) )
 35                                                    35 
 36 #include "G4GeomTools.hh"                          36 #include "G4GeomTools.hh"
 37 #include "G4AffineTransform.hh"                    37 #include "G4AffineTransform.hh"
 38 #include "G4VPVParameterisation.hh"                38 #include "G4VPVParameterisation.hh"
 39 #include "G4BoundingEnvelope.hh"                   39 #include "G4BoundingEnvelope.hh"
 40                                                    40 
 41 using namespace CLHEP;                             41 using namespace CLHEP;
 42                                                    42 
 43 //////////////////////////////////////////////     43 /////////////////////////////////////////////////////////////////////////
 44 //                                                 44 //
 45 // Constructor - check parameters, convert ang     45 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI
 46 //             - note if pdphi>2PI then reset      46 //             - note if pdphi>2PI then reset to 2PI
 47                                                    47 
 48 G4UCutTubs::G4UCutTubs( const G4String& pName,     48 G4UCutTubs::G4UCutTubs( const G4String& pName,
 49                               G4double pRMin,      49                               G4double pRMin, G4double pRMax,
 50                               G4double pDz,        50                               G4double pDz,
 51                               G4double pSPhi,      51                               G4double pSPhi, G4double pDPhi,
 52                               const G4ThreeVec <<  52                               G4ThreeVector pLowNorm,
 53                               const G4ThreeVec <<  53                               G4ThreeVector pHighNorm )
 54   : Base_t(pName, pRMin, pRMax, pDz, pSPhi, pD     54   : Base_t(pName, pRMin, pRMax, pDz, pSPhi, pDPhi,
 55            pLowNorm.x(), pLowNorm.y(), pLowNor     55            pLowNorm.x(), pLowNorm.y(), pLowNorm.z(),
 56            pHighNorm.x(), pHighNorm.y(), pHigh     56            pHighNorm.x(), pHighNorm.y(), pHighNorm.z())
 57 {                                                  57 {
 58 }                                                  58 }
 59                                                    59 
 60 //////////////////////////////////////////////     60 ///////////////////////////////////////////////////////////////////////
 61 //                                                 61 //
 62 // Fake default constructor - sets only member     62 // Fake default constructor - sets only member data and allocates memory
 63 //                            for usage restri     63 //                            for usage restricted to object persistency.
 64 //                                                 64 //
 65 G4UCutTubs::G4UCutTubs( __void__& a )              65 G4UCutTubs::G4UCutTubs( __void__& a )
 66   : Base_t(a)                                      66   : Base_t(a)
 67 {                                                  67 {
 68 }                                                  68 }
 69                                                    69 
 70 //////////////////////////////////////////////     70 //////////////////////////////////////////////////////////////////////////
 71 //                                                 71 //
 72 // Destructor                                      72 // Destructor
 73                                                    73 
 74 G4UCutTubs::~G4UCutTubs() = default;           <<  74 G4UCutTubs::~G4UCutTubs()
                                                   >>  75 {
                                                   >>  76 }
 75                                                    77 
 76 //////////////////////////////////////////////     78 //////////////////////////////////////////////////////////////////////////
 77 //                                                 79 //
 78 // Copy constructor                                80 // Copy constructor
 79                                                    81 
 80 G4UCutTubs::G4UCutTubs(const G4UCutTubs& rhs)      82 G4UCutTubs::G4UCutTubs(const G4UCutTubs& rhs)
 81   : Base_t(rhs)                                    83   : Base_t(rhs)
 82 {                                                  84 {
 83 }                                                  85 }
 84                                                    86 
 85 //////////////////////////////////////////////     87 //////////////////////////////////////////////////////////////////////////
 86 //                                                 88 //
 87 // Assignment operator                             89 // Assignment operator
 88                                                    90 
 89 G4UCutTubs& G4UCutTubs::operator = (const G4UC     91 G4UCutTubs& G4UCutTubs::operator = (const G4UCutTubs& rhs) 
 90 {                                                  92 {
 91    // Check assignment to self                     93    // Check assignment to self
 92    //                                              94    //
 93    if (this == &rhs)  { return *this; }            95    if (this == &rhs)  { return *this; }
 94                                                    96 
 95    // Copy base class data                         97    // Copy base class data
 96    //                                              98    //
 97    Base_t::operator=(rhs);                         99    Base_t::operator=(rhs);
 98                                                   100 
