Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4Tubs implementation << 27 // 26 // 28 // 1994-95 P.Kent: first implementation << 27 // $Id$ 29 // 08.08.00 V.Grichine: more stable roots of 2 << 28 // >> 29 // >> 30 // class G4Tubs >> 31 // >> 32 // History: >> 33 // >> 34 // 05.04.12 M.Kelsey: Use sqrt(r) in GetPointOnSurface() for uniform points >> 35 // 02.08.07 T.Nikitina: bug fixed in DistanceToOut(p,v,..) for negative value under sqrt >> 36 // for the case: p on the surface and v is tangent to the surface >> 37 // 11.05.07 T.Nikitina: bug fixed in DistanceToOut(p,v,..) for phi < 2pi >> 38 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal >> 39 // 16.03.05 V.Grichine: SurfaceNormal(p) with edges/corners for boolean >> 40 // 20.07.01 V.Grichine: bug fixed in Inside(p) >> 41 // 20.02.01 V.Grichine: bug fixed in Inside(p) and CalculateExtent was >> 42 // simplified base on G4Box::CalculateExtent 30 // 07.12.00 V.Grichine: phi-section algorithm 43 // 07.12.00 V.Grichine: phi-section algorithm was changed in Inside(p) 31 // 03.05.05 V.Grichine: SurfaceNormal(p) accor << 44 // 28.11.00 V.Grichine: bug fixed in Inside(p) 32 // 24.08.16 E.Tcherniaev: reimplemented Calcul << 45 // 31.10.00 V.Grichine: assign srd, sphi in Distance ToOut(p,v,...) 33 // ------------------------------------------- << 46 // 08.08.00 V.Grichine: more stable roots of 2-equation in DistanceToOut(p,v,..) >> 47 // 02.08.00 V.Grichine: point is outside check in Distance ToOut(p) >> 48 // 17.05.00 V.Grichine: bugs (#76,#91) fixed in Distance ToOut(p,v,...) >> 49 // 31.03.00 V.Grichine: bug fixed in Inside(p) >> 50 // 19.11.99 V.Grichine: side = kNull in DistanceToOut(p,v,...) >> 51 // 13.10.99 V.Grichine: bugs fixed in DistanceToIn(p,v) >> 52 // 28.05.99 V.Grichine: bugs fixed in DistanceToOut(p,v,...) >> 53 // 25.05.99 V.Grichine: bugs fixed in DistanceToIn(p,v) >> 54 // 23.03.99 V.Grichine: bug fixed in DistanceToIn(p,v) >> 55 // 09.10.98 V.Grichine: modifications in DistanceToOut(p,v,...) >> 56 // 18.06.98 V.Grichine: n-normalisation in DistanceToOut(p,v) >> 57 // >> 58 // 1994-95 P.Kent: implementation >> 59 // >> 60 ///////////////////////////////////////////////////////////////////////// 34 61 35 #include "G4Tubs.hh" 62 #include "G4Tubs.hh" 36 63 37 #if !defined(G4GEOM_USE_UTUBS) << 38 << 39 #include "G4GeomTools.hh" << 40 #include "G4VoxelLimits.hh" 64 #include "G4VoxelLimits.hh" 41 #include "G4AffineTransform.hh" 65 #include "G4AffineTransform.hh" 42 #include "G4GeometryTolerance.hh" 66 #include "G4GeometryTolerance.hh" 43 #include "G4BoundingEnvelope.hh" << 44 67 45 #include "G4VPVParameterisation.hh" 68 #include "G4VPVParameterisation.hh" 46 #include "G4QuickRand.hh" << 69 >> 70 #include "Randomize.hh" >> 71 >> 72 #include "meshdefs.hh" 47 73 48 #include "G4VGraphicsScene.hh" 74 #include "G4VGraphicsScene.hh" 49 #include "G4Polyhedron.hh" 75 #include "G4Polyhedron.hh" >> 76 #include "G4NURBS.hh" >> 77 #include "G4NURBStube.hh" >> 78 #include "G4NURBScylinder.hh" >> 79 #include "G4NURBStubesector.hh" 50 80 51 using namespace CLHEP; 81 using namespace CLHEP; 52 82 53 ////////////////////////////////////////////// 83 ///////////////////////////////////////////////////////////////////////// 54 // 84 // 55 // Constructor - check parameters, convert ang 85 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI 56 // - note if pdphi>2PI then reset 86 // - note if pdphi>2PI then reset to 2PI 57 87 58 G4Tubs::G4Tubs( const G4String& pName, << 88 G4Tubs::G4Tubs( const G4String &pName, 59 G4double pRMin, G4double 89 G4double pRMin, G4double pRMax, 60 G4double pDz, 90 G4double pDz, 61 G4double pSPhi, G4double 91 G4double pSPhi, G4double pDPhi ) 62 : G4CSGSolid(pName), fRMin(pRMin), fRMax(pR << 92 : G4CSGSolid(pName), fRMin(pRMin), fRMax(pRMax), fDz(pDz), fSPhi(0), fDPhi(0) 63 fSPhi(0), fDPhi(0), << 64 fInvRmax( pRMax > 0.0 ? 1.0/pRMax : 0.0 ) << 65 fInvRmin( pRMin > 0.0 ? 1.0/pRMin : 0.0 ) << 66 { 93 { >> 94 67 kRadTolerance = G4GeometryTolerance::GetInst 95 kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 68 kAngTolerance = G4GeometryTolerance::GetInst 96 kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance(); 69 97 70 halfCarTolerance=kCarTolerance*0.5; << 71 halfRadTolerance=kRadTolerance*0.5; << 72 halfAngTolerance=kAngTolerance*0.5; << 73 << 74 if (pDz<=0) // Check z-len 98 if (pDz<=0) // Check z-len 75 { 99 { 76 std::ostringstream message; 100 std::ostringstream message; 77 message << "Negative Z half-length (" << p 101 message << "Negative Z half-length (" << pDz << ") in solid: " << GetName(); 78 G4Exception("G4Tubs::G4Tubs()", "GeomSolid 102 G4Exception("G4Tubs::G4Tubs()", "GeomSolids0002", FatalException, message); 79 } 103 } 80 if ( (pRMin >= pRMax) || (pRMin < 0) ) // Ch 104 if ( (pRMin >= pRMax) || (pRMin < 0) ) // Check radii 81 { 105 { 82 std::ostringstream message; 106 std::ostringstream message; 83 message << "Invalid values for radii in so 107 message << "Invalid values for radii in solid: " << GetName() 84 << G4endl 108 << G4endl 85 << " pRMin = " << pRMin << 109 << " pRMin = " << pRMin << ", pRMax = " << pRMax; 86 G4Exception("G4Tubs::G4Tubs()", "GeomSolid 110 G4Exception("G4Tubs::G4Tubs()", "GeomSolids0002", FatalException, message); 87 } 111 } 88 112 89 // Check angles 113 // Check angles 90 // 114 // 91 CheckPhiAngles(pSPhi, pDPhi); 115 CheckPhiAngles(pSPhi, pDPhi); 92 } 116 } 93 117 94 ////////////////////////////////////////////// 118 /////////////////////////////////////////////////////////////////////// 95 // 119 // 96 // Fake default constructor - sets only member 120 // Fake default constructor - sets only member data and allocates memory 97 // for usage restri 121 // for usage restricted to object persistency. 98 // 122 // 99 G4Tubs::G4Tubs( __void__& a ) 123 G4Tubs::G4Tubs( __void__& a ) 100 : G4CSGSolid(a) << 124 : G4CSGSolid(a), kRadTolerance(0.), kAngTolerance(0.), >> 125 fRMin(0.), fRMax(0.), fDz(0.), fSPhi(0.), fDPhi(0.), >> 126 sinCPhi(0.), cosCPhi(0.), cosHDPhiOT(0.), cosHDPhiIT(0.), >> 127 sinSPhi(0.), cosSPhi(0.), sinEPhi(0.), cosEPhi(0.), >> 128 fPhiFullTube(false) 101 { 129 { 102 } 130 } 103 131 104 ////////////////////////////////////////////// 132 ////////////////////////////////////////////////////////////////////////// 105 // 133 // 106 // Destructor 134 // Destructor 107 135 108 G4Tubs::~G4Tubs() = default; << 136 G4Tubs::~G4Tubs() >> 137 { >> 138 } 109 139 110 ////////////////////////////////////////////// 140 ////////////////////////////////////////////////////////////////////////// 111 // 141 // 112 // Copy constructor 142 // Copy constructor 113 143 114 G4Tubs::G4Tubs(const G4Tubs&) = default; << 144 G4Tubs::G4Tubs(const G4Tubs& rhs) >> 145 : G4CSGSolid(rhs), >> 146 kRadTolerance(rhs.kRadTolerance), kAngTolerance(rhs.kAngTolerance), >> 147 fRMin(rhs.fRMin), fRMax(rhs.fRMax), fDz(rhs.fDz), >> 148 fSPhi(rhs.fSPhi), fDPhi(rhs.fDPhi), >> 149 sinCPhi(rhs.sinCPhi), cosCPhi(rhs.sinCPhi), >> 150 cosHDPhiOT(rhs.cosHDPhiOT), cosHDPhiIT(rhs.cosHDPhiOT), >> 151 sinSPhi(rhs.sinSPhi), cosSPhi(rhs.cosSPhi), >> 152 sinEPhi(rhs.sinEPhi), cosEPhi(rhs.cosEPhi), fPhiFullTube(rhs.fPhiFullTube) >> 153 { >> 154 } 115 155 116 ////////////////////////////////////////////// 156 ////////////////////////////////////////////////////////////////////////// 117 // 157 // 118 // Assignment operator 158 // Assignment operator 119 159 120 G4Tubs& G4Tubs::operator = (const G4Tubs& rhs) << 160 G4Tubs& G4Tubs::operator = (const G4Tubs& rhs) 121 { 161 { 122 // Check assignment to self 162 // Check assignment to self 123 // 163 // 124 if (this == &rhs) { return *this; } 164 if (this == &rhs) { return *this; } 125 165 126 // Copy base class data 166 // Copy base class data 127 // 167 // 128 G4CSGSolid::operator=(rhs); 168 G4CSGSolid::operator=(rhs); 129 169 130 // Copy data 170 // Copy data 131 // 171 // 132 kRadTolerance = rhs.kRadTolerance; kAngTole 172 kRadTolerance = rhs.kRadTolerance; kAngTolerance = rhs.kAngTolerance; 133 fRMin = rhs.fRMin; fRMax = rhs.fRMax; fDz = 173 fRMin = rhs.fRMin; fRMax = rhs.fRMax; fDz = rhs.fDz; 134 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; 174 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; 135 sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPh << 175 sinCPhi = rhs.sinCPhi; cosCPhi = rhs.sinCPhi; 136 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = r << 176 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = rhs.cosHDPhiOT; 137 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPh 177 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPhi; 138 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPh 178 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPhi; 139 fPhiFullTube = rhs.fPhiFullTube; 179 fPhiFullTube = rhs.fPhiFullTube; 140 fInvRmax = rhs.fInvRmax; << 141 fInvRmin = rhs.fInvRmin; << 142 halfCarTolerance = rhs.halfCarTolerance; << 143 halfRadTolerance = rhs.halfRadTolerance; << 144 halfAngTolerance = rhs.halfAngTolerance; << 145 180 146 return *this; 181 return *this; 147 } 182 } 148 183 149 ////////////////////////////////////////////// 184 ///////////////////////////////////////////////////////////////////////// 150 // 185 // 151 // Dispatch to parameterisation for replicatio 186 // Dispatch to parameterisation for replication mechanism dimension 152 // computation & modification. 187 // computation & modification. 153 188 154 void G4Tubs::ComputeDimensions( G4VPVPar 189 void G4Tubs::ComputeDimensions( G4VPVParameterisation* p, 155 const G4int n, 190 const G4int n, 156 const G4VPhysi 191 const G4VPhysicalVolume* pRep ) 157 { 192 { 158 p->ComputeDimensions(*this,n,pRep) ; 193 p->ComputeDimensions(*this,n,pRep) ; 159 } 194 } 160 195 161 ////////////////////////////////////////////// << 196 //////////////////////////////////////////////////////////////////////// 162 // << 163 // Get bounding box << 164 << 165 void G4Tubs::BoundingLimits(G4ThreeVector& pMi << 166 { << 167 G4double rmin = GetInnerRadius(); << 168 G4double rmax = GetOuterRadius(); << 169 G4double dz = GetZHalfLength(); << 170 << 171 // Find bounding box << 172 // << 173 if (GetDeltaPhiAngle() < twopi) << 174 { << 175 G4TwoVector vmin,vmax; << 176 G4GeomTools::DiskExtent(rmin,rmax, << 177 GetSinStartPhi(),G << 178 GetSinEndPhi(),Get << 179 vmin,vmax); << 180 pMin.set(vmin.x(),vmin.y(),-dz); << 181 pMax.set(vmax.x(),vmax.y(), dz); << 182 } << 183 else << 184 { << 185 pMin.set(-rmax,-rmax,-dz); << 186 pMax.set( rmax, rmax, dz); << 187 } << 188 << 189 // Check correctness of the bounding box << 190 // << 191 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 192 { << 193 std::ostringstream message; << 194 message << "Bad bounding box (min >= max) << 195 << GetName() << " !" << 196 << "\npMin = " << pMin << 197 << "\npMax = " << pMax; << 198 G4Exception("G4Tubs::BoundingLimits()", "G << 199 JustWarning, message); << 200 DumpInfo(); << 201 } << 202 } << 203 << 204 ////////////////////////////////////////////// << 205 // 197 // 206 // Calculate extent under transform and specif 198 // Calculate extent under transform and specified limit 207 199 208 G4bool G4Tubs::CalculateExtent( const EAxis 200 G4bool G4Tubs::CalculateExtent( const EAxis pAxis, 209 const G4VoxelL 201 const G4VoxelLimits& pVoxelLimit, 210 const G4Affine 202 const G4AffineTransform& pTransform, 211 G4double << 203 G4double& pMin, 212 G4double 204 G4double& pMax ) const 213 { 205 { 214 G4ThreeVector bmin, bmax; << 215 G4bool exist; << 216 << 217 // Get bounding box << 218 BoundingLimits(bmin,bmax); << 219 206 220 // Check bounding box << 207 if ( (!pTransform.IsRotated()) && (fDPhi == twopi) && (fRMin == 0) ) 221 G4BoundingEnvelope bbox(bmin,bmax); << 222 #ifdef G4BBOX_EXTENT << 223 return bbox.CalculateExtent(pAxis,pVoxelLimi << 224 #endif << 225 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 226 { 208 { 227 return exist = pMin < pMax; << 209 // Special case handling for unrotated solid tubes 228 } << 210 // Compute x/y/z mins and maxs fro bounding box respecting limits, >> 211 // with early returns if outside limits. Then switch() on pAxis, >> 212 // and compute exact x and y limit for x/y case >> 213 >> 214 G4double xoffset, xMin, xMax; >> 215 G4double yoffset, yMin, yMax; >> 216 G4double zoffset, zMin, zMax; >> 217 >> 218 G4double diff1, diff2, maxDiff, newMin, newMax; >> 219 G4double xoff1, xoff2, yoff1, yoff2, delta; >> 220 >> 221 xoffset = pTransform.NetTranslation().x(); >> 222 xMin = xoffset - fRMax; >> 223 xMax = xoffset + fRMax; 229 224 230 // Get parameters of the solid << 225 if (pVoxelLimit.IsXLimited()) 231 G4double rmin = GetInnerRadius(); << 226 { 232 G4double rmax = GetOuterRadius(); << 227 if ( (xMin > pVoxelLimit.GetMaxXExtent()) 233 G4double dz = GetZHalfLength(); << 228 || (xMax < pVoxelLimit.GetMinXExtent()) ) 234 G4double dphi = GetDeltaPhiAngle(); << 229 { >> 230 return false; >> 231 } >> 232 else >> 233 { >> 234 if (xMin < pVoxelLimit.GetMinXExtent()) >> 235 { >> 236 xMin = pVoxelLimit.GetMinXExtent(); >> 237 } >> 238 if (xMax > pVoxelLimit.GetMaxXExtent()) >> 239 { >> 240 xMax = pVoxelLimit.GetMaxXExtent(); >> 241 } >> 242 } >> 243 } >> 244 yoffset = pTransform.NetTranslation().y(); >> 245 yMin = yoffset - fRMax; >> 246 yMax = yoffset + fRMax; 235 247 236 // Find bounding envelope and calculate exte << 248 if ( pVoxelLimit.IsYLimited() ) 237 // << 249 { 238 const G4int NSTEPS = 24; // numbe << 250 if ( (yMin > pVoxelLimit.GetMaxYExtent()) 239 G4double astep = twopi/NSTEPS; // max a << 251 || (yMax < pVoxelLimit.GetMinYExtent()) ) 240 G4int ksteps = (dphi <= astep) ? 1 : (G4i << 252 { 241 G4double ang = dphi/ksteps; << 253 return false; 242 << 254 } 243 G4double sinHalf = std::sin(0.5*ang); << 255 else 244 G4double cosHalf = std::cos(0.5*ang); << 256 { 245 G4double sinStep = 2.*sinHalf*cosHalf; << 257 if (yMin < pVoxelLimit.GetMinYExtent()) 246 G4double cosStep = 1. - 2.*sinHalf*sinHalf; << 258 { 247 G4double rext = rmax/cosHalf; << 259 yMin = pVoxelLimit.GetMinYExtent(); 248 << 260 } 249 // bounding envelope for full cylinder consi << 261 if (yMax > pVoxelLimit.GetMaxYExtent()) 250 // in other cases it is a sequence of quadri << 262 { 251 if (rmin == 0 && dphi == twopi) << 263 yMax=pVoxelLimit.GetMaxYExtent(); 252 { << 264 } 253 G4double sinCur = sinHalf; << 265 } 254 G4double cosCur = cosHalf; << 266 } 255 << 267 zoffset = pTransform.NetTranslation().z(); 256 G4ThreeVectorList baseA(NSTEPS),baseB(NSTE << 268 zMin = zoffset - fDz; 257 for (G4int k=0; k<NSTEPS; ++k) << 269 zMax = zoffset + fDz; 258 { << 270 259 baseA[k].set(rext*cosCur,rext*sinCur,-dz << 271 if ( pVoxelLimit.IsZLimited() ) 260 baseB[k].set(rext*cosCur,rext*sinCur, dz << 272 { 261 << 273 if ( (zMin > pVoxelLimit.GetMaxZExtent()) 262 G4double sinTmp = sinCur; << 274 || (zMax < pVoxelLimit.GetMinZExtent()) ) 263 sinCur = sinCur*cosStep + cosCur*sinStep << 275 { 264 cosCur = cosCur*cosStep - sinTmp*sinStep << 276 return false; 265 } << 277 } 266 std::vector<const G4ThreeVectorList *> pol << 278 else 267 polygons[0] = &baseA; << 279 { 268 polygons[1] = &baseB; << 280 if (zMin < pVoxelLimit.GetMinZExtent()) 269 G4BoundingEnvelope benv(bmin,bmax,polygons << 281 { 270 exist = benv.CalculateExtent(pAxis,pVoxelL << 282 zMin = pVoxelLimit.GetMinZExtent(); >> 283 } >> 284 if (zMax > pVoxelLimit.GetMaxZExtent()) >> 285 { >> 286 zMax = pVoxelLimit.GetMaxZExtent(); >> 287 } >> 288 } >> 289 } >> 290 switch ( pAxis ) // Known to cut cylinder >> 291 { >> 292 case kXAxis : >> 293 { >> 294 yoff1 = yoffset - yMin; >> 295 yoff2 = yMax - yoffset; >> 296 >> 297 if ( (yoff1 >= 0) && (yoff2 >= 0) ) // Y limits cross max/min x >> 298 { // => no change >> 299 pMin = xMin; >> 300 pMax = xMax; >> 301 } >> 302 else >> 303 { >> 304 // Y limits don't cross max/min x => compute max delta x, >> 305 // hence new mins/maxs >> 306 >> 307 delta = fRMax*fRMax - yoff1*yoff1; >> 308 diff1 = (delta>0.) ? std::sqrt(delta) : 0.; >> 309 delta = fRMax*fRMax - yoff2*yoff2; >> 310 diff2 = (delta>0.) ? std::sqrt(delta) : 0.; >> 311 maxDiff = (diff1 > diff2) ? diff1:diff2; >> 312 newMin = xoffset - maxDiff; >> 313 newMax = xoffset + maxDiff; >> 314 pMin = (newMin < xMin) ? xMin : newMin; >> 315 pMax = (newMax > xMax) ? xMax : newMax; >> 316 } >> 317 break; >> 318 } >> 319 case kYAxis : >> 320 { >> 321 xoff1 = xoffset - xMin; >> 322 xoff2 = xMax - xoffset; >> 323 >> 324 if ( (xoff1 >= 0) && (xoff2 >= 0) ) // X limits cross max/min y >> 325 { // => no change >> 326 pMin = yMin; >> 327 pMax = yMax; >> 328 } >> 329 else >> 330 { >> 331 // X limits don't cross max/min y => compute max delta y, >> 332 // hence new mins/maxs >> 333 >> 334 delta = fRMax*fRMax - xoff1*xoff1; >> 335 diff1 = (delta>0.) ? std::sqrt(delta) : 0.; >> 336 delta = fRMax*fRMax - xoff2*xoff2; >> 337 diff2 = (delta>0.) ? std::sqrt(delta) : 0.; >> 338 maxDiff = (diff1 > diff2) ? diff1 : diff2; >> 339 newMin = yoffset - maxDiff; >> 340 newMax = yoffset + maxDiff; >> 341 pMin = (newMin < yMin) ? yMin : newMin; >> 342 pMax = (newMax > yMax) ? yMax : newMax; >> 343 } >> 344 break; >> 345 } >> 346 case kZAxis: >> 347 { >> 348 pMin = zMin; >> 349 pMax = zMax; >> 350 break; >> 351 } >> 352 default: >> 353 break; >> 354 } >> 355 pMin -= kCarTolerance; >> 356 pMax += kCarTolerance; >> 357 return true; 271 } 358 } 272 else << 359 else // Calculate rotated vertex coordinates 273 { 360 { 274 G4double sinStart = GetSinStartPhi(); << 361 G4int i, noEntries, noBetweenSections4; 275 G4double cosStart = GetCosStartPhi(); << 362 G4bool existsAfterClip = false; 276 G4double sinEnd = GetSinEndPhi(); << 363 G4ThreeVectorList* vertices = CreateRotatedVertices(pTransform); 277 G4double cosEnd = GetCosEndPhi(); << 364 278 G4double sinCur = sinStart*cosHalf + cos << 365 pMin = kInfinity; 279 G4double cosCur = cosStart*cosHalf - sin << 366 pMax = -kInfinity; 280 << 367 281 // set quadrilaterals << 368 noEntries = vertices->size(); 282 G4ThreeVectorList pols[NSTEPS+2]; << 369 noBetweenSections4 = noEntries - 4; 283 for (G4int k=0; k<ksteps+2; ++k) pols[k].r << 370 284 pols[0][0].set(rmin*cosStart,rmin*sinStart << 371 for ( i = 0 ; i < noEntries ; i += 4 ) 285 pols[0][1].set(rmin*cosStart,rmin*sinStart << 372 { 286 pols[0][2].set(rmax*cosStart,rmax*sinStart << 373 ClipCrossSection(vertices, i, pVoxelLimit, pAxis, pMin, pMax); 287 pols[0][3].set(rmax*cosStart,rmax*sinStart << 374 } 288 for (G4int k=1; k<ksteps+1; ++k) << 375 for ( i = 0 ; i < noBetweenSections4 ; i += 4 ) 289 { << 376 { 290 pols[k][0].set(rmin*cosCur,rmin*sinCur, << 377 ClipBetweenSections(vertices, i, pVoxelLimit, pAxis, pMin, pMax); 291 pols[k][1].set(rmin*cosCur,rmin*sinCur,- << 378 } 292 pols[k][2].set(rext*cosCur,rext*sinCur,- << 379 if ( (pMin != kInfinity) || (pMax != -kInfinity) ) 293 pols[k][3].set(rext*cosCur,rext*sinCur, << 380 { 294 << 381 existsAfterClip = true; 295 G4double sinTmp = sinCur; << 382 pMin -= kCarTolerance; // Add 2*tolerance to avoid precision troubles 296 sinCur = sinCur*cosStep + cosCur*sinStep << 383 pMax += kCarTolerance; 297 cosCur = cosCur*cosStep - sinTmp*sinStep << 384 } 298 } << 385 else 299 pols[ksteps+1][0].set(rmin*cosEnd,rmin*sin << 386 { 300 pols[ksteps+1][1].set(rmin*cosEnd,rmin*sin << 387 // Check for case where completely enveloping clipping volume 301 pols[ksteps+1][2].set(rmax*cosEnd,rmax*sin << 388 // If point inside then we are confident that the solid completely 302 pols[ksteps+1][3].set(rmax*cosEnd,rmax*sin << 389 // envelopes the clipping volume. Hence set min/max extents according 303 << 390 // to clipping volume extents along the specified axis. 304 // set envelope and calculate extent << 391 305 std::vector<const G4ThreeVectorList *> pol << 392 G4ThreeVector clipCentre( 306 polygons.resize(ksteps+2); << 393 (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5, 307 for (G4int k=0; k<ksteps+2; ++k) polygons[ << 394 (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5, 308 G4BoundingEnvelope benv(bmin,bmax,polygons << 395 (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5 ); 309 exist = benv.CalculateExtent(pAxis,pVoxelL << 396 >> 397 if ( Inside(pTransform.Inverse().TransformPoint(clipCentre)) != kOutside ) >> 398 { >> 399 existsAfterClip = true; >> 400 pMin = pVoxelLimit.GetMinExtent(pAxis); >> 401 pMax = pVoxelLimit.GetMaxExtent(pAxis); >> 402 } >> 403 } >> 404 delete vertices; >> 405 return existsAfterClip; 310 } 406 } 311 return exist; << 312 } 407 } 313 408 >> 409 314 ////////////////////////////////////////////// 410 /////////////////////////////////////////////////////////////////////////// 315 // 411 // 316 // Return whether point inside/outside/on surf 412 // Return whether point inside/outside/on surface 317 413 318 EInside G4Tubs::Inside( const G4ThreeVector& p 414 EInside G4Tubs::Inside( const G4ThreeVector& p ) const 319 { 415 { 320 G4double r2,pPhi,tolRMin,tolRMax; 416 G4double r2,pPhi,tolRMin,tolRMax; 321 EInside in = kOutside ; 417 EInside in = kOutside ; >> 418 static const G4double halfCarTolerance=kCarTolerance*0.5; >> 419 static const G4double halfRadTolerance=kRadTolerance*0.5; >> 420 static const G4double halfAngTolerance=kAngTolerance*0.5; 322 421 323 if (std::fabs(p.z()) <= fDz - halfCarToleran 422 if (std::fabs(p.z()) <= fDz - halfCarTolerance) 324 { 423 { 325 r2 = p.x()*p.x() + p.y()*p.y() ; 424 r2 = p.x()*p.x() + p.y()*p.y() ; 326 425 327 if (fRMin != 0.0) { tolRMin = fRMin + half << 426 if (fRMin) { tolRMin = fRMin + halfRadTolerance ; } 328 else { tolRMin = 0 ; } 427 else { tolRMin = 0 ; } 329 428 330 tolRMax = fRMax - halfRadTolerance ; 429 tolRMax = fRMax - halfRadTolerance ; 331 << 430 332 if ((r2 >= tolRMin*tolRMin) && (r2 <= tolR 431 if ((r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax)) 333 { 432 { 334 if ( fPhiFullTube ) 433 if ( fPhiFullTube ) 335 { 434 { 336 in = kInside ; 435 in = kInside ; 337 } 436 } 338 else 437 else 339 { 438 { 340 // Try inner tolerant phi boundaries ( 439 // Try inner tolerant phi boundaries (=>inside) 341 // if not inside, try outer tolerant p 440 // if not inside, try outer tolerant phi boundaries 342 441 343 if ( (tolRMin==0) && (std::fabs(p.x()) 442 if ( (tolRMin==0) && (std::fabs(p.x())<=halfCarTolerance) 344 && (std::fabs(p.y()) 443 && (std::fabs(p.y())<=halfCarTolerance) ) 345 { 444 { 346 in=kSurface; 445 in=kSurface; 347 } 446 } 348 else 447 else 349 { 448 { 350 pPhi = std::atan2(p.y(),p.x()) ; 449 pPhi = std::atan2(p.y(),p.x()) ; 351 if ( pPhi < -halfAngTolerance ) { p 450 if ( pPhi < -halfAngTolerance ) { pPhi += twopi; } // 0<=pPhi<2pi 352 451 353 if ( fSPhi >= 0 ) 452 if ( fSPhi >= 0 ) 354 { 453 { 355 if ( (std::fabs(pPhi) < halfAngTol 454 if ( (std::fabs(pPhi) < halfAngTolerance) 356 && (std::fabs(fSPhi + fDPhi - tw 455 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 357 { << 456 { 358 pPhi += twopi ; // 0 <= pPhi < 2 457 pPhi += twopi ; // 0 <= pPhi < 2pi 359 } 458 } 360 if ( (pPhi >= fSPhi + halfAngToler 459 if ( (pPhi >= fSPhi + halfAngTolerance) 361 && (pPhi <= fSPhi + fDPhi - half 460 && (pPhi <= fSPhi + fDPhi - halfAngTolerance) ) 362 { 461 { 363 in = kInside ; 462 in = kInside ; 364 } 463 } 365 else if ( (pPhi >= fSPhi - halfAng 464 else if ( (pPhi >= fSPhi - halfAngTolerance) 366 && (pPhi <= fSPhi + fDPhi + 465 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 367 { 466 { 368 in = kSurface ; 467 in = kSurface ; 369 } 468 } 370 } 469 } 371 else // fSPhi < 0 470 else // fSPhi < 0 372 { 471 { 373 if ( (pPhi <= fSPhi + twopi - half 