 99    return *this;                                  101    return *this;
100 }                                                 102 }
101                                                   103 
102 //////////////////////////////////////////////    104 /////////////////////////////////////////////////////////////////////////
103 //                                                105 //
104 // Accessors and modifiers                        106 // Accessors and modifiers
105                                                   107 
106 G4double G4UCutTubs::GetInnerRadius() const       108 G4double G4UCutTubs::GetInnerRadius() const
107 {                                                 109 {
108   return rmin();                                  110   return rmin();
109 }                                                 111 }
110 G4double G4UCutTubs::GetOuterRadius() const       112 G4double G4UCutTubs::GetOuterRadius() const
111 {                                                 113 {
112   return rmax();                                  114   return rmax();
113 }                                                 115 }
114 G4double G4UCutTubs::GetZHalfLength() const       116 G4double G4UCutTubs::GetZHalfLength() const
115 {                                                 117 {
116   return z();                                     118   return z();
117 }                                                 119 }
118 G4double G4UCutTubs::GetStartPhiAngle() const     120 G4double G4UCutTubs::GetStartPhiAngle() const
119 {                                                 121 {
120   return sphi();                                  122   return sphi();
121 }                                                 123 }
122 G4double G4UCutTubs::GetDeltaPhiAngle() const     124 G4double G4UCutTubs::GetDeltaPhiAngle() const
123 {                                                 125 {
124   return dphi();                                  126   return dphi();
125 }                                                 127 }
126 G4double G4UCutTubs::GetSinStartPhi() const       128 G4double G4UCutTubs::GetSinStartPhi() const
127 {                                                 129 {
128   return std::sin(GetStartPhiAngle());            130   return std::sin(GetStartPhiAngle());
129 }                                                 131 }
130 G4double G4UCutTubs::GetCosStartPhi() const       132 G4double G4UCutTubs::GetCosStartPhi() const
131 {                                                 133 {
132   return std::cos(GetStartPhiAngle());            134   return std::cos(GetStartPhiAngle());
133 }                                                 135 }
134 G4double G4UCutTubs::GetSinEndPhi() const         136 G4double G4UCutTubs::GetSinEndPhi() const
135 {                                                 137 {
136   return std::sin(GetStartPhiAngle()+GetDeltaP    138   return std::sin(GetStartPhiAngle()+GetDeltaPhiAngle());
137 }                                                 139 }
138 G4double G4UCutTubs::GetCosEndPhi() const         140 G4double G4UCutTubs::GetCosEndPhi() const
139 {                                                 141 {
140   return std::cos(GetStartPhiAngle()+GetDeltaP    142   return std::cos(GetStartPhiAngle()+GetDeltaPhiAngle());
141 }                                                 143 }
142 G4ThreeVector G4UCutTubs::GetLowNorm  () const    144 G4ThreeVector G4UCutTubs::GetLowNorm  () const
143 {                                                 145 {
144   U3Vector lc = BottomNormal();                   146   U3Vector lc = BottomNormal();
145   return {lc.x(), lc.y(), lc.z()};             << 147   return G4ThreeVector(lc.x(), lc.y(), lc.z());
146 }                                                 148 }
147 G4ThreeVector G4UCutTubs::GetHighNorm () const    149 G4ThreeVector G4UCutTubs::GetHighNorm () const
148 {                                                 150 {
149   U3Vector hc = TopNormal();                      151   U3Vector hc = TopNormal();
150   return {hc.x(), hc.y(), hc.z()};             << 152   return G4ThreeVector(hc.x(), hc.y(), hc.z());
151 }                                                 153 } 
152                                                   154 
153 void G4UCutTubs::SetInnerRadius(G4double newRM    155 void G4UCutTubs::SetInnerRadius(G4double newRMin)
154 {                                                 156 {
155   SetRMin(newRMin);                               157   SetRMin(newRMin);
156   fRebuildPolyhedron = true;                      158   fRebuildPolyhedron = true;
157 }                                                 159 }
158 void G4UCutTubs::SetOuterRadius(G4double newRM    160 void G4UCutTubs::SetOuterRadius(G4double newRMax)
159 {                                                 161 {
160   SetRMax(newRMax);                               162   SetRMax(newRMax);
161   fRebuildPolyhedron = true;                      163   fRebuildPolyhedron = true;
162 }                                                 164 }
163 void G4UCutTubs::SetZHalfLength(G4double newDz    165 void G4UCutTubs::SetZHalfLength(G4double newDz)
164 {                                                 166 {
165   SetDz(newDz);                                   167   SetDz(newDz);
166   fRebuildPolyhedron = true;                      168   fRebuildPolyhedron = true;
167 }                                                 169 }
168 void G4UCutTubs::SetStartPhiAngle(G4double new    170 void G4UCutTubs::SetStartPhiAngle(G4double newSPhi, G4bool)
169 {                                                 171 {
170   SetSPhi(newSPhi);                               172   SetSPhi(newSPhi);
171   fRebuildPolyhedron = true;                      173   fRebuildPolyhedron = true;
172 }                                                 174 }
173 void G4UCutTubs::SetDeltaPhiAngle(G4double new    175 void G4UCutTubs::SetDeltaPhiAngle(G4double newDPhi)
174 {                                                 176 {
175   SetDPhi(newDPhi);                               177   SetDPhi(newDPhi);
176   fRebuildPolyhedron = true;                      178   fRebuildPolyhedron = true;
177 }                                                 179 }
178                                                   180 
179 //////////////////////////////////////////////    181 /////////////////////////////////////////////////////////////////////////
180 //                                                182 //
181 // Make a clone of the object                     183 // Make a clone of the object
182                                                   184 
183 G4VSolid* G4UCutTubs::Clone() const               185 G4VSolid* G4UCutTubs::Clone() const
184 {                                                 186 {
185   return new G4UCutTubs(*this);                   187   return new G4UCutTubs(*this);
186 }                                                 188 }
187                                                   189 
188 //////////////////////////////////////////////    190 //////////////////////////////////////////////////////////////////////////
189 //                                                191 //
190 // Get bounding box                               192 // Get bounding box
191                                                   193 
192 void G4UCutTubs::BoundingLimits(G4ThreeVector&    194 void G4UCutTubs::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const
193 {                                                 195 {
194   static G4bool checkBBox = true;                 196   static G4bool checkBBox = true;
195                                                   197 
196   G4double rmin = GetInnerRadius();               198   G4double rmin = GetInnerRadius();
197   G4double rmax = GetOuterRadius();               199   G4double rmax = GetOuterRadius();
198   G4double dz   = GetZHalfLength();               200   G4double dz   = GetZHalfLength();
199   G4double dphi = GetDeltaPhiAngle();             201   G4double dphi = GetDeltaPhiAngle();
200                                                   202 
201   G4double sinSphi = GetSinStartPhi();            203   G4double sinSphi = GetSinStartPhi(); 
202   G4double cosSphi = GetCosStartPhi();            204   G4double cosSphi = GetCosStartPhi(); 
203   G4double sinEphi = GetSinEndPhi();              205   G4double sinEphi = GetSinEndPhi(); 
204   G4double cosEphi = GetCosEndPhi();              206   G4double cosEphi = GetCosEndPhi(); 
205                                                   207 
206   G4ThreeVector norm;                             208   G4ThreeVector norm;
207   G4double mag, topx, topy, dists, diste;         209   G4double mag, topx, topy, dists, diste; 
208   G4bool iftop;                                   210   G4bool iftop;
209                                                   211 
210   // Find Zmin                                    212   // Find Zmin
211   //                                              213   //
212   G4double zmin;                                  214   G4double zmin;
213   norm = GetLowNorm();                            215   norm = GetLowNorm();
214   mag  = std::sqrt(norm.x()*norm.x() + norm.y(    216   mag  = std::sqrt(norm.x()*norm.x() + norm.y()*norm.y());
215   topx = (mag == 0) ? 0 : -rmax*norm.x()/mag;     217   topx = (mag == 0) ? 0 : -rmax*norm.x()/mag; 
216   topy = (mag == 0) ? 0 : -rmax*norm.y()/mag;     218   topy = (mag == 0) ? 0 : -rmax*norm.y()/mag; 
217   dists =  sinSphi*topx - cosSphi*topy;           219   dists =  sinSphi*topx - cosSphi*topy;
218   diste = -sinEphi*topx + cosEphi*topy;           220   diste = -sinEphi*topx + cosEphi*topy;
219   if (dphi > pi)                                  221   if (dphi > pi)
220   {                                               222   {
221     iftop = true;                                 223     iftop = true;
222     if (dists > 0 && diste > 0)iftop = false;     224     if (dists > 0 && diste > 0)iftop = false;
223   }                                               225   }
224   else                                            226   else
225   {                                               227   {
226     iftop = false;                                228     iftop = false;
227     if (dists <= 0 && diste <= 0) iftop = true    229     if (dists <= 0 && diste <= 0) iftop = true;
228   }                                               230   }
229   if (iftop)                                      231   if (iftop)
230   {                                               232   {
231     zmin = -(norm.x()*topx + norm.y()*topy)/no    233     zmin = -(norm.x()*topx + norm.y()*topy)/norm.z() - dz;
232   }                                               234   }
233   else                                            235   else
234   {                                               236   {
235     G4double z1 = -rmin*(norm.x()*cosSphi + no    237     G4double z1 = -rmin*(norm.x()*cosSphi + norm.y()*sinSphi)/norm.z() - dz;  