472 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 374 && (pPhi >= fSPhi + fDPhi + hal 473 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} //kOutside 375 else if ( (pPhi <= fSPhi + twopi + 474 else if ( (pPhi <= fSPhi + twopi + halfAngTolerance) 376 && (pPhi >= fSPhi + fDPhi 475 && (pPhi >= fSPhi + fDPhi - halfAngTolerance) ) 377 { 476 { 378 in = kSurface ; 477 in = kSurface ; 379 } 478 } 380 else 479 else 381 { 480 { 382 in = kInside ; 481 in = kInside ; 383 } 482 } 384 } 483 } 385 } << 484 } 386 } 485 } 387 } 486 } 388 else // Try generous boundaries 487 else // Try generous boundaries 389 { 488 { 390 tolRMin = fRMin - halfRadTolerance ; 489 tolRMin = fRMin - halfRadTolerance ; 391 tolRMax = fRMax + halfRadTolerance ; 490 tolRMax = fRMax + halfRadTolerance ; 392 491 393 if ( tolRMin < 0 ) { tolRMin = 0; } 492 if ( tolRMin < 0 ) { tolRMin = 0; } 394 493 395 if ( (r2 >= tolRMin*tolRMin) && (r2 <= t 494 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) ) 396 { 495 { 397 if (fPhiFullTube || (r2 <=halfRadToler 496 if (fPhiFullTube || (r2 <=halfRadTolerance*halfRadTolerance) ) 398 { // Continuous 497 { // Continuous in phi or on z-axis 399 in = kSurface ; 498 in = kSurface ; 400 } 499 } 401 else // Try outer tolerant phi boundar 500 else // Try outer tolerant phi boundaries only 402 { 501 { 403 pPhi = std::atan2(p.y(),p.x()) ; 502 pPhi = std::atan2(p.y(),p.x()) ; 404 503 405 if ( pPhi < -halfAngTolerance) { pP 504 if ( pPhi < -halfAngTolerance) { pPhi += twopi; } // 0<=pPhi<2pi 406 if ( fSPhi >= 0 ) 505 if ( fSPhi >= 0 ) 407 { 506 { 408 if ( (std::fabs(pPhi) < halfAngTol 507 if ( (std::fabs(pPhi) < halfAngTolerance) 409 && (std::fabs(fSPhi + fDPhi - tw 508 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 410 { << 509 { 411 pPhi += twopi ; // 0 <= pPhi < 2 510 pPhi += twopi ; // 0 <= pPhi < 2pi 412 } 511 } 413 if ( (pPhi >= fSPhi - halfAngToler 512 if ( (pPhi >= fSPhi - halfAngTolerance) 414 && (pPhi <= fSPhi + fDPhi + half 513 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 415 { 514 { 416 in = kSurface ; 515 in = kSurface ; 417 } 516 } 418 } 517 } 419 else // fSPhi < 0 518 else // fSPhi < 0 420 { 519 { 421 if ( (pPhi <= fSPhi + twopi - half 520 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 422 && (pPhi >= fSPhi + fDPhi + half 521 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} // kOutside 423 else 522 else 424 { 523 { 425 in = kSurface ; 524 in = kSurface ; 426 } 525 } 427 } 526 } 428 } 527 } 429 } 528 } 430 } 529 } 431 } 530 } 432 else if (std::fabs(p.z()) <= fDz + halfCarTo 531 else if (std::fabs(p.z()) <= fDz + halfCarTolerance) 433 { / 532 { // Check within tolerant r limits 434 r2 = p.x()*p.x() + p.y()*p.y() ; 533 r2 = p.x()*p.x() + p.y()*p.y() ; 435 tolRMin = fRMin - halfRadTolerance ; 534 tolRMin = fRMin - halfRadTolerance ; 436 tolRMax = fRMax + halfRadTolerance ; 535 tolRMax = fRMax + halfRadTolerance ; 437 536 438 if ( tolRMin < 0 ) { tolRMin = 0; } 537 if ( tolRMin < 0 ) { tolRMin = 0; } 439 538 440 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tol 539 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) ) 441 { 540 { 442 if (fPhiFullTube || (r2 <=halfRadToleran 541 if (fPhiFullTube || (r2 <=halfRadTolerance*halfRadTolerance)) 443 { // Continuous i 542 { // Continuous in phi or on z-axis 444 in = kSurface ; 543 in = kSurface ; 445 } 544 } 446 else // Try outer tolerant phi boundarie 545 else // Try outer tolerant phi boundaries 447 { 546 { 448 pPhi = std::atan2(p.y(),p.x()) ; 547 pPhi = std::atan2(p.y(),p.x()) ; 449 548 450 if ( pPhi < -halfAngTolerance ) { pPh 549 if ( pPhi < -halfAngTolerance ) { pPhi += twopi; } // 0<=pPhi<2pi 451 if ( fSPhi >= 0 ) 550 if ( fSPhi >= 0 ) 452 { 551 { 453 if ( (std::fabs(pPhi) < halfAngToler 552 if ( (std::fabs(pPhi) < halfAngTolerance) 454 && (std::fabs(fSPhi + fDPhi - twop 553 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 455 { << 554 { 456 pPhi += twopi ; // 0 <= pPhi < 2pi 555 pPhi += twopi ; // 0 <= pPhi < 2pi 457 } 556 } 458 if ( (pPhi >= fSPhi - halfAngToleran 557 if ( (pPhi >= fSPhi - halfAngTolerance) 459 && (pPhi <= fSPhi + fDPhi + halfAn 558 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 460 { 559 { 461 in = kSurface; 560 in = kSurface; 462 } 561 } 463 } 562 } 464 else // fSPhi < 0 563 else // fSPhi < 0 465 { 564 { 466 if ( (pPhi <= fSPhi + twopi - halfAn 565 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 467 && (pPhi >= fSPhi + fDPhi + halfA 566 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} 468 else 567 else 469 { 568 { 470 in = kSurface ; 569 in = kSurface ; 471 } 570 } 472 } << 571 } 473 } 572 } 474 } 573 } 475 } 574 } 476 return in; 575 return in; 477 } 576 } 478 577 479 ////////////////////////////////////////////// 578 /////////////////////////////////////////////////////////////////////////// 480 // 579 // 481 // Return unit normal of surface closest to p 580 // Return unit normal of surface closest to p 482 // - note if point on z axis, ignore phi divid 581 // - note if point on z axis, ignore phi divided sides 483 // - unsafe if point close to z axis a rmin=0 582 // - unsafe if point close to z axis a rmin=0 - no explicit checks 484 583 485 G4ThreeVector G4Tubs::SurfaceNormal( const G4T 584 G4ThreeVector G4Tubs::SurfaceNormal( const G4ThreeVector& p ) const 486 { 585 { 487 G4int noSurfaces = 0; 586 G4int noSurfaces = 0; 488 G4double rho, pPhi; 587 G4double rho, pPhi; 489 G4double distZ, distRMin, distRMax; 588 G4double distZ, distRMin, distRMax; 490 G4double distSPhi = kInfinity, distEPhi = kI 589 G4double distSPhi = kInfinity, distEPhi = kInfinity; 491 590 >> 591 static const G4double halfCarTolerance = 0.5*kCarTolerance; >> 592 static const G4double halfAngTolerance = 0.5*kAngTolerance; >> 593 492 G4ThreeVector norm, sumnorm(0.,0.,0.); 594 G4ThreeVector norm, sumnorm(0.,0.,0.); 493 G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0); 595 G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0); 494 G4ThreeVector nR, nPs, nPe; 596 G4ThreeVector nR, nPs, nPe; 495 597 496 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()); 598 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()); 497 599 498 distRMin = std::fabs(rho - fRMin); 600 distRMin = std::fabs(rho - fRMin); 499 distRMax = std::fabs(rho - fRMax); 601 distRMax = std::fabs(rho - fRMax); 500 distZ = std::fabs(std::fabs(p.z()) - fDz) 602 distZ = std::fabs(std::fabs(p.z()) - fDz); 501 603 502 if (!fPhiFullTube) // Protected against ( << 604 if (!fPhiFullTube) // Protected against (0,0,z) 503 { 605 { 504 if ( rho > halfCarTolerance ) 606 if ( rho > halfCarTolerance ) 505 { 607 { 506 pPhi = std::atan2(p.y(),p.x()); 608 pPhi = std::atan2(p.y(),p.x()); >> 609 >> 610 if(pPhi < fSPhi- halfCarTolerance) { pPhi += twopi; } >> 611 else if(pPhi > fSPhi+fDPhi+ halfCarTolerance) { pPhi -= twopi; } 507 612 508 if (pPhi < fSPhi-halfCarTolerance) << 613 distSPhi = std::fabs(pPhi - fSPhi); 509 else if (pPhi > fSPhi+fDPhi+halfCarToler << 614 distEPhi = std::fabs(pPhi - fSPhi - fDPhi); 510 << 511 distSPhi = std::fabs( pPhi - fSPhi ); << 512 distEPhi = std::fabs( pPhi - fSPhi - fDP << 513 } 615 } 514 else if ( fRMin == 0.0 ) << 616 else if( !fRMin ) 515 { 617 { 516 distSPhi = 0.; << 618 distSPhi = 0.; 517 distEPhi = 0.; << 619 distEPhi = 0.; 518 } 620 } 519 nPs = G4ThreeVector( sinSPhi, -cosSPhi, 0 << 621 nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0); 520 nPe = G4ThreeVector( -sinEPhi, cosEPhi, 0 << 622 nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0); 521 } 623 } 522 if ( rho > halfCarTolerance ) { nR = G4Three 624 if ( rho > halfCarTolerance ) { nR = G4ThreeVector(p.x()/rho,p.y()/rho,0); } 523 625 524 if( distRMax <= halfCarTolerance ) 626 if( distRMax <= halfCarTolerance ) 525 { 627 { 526 ++noSurfaces; << 628 noSurfaces ++; 527 sumnorm += nR; 629 sumnorm += nR; 528 } 630 } 529 if( (fRMin != 0.0) && (distRMin <= halfCarTo << 631 if( fRMin && (distRMin <= halfCarTolerance) ) 530 { 632 { 531 ++noSurfaces; << 633 noSurfaces ++; 532 sumnorm -= nR; 634 sumnorm -= nR; 533 } 635 } 534 if( fDPhi < twopi ) << 636 if( fDPhi < twopi ) 535 { 637 { 536 if (distSPhi <= halfAngTolerance) << 638 if (distSPhi <= halfAngTolerance) 537 { 639 { 538 ++noSurfaces; << 640 noSurfaces ++; 539 sumnorm += nPs; 641 sumnorm += nPs; 540 } 642 } 541 if (distEPhi <= halfAngTolerance) << 643 if (distEPhi <= halfAngTolerance) 542 { 644 { 543 ++noSurfaces; << 645 noSurfaces ++; 544 sumnorm += nPe; 646 sumnorm += nPe; 545 } 647 } 546 } 648 } 547 if (distZ <= halfCarTolerance) << 649 if (distZ <= halfCarTolerance) 548 { 650 { 549 ++noSurfaces; << 651 noSurfaces ++; 550 if ( p.z() >= 0.) { sumnorm += nZ; } 652 if ( p.z() >= 0.) { sumnorm += nZ; } 551 else { sumnorm -= nZ; } 653 else { sumnorm -= nZ; } 552 } 654 } 553 if ( noSurfaces == 0 ) 655 if ( noSurfaces == 0 ) 554 { 656 { 555 #ifdef G4CSGDEBUG 657 #ifdef G4CSGDEBUG 556 G4Exception("G4Tubs::SurfaceNormal(p)", "G 658 G4Exception("G4Tubs::SurfaceNormal(p)", "GeomSolids1002", 557 JustWarning, "Point p is not o 659 JustWarning, "Point p is not on surface !?" ); 558 G4long oldprc = G4cout.precision(20); << 660 G4int oldprc = G4cout.precision(20); 559 G4cout<< "G4Tubs::SN ( "<<p.x()<<", "<<p.y 661 G4cout<< "G4Tubs::SN ( "<<p.x()<<", "<<p.y()<<", "<<p.z()<<" ); " 560 << G4endl << G4endl; 662 << G4endl << G4endl; 561 G4cout.precision(oldprc) ; 663 G4cout.precision(oldprc) ; 562 #endif << 664 #endif 563 norm = ApproxSurfaceNormal(p); 665 norm = ApproxSurfaceNormal(p); 564 } 666 } 565 else if ( noSurfaces == 1 ) { norm = sumnor 667 else if ( noSurfaces == 1 ) { norm = sumnorm; } 566 else { norm = sumnor 668 else { norm = sumnorm.unit(); } 567 669 568 return norm; 670 return norm; 569 } 671 } 570 672 571 ////////////////////////////////////////////// 673 ///////////////////////////////////////////////////////////////////////////// 572 // 674 // 573 // Algorithm for SurfaceNormal() following the 675 // Algorithm for SurfaceNormal() following the original specification 574 // for points not on the surface 676 // for points not on the surface 575 677 576 G4ThreeVector G4Tubs::ApproxSurfaceNormal( con 678 G4ThreeVector G4Tubs::ApproxSurfaceNormal( const G4ThreeVector& p ) const 577 { 679 { 578 ENorm side ; 680 ENorm side ; 579 G4ThreeVector norm ; 681 G4ThreeVector norm ; 580 G4double rho, phi ; 682 G4double rho, phi ; 581 G4double distZ, distRMin, distRMax, distSPhi 683 G4double distZ, distRMin, distRMax, distSPhi, distEPhi, distMin ; 582 684 583 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 685 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 584 686 585 distRMin = std::fabs(rho - fRMin) ; 687 distRMin = std::fabs(rho - fRMin) ; 586 distRMax = std::fabs(rho - fRMax) ; 688 distRMax = std::fabs(rho - fRMax) ; 587 distZ = std::fabs(std::fabs(p.z()) - fDz) 689 distZ = std::fabs(std::fabs(p.z()) - fDz) ; 588 690 589 if (distRMin < distRMax) // First minimum 691 if (distRMin < distRMax) // First minimum 590 { 692 { 591 if ( distZ < distRMin ) 693 if ( distZ < distRMin ) 592 { 694 { 593 distMin = distZ ; 695 distMin = distZ ; 594 side = kNZ ; 696 side = kNZ ; 595 } 697 } 596 else 698 else 597 { 699 { 598 distMin = distRMin ; 700 distMin = distRMin ; 599 side = kNRMin ; 701 side = kNRMin ; 600 } 702 } 601 } 703 } 602 else 704 else 603 { 705 { 604 if ( distZ < distRMax ) 706 if ( distZ < distRMax ) 605 { 707 { 606 distMin = distZ ; 708 distMin = distZ ; 607 side = kNZ ; 709 side = kNZ ; 608 } 710 } 609 else 711 else 610 { 712 { 611 distMin = distRMax ; 713 distMin = distRMax ; 612 side = kNRMax ; 714 side = kNRMax ; 613 } 715 } 614 } << 716 } 615 if (!fPhiFullTube && (rho != 0.0) ) // Pro << 717 if (!fPhiFullTube && rho ) // Protected against (0,0,z) 