236     G4double z2 = -rmin*(norm.x()*cosEphi + no    238     G4double z2 = -rmin*(norm.x()*cosEphi + norm.y()*sinEphi)/norm.z() - dz;  
237     G4double z3 = -rmax*(norm.x()*cosSphi + no    239     G4double z3 = -rmax*(norm.x()*cosSphi + norm.y()*sinSphi)/norm.z() - dz;  
238     G4double z4 = -rmax*(norm.x()*cosEphi + no    240     G4double z4 = -rmax*(norm.x()*cosEphi + norm.y()*sinEphi)/norm.z() - dz;  
239     zmin = std::min(std::min(std::min(z1,z2),z    241     zmin = std::min(std::min(std::min(z1,z2),z3),z4);
240   }                                               242   }
241                                                   243 
242   // Find Zmax                                    244   // Find Zmax
243   //                                              245   //
244   G4double zmax;                                  246   G4double zmax;
245   norm = GetHighNorm();                           247   norm = GetHighNorm();
246   mag  = std::sqrt(norm.x()*norm.x() + norm.y(    248   mag  = std::sqrt(norm.x()*norm.x() + norm.y()*norm.y());
247   topx = (mag == 0) ? 0 : -rmax*norm.x()/mag;     249   topx = (mag == 0) ? 0 : -rmax*norm.x()/mag; 
248   topy = (mag == 0) ? 0 : -rmax*norm.y()/mag;     250   topy = (mag == 0) ? 0 : -rmax*norm.y()/mag; 
249   dists =  sinSphi*topx - cosSphi*topy;           251   dists =  sinSphi*topx - cosSphi*topy;
250   diste = -sinEphi*topx + cosEphi*topy;           252   diste = -sinEphi*topx + cosEphi*topy;
251   if (dphi > pi)                                  253   if (dphi > pi)
252   {                                               254   {
253     iftop = true;                                 255     iftop = true;
254     if (dists > 0 && diste > 0) iftop = false;    256     if (dists > 0 && diste > 0) iftop = false;
255   }                                               257   }
256   else                                            258   else
257   {                                               259   {
258     iftop = false;                                260     iftop = false;
259     if (dists <= 0 && diste <= 0) iftop = true    261     if (dists <= 0 && diste <= 0) iftop = true;
260   }                                               262   }
261   if (iftop)                                      263   if (iftop)
262   {                                               264   {
263     zmax = -(norm.x()*topx + norm.y()*topy)/no    265     zmax = -(norm.x()*topx + norm.y()*topy)/norm.z() + dz;
264   }                                               266   }
265   else                                            267   else
266   {                                               268   {
267     G4double z1 = -rmin*(norm.x()*cosSphi + no    269     G4double z1 = -rmin*(norm.x()*cosSphi + norm.y()*sinSphi)/norm.z() + dz;  
268     G4double z2 = -rmin*(norm.x()*cosEphi + no    270     G4double z2 = -rmin*(norm.x()*cosEphi + norm.y()*sinEphi)/norm.z() + dz;  
269     G4double z3 = -rmax*(norm.x()*cosSphi + no    271     G4double z3 = -rmax*(norm.x()*cosSphi + norm.y()*sinSphi)/norm.z() + dz;  
270     G4double z4 = -rmax*(norm.x()*cosEphi + no    272     G4double z4 = -rmax*(norm.x()*cosEphi + norm.y()*sinEphi)/norm.z() + dz;  
271     zmax = std::max(std::max(std::max(z1,z2),z    273     zmax = std::max(std::max(std::max(z1,z2),z3),z4);
272   }                                               274   }
273                                                   275 
274   // Find bounding box                            276   // Find bounding box
275   //                                              277   //
276   if (GetDeltaPhiAngle() < twopi)                 278   if (GetDeltaPhiAngle() < twopi)
277   {                                               279   {
278     G4TwoVector vmin,vmax;                        280     G4TwoVector vmin,vmax;
279     G4GeomTools::DiskExtent(rmin,rmax,            281     G4GeomTools::DiskExtent(rmin,rmax,
280                             GetSinStartPhi(),G    282                             GetSinStartPhi(),GetCosStartPhi(),
281                             GetSinEndPhi(),Get    283                             GetSinEndPhi(),GetCosEndPhi(),
282                             vmin,vmax);           284                             vmin,vmax);
283     pMin.set(vmin.x(),vmin.y(), zmin);            285     pMin.set(vmin.x(),vmin.y(), zmin);
284     pMax.set(vmax.x(),vmax.y(), zmax);            286     pMax.set(vmax.x(),vmax.y(), zmax);
285   }                                               287   }
286   else                                            288   else
287   {                                               289   {
288     pMin.set(-rmax,-rmax, zmin);                  290     pMin.set(-rmax,-rmax, zmin);
289     pMax.set( rmax, rmax, zmax);                  291     pMax.set( rmax, rmax, zmax);
290   }                                               292   }
291                                                   293 
292   // Check correctness of the bounding box        294   // Check correctness of the bounding box
293   //                                              295   //
294   if (pMin.x() >= pMax.x() || pMin.y() >= pMax    296   if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
295   {                                               297   {
296     std::ostringstream message;                   298     std::ostringstream message;
297     message << "Bad bounding box (min >= max)     299     message << "Bad bounding box (min >= max) for solid: "
298             << GetName() << " !"                  300             << GetName() << " !"
299             << "\npMin = " << pMin                301             << "\npMin = " << pMin
300             << "\npMax = " << pMax;               302             << "\npMax = " << pMax;
301     G4Exception("G4CUutTubs::BoundingLimits()"    303     G4Exception("G4CUutTubs::BoundingLimits()", "GeomMgt0001",
302                 JustWarning, message);            304                 JustWarning, message);
303     StreamInfo(G4cout);                           305     StreamInfo(G4cout);
304   }                                               306   }
305                                                   307 
306   // Check consistency of bounding boxes          308   // Check consistency of bounding boxes
307   //                                              309   //
308   if (checkBBox)                                  310   if (checkBBox)
309   {                                               311   {
310     U3Vector vmin, vmax;                          312     U3Vector vmin, vmax;
311     Extent(vmin,vmax);                            313     Extent(vmin,vmax);
312     if (std::abs(pMin.x()-vmin.x()) > kCarTole    314     if (std::abs(pMin.x()-vmin.x()) > kCarTolerance ||
313         std::abs(pMin.y()-vmin.y()) > kCarTole    315         std::abs(pMin.y()-vmin.y()) > kCarTolerance ||
314         std::abs(pMin.z()-vmin.z()) > kCarTole    316         std::abs(pMin.z()-vmin.z()) > kCarTolerance ||
315         std::abs(pMax.x()-vmax.x()) > kCarTole    317         std::abs(pMax.x()-vmax.x()) > kCarTolerance ||
316         std::abs(pMax.y()-vmax.y()) > kCarTole    318         std::abs(pMax.y()-vmax.y()) > kCarTolerance ||
317         std::abs(pMax.z()-vmax.z()) > kCarTole    319         std::abs(pMax.z()-vmax.z()) > kCarTolerance)
318     {                                             320     {
319       std::ostringstream message;                 321       std::ostringstream message;
320       message << "Inconsistency in bounding bo    322       message << "Inconsistency in bounding boxes for solid: "
321               << GetName() << " !"                323               << GetName() << " !"
322               << "\nBBox min: wrapper = " << p    324               << "\nBBox min: wrapper = " << pMin << " solid = " << vmin
323               << "\nBBox max: wrapper = " << p    325               << "\nBBox max: wrapper = " << pMax << " solid = " << vmax;
324       G4Exception("G4UCutTubs::BoundingLimits(    326       G4Exception("G4UCutTubs::BoundingLimits()", "GeomMgt0001",
325                   JustWarning, message);          327                   JustWarning, message);
326       checkBBox = false;                          328       checkBBox = false;
327     }                                             329     }
328   }                                               330   }
329 }                                                 331 }
330                                                   332 
331 //////////////////////////////////////////////    333 //////////////////////////////////////////////////////////////////////////
332 //                                                334 //
333 // Calculate extent under transform and specif    335 // Calculate extent under transform and specified limit
334                                                   336 
335 G4bool                                            337 G4bool
336 G4UCutTubs::CalculateExtent(const EAxis pAxis,    338 G4UCutTubs::CalculateExtent(const EAxis pAxis,
337                             const G4VoxelLimit    339                             const G4VoxelLimits& pVoxelLimit,
338                             const G4AffineTran    340                             const G4AffineTransform& pTransform,
339                                   G4double& pM    341                                   G4double& pMin, G4double& pMax) const
340 {                                                 342 {
341   G4ThreeVector bmin, bmax;                       343   G4ThreeVector bmin, bmax;
342   G4bool exist;                                   344   G4bool exist;
343                                                   345 
344   // Get bounding box                             346   // Get bounding box
345   BoundingLimits(bmin,bmax);                      347   BoundingLimits(bmin,bmax);
346                                                   348 
347   // Check bounding box                           349   // Check bounding box
348   G4BoundingEnvelope bbox(bmin,bmax);             350   G4BoundingEnvelope bbox(bmin,bmax);
349 #ifdef G4BBOX_EXTENT                              351 #ifdef G4BBOX_EXTENT
350   if (true) return bbox.CalculateExtent(pAxis,    352   if (true) return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
351 #endif                                            353 #endif
352   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox    354   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax))
353   {                                               355   {