616 { 718 { 617 phi = std::atan2(p.y(),p.x()) ; 719 phi = std::atan2(p.y(),p.x()) ; 618 720 619 if ( phi < 0 ) { phi += twopi; } 721 if ( phi < 0 ) { phi += twopi; } 620 722 621 if ( fSPhi < 0 ) 723 if ( fSPhi < 0 ) 622 { 724 { 623 distSPhi = std::fabs(phi - (fSPhi + twop 725 distSPhi = std::fabs(phi - (fSPhi + twopi))*rho ; 624 } 726 } 625 else 727 else 626 { 728 { 627 distSPhi = std::fabs(phi - fSPhi)*rho ; 729 distSPhi = std::fabs(phi - fSPhi)*rho ; 628 } 730 } 629 distEPhi = std::fabs(phi - fSPhi - fDPhi)* 731 distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ; 630 << 732 631 if (distSPhi < distEPhi) // Find new minim 733 if (distSPhi < distEPhi) // Find new minimum 632 { 734 { 633 if ( distSPhi < distMin ) 735 if ( distSPhi < distMin ) 634 { 736 { 635 side = kNSPhi ; 737 side = kNSPhi ; 636 } 738 } 637 } 739 } 638 else 740 else 639 { 741 { 640 if ( distEPhi < distMin ) 742 if ( distEPhi < distMin ) 641 { 743 { 642 side = kNEPhi ; 744 side = kNEPhi ; 643 } 745 } 644 } 746 } 645 } << 747 } 646 switch ( side ) 748 switch ( side ) 647 { 749 { 648 case kNRMin : // Inner radius 750 case kNRMin : // Inner radius 649 { << 751 { 650 norm = G4ThreeVector(-p.x()/rho, -p.y()/ 752 norm = G4ThreeVector(-p.x()/rho, -p.y()/rho, 0) ; 651 break ; 753 break ; 652 } 754 } 653 case kNRMax : // Outer radius 755 case kNRMax : // Outer radius 654 { << 756 { 655 norm = G4ThreeVector(p.x()/rho, p.y()/rh 757 norm = G4ThreeVector(p.x()/rho, p.y()/rho, 0) ; 656 break ; 758 break ; 657 } 759 } 658 case kNZ : // + or - dz 760 case kNZ : // + or - dz 659 { << 761 { 660 if ( p.z() > 0 ) { norm = G4ThreeVector 762 if ( p.z() > 0 ) { norm = G4ThreeVector(0,0,1) ; } 661 else { norm = G4ThreeVector 763 else { norm = G4ThreeVector(0,0,-1); } 662 break ; 764 break ; 663 } 765 } 664 case kNSPhi: 766 case kNSPhi: 665 { 767 { 666 norm = G4ThreeVector(sinSPhi, -cosSPhi, << 768 norm = G4ThreeVector(std::sin(fSPhi), -std::cos(fSPhi), 0) ; 667 break ; 769 break ; 668 } 770 } 669 case kNEPhi: 771 case kNEPhi: 670 { 772 { 671 norm = G4ThreeVector(-sinEPhi, cosEPhi, << 773 norm = G4ThreeVector(-std::sin(fSPhi+fDPhi), std::cos(fSPhi+fDPhi), 0) ; 672 break; 774 break; 673 } 775 } 674 default: // Should never reach this c 776 default: // Should never reach this case ... 675 { 777 { 676 DumpInfo(); 778 DumpInfo(); 677 G4Exception("G4Tubs::ApproxSurfaceNormal 779 G4Exception("G4Tubs::ApproxSurfaceNormal()", 678 "GeomSolids1002", JustWarnin 780 "GeomSolids1002", JustWarning, 679 "Undefined side for valid su 781 "Undefined side for valid surface normal to solid."); 680 break ; 782 break ; 681 } << 783 } 682 } << 784 } 683 return norm; 785 return norm; 684 } 786 } 685 787 686 ////////////////////////////////////////////// 788 //////////////////////////////////////////////////////////////////// 687 // 789 // 688 // 790 // 689 // Calculate distance to shape from outside, a 791 // Calculate distance to shape from outside, along normalised vector 690 // - return kInfinity if no intersection, or i 792 // - return kInfinity if no intersection, or intersection distance <= tolerance 691 // 793 // 692 // - Compute the intersection with the z plane << 794 // - Compute the intersection with the z planes 693 // - if at valid r, phi, return 795 // - if at valid r, phi, return 694 // 796 // 695 // -> If point is outer outer radius, compute 797 // -> If point is outer outer radius, compute intersection with rmax 696 // - if at valid phi,z return 798 // - if at valid phi,z return 697 // 799 // 698 // -> Compute intersection with inner radius, 800 // -> Compute intersection with inner radius, taking largest +ve root 699 // - if valid (in z,phi), save intersct 801 // - if valid (in z,phi), save intersction 700 // 802 // 701 // -> If phi segmented, compute intersectio 803 // -> If phi segmented, compute intersections with phi half planes 702 // - return smallest of valid phi inter 804 // - return smallest of valid phi intersections and 703 // inner radius intersection 805 // inner radius intersection 704 // 806 // 705 // NOTE: 807 // NOTE: 706 // - 'if valid' implies tolerant checking of i 808 // - 'if valid' implies tolerant checking of intersection points 707 809 708 G4double G4Tubs::DistanceToIn( const G4ThreeVe 810 G4double G4Tubs::DistanceToIn( const G4ThreeVector& p, 709 const G4ThreeVe 811 const G4ThreeVector& v ) const 710 { 812 { 711 G4double snxt = kInfinity ; // snxt = d 813 G4double snxt = kInfinity ; // snxt = default return value 712 G4double tolORMin2, tolIRMax2 ; // 'generou 814 G4double tolORMin2, tolIRMax2 ; // 'generous' radii squared 713 G4double tolORMax2, tolIRMin2, tolODz, tolID 815 G4double tolORMax2, tolIRMin2, tolODz, tolIDz ; 714 const G4double dRmax = 100.*fRMax; 816 const G4double dRmax = 100.*fRMax; 715 817 >> 818 static const G4double halfCarTolerance = 0.5*kCarTolerance; >> 819 static const G4double halfRadTolerance = 0.5*kRadTolerance; >> 820 716 // Intersection point variables 821 // Intersection point variables 717 // 822 // 718 G4double Dist, sd, xi, yi, zi, rho2, inum, i 823 G4double Dist, sd, xi, yi, zi, rho2, inum, iden, cosPsi, Comp ; 719 G4double t1, t2, t3, b, c, d ; // Quadra << 824 G4double t1, t2, t3, b, c, d ; // Quadratic solver variables 720 << 825 721 // Calculate tolerant rmin and rmax 826 // Calculate tolerant rmin and rmax 722 827 723 if (fRMin > kRadTolerance) 828 if (fRMin > kRadTolerance) 724 { 829 { 725 tolORMin2 = (fRMin - halfRadTolerance)*(fR 830 tolORMin2 = (fRMin - halfRadTolerance)*(fRMin - halfRadTolerance) ; 726 tolIRMin2 = (fRMin + halfRadTolerance)*(fR 831 tolIRMin2 = (fRMin + halfRadTolerance)*(fRMin + halfRadTolerance) ; 727 } 832 } 728 else 833 else 729 { 834 { 730 tolORMin2 = 0.0 ; 835 tolORMin2 = 0.0 ; 731 tolIRMin2 = 0.0 ; 836 tolIRMin2 = 0.0 ; 732 } 837 } 733 tolORMax2 = (fRMax + halfRadTolerance)*(fRMa 838 tolORMax2 = (fRMax + halfRadTolerance)*(fRMax + halfRadTolerance) ; 734 tolIRMax2 = (fRMax - halfRadTolerance)*(fRMa 839 tolIRMax2 = (fRMax - halfRadTolerance)*(fRMax - halfRadTolerance) ; 735 840 736 // Intersection with Z surfaces 841 // Intersection with Z surfaces 737 842 738 tolIDz = fDz - halfCarTolerance ; 843 tolIDz = fDz - halfCarTolerance ; 739 tolODz = fDz + halfCarTolerance ; 844 tolODz = fDz + halfCarTolerance ; 740 845 741 if (std::fabs(p.z()) >= tolIDz) 846 if (std::fabs(p.z()) >= tolIDz) 742 { 847 { 743 if ( p.z()*v.z() < 0 ) // at +Z going i 848 if ( p.z()*v.z() < 0 ) // at +Z going in -Z or visa versa 744 { 849 { 745 sd = (std::fabs(p.z()) - fDz)/std::fabs( 850 sd = (std::fabs(p.z()) - fDz)/std::fabs(v.z()) ; // Z intersect distance 746 851 747 if(sd < 0.0) { sd = 0.0; } 852 if(sd < 0.0) { sd = 0.0; } 748 853 749 xi = p.x() + sd*v.x() ; 854 xi = p.x() + sd*v.x() ; // Intersection coords 750 yi = p.y() + sd*v.y() ; 855 yi = p.y() + sd*v.y() ; 751 rho2 = xi*xi + yi*yi ; 856 rho2 = xi*xi + yi*yi ; 752 857 753 // Check validity of intersection 858 // Check validity of intersection 754 859 755 if ((tolIRMin2 <= rho2) && (rho2 <= tolI 860 if ((tolIRMin2 <= rho2) && (rho2 <= tolIRMax2)) 756 { 861 { 757 if (!fPhiFullTube && (rho2 != 0.0)) << 862 if (!fPhiFullTube && rho2) 758 { 863 { 759 // Psi = angle made with central (av 864 // Psi = angle made with central (average) phi of shape 760 // 865 // 761 inum = xi*cosCPhi + yi*sinCPhi ; 866 inum = xi*cosCPhi + yi*sinCPhi ; 762 iden = std::sqrt(rho2) ; 867 iden = std::sqrt(rho2) ; 763 cosPsi = inum/iden ; 868 cosPsi = inum/iden ; 764 if (cosPsi >= cosHDPhiIT) { return 869 if (cosPsi >= cosHDPhiIT) { return sd ; } 765 } 870 } 766 else 871 else 767 { 872 { 768 return sd ; 873 return sd ; 769 } 874 } 770 } 875 } 771 } 876 } 772 else 877 else 773 { 878 { 774 if ( snxt<halfCarTolerance ) { snxt=0; 879 if ( snxt<halfCarTolerance ) { snxt=0; } 775 return snxt ; // On/outside extent, and 880 return snxt ; // On/outside extent, and heading away 776 // -> cannot intersect 881 // -> cannot intersect 777 } 882 } 778 } 883 } 779 884 780 // -> Can not intersect z surfaces 885 // -> Can not intersect z surfaces 781 // 886 // 782 // Intersection with rmax (possible return) 887 // Intersection with rmax (possible return) and rmin (must also check phi) 783 // 888 // 784 // Intersection point (xi,yi,zi) on line x=p 889 // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc. 785 // 890 // 786 // Intersects with x^2+y^2=R^2 891 // Intersects with x^2+y^2=R^2 787 // 892 // 788 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v. 893 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0 789 // t1 t2 894 // t1 t2 t3 790 895 791 t1 = 1.0 - v.z()*v.z() ; 896 t1 = 1.0 - v.z()*v.z() ; 792 t2 = p.x()*v.x() + p.y()*v.y() ; 897 t2 = p.x()*v.x() + p.y()*v.y() ; 793 t3 = p.x()*p.x() + p.y()*p.y() ; 898 t3 = p.x()*p.x() + p.y()*p.y() ; 794 899 795 if ( t1 > 0 ) // Check not || to z ax 900 if ( t1 > 0 ) // Check not || to z axis 796 { 901 { 797 b = t2/t1 ; 902 b = t2/t1 ; 798 c = t3 - fRMax*fRMax ; 903 c = t3 - fRMax*fRMax ; 799 if ((t3 >= tolORMax2) && (t2<0)) // This 904 if ((t3 >= tolORMax2) && (t2<0)) // This also handles the tangent case 800 { 905 { 801 // Try outer cylinder intersection 906 // Try outer cylinder intersection 802 // c=(t3-fRMax*fRMax)/t1; 907 // c=(t3-fRMax*fRMax)/t1; 803 908 804 c /= t1 ; 909 c /= t1 ; 805 d = b*b - c ; 910 d = b*b - c ; 806 911 807 if (d >= 0) // If real root 912 if (d >= 0) // If real root 808 { 913 { 809 sd = c/(-b+std::sqrt(d)); 914 sd = c/(-b+std::sqrt(d)); 810 if (sd >= 0) // If 'forwards' 915 if (sd >= 0) // If 'forwards' 811 { 916 { 812 if ( sd>dRmax ) // Avoid rounding er 917 if ( sd>dRmax ) // Avoid rounding errors due to precision issues on 813 { // 64 bits systems. 918 { // 64 bits systems. Split long distances and recompute 814 G4double fTerm = sd-std::fmod(sd,d 919 G4double fTerm = sd-std::fmod(sd,dRmax); 815 sd = fTerm + DistanceToIn(p+fTerm* 920 sd = fTerm + DistanceToIn(p+fTerm*v,v); 816 } << 921 } 817 // Check z intersection 922 // Check z intersection 818 // 923 // 819 zi = p.z() + sd*v.z() ; 924 zi = p.z() + sd*v.z() ; 820 if (std::fabs(zi)<=tolODz) 925 if (std::fabs(zi)<=tolODz) 821 { 926 { 822 // Z ok. Check phi intersection if 927 // Z ok. Check phi intersection if reqd 823 // 928 // 824 if (fPhiFullTube) 929 if (fPhiFullTube) 825 { 930 { 826 return sd ; 931 return sd ; 827 } 932 } 828 else 933 else 829 { 934 { 830 xi = p.x() + sd*v.x() ; 935 xi = p.x() + sd*v.x() ; 831 yi = p.y() + sd*v.y() ; 936 yi = p.y() + sd*v.y() ; 832 cosPsi = (xi*cosCPhi + yi*sinCPh 937 cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMax ; 833 if (cosPsi >= cosHDPhiIT) { ret 938 if (cosPsi >= cosHDPhiIT) { return sd ; } 834 } 939 } 835 } // end if std::fabs(zi) 940 } // end if std::fabs(zi) 836 } // end if (sd>=0) 941 } // end if (sd>=0) 837 } // end if (d>=0) 942 } // end if (d>=0) 838 } // end if (r>=fRMax) 943 } // end if (r>=fRMax) 839 else << 944 else 840 { 945 { 841 // Inside outer radius : 946 // Inside outer radius : 842 // check not inside, and heading through 947 // check not inside, and heading through tubs (-> 0 to in) 843 948 844 if ((t3 > tolIRMin2) && (t2 < 0) && (std 949 if ((t3 > tolIRMin2) && (t2 < 0) && (std::fabs(p.z()) <= tolIDz)) 845 { 950 { 846 // Inside both radii, delta r -ve, ins 951 // Inside both radii, delta r -ve, inside z extent 847 952 848 if (!fPhiFullTube) 953 if (!fPhiFullTube) 849 { 954 { 850 inum = p.x()*cosCPhi + p.y()*sinCP 955 inum = p.x()*cosCPhi + p.y()*sinCPhi ; 851 iden = std::sqrt(t3) ; 956 iden = std::sqrt(t3) ; 852 cosPsi = inum/iden ; 957 cosPsi = inum/iden ; 853 if (cosPsi >= cosHDPhiIT) 958 if (cosPsi >= cosHDPhiIT) 854 { 959 { 855 // In the old version, the small n 960 // In the old version, the small negative tangent for the point 856 // on surface was not taken in acc 961 // on surface was not taken in account, and returning 0.0 ... 