354     return exist = pMin < pMax;                << 356     return exist = (pMin < pMax) ? true : false;
355   }                                               357   }
356                                                   358 
357   // Get parameters of the solid                  359   // Get parameters of the solid
358   G4double rmin = GetInnerRadius();               360   G4double rmin = GetInnerRadius();
359   G4double rmax = GetOuterRadius();               361   G4double rmax = GetOuterRadius();
360   G4double dphi = GetDeltaPhiAngle();             362   G4double dphi = GetDeltaPhiAngle();
361   G4double zmin = bmin.z();                       363   G4double zmin = bmin.z();
362   G4double zmax = bmax.z();                       364   G4double zmax = bmax.z();
363                                                   365 
364   // Find bounding envelope and calculate exte    366   // Find bounding envelope and calculate extent
365   //                                              367   //
366   const G4int NSTEPS = 24;            // numbe    368   const G4int NSTEPS = 24;            // number of steps for whole circle
367   G4double astep  = twopi/NSTEPS;     // max a    369   G4double astep  = twopi/NSTEPS;     // max angle for one step
368   G4int    ksteps = (dphi <= astep) ? 1 : (G4i    370   G4int    ksteps = (dphi <= astep) ? 1 : (G4int)((dphi-deg)/astep) + 1;
369   G4double ang    = dphi/ksteps;                  371   G4double ang    = dphi/ksteps;
370                                                   372 
371   G4double sinHalf = std::sin(0.5*ang);           373   G4double sinHalf = std::sin(0.5*ang);
372   G4double cosHalf = std::cos(0.5*ang);           374   G4double cosHalf = std::cos(0.5*ang);
373   G4double sinStep = 2.*sinHalf*cosHalf;          375   G4double sinStep = 2.*sinHalf*cosHalf;
374   G4double cosStep = 1. - 2.*sinHalf*sinHalf;     376   G4double cosStep = 1. - 2.*sinHalf*sinHalf;
375   G4double rext    = rmax/cosHalf;                377   G4double rext    = rmax/cosHalf;
376                                                   378 
377   // bounding envelope for full cylinder consi    379   // bounding envelope for full cylinder consists of two polygons,
378   // in other cases it is a sequence of quadri    380   // in other cases it is a sequence of quadrilaterals
379   if (rmin == 0 && dphi == twopi)                 381   if (rmin == 0 && dphi == twopi)
380   {                                               382   {
381     G4double sinCur = sinHalf;                    383     G4double sinCur = sinHalf;
382     G4double cosCur = cosHalf;                    384     G4double cosCur = cosHalf;
383                                                   385 
384     G4ThreeVectorList baseA(NSTEPS),baseB(NSTE    386     G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS);
385     for (G4int k=0; k<NSTEPS; ++k)                387     for (G4int k=0; k<NSTEPS; ++k)
386     {                                             388     {
387       baseA[k].set(rext*cosCur,rext*sinCur,zmi    389       baseA[k].set(rext*cosCur,rext*sinCur,zmin);
388       baseB[k].set(rext*cosCur,rext*sinCur,zma    390       baseB[k].set(rext*cosCur,rext*sinCur,zmax);
389                                                   391 
390       G4double sinTmp = sinCur;                   392       G4double sinTmp = sinCur;
391       sinCur = sinCur*cosStep + cosCur*sinStep    393       sinCur = sinCur*cosStep + cosCur*sinStep;
392       cosCur = cosCur*cosStep - sinTmp*sinStep    394       cosCur = cosCur*cosStep - sinTmp*sinStep;
393     }                                             395     }
394     std::vector<const G4ThreeVectorList *> pol    396     std::vector<const G4ThreeVectorList *> polygons(2);
395     polygons[0] = &baseA;                         397     polygons[0] = &baseA;
396     polygons[1] = &baseB;                         398     polygons[1] = &baseB;
397     G4BoundingEnvelope benv(bmin,bmax,polygons    399     G4BoundingEnvelope benv(bmin,bmax,polygons);
398     exist = benv.CalculateExtent(pAxis,pVoxelL    400     exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
399   }                                               401   }
400   else                                            402   else
401   {                                               403   {
402     G4double sinStart = GetSinStartPhi();         404     G4double sinStart = GetSinStartPhi();
403     G4double cosStart = GetCosStartPhi();         405     G4double cosStart = GetCosStartPhi();
404     G4double sinEnd   = GetSinEndPhi();           406     G4double sinEnd   = GetSinEndPhi();
405     G4double cosEnd   = GetCosEndPhi();           407     G4double cosEnd   = GetCosEndPhi();
406     G4double sinCur   = sinStart*cosHalf + cos    408     G4double sinCur   = sinStart*cosHalf + cosStart*sinHalf;
407     G4double cosCur   = cosStart*cosHalf - sin    409     G4double cosCur   = cosStart*cosHalf - sinStart*sinHalf;