857 // New version: check the tangent << 962 // New version: check the tangent for the point on surface and 858 // if no intersection, return kInf 963 // if no intersection, return kInfinity, if intersection instead 859 // return sd. 964 // return sd. 860 // 965 // 861 c = t3-fRMax*fRMax; << 966 c = t3-fRMax*fRMax; 862 if ( c<=0.0 ) 967 if ( c<=0.0 ) 863 { 968 { 864 return 0.0; 969 return 0.0; 865 } 970 } 866 else 971 else 867 { 972 { 868 c = c/t1 ; 973 c = c/t1 ; 869 d = b*b-c; 974 d = b*b-c; 870 if ( d>=0.0 ) 975 if ( d>=0.0 ) 871 { 976 { 872 snxt = c/(-b+std::sqrt(d)); // 977 snxt = c/(-b+std::sqrt(d)); // using safe solution 873 // << 978 // for quadratic equation 874 if ( snxt < halfCarTolerance ) 979 if ( snxt < halfCarTolerance ) { snxt=0; } 875 return snxt ; 980 return snxt ; 876 } << 981 } 877 else 982 else 878 { 983 { 879 return kInfinity; 984 return kInfinity; 880 } 985 } 881 } 986 } 882 } << 987 } 883 } 988 } 884 else 989 else 885 { << 990 { 886 // In the old version, the small neg 991 // In the old version, the small negative tangent for the point 887 // on surface was not taken in accou 992 // on surface was not taken in account, and returning 0.0 ... 888 // New version: check the tangent fo << 993 // New version: check the tangent for the point on surface and 889 // if no intersection, return kInfin 994 // if no intersection, return kInfinity, if intersection instead 890 // return sd. 995 // return sd. 891 // 996 // 892 c = t3 - fRMax*fRMax; << 997 c = t3 - fRMax*fRMax; 893 if ( c<=0.0 ) 998 if ( c<=0.0 ) 894 { 999 { 895 return 0.0; 1000 return 0.0; 896 } 1001 } 897 else 1002 else 898 { 1003 { 899 c = c/t1 ; 1004 c = c/t1 ; 900 d = b*b-c; 1005 d = b*b-c; 901 if ( d>=0.0 ) 1006 if ( d>=0.0 ) 902 { 1007 { 903 snxt= c/(-b+std::sqrt(d)); // us 1008 snxt= c/(-b+std::sqrt(d)); // using safe solution 904 // fo << 1009 // for quadratic equation 905 if ( snxt < halfCarTolerance ) { 1010 if ( snxt < halfCarTolerance ) { snxt=0; } 906 return snxt ; 1011 return snxt ; 907 } << 1012 } 908 else 1013 else 909 { 1014 { 910 return kInfinity; 1015 return kInfinity; 911 } 1016 } 912 } 1017 } 913 } // end if (!fPhiFullTube) 1018 } // end if (!fPhiFullTube) 914 } // end if (t3>tolIRMin2) 1019 } // end if (t3>tolIRMin2) 915 } // end if (Inside Outer Radius) << 1020 } // end if (Inside Outer Radius) 916 if ( fRMin != 0.0 ) // Try inner cylind << 1021 if ( fRMin ) // Try inner cylinder intersection 917 { 1022 { 918 c = (t3 - fRMin*fRMin)/t1 ; 1023 c = (t3 - fRMin*fRMin)/t1 ; 919 d = b*b - c ; 1024 d = b*b - c ; 920 if ( d >= 0.0 ) // If real root 1025 if ( d >= 0.0 ) // If real root 921 { 1026 { 922 // Always want 2nd root - we are outsi 1027 // Always want 2nd root - we are outside and know rmax Hit was bad 923 // - If on surface of rmin also need f 1028 // - If on surface of rmin also need farthest root 924 1029 925 sd =( b > 0. )? c/(-b - std::sqrt(d)) 1030 sd =( b > 0. )? c/(-b - std::sqrt(d)) : (-b + std::sqrt(d)); 926 if (sd >= -halfCarTolerance) // check 1031 if (sd >= -halfCarTolerance) // check forwards 927 { 1032 { 928 // Check z intersection 1033 // Check z intersection 929 // 1034 // 930 if(sd < 0.0) { sd = 0.0; } 1035 if(sd < 0.0) { sd = 0.0; } 931 if ( sd>dRmax ) // Avoid rounding er 1036 if ( sd>dRmax ) // Avoid rounding errors due to precision issues seen 932 { // 64 bits systems. 1037 { // 64 bits systems. Split long distances and recompute 933 G4double fTerm = sd-std::fmod(sd,d 1038 G4double fTerm = sd-std::fmod(sd,dRmax); 934 sd = fTerm + DistanceToIn(p+fTerm* 1039 sd = fTerm + DistanceToIn(p+fTerm*v,v); 935 } << 1040 } 936 zi = p.z() + sd*v.z() ; 1041 zi = p.z() + sd*v.z() ; 937 if (std::fabs(zi) <= tolODz) 1042 if (std::fabs(zi) <= tolODz) 938 { 1043 { 939 // Z ok. Check phi 1044 // Z ok. Check phi 940 // 1045 // 941 if ( fPhiFullTube ) 1046 if ( fPhiFullTube ) 942 { 1047 { 943 return sd ; << 1048 return sd ; 944 } 1049 } 945 else 1050 else 946 { 1051 { 947 xi = p.x() + sd*v.x() ; 1052 xi = p.x() + sd*v.x() ; 948 yi = p.y() + sd*v.y() ; 1053 yi = p.y() + sd*v.y() ; 949 cosPsi = (xi*cosCPhi + yi*sinCPh << 1054 cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMin ; 950 if (cosPsi >= cosHDPhiIT) 1055 if (cosPsi >= cosHDPhiIT) 951 { 1056 { 952 // Good inner radius isect 1057 // Good inner radius isect 953 // - but earlier phi isect sti 1058 // - but earlier phi isect still possible 954 1059 955 snxt = sd ; 1060 snxt = sd ; 956 } 1061 } 957 } 1062 } 958 } // end if std::fabs(zi) 1063 } // end if std::fabs(zi) 959 } // end if (sd>=0) 1064 } // end if (sd>=0) 960 } // end if (d>=0) 1065 } // end if (d>=0) 961 } // end if (fRMin) 1066 } // end if (fRMin) 962 } 1067 } 963 1068 964 // Phi segment intersection 1069 // Phi segment intersection 965 // 1070 // 966 // o Tolerant of points inside phi planes by 1071 // o Tolerant of points inside phi planes by up to kCarTolerance*0.5 967 // 1072 // 968 // o NOTE: Large duplication of code between 1073 // o NOTE: Large duplication of code between sphi & ephi checks 969 // -> only diffs: sphi -> ephi, Comp 1074 // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane 970 // intersection check <=0 -> >=0 1075 // intersection check <=0 -> >=0 971 // -> use some form of loop Construc 1076 // -> use some form of loop Construct ? 972 // 1077 // 973 if ( !fPhiFullTube ) 1078 if ( !fPhiFullTube ) 974 { 1079 { 975 // First phi surface (Starting phi) 1080 // First phi surface (Starting phi) 976 // 1081 // 977 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 1082 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 978 << 1083 979 if ( Comp < 0 ) // Component in outwards 1084 if ( Comp < 0 ) // Component in outwards normal dirn 980 { 1085 { 981 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 1086 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 982 1087 983 if ( Dist < halfCarTolerance ) 1088 if ( Dist < halfCarTolerance ) 984 { 1089 { 985 sd = Dist/Comp ; 1090 sd = Dist/Comp ; 986 1091 987 if (sd < snxt) 1092 if (sd < snxt) 988 { 1093 { 989 if ( sd < 0 ) { sd = 0.0; } 1094 if ( sd < 0 ) { sd = 0.0; } 990 zi = p.z() + sd*v.z() ; 1095 zi = p.z() + sd*v.z() ; 991 if ( std::fabs(zi) <= tolODz ) 1096 if ( std::fabs(zi) <= tolODz ) 992 { 1097 { 993 xi = p.x() + sd*v.x() ; 1098 xi = p.x() + sd*v.x() ; 994 yi = p.y() + sd*v.y() ; 1099 yi = p.y() + sd*v.y() ; 995 rho2 = xi*xi + yi*yi ; 1100 rho2 = xi*xi + yi*yi ; 996 1101 997 if ( ( (rho2 >= tolIRMin2) && (rho 1102 if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) ) 998 || ( (rho2 > tolORMin2) && (rho 1103 || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2) 999 && ( v.y()*cosSPhi - v.x()*sin 1104 && ( v.y()*cosSPhi - v.x()*sinSPhi > 0 ) 1000 && ( v.x()*cosSPhi + v.y()*si 1105 && ( v.x()*cosSPhi + v.y()*sinSPhi >= 0 ) ) 1001 || ( (rho2 > tolIRMax2) && (rho 1106 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2) 1002 && (v.y()*cosSPhi - v.x()*sin 1107 && (v.y()*cosSPhi - v.x()*sinSPhi > 0) 1003 && (v.x()*cosSPhi + v.y()*sin 1108 && (v.x()*cosSPhi + v.y()*sinSPhi < 0) ) ) 1004 { 1109 { 1005 // z and r intersections good 1110 // z and r intersections good 1006 // - check intersecting with co 1111 // - check intersecting with correct half-plane 1007 // 1112 // 1008 if ((yi*cosCPhi-xi*sinCPhi) <= 1113 if ((yi*cosCPhi-xi*sinCPhi) <= halfCarTolerance) { snxt = sd; } 1009 } 1114 } 1010 } 1115 } 1011 } 1116 } 1012 } << 1117 } 1013 } 1118 } 1014 << 1119 1015 // Second phi surface (Ending phi) 1120 // Second phi surface (Ending phi) 1016 1121 1017 Comp = -(v.x()*sinEPhi - v.y()*cosEPhi 1122 Comp = -(v.x()*sinEPhi - v.y()*cosEPhi) ; 1018 << 1123 1019 if (Comp < 0 ) // Component in outwards 1124 if (Comp < 0 ) // Component in outwards normal dirn 1020 { 1125 { 1021 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) 1126 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ; 1022 1127 1023 if ( Dist < halfCarTolerance ) 1128 if ( Dist < halfCarTolerance ) 1024 { 1129 { 1025 sd = Dist/Comp ; 1130 sd = Dist/Comp ; 1026 1131 1027 if (sd < snxt) 1132 if (sd < snxt) 1028 { 1133 { 1029 if ( sd < 0 ) { sd = 0; } 1134 if ( sd < 0 ) { sd = 0; } 1030 zi = p.z() + sd*v.z() ; 1135 zi = p.z() + sd*v.z() ; 1031 if ( std::fabs(zi) <= tolODz ) 1136 if ( std::fabs(zi) <= tolODz ) 1032 { 1137 { 1033 xi = p.x() + sd*v.x() ; 1138 xi = p.x() + sd*v.x() ; 1034 yi = p.y() + sd*v.y() ; 1139 yi = p.y() + sd*v.y() ; 1035 rho2 = xi*xi + yi*yi ; 1140 rho2 = xi*xi + yi*yi ; 1036 if ( ( (rho2 >= tolIRMin2) && (rh 1141 if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) ) 1037 || ( (rho2 > tolORMin2) && ( 1142 || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2) 1038 && (v.x()*sinEPhi - v.y()*c 1143 && (v.x()*sinEPhi - v.y()*cosEPhi > 0) 1039 && (v.x()*cosEPhi + v.y()*s 1144 && (v.x()*cosEPhi + v.y()*sinEPhi >= 0) ) 1040 || ( (rho2 > tolIRMax2) && (r 1145 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2) 1041 && (v.x()*sinEPhi - v.y()*c 1146 && (v.x()*sinEPhi - v.y()*cosEPhi > 0) 1042 && (v.x()*cosEPhi + v.y()*s 1147 && (v.x()*cosEPhi + v.y()*sinEPhi < 0) ) ) 1043 { 1148 { 1044 // z and r intersections good 1149 // z and r intersections good 1045 // - check intersecting with co 1150 // - check intersecting with correct half-plane 1046 // 1151 // 1047 if ( (yi*cosCPhi-xi*sinCPhi) >= 1152 if ( (yi*cosCPhi-xi*sinCPhi) >= 0 ) { snxt = sd; } 1048 } //?? >= 1153 } //?? >=-halfCarTolerance 1049 } 1154 } 1050 } 1155 } 1051 } 1156 } 1052 } // Comp < 0 1157 } // Comp < 0 1053 } // !fPhiFullTube << 1158 } // !fPhiFullTube 1054 if ( snxt<halfCarTolerance ) { snxt=0; } 1159 if ( snxt<halfCarTolerance ) { snxt=0; } 1055 return snxt ; 1160 return snxt ; 1056 } 1161 } 1057 << 1162 1058 ///////////////////////////////////////////// 1163 ////////////////////////////////////////////////////////////////// 1059 // 1164 // 1060 // Calculate distance to shape from outside, 1165 // Calculate distance to shape from outside, along normalised vector 1061 // - return kInfinity if no intersection, or 1166 // - return kInfinity if no intersection, or intersection distance <= tolerance 1062 // 1167 // 1063 // - Compute the intersection with the z plan << 1168 // - Compute the intersection with the z planes 1064 // - if at valid r, phi, return 1169 // - if at valid r, phi, return 1065 // 1170 // 1066 // -> If point is outer outer radius, compute 1171 // -> If point is outer outer radius, compute intersection with rmax 1067 // - if at valid phi,z return 1172 // - if at valid phi,z return 1068 // 1173 // 1069 // -> Compute intersection with inner radius, 1174 // -> Compute intersection with inner radius, taking largest +ve root 1070 // - if valid (in z,phi), save intersc 1175 // - if valid (in z,phi), save intersction 1071 // 1176 // 1072 // -> If phi segmented, compute intersecti 1177 // -> If phi segmented, compute intersections with phi half planes 1073 // - return smallest of valid phi inte 1178 // - return smallest of valid phi intersections and 1074 // inner radius intersection 1179 // inner radius intersection 1075 // 1180 // 1076 // NOTE: 1181 // NOTE: 1077 // - Precalculations for phi trigonometry are 1182 // - Precalculations for phi trigonometry are Done `just in time' 1078 // - `if valid' implies tolerant checking of 1183 // - `if valid' implies tolerant checking of intersection points 1079 // Calculate distance (<= actual) to closes 1184 // Calculate distance (<= actual) to closest surface of shape from outside 1080 // - Calculate distance to z, radial planes 1185 // - Calculate distance to z, radial planes 1081 // - Only to phi planes if outside phi extent 1186 // - Only to phi planes if outside phi extent 1082 // - Return 0 if point inside 1187 // - Return 0 if point inside 1083 1188 1084 G4double G4Tubs::DistanceToIn( const G4ThreeV 1189 G4double G4Tubs::DistanceToIn( const G4ThreeVector& p ) const 1085 { 1190 { 1086 G4double safe=0.0, rho, safe1, safe2, safe3 1191 G4double safe=0.0, rho, safe1, safe2, safe3 ; 1087 G4double safePhi, cosPsi ; 1192 G4double safePhi, cosPsi ; 1088 1193 1089 rho = std::sqrt(p.x()*p.x() + p.y()*p.y() 1194 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 1090 safe1 = fRMin - rho ; 1195 safe1 = fRMin - rho ; 1091 safe2 = rho - fRMax ; 1196 safe2 = rho - fRMax ; 1092 safe3 = std::fabs(p.z()) - fDz ; 1197 safe3 = std::fabs(p.z()) - fDz ; 1093 1198 1094 if ( safe1 > safe2 ) { safe = safe1; } 1199 if ( safe1 > safe2 ) { safe = safe1; } 1095 else { safe = safe2; } 1200 else { safe = safe2; } 1096 if ( safe3 > safe ) { safe = safe3; } 1201 if ( safe3 > safe ) { safe = safe3; } 1097 1202 1098 if ( (!fPhiFullTube) && ((rho) != 0.0) ) << 1203 if ( (!fPhiFullTube) && (rho) ) 1099 { 1204 { 1100 // Psi=angle from central phi to point 1205 // Psi=angle from central phi to point 1101 // 1206 // 1102 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/ 1207 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/rho ; 1103 << 1208 1104 if ( cosPsi < cosHDPhi ) << 1209 if ( cosPsi < std::cos(fDPhi*0.5) ) 1105 { 1210 { 1106 // Point lies outside phi range 1211 // Point lies outside phi range 1107 1212 1108 if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= 1213 if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= 0 ) 1109 { 1214 { 1110 safePhi = std::fabs(p.x()*sinSPhi - p 1215 safePhi = std::fabs(p.x()*sinSPhi - p.y()*cosSPhi) ; 1111 } 1216 } 1112 else 1217 else 1113 { 1218 { 1114 safePhi = std::fabs(p.x()*sinEPhi - p 1219 safePhi = std::fabs(p.x()*sinEPhi - p.y()*cosEPhi) ; 1115 } 1220 } 1116 if ( safePhi > safe ) { safe = safePhi 1221 if ( safePhi > safe ) { safe = safePhi; } 1117 } 1222 } 1118 } 1223 } 1119 if ( safe < 0 ) { safe = 0; } 1224 if ( safe < 0 ) { safe = 0; } 1120 return safe ; 1225 return safe ; 1121 } 1226 } 1122 1227 1123 ///////////////////////////////////////////// 1228 ////////////////////////////////////////////////////////////////////////////// 1124 // 1229 // 1125 // Calculate distance to surface of shape fro 1230 // Calculate distance to surface of shape from `inside', allowing for tolerance 1126 // - Only Calc rmax intersection if no valid 1231 // - Only Calc rmax intersection if no valid rmin intersection 1127 1232 1128 G4double G4Tubs::DistanceToOut( const G4Three 1233 G4double G4Tubs::DistanceToOut( const G4ThreeVector& p, 1129 const G4Three 1234 const G4ThreeVector& v, 1130 const G4bool 1235 const G4bool calcNorm, 1131 G4bool* << 1236 G4bool *validNorm, 1132 G4Three << 1237 G4ThreeVector *n ) const 1133 { << 1238 { 1134 ESide side=kNull , sider=kNull, sidephi=kNu 1239 ESide side=kNull , sider=kNull, sidephi=kNull ; 1135 G4double snxt, srd=kInfinity, sphi=kInfinit 1240 G4double snxt, srd=kInfinity, sphi=kInfinity, pdist ; 1136 G4double deltaR, t1, t2, t3, b, c, d2, roMi 1241 G4double deltaR, t1, t2, t3, b, c, d2, roMin2 ; 1137 1242 >> 1243 static const G4double halfCarTolerance = kCarTolerance*0.5; >> 1244 static const G4double halfAngTolerance = kAngTolerance*0.5; >> 1245 1138 // Vars for phi intersection: 1246 // Vars for phi intersection: 1139 1247 1140 G4double pDistS, compS, pDistE, compE, sphi 1248 G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, vphi, roi2 ; 1141 << 1249 1142 // Z plane intersection 1250 // Z plane intersection 1143 1251 1144 if (v.z() > 0 ) 1252 if (v.z() > 0 ) 1145 { 1253 { 1146 pdist = fDz - p.z() ; 1254 pdist = fDz - p.z() ; 1147 if ( pdist > halfCarTolerance ) 1255 if ( pdist > halfCarTolerance ) 1148 { 1256 { 1149 snxt = pdist/v.z() ; 1257 snxt = pdist/v.z() ; 1150 side = kPZ ; 1258 side = kPZ ; 1151 } 1259 } 1152 else 1260 else 1153 { 1261 { 1154 if (calcNorm) 1262 if (calcNorm) 1155 { 1263 { 1156 *n = G4ThreeVector(0,0,1) ; 1264 *n = G4ThreeVector(0,0,1) ; 1157 *validNorm = true ; 1265 *validNorm = true ; 1158 } 1266 } 1159 return snxt = 0 ; 1267 return snxt = 0 ; 1160 } 1268 } 1161 } 1269 } 1162 else if ( v.z() < 0 ) 1270 else if ( v.z() < 0 ) 1163 { 1271 { 1164 pdist = fDz + p.z() ; 1272 pdist = fDz + p.z() ; 1165 1273 1166 if ( pdist > halfCarTolerance ) 1274 if ( pdist > halfCarTolerance ) 1167 { 1275 { 1168 snxt = -pdist/v.z() ; 1276 snxt = -pdist/v.z() ; 1169 side = kMZ ; 1277 side = kMZ ; 1170 } 1278 } 1171 else 1279 else 1172 { 1280 { 1173 if (calcNorm) 1281 if (calcNorm) 1174 { 1282 { 1175 *n = G4ThreeVector(0,0,-1) ; 1283 *n = G4ThreeVector(0,0,-1) ; 1176 *validNorm = true ; 1284 *validNorm = true ; 1177 } 1285 } 1178 return snxt = 0.0 ; 1286 return snxt = 0.0 ; 1179 } 1287 } 1180 } 1288 } 1181 else 1289 else 1182 { 1290 { 1183 snxt = kInfinity ; // Travel perpendic 1291 snxt = kInfinity ; // Travel perpendicular to z axis 1184 side = kNull; 1292 side = kNull; 1185 } 1293 } 1186 1294 1187 // Radial Intersections 1295 // Radial Intersections 1188 // 1296 // 1189 // Find intersection with cylinders at rmax 1297 // Find intersection with cylinders at rmax/rmin 1190 // Intersection point (xi,yi,zi) on line x= 1298 // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc. 1191 // 1299 // 1192 // Intersects with x^2+y^2=R^2 1300 // Intersects with x^2+y^2=R^2 1193 // 1301 // 1194 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v 1302 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0 1195 // 1303 // 1196 // t1 t2 1304 // t1 t2 t3 1197 1305 1198 t1 = 1.0 - v.z()*v.z() ; // since v 1306 t1 = 1.0 - v.z()*v.z() ; // since v normalised 1199 t2 = p.x()*v.x() + p.y()*v.y() ; 1307 t2 = p.x()*v.x() + p.y()*v.y() ; 1200 t3 = p.x()*p.x() + p.y()*p.y() ; 1308 t3 = p.x()*p.x() + p.y()*p.y() ; 1201 1309 1202 if ( snxt > 10*(fDz+fRMax) ) { roi2 = 2*fR 1310 if ( snxt > 10*(fDz+fRMax) ) { roi2 = 2*fRMax*fRMax; } 1203 else { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t 1311 else { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t3; } // radius^2 on +-fDz 1204 1312 1205 if ( t1 > 0 ) // Check not parallel 1313 if ( t1 > 0 ) // Check not parallel 1206 { 1314 { 1207 // Calculate srd, r exit distance 1315 // Calculate srd, r exit distance 1208 << 1316 1209 if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax 1317 if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax + kRadTolerance)) ) 1210 { 1318 { 1211 // Delta r not negative => leaving via 1319 // Delta r not negative => leaving via rmax 1212 1320 1213 deltaR = t3 - fRMax*fRMax ; 1321 deltaR = t3 - fRMax*fRMax ; 1214 1322 1215 // NOTE: Should use rho-fRMax<-kRadTole 1323 // NOTE: Should use rho-fRMax<-kRadTolerance*0.5 1216 // - avoid sqrt for efficiency 1324 // - avoid sqrt for efficiency 1217 1325 1218 if ( deltaR < -kRadTolerance*fRMax ) 1326 if ( deltaR < -kRadTolerance*fRMax ) 1219 { 1327 { 1220 b = t2/t1 ; 1328 b = t2/t1 ; 1221 c = deltaR/t1 ; 1329 c = deltaR/t1 ; 1222 d2 = b*b-c; 1330 d2 = b*b-c; 1223 if( d2 >= 0 ) { srd = c/( -b - std::s 1331 if( d2 >= 0 ) { srd = c/( -b - std::sqrt(d2)); } 1224 else { srd = 0.; } 1332 else { srd = 0.; } 1225 sider = kRMax ; 1333 sider = kRMax ; 1226 } 1334 } 1227 else 1335 else 1228 { 1336 { 1229 // On tolerant boundary & heading out 1337 // On tolerant boundary & heading outwards (or perpendicular to) 1230 // outer radial surface -> leaving im 1338 // outer radial surface -> leaving immediately 1231 1339 1232 if ( calcNorm ) << 1340 if ( calcNorm ) 1233 { 1341 { 1234 G4double invRho = FastInverseRxy( p << 1342 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1235 *n = G4ThreeVector(p.x()*in << 1236 *validNorm = true ; 1343 *validNorm = true ; 1237 } 1344 } 1238 return snxt = 0 ; // Leaving by rmax 1345 return snxt = 0 ; // Leaving by rmax immediately 1239 } 1346 } 1240 } << 1347 } 1241 else if ( t2 < 0. ) // i.e. t2 < 0; Poss 1348 else if ( t2 < 0. ) // i.e. t2 < 0; Possible rmin intersection 1242 { 1349 { 1243 roMin2 = t3 - t2*t2/t1 ; // min ro2 of << 1350 roMin2 = t3 - t2*t2/t1 ; // min ro2 of the plane of movement 1244 1351 1245 if ( (fRMin != 0.0) && (roMin2 < fRMin* << 1352 if ( fRMin && (roMin2 < fRMin*(fRMin - kRadTolerance)) ) 1246 { 1353 { 1247 deltaR = t3 - fRMin*fRMin ; 1354 deltaR = t3 - fRMin*fRMin ; 1248 b = t2/t1 ; 1355 b = t2/t1 ; 1249 c = deltaR/t1 ; 1356 c = deltaR/t1 ; 1250 d2 = b*b - c ; 1357 d2 = b*b - c ; 1251 1358 1252 if ( d2 >= 0 ) // Leaving via rmin 1359 if ( d2 >= 0 ) // Leaving via rmin 1253 { 1360 { 1254 // NOTE: SHould use rho-rmin>kRadTo 1361 // NOTE: SHould use rho-rmin>kRadTolerance*0.5 1255 // - avoid sqrt for efficiency 1362 // - avoid sqrt for efficiency 1256 1363 1257 if (deltaR > kRadTolerance*fRMin) 1364 if (deltaR > kRadTolerance*fRMin) 1258 { 1365 { 1259 srd = c/(-b+std::sqrt(d2)); << 1366 srd = c/(-b+std::sqrt(d2)); 1260 sider = kRMin ; 1367 sider = kRMin ; 1261 } 1368 } 1262 else 1369 else 1263 { 1370 { 1264 if ( calcNorm ) { << 1371 if ( calcNorm ) { *validNorm = false; } // Concave side 1265 *validNorm = false; << 1266 } // Concave side << 1267 return snxt = 0.0; 1372 return snxt = 0.0; 1268 } 1373 } 1269 } 1374 } 1270 else // No rmin intersect -> must 1375 else // No rmin intersect -> must be rmax intersect 1271 { 1376 { 1272 deltaR = t3 - fRMax*fRMax ; 1377 deltaR = t3 - fRMax*fRMax ; 1273 c = deltaR/t1 ; 1378 c = deltaR/t1 ; 1274 d2 = b*b-c; 1379 d2 = b*b-c; 1275 if( d2 >=0. ) 1380 if( d2 >=0. ) 1276 { 1381 { 1277 srd = -b + std::sqrt(d2) ; 1382 srd = -b + std::sqrt(d2) ; 1278 sider = kRMax ; 1383 sider = kRMax ; 1279 } 1384 } 1280 else // Case: On the border+t2<kRad 1385 else // Case: On the border+t2<kRadTolerance 1281 // (v is perpendicular t 1386 // (v is perpendicular to the surface) 1282 { 1387 { 1283 if (calcNorm) 1388 if (calcNorm) 1284 { 1389 { 1285 G4double invRho = FastInverseRx << 1390 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1286 *n = G4ThreeVector(p.x()*invRho << 1287 *validNorm = true ; 1391 *validNorm = true ; 1288 } 1392 } 1289 return snxt = 0.0; 1393 return snxt = 0.0; 1290 } 1394 } 1291 } 1395 } 1292 } 1396 } 1293 else if ( roi2 > fRMax*(fRMax + kRadTol 1397 else if ( roi2 > fRMax*(fRMax + kRadTolerance) ) 1294 // No rmin intersect -> must be rm 1398 // No rmin intersect -> must be rmax intersect 1295 { 1399 { 1296 deltaR = t3 - fRMax*fRMax ; 1400 deltaR = t3 - fRMax*fRMax ; 1297 b = t2/t1 ; 1401 b = t2/t1 ; 1298 c = deltaR/t1; 1402 c = deltaR/t1; 1299 d2 = b*b-c; 1403 d2 = b*b-c; 1300 if( d2 >= 0 ) 1404 if( d2 >= 0 ) 1301 { 1405 { 1302 srd = -b + std::sqrt(d2) ; 1406 srd = -b + std::sqrt(d2) ; 1303 sider = kRMax ; 1407 sider = kRMax ; 1304 } 1408 } 1305 else // Case: On the border+t2<kRadTo 1409 else // Case: On the border+t2<kRadTolerance 1306 // (v is perpendicular to 1410 // (v is perpendicular to the surface) 1307 { 1411 { 1308 if (calcNorm) 1412 if (calcNorm) 1309 { 1413 { 1310 G4double invRho = FastInverseRxy( << 1414 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1311 *n = G4ThreeVector(p.x()*invRho,p << 1312 *validNorm = true ; 1415 *validNorm = true ; 1313 } 1416 } 1314 return snxt = 0.0; 1417 return snxt = 0.0; 1315 } 1418 } 1316 } 1419 } 1317 } 1420 } 1318 << 1421 1319 // Phi Intersection 1422 // Phi Intersection 1320 1423 1321 if ( !fPhiFullTube ) 1424 if ( !fPhiFullTube ) 1322 { 1425 { 1323 // add angle calculation with correctio << 1426 // add angle calculation with correction 1324 // of the difference in domain of atan2 1427 // of the difference in domain of atan2 and Sphi 1325 // 1428 // 1326 vphi = std::atan2(v.y(),v.x()) ; 1429 vphi = std::atan2(v.y(),v.x()) ; 1327 << 1430 1328 if ( vphi < fSPhi - halfAngTolerance ) 1431 if ( vphi < fSPhi - halfAngTolerance ) { vphi += twopi; } 1329 else if ( vphi > fSPhi + fDPhi + halfAn 1432 else if ( vphi > fSPhi + fDPhi + halfAngTolerance ) { vphi -= twopi; } 1330 1433 1331 1434 1332 if ( (p.x() != 0.0) || (p.y() != 0.0) ) << 1435 if ( p.x() || p.y() ) // Check if on z axis (rho not needed later) 1333 { 1436 { 1334 // pDist -ve when inside 1437 // pDist -ve when inside 1335 1438 1336 pDistS = p.x()*sinSPhi - p.y()*cosSPh 1439 pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; 1337 pDistE = -p.x()*sinEPhi + p.y()*cosEP 1440 pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ; 1338 1441 1339 // Comp -ve when in direction of outw 1442 // Comp -ve when in direction of outwards normal 1340 1443 1341 compS = -sinSPhi*v.x() + cosSPhi*v.y( << 1444 compS = -sinSPhi*v.x() + cosSPhi*v.y() ; 1342 compE = sinEPhi*v.x() - cosEPhi*v.y( << 1445 compE = sinEPhi*v.x() - cosEPhi*v.y() ; 1343 << 1446 1344 sidephi = kNull; 1447 sidephi = kNull; 1345 << 1448 1346 if( ( (fDPhi <= pi) && ( (pDistS <= h 1449 if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance) 1347 && (pDistE <= h 1450 && (pDistE <= halfCarTolerance) ) ) 1348 || ( (fDPhi > pi) && ((pDistS <= h << 1451 || ( (fDPhi > pi) && !((pDistS > halfCarTolerance) 1349 || (pDistE <= << 1452 && (pDistE > halfCarTolerance) ) ) ) 1350 { 1453 { 1351 // Inside both phi *full* planes 1454 // Inside both phi *full* planes 1352 << 1455 1353 if ( compS < 0 ) 1456 if ( compS < 0 ) 1354 { 1457 { 1355 sphi = pDistS/compS ; 1458 sphi = pDistS/compS ; 1356 << 1459 1357 if (sphi >= -halfCarTolerance) 1460 if (sphi >= -halfCarTolerance) 1358 { 1461 { 1359 xi = p.x() + sphi*v.x() ; 1462 xi = p.x() + sphi*v.x() ; 1360 yi = p.y() + sphi*v.y() ; 1463 yi = p.y() + sphi*v.y() ; 1361 << 1464 1362 // Check intersecting with corr 1465 // Check intersecting with correct half-plane 1363 // (if not -> no intersect) 1466 // (if not -> no intersect) 1364 // 1467 // 1365 if((std::fabs(xi)<=kCarToleranc << 1468 if( (std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance) ) 1366 { 1469 { 1367 sidephi = kSPhi; 1470 sidephi = kSPhi; 1368 if (((fSPhi-halfAngTolerance) 1471 if (((fSPhi-halfAngTolerance)<=vphi) 1369 &&((fSPhi+fDPhi+halfAngTol 1472 &&((fSPhi+fDPhi+halfAngTolerance)>=vphi)) 1370 { 1473 { 1371 sphi = kInfinity; 1474 sphi = kInfinity; 1372 } 1475 } 1373 } 1476 } 1374 else if ( yi*cosCPhi-xi*sinCPhi 1477 else if ( yi*cosCPhi-xi*sinCPhi >=0 ) 1375 { 1478 { 1376 sphi = kInfinity ; 1479 sphi = kInfinity ; 1377 } 1480 } 1378 else 1481 else 1379 { 1482 { 1380 sidephi = kSPhi ; 1483 sidephi = kSPhi ; 1381 if ( pDistS > -halfCarToleran 1484 if ( pDistS > -halfCarTolerance ) 1382 { 1485 { 1383 sphi = 0.0 ; // Leave by sp 1486 sphi = 0.0 ; // Leave by sphi immediately 1384 } << 1487 } 1385 } << 1488 } 1386 } 1489 } 1387 else 1490 else 1388 { 1491 { 1389 sphi = kInfinity ; 1492 sphi = kInfinity ; 1390 } 1493 } 1391 } 1494 } 1392 else 1495 else 1393 { 1496 { 1394 sphi = kInfinity ; 1497 sphi = kInfinity ; 1395 } 1498 } 1396 1499 1397 if ( compE < 0 ) 1500 if ( compE < 0 ) 1398 { 1501 { 1399 sphi2 = pDistE/compE ; 1502 sphi2 = pDistE/compE ; 1400 << 1503 1401 // Only check further if < starti 1504 // Only check further if < starting phi intersection 1402 // 1505 // 1403 if ( (sphi2 > -halfCarTolerance) 1506 if ( (sphi2 > -halfCarTolerance) && (sphi2 < sphi) ) 1404 { 1507 { 1405 xi = p.x() + sphi2*v.x() ; 1508 xi = p.x() + sphi2*v.x() ; 1406 yi = p.y() + sphi2*v.y() ; 1509 yi = p.y() + sphi2*v.y() ; 1407 << 1510 1408 if((std::fabs(xi)<=kCarToleranc << 1511 if ((std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance)) 1409 { 1512 { 1410 // Leaving via ending phi 1513 // Leaving via ending phi 1411 // 1514 // 1412 if( (fSPhi-halfAngTolerance > << 1515 if( !((fSPhi-halfAngTolerance <= vphi) 1413 ||(fSPhi+fDPhi+halfAngTo << 1516 &&(fSPhi+fDPhi+halfAngTolerance >= vphi)) ) 1414 { 1517 { 1415 sidephi = kEPhi ; 1518 sidephi = kEPhi ; 1416 if ( pDistE <= -halfCarTole 1519 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; } 1417 else 1520 else { sphi = 0.0 ; } 1418 } 1521 } 1419 } << 1522 } 1420 else // Check intersecting w << 1523 else // Check intersecting with correct half-plane 1421 1524 1422 if ( (yi*cosCPhi-xi*sinCPhi) >= 1525 if ( (yi*cosCPhi-xi*sinCPhi) >= 0) 1423 { 1526 { 1424 // Leaving via ending phi 1527 // Leaving via ending phi 1425 // 1528 // 1426 sidephi = kEPhi ; 1529 sidephi = kEPhi ; 1427 if ( pDistE <= -halfCarTolera 1530 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; } 1428 else 1531 else { sphi = 0.0 ; } 1429 } 1532 } 1430 } 1533 } 1431 } 1534 } 1432 } 1535 } 1433 else 1536 else 1434 { 1537 { 1435 sphi = kInfinity ; 1538 sphi = kInfinity ; 1436 } 1539 } 1437 } 1540 } 1438 else 1541 else 1439 { 1542 { 1440 // On z axis + travel not || to z axi 1543 // On z axis + travel not || to z axis -> if phi of vector direction 1441 // within phi of shape, Step limited 1544 // within phi of shape, Step limited by rmax, else Step =0 1442 << 1545 1443 if ( (fSPhi - halfAngTolerance <= vph 1546 if ( (fSPhi - halfAngTolerance <= vphi) 1444 && (vphi <= fSPhi + fDPhi + halfAn 1547 && (vphi <= fSPhi + fDPhi + halfAngTolerance ) ) 1445 { 1548 { 1446 sphi = kInfinity ; 1549 sphi = kInfinity ; 1447 } 1550 } 1448 else 1551 else 1449 { 1552 { 1450 sidephi = kSPhi ; // arbitrary << 1553 sidephi = kSPhi ; // arbitrary 1451 sphi = 0.0 ; 1554 sphi = 0.0 ; 1452 } 1555 } 1453 } 1556 } 1454 if (sphi < snxt) // Order intersecttio 1557 if (sphi < snxt) // Order intersecttions 1455 { 1558 { 1456 snxt = sphi ; 1559 snxt = sphi ; 1457 side = sidephi ; 1560 side = sidephi ; 1458 } 1561 } 1459 } 1562 } 1460 if (srd < snxt) // Order intersections 1563 if (srd < snxt) // Order intersections 1461 { 1564 { 1462 snxt = srd ; 1565 snxt = srd ; 1463 side = sider ; 1566 side = sider ; 1464 } 1567 } 1465 } 1568 } 1466 if (calcNorm) 1569 if (calcNorm) 1467 { 1570 { 1468 switch(side) 1571 switch(side) 1469 { 1572 { 1470 case kRMax: 1573 case kRMax: 1471 // Note: returned vector not normalis 1574 // Note: returned vector not normalised 1472 // (divide by fRMax for unit vector) 1575 // (divide by fRMax for unit vector) 1473 // 1576 // 1474 xi = p.x() + snxt*v.x() ; 1577 xi = p.x() + snxt*v.x() ; 1475 yi = p.y() + snxt*v.y() ; 1578 yi = p.y() + snxt*v.y() ; 1476 *n = G4ThreeVector(xi/fRMax,yi/fRMax, 1579 *n = G4ThreeVector(xi/fRMax,yi/fRMax,0) ; 1477 *validNorm = true ; 1580 *validNorm = true ; 1478 break ; 1581 break ; 1479 1582 1480 case kRMin: 1583 case kRMin: 1481 *validNorm = false ; // Rmin is inco 1584 *validNorm = false ; // Rmin is inconvex 1482 break ; 1585 break ; 1483 1586 1484 case kSPhi: 1587 case kSPhi: 1485 if ( fDPhi <= pi ) 1588 if ( fDPhi <= pi ) 1486 { 1589 { 1487 *n = G4ThreeVector(sinSPhi, 1590 *n = G4ThreeVector(sinSPhi,-cosSPhi,0) ; 1488 *validNorm = true ; 1591 *validNorm = true ; 1489 } 1592 } 1490 else 1593 else 1491 { 1594 { 1492 *validNorm = false ; 1595 *validNorm = false ; 1493 } 1596 } 1494 break ; 1597 break ; 1495 1598 1496 case kEPhi: 1599 case kEPhi: 1497 if (fDPhi <= pi) 1600 if (fDPhi <= pi) 1498 { 1601 { 1499 *n = G4ThreeVector(-sinEPhi,cosEPhi 1602 *n = G4ThreeVector(-sinEPhi,cosEPhi,0) ; 1500 *validNorm = true ; 1603 *validNorm = true ; 1501 } 1604 } 1502 else 1605 else 1503 { 1606 { 1504 *validNorm = false ; 1607 *validNorm = false ; 1505 } 1608 } 1506 break ; 1609 break ; 1507 1610 1508 case kPZ: 1611 case kPZ: 1509 *n = G4ThreeVector(0,0,1) ; 1612 *n = G4ThreeVector(0,0,1) ; 1510 *validNorm = true ; 1613 *validNorm = true ; 1511 break ; 1614 break ; 1512 1615 1513 case kMZ: 1616 case kMZ: 1514 *n = G4ThreeVector(0,0,-1) ; 1617 *n = G4ThreeVector(0,0,-1) ; 1515 *validNorm = true ; 1618 *validNorm = true ; 1516 break ; 1619 break ; 1517 1620 1518 default: 1621 default: 1519 G4cout << G4endl ; 1622 G4cout << G4endl ; 1520 DumpInfo(); 1623 DumpInfo(); 1521 std::ostringstream message; 1624 std::ostringstream message; 1522 G4long oldprc = message.precision(16) << 1625 G4int oldprc = message.precision(16); 1523 message << "Undefined side for valid 1626 message << "Undefined side for valid surface normal to solid." 1524 << G4endl 1627 << G4endl 1525 << "Position:" << G4endl << 1628 << "Position:" << G4endl << G4endl 1526 << "p.x() = " << p.x()/mm < 1629 << "p.x() = " << p.x()/mm << " mm" << G4endl 1527 << "p.y() = " << p.y()/mm < 1630 << "p.y() = " << p.y()/mm << " mm" << G4endl 1528 << "p.z() = " << p.z()/mm < 1631 << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl 1529 << "Direction:" << G4endl << 1632 << "Direction:" << G4endl << G4endl 1530 << "v.x() = " << v.x() << G 1633 << "v.x() = " << v.x() << G4endl 1531 << "v.y() = " << v.y() << G 1634 << "v.y() = " << v.y() << G4endl 1532 << "v.z() = " << v.z() << G 1635 << "v.z() = " << v.z() << G4endl << G4endl 1533 << "Proposed distance :" << G 1636 << "Proposed distance :" << G4endl << G4endl 1534 << "snxt = " << snxt/mm << 1637 << "snxt = " << snxt/mm << " mm" << G4endl ; 1535 message.precision(oldprc) ; 1638 message.precision(oldprc) ; 1536 G4Exception("G4Tubs::DistanceToOut(p, 1639 G4Exception("G4Tubs::DistanceToOut(p,v,..)", "GeomSolids1002", 1537 JustWarning, message); 1640 JustWarning, message); 1538 break ; 1641 break ; 1539 } 1642 } 1540 } 1643 } 1541 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1644 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1542 1645 1543 return snxt ; 1646 return snxt ; 1544 } 1647 } 1545 1648 1546 ///////////////////////////////////////////// 1649 ////////////////////////////////////////////////////////////////////////// 1547 // 1650 // 1548 // Calculate distance (<=actual) to closest s 1651 // Calculate distance (<=actual) to closest surface of shape from inside 1549 1652 1550 G4double G4Tubs::DistanceToOut( const G4Three 1653 G4double G4Tubs::DistanceToOut( const G4ThreeVector& p ) const 1551 { 1654 { 1552 G4double safe=0.0, rho, safeR1, safeR2, saf 1655 G4double safe=0.0, rho, safeR1, safeR2, safeZ, safePhi ; 1553 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) 1656 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 1554 1657 1555 #ifdef G4CSGDEBUG 1658 #ifdef G4CSGDEBUG 1556 if( Inside(p) == kOutside ) 1659 if( Inside(p) == kOutside ) 1557 { 1660 { 1558 G4long oldprc = G4cout.precision(16) ; << 1661 G4int oldprc = G4cout.precision(16) ; 1559 G4cout << G4endl ; 1662 G4cout << G4endl ; 1560 DumpInfo(); 1663 DumpInfo(); 1561 G4cout << "Position:" << G4endl << G4end 1664 G4cout << "Position:" << G4endl << G4endl ; 1562 G4cout << "p.x() = " << p.x()/mm << " m 1665 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 1563 G4cout << "p.y() = " << p.y()/mm << " m 1666 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 1564 G4cout << "p.z() = " << p.z()/mm << " m 1667 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 1565 G4cout.precision(oldprc) ; 1668 G4cout.precision(oldprc) ; 1566 G4Exception("G4Tubs::DistanceToOut(p)", " 1669 G4Exception("G4Tubs::DistanceToOut(p)", "GeomSolids1002", 1567 JustWarning, "Point p is outs 1670 JustWarning, "Point p is outside !?"); 1568 } 1671 } 1569 #endif 1672 #endif 1570 1673 1571 if ( fRMin != 0.0 ) << 1674 if ( fRMin ) 1572 { 1675 { 1573 safeR1 = rho - fRMin ; 1676 safeR1 = rho - fRMin ; 1574 safeR2 = fRMax - rho ; 1677 safeR2 = fRMax - rho ; 1575 << 1678 1576 if ( safeR1 < safeR2 ) { safe = safeR1 ; 1679 if ( safeR1 < safeR2 ) { safe = safeR1 ; } 1577 else { safe = safeR2 ; 1680 else { safe = safeR2 ; } 1578 } 1681 } 1579 else 1682 else 1580 { 1683 { 1581 safe = fRMax - rho ; 1684 safe = fRMax - rho ; 1582 } 1685 } 1583 safeZ = fDz - std::fabs(p.z()) ; 1686 safeZ = fDz - std::fabs(p.z()) ; 1584 1687 1585 if ( safeZ < safe ) { safe = safeZ ; } 1688 if ( safeZ < safe ) { safe = safeZ ; } 1586 1689 1587 // Check if phi