408                                                   410 
409     // set quadrilaterals                         411     // set quadrilaterals
410     G4ThreeVectorList pols[NSTEPS+2];             412     G4ThreeVectorList pols[NSTEPS+2];
411     for (G4int k=0; k<ksteps+2; ++k) pols[k].r    413     for (G4int k=0; k<ksteps+2; ++k) pols[k].resize(4);
412     pols[0][0].set(rmin*cosStart,rmin*sinStart    414     pols[0][0].set(rmin*cosStart,rmin*sinStart,zmax);
413     pols[0][1].set(rmin*cosStart,rmin*sinStart    415     pols[0][1].set(rmin*cosStart,rmin*sinStart,zmin);
414     pols[0][2].set(rmax*cosStart,rmax*sinStart    416     pols[0][2].set(rmax*cosStart,rmax*sinStart,zmin);
415     pols[0][3].set(rmax*cosStart,rmax*sinStart    417     pols[0][3].set(rmax*cosStart,rmax*sinStart,zmax);
416     for (G4int k=1; k<ksteps+1; ++k)              418     for (G4int k=1; k<ksteps+1; ++k)
417     {                                             419     {
418       pols[k][0].set(rmin*cosCur,rmin*sinCur,z    420       pols[k][0].set(rmin*cosCur,rmin*sinCur,zmax);
419       pols[k][1].set(rmin*cosCur,rmin*sinCur,z    421       pols[k][1].set(rmin*cosCur,rmin*sinCur,zmin);
420       pols[k][2].set(rext*cosCur,rext*sinCur,z    422       pols[k][2].set(rext*cosCur,rext*sinCur,zmin);
421       pols[k][3].set(rext*cosCur,rext*sinCur,z    423       pols[k][3].set(rext*cosCur,rext*sinCur,zmax);
422                                                   424 
423       G4double sinTmp = sinCur;                   425       G4double sinTmp = sinCur;
424       sinCur = sinCur*cosStep + cosCur*sinStep    426       sinCur = sinCur*cosStep + cosCur*sinStep;
425       cosCur = cosCur*cosStep - sinTmp*sinStep    427       cosCur = cosCur*cosStep - sinTmp*sinStep;
426     }                                             428     }
427     pols[ksteps+1][0].set(rmin*cosEnd,rmin*sin    429     pols[ksteps+1][0].set(rmin*cosEnd,rmin*sinEnd,zmax);
428     pols[ksteps+1][1].set(rmin*cosEnd,rmin*sin    430     pols[ksteps+1][1].set(rmin*cosEnd,rmin*sinEnd,zmin);
429     pols[ksteps+1][2].set(rmax*cosEnd,rmax*sin    431     pols[ksteps+1][2].set(rmax*cosEnd,rmax*sinEnd,zmin);
430     pols[ksteps+1][3].set(rmax*cosEnd,rmax*sin    432     pols[ksteps+1][3].set(rmax*cosEnd,rmax*sinEnd,zmax);
431                                                   433 
432     // set envelope and calculate extent          434     // set envelope and calculate extent
433     std::vector<const G4ThreeVectorList *> pol    435     std::vector<const G4ThreeVectorList *> polygons;
434     polygons.resize(ksteps+2);                    436     polygons.resize(ksteps+2);
435     for (G4int k=0; k<ksteps+2; ++k) polygons[    437     for (G4int k=0; k<ksteps+2; ++k) polygons[k] = &pols[k];
436     G4BoundingEnvelope benv(bmin,bmax,polygons    438     G4BoundingEnvelope benv(bmin,bmax,polygons);
437     exist = benv.CalculateExtent(pAxis,pVoxelL    439     exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
438   }                                               440   }
439   return exist;                                   441   return exist;
440 }                                                 442 }
441                                                   443 
442 //////////////////////////////////////////////    444 ///////////////////////////////////////////////////////////////////////////
443 //                                                445 //
444 // Return real Z coordinate of point on Cutted    446 // Return real Z coordinate of point on Cutted +/- fDZ plane
445                                                   447 
446 G4double G4UCutTubs::GetCutZ(const G4ThreeVect    448 G4double G4UCutTubs::GetCutZ(const G4ThreeVector& p) const
447 {                                                 449 {
448   G4double newz = p.z();  // p.z() should be e    450   G4double newz = p.z();  // p.z() should be either +fDz or -fDz
449   G4ThreeVector fLowNorm = GetLowNorm();          451   G4ThreeVector fLowNorm = GetLowNorm();
450   G4ThreeVector fHighNorm = GetHighNorm();        452   G4ThreeVector fHighNorm = GetHighNorm();
451                                                   453   
452   if (p.z()<0)                                    454   if (p.z()<0)
453   {                                               455   {
454     if(fLowNorm.z()!=0.)                          456     if(fLowNorm.z()!=0.)
455     {                                             457     {
456        newz = -GetZHalfLength()                   458        newz = -GetZHalfLength()
457             - (p.x()*fLowNorm.x()+p.y()*fLowNo    459             - (p.x()*fLowNorm.x()+p.y()*fLowNorm.y())/fLowNorm.z();
458     }                                             460     }
459   }                                               461   }
460   else                                            462   else
461   {                                               463   {
462     if(fHighNorm.z()!=0.)                         464     if(fHighNorm.z()!=0.)