divided, Calc distances clo 1690 // Check if phi divided, Calc distances closest phi plane 1588 // 1691 // 1589 if ( !fPhiFullTube ) 1692 if ( !fPhiFullTube ) 1590 { 1693 { 1591 if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 ) 1694 if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 ) 1592 { 1695 { 1593 safePhi = -(p.x()*sinSPhi - p.y()*cosSP 1696 safePhi = -(p.x()*sinSPhi - p.y()*cosSPhi) ; 1594 } 1697 } 1595 else 1698 else 1596 { 1699 { 1597 safePhi = (p.x()*sinEPhi - p.y()*cosEPh 1700 safePhi = (p.x()*sinEPhi - p.y()*cosEPhi) ; 1598 } 1701 } 1599 if (safePhi < safe) { safe = safePhi ; } 1702 if (safePhi < safe) { safe = safePhi ; } 1600 } 1703 } 1601 if ( safe < 0 ) { safe = 0 ; } 1704 if ( safe < 0 ) { safe = 0 ; } 1602 1705 1603 return safe ; << 1706 return safe ; >> 1707 } >> 1708 >> 1709 ///////////////////////////////////////////////////////////////////////// >> 1710 // >> 1711 // Create a List containing the transformed vertices >> 1712 // Ordering [0-3] -fDz cross section >> 1713 // [4-7] +fDz cross section such that [0] is below [4], >> 1714 // [1] below [5] etc. >> 1715 // Note: >> 1716 // Caller has deletion resposibility >> 1717 // Potential improvement: For last slice, use actual ending angle >> 1718 // to avoid rounding error problems. >> 1719 >> 1720 G4ThreeVectorList* >> 1721 G4Tubs::CreateRotatedVertices( const G4AffineTransform& pTransform ) const >> 1722 { >> 1723 G4ThreeVectorList* vertices ; >> 1724 G4ThreeVector vertex0, vertex1, vertex2, vertex3 ; >> 1725 G4double meshAngle, meshRMax, crossAngle, >> 1726 cosCrossAngle, sinCrossAngle, sAngle; >> 1727 G4double rMaxX, rMaxY, rMinX, rMinY, meshRMin ; >> 1728 G4int crossSection, noCrossSections; >> 1729 >> 1730 // Compute no of cross-sections necessary to mesh tube >> 1731 // >> 1732 noCrossSections = G4int(fDPhi/kMeshAngleDefault) + 1 ; >> 1733 >> 1734 if ( noCrossSections < kMinMeshSections ) >> 1735 { >> 1736 noCrossSections = kMinMeshSections ; >> 1737 } >> 1738 else if (noCrossSections>kMaxMeshSections) >> 1739 { >> 1740 noCrossSections = kMaxMeshSections ; >> 1741 } >> 1742 // noCrossSections = 4 ; >> 1743 >> 1744 meshAngle = fDPhi/(noCrossSections - 1) ; >> 1745 // meshAngle = fDPhi/(noCrossSections) ; >> 1746 >> 1747 meshRMax = (fRMax+100*kCarTolerance)/std::cos(meshAngle*0.5) ; >> 1748 meshRMin = fRMin - 100*kCarTolerance ; >> 1749 >> 1750 // If complete in phi, set start angle such that mesh will be at fRMax >> 1751 // on the x axis. Will give better extent calculations when not rotated. >> 1752 >> 1753 if (fPhiFullTube && (fSPhi == 0) ) { sAngle = -meshAngle*0.5 ; } >> 1754 else { sAngle = fSPhi ; } >> 1755 >> 1756 vertices = new G4ThreeVectorList(); >> 1757 >> 1758 if ( vertices ) >> 1759 { >> 1760 vertices->reserve(noCrossSections*4); >> 1761 for (crossSection = 0 ; crossSection < noCrossSections ; crossSection++ ) >> 1762 { >> 1763 // Compute coordinates of cross section at section crossSection >> 1764 >> 1765 crossAngle = sAngle + crossSection*meshAngle ; >> 1766 cosCrossAngle = std::cos(crossAngle) ; >> 1767 sinCrossAngle = std::sin(crossAngle) ; >> 1768 >> 1769 rMaxX = meshRMax*cosCrossAngle ; >> 1770 rMaxY = meshRMax*sinCrossAngle ; >> 1771 >> 1772 if(meshRMin <= 0.0) >> 1773 { >> 1774 rMinX = 0.0 ; >> 1775 rMinY = 0.0 ; >> 1776 } >> 1777 else >> 1778 { >> 1779 rMinX = meshRMin*cosCrossAngle ; >> 1780 rMinY = meshRMin*sinCrossAngle ; >> 1781 } >> 1782 vertex0 = G4ThreeVector(rMinX,rMinY,-fDz) ; >> 1783 vertex1 = G4ThreeVector(rMaxX,rMaxY,-fDz) ; >> 1784 vertex2 = G4ThreeVector(rMaxX,rMaxY,+fDz) ; >> 1785 vertex3 = G4ThreeVector(rMinX,rMinY,+fDz) ; >> 1786 >> 1787 vertices->push_back(pTransform.TransformPoint(vertex0)) ; >> 1788 vertices->push_back(pTransform.TransformPoint(vertex1)) ; >> 1789 vertices->push_back(pTransform.TransformPoint(vertex2)) ; >> 1790 vertices->push_back(pTransform.TransformPoint(vertex3)) ; >> 1791 } >> 1792 } >> 1793 else >> 1794 { >> 1795 DumpInfo(); >> 1796 G4Exception("G4Tubs::CreateRotatedVertices()", >> 1797 "GeomSolids0003", FatalException, >> 1798 "Error in allocation of vertices. Out of memory !"); >> 1799 } >> 1800 return vertices ; 1604 } 1801 } 1605 1802 1606 ///////////////////////////////////////////// 1803 ////////////////////////////////////////////////////////////////////////// 1607 // 1804 // 1608 // Stream object contents to an output stream 1805 // Stream object contents to an output stream 1609 1806 1610 G4GeometryType G4Tubs::GetEntityType() const 1807 G4GeometryType G4Tubs::GetEntityType() const 1611 { 1808 { 1612 return {"G4Tubs"}; << 1809 return G4String("G4Tubs"); 1613 } 1810 } 1614 1811 1615 ///////////////////////////////////////////// 1812 ////////////////////////////////////////////////////////////////////////// 1616 // 1813 // 1617 // Make a clone of the object 1814 // Make a clone of the object 1618 // 1815 // 1619 G4VSolid* G4Tubs::Clone() const 1816 G4VSolid* G4Tubs::Clone() const 1620 { 1817 { 1621 return new G4Tubs(*this); 1818 return new G4Tubs(*this); 1622 } 1819 } 1623 1820 1624 ///////////////////////////////////////////// 1821 ////////////////////////////////////////////////////////////////////////// 1625 // 1822 // 1626 // Stream object contents to an output stream 1823 // Stream object contents to an output stream 1627 1824 1628 std::ostream& G4Tubs::StreamInfo( std::ostrea 1825 std::ostream& G4Tubs::StreamInfo( std::ostream& os ) const 1629 { 1826 { 1630 G4long oldprc = os.precision(16); << 1827 G4int oldprc = os.precision(16); 1631 os << "------------------------------------ 1828 os << "-----------------------------------------------------------\n" 1632 << " *** Dump for solid - " << GetNam 1829 << " *** Dump for solid - " << GetName() << " ***\n" 1633 << " ================================ 1830 << " ===================================================\n" 1634 << " Solid type: G4Tubs\n" 1831 << " Solid type: G4Tubs\n" 1635 << " Parameters: \n" 1832 << " Parameters: \n" 1636 << " inner radius : " << fRMin/mm << 1833 << " inner radius : " << fRMin/mm << " mm \n" 1637 << " outer radius : " << fRMax/mm << 1834 << " outer radius : " << fRMax/mm << " mm \n" 1638 << " half length Z: " << fDz/mm << " 1835 << " half length Z: " << fDz/mm << " mm \n" 1639 << " starting phi : " << fSPhi/degree 1836 << " starting phi : " << fSPhi/degree << " degrees \n" 1640 << " delta phi : " << fDPhi/degree 1837 << " delta phi : " << fDPhi/degree << " degrees \n" 1641 << "------------------------------------ 1838 << "-----------------------------------------------------------\n"; 1642 os.precision(oldprc); 1839 os.precision(oldprc); 1643 1840 1644 return os; 1841 return os; 1645 } 1842 } 1646 1843 1647 ///////////////////////////////////////////// 1844 ///////////////////////////////////////////////////////////////////////// 1648 // 1845 // 1649 // GetPointOnSurface 1846 // GetPointOnSurface 1650 1847 1651 G4ThreeVector G4Tubs::GetPointOnSurface() con 1848 G4ThreeVector G4Tubs::GetPointOnSurface() const 1652 { 1849 { 1653 G4double Rmax = fRMax; << 1850 G4double xRand, yRand, zRand, phi, cosphi, sinphi, chose, 1654 G4double Rmin = fRMin; << 1851 aOne, aTwo, aThr, aFou; 1655 G4double hz = 2.*fDz; // height << 1852 G4double rRand; 1656 G4double lext = fDPhi*Rmax; // length of ex << 1853 1657 G4double lint = fDPhi*Rmin; // length of in << 1854 aOne = 2.*fDz*fDPhi*fRMax; 1658 << 1855 aTwo = 2.*fDz*fDPhi*fRMin; 1659 // Set array of surface areas << 1856 aThr = 0.5*fDPhi*(fRMax*fRMax-fRMin*fRMin); 1660 // << 1857 aFou = 2.*fDz*(fRMax-fRMin); 1661 G4double RRmax = Rmax * Rmax; << 1858 1662 G4double RRmin = Rmin * Rmin; << 1859 phi = RandFlat::shoot(fSPhi, fSPhi+fDPhi); 1663 G4double sbase = 0.5*fDPhi*(RRmax - RRmin); << 1860 cosphi = std::cos(phi); 1664 G4double scut = (fDPhi == twopi) ? 0. : hz* << 1861 sinphi = std::sin(phi); 1665 G4double ssurf[6] = { scut, scut, sbase, sb << 1862 1666 ssurf[1] += ssurf[0]; << 1863 rRand = GetRadiusInRing(fRMin,fRMax); 1667 ssurf[2] += ssurf[1]; << 1864 1668 ssurf[3] += ssurf[2]; << 1865 if( (fSPhi == 0) && (fDPhi == twopi) ) { aFou = 0; } 1669 ssurf[4] += ssurf[3]; << 1866 1670 ssurf[5] += ssurf[4]; << 1867 chose = RandFlat::shoot(0.,aOne+aTwo+2.*aThr+2.*aFou); 1671 << 1868 1672 // Select surface << 1869 if( (chose >=0) && (chose < aOne) ) 1673 // << 1870 { 1674 G4double select = ssurf[5]*G4QuickRand(); << 1871 xRand = fRMax*cosphi; 1675 G4int k = 5; << 1872 yRand = fRMax*sinphi; 1676 k -= (G4int)(select <= ssurf[4]); << 1873 zRand = RandFlat::shoot(-1.*fDz,fDz); 1677 k -= (G4int)(select <= ssurf[3]); << 1874 return G4ThreeVector (xRand, yRand, zRand); 1678 k -= (G4int)(select <= ssurf[2]); << 1875 } 1679 k -= (G4int)(select <= ssurf[1]); << 1876 else if( (chose >= aOne) && (chose < aOne + aTwo) ) 1680 k -= (G4int)(select <= ssurf[0]); << 1877 { 1681 << 1878 xRand = fRMin*cosphi; 1682 // Generate point on selected surface << 1879 yRand = fRMin*sinphi; 1683 // << 1880 zRand = RandFlat::shoot(-1.*fDz,fDz); 1684 switch(k) << 1881 return G4ThreeVector (xRand, yRand, zRand); >> 1882 } >> 1883 else if( (chose >= aOne + aTwo) && (chose < aOne + aTwo + aThr) ) >> 1884 { >> 1885 xRand = rRand*cosphi; >> 1886 yRand = rRand*sinphi; >> 1887 zRand = fDz; >> 1888 return G4ThreeVector (xRand, yRand, zRand); >> 1889 } >> 1890 else if( (chose >= aOne + aTwo + aThr) && (chose < aOne + aTwo + 2.*aThr) ) >> 1891 { >> 1892 xRand = rRand*cosphi; >> 1893 yRand = rRand*sinphi; >> 1894 zRand = -1.*fDz; >> 1895 return G4ThreeVector (xRand, yRand, zRand); >> 1896 } >> 1897 else if( (chose >= aOne + aTwo + 2.*aThr) >> 1898 && (chose < aOne + aTwo + 2.*aThr + aFou) ) >> 1899 { >> 1900 xRand = rRand*std::cos(fSPhi); >> 1901 yRand = rRand*std::sin(fSPhi); >> 1902 zRand = RandFlat::shoot(-1.*fDz,fDz); >> 1903 return G4ThreeVector (xRand, yRand, zRand); >> 1904 } >> 1905 else 1685 { 1906 { 1686 case 0: // start phi cut << 1907 xRand = rRand*std::cos(fSPhi+fDPhi); 1687 { << 1908 yRand = rRand*std::sin(fSPhi+fDPhi); 1688 G4double r = Rmin + (Rmax - Rmin)*G4Qui << 1909 zRand = RandFlat::shoot(-1.*fDz,fDz); 1689 return { r*cosSPhi, r*sinSPhi, hz*G4Qui << 1910 return G4ThreeVector (xRand, yRand, zRand); 1690 } << 1691 case 1: // end phi cut << 1692 { << 1693 G4double r = Rmin + (Rmax - Rmin)*G4Qui << 1694 return { r*cosEPhi, r*sinEPhi, hz*G4Qui << 1695 } << 1696 case 2: // base at -dz << 1697 { << 1698 G4double r = std::sqrt(RRmin + (RRmax - << 1699 G4double phi = fSPhi + fDPhi*G4QuickRan << 1700 return { r*std::cos(phi), r*std::sin(ph << 1701 } << 1702 case 3: // base at +dz << 1703 { << 1704 G4double r = std::sqrt(RRmin + (RRmax - << 1705 G4double phi = fSPhi + fDPhi*G4QuickRan << 1706 return { r*std::cos(phi), r*std::sin(ph << 1707 } << 1708 case 4: // external lateral surface << 1709 { << 1710 G4double phi = fSPhi + fDPhi*G4QuickRan << 1711 G4double z = hz*G4QuickRand() - fDz; << 1712 G4double x = Rmax*std::cos(phi); << 1713 G4double y = Rmax*std::sin(phi); << 1714 return { x,y,z }; << 1715 } << 1716 case 5: // internal lateral surface << 1717 { << 1718 G4double phi = fSPhi + fDPhi*G4QuickRan << 1719 G4double z = hz*G4QuickRand() - fDz; << 1720 G4double x = Rmin*std::cos(phi); << 1721 G4double y = Rmin*std::sin(phi); << 1722 return { x,y,z }; << 1723 } << 1724 } 1911 } 1725 return {0., 0., 0.}; << 1726 } 1912 } 1727 1913 1728 ///////////////////////////////////////////// 1914 /////////////////////////////////////////////////////////////////////////// 1729 // 1915 // 1730 // Methods for visualisation 1916 // Methods for visualisation 1731 1917 1732 void G4Tubs::DescribeYourselfTo ( G4VGraphics << 1918 void G4Tubs::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 1733 { 1919 { 1734 scene.AddSolid (*this) ; 1920 scene.AddSolid (*this) ; 1735