463     {                                             465     {
464        newz = GetZHalfLength()                    466        newz = GetZHalfLength()
465             - (p.x()*fHighNorm.x()+p.y()*fHigh    467             - (p.x()*fHighNorm.x()+p.y()*fHighNorm.y())/fHighNorm.z();
466     }                                             468     }
467   }                                               469   }
468   return newz;                                    470   return newz;
469 }                                                 471 }
470                                                   472 
471 //////////////////////////////////////////////    473 //////////////////////////////////////////////////////////////////////////
472 //                                                474 //
473 // Create polyhedron for visualization            475 // Create polyhedron for visualization
474 //                                                476 //
475 G4Polyhedron* G4UCutTubs::CreatePolyhedron() c    477 G4Polyhedron* G4UCutTubs::CreatePolyhedron() const
476 {                                                 478 {
477   typedef G4double G4double3[3];                  479   typedef G4double G4double3[3];
478   typedef G4int G4int4[4];                        480   typedef G4int G4int4[4];
479                                                   481 
480   auto ph = new G4Polyhedron;                  << 482   G4Polyhedron *ph  = new G4Polyhedron;
481   G4Polyhedron *ph1 = new G4PolyhedronTubs(Get    483   G4Polyhedron *ph1 = new G4PolyhedronTubs(GetInnerRadius(),
482                                            Get    484                                            GetOuterRadius(),
483                                            Get    485                                            GetZHalfLength(),
484                                            Get    486                                            GetStartPhiAngle(),
485                                            Get    487                                            GetDeltaPhiAngle());
486   G4int nn=ph1->GetNoVertices();                  488   G4int nn=ph1->GetNoVertices();
487   G4int nf=ph1->GetNoFacets();                    489   G4int nf=ph1->GetNoFacets();
488   auto xyz = new G4double3[nn];  // number of  << 490   G4double3* xyz = new G4double3[nn];  // number of nodes 
489   auto faces = new G4int4[nf] ;  // number of  << 491   G4int4*  faces = new G4int4[nf] ;    // number of faces
490   G4double fDz = GetZHalfLength();                492   G4double fDz = GetZHalfLength();
491                                                   493 
492   for(G4int i=0; i<nn; ++i)                       494   for(G4int i=0; i<nn; ++i)
493   {                                               495   {
494     xyz[i][0]=ph1->GetVertex(i+1).x();            496     xyz[i][0]=ph1->GetVertex(i+1).x();
495     xyz[i][1]=ph1->GetVertex(i+1).y();            497     xyz[i][1]=ph1->GetVertex(i+1).y();
496     G4double tmpZ=ph1->GetVertex(i+1).z();        498     G4double tmpZ=ph1->GetVertex(i+1).z();
497     if (tmpZ>=fDz-kCarTolerance)                  499     if (tmpZ>=fDz-kCarTolerance)
498     {                                             500     {
499       xyz[i][2]=GetCutZ(G4ThreeVector(xyz[i][0    501       xyz[i][2]=GetCutZ(G4ThreeVector(xyz[i][0],xyz[i][1],fDz));
500     }                                             502     }
501     else if(tmpZ<=-fDz+kCarTolerance)             503     else if(tmpZ<=-fDz+kCarTolerance)
502     {                                             504     {
503       xyz[i][2]=GetCutZ(G4ThreeVector(xyz[i][0    505       xyz[i][2]=GetCutZ(G4ThreeVector(xyz[i][0],xyz[i][1],-fDz));
504     }                                             506     }
505     else                                          507     else
506     {                                             508     {
507       xyz[i][2]=tmpZ;                             509       xyz[i][2]=tmpZ;
508     }                                             510     }
509   }                                               511   }
510   G4int iNodes[4];                                512   G4int iNodes[4];
511   G4int* iEdge=nullptr;                        << 513   G4int *iEdge=0;
512   G4int n;                                        514   G4int n;
513   for(G4int i=0; i<nf; ++i)                       515   for(G4int i=0; i<nf; ++i)
514   {                                               516   {
515     ph1->GetFacet(i+1,n,iNodes,iEdge);            517     ph1->GetFacet(i+1,n,iNodes,iEdge);
516     for(G4int k=0; k<n; ++k)                      518     for(G4int k=0; k<n; ++k)
517     {                                             519     {
518       faces[i][k]=iNodes[k];                      520       faces[i][k]=iNodes[k];
519     }                                             521     }
520     for(G4int k=n; k<4; ++k)                      522     for(G4int k=n; k<4; ++k)
521     {                                             523     {
522       faces[i][k]=0;                              524       faces[i][k]=0;
523     }                                             525     }
524   }                                               526   }
525   ph->createPolyhedron(nn,nf,xyz,faces);          527   ph->createPolyhedron(nn,nf,xyz,faces);
526                                                   528 
527   delete [] xyz;                                  529   delete [] xyz;
528   delete [] faces;                                530   delete [] faces;
529   delete ph1;                                     531   delete ph1;
530                                                   532 
531   return ph;                                      533   return ph;
532 }                                                 534 }
533                                                   535 
534 #endif  // G4GEOM_USE_USOLIDS                     536 #endif  // G4GEOM_USE_USOLIDS
535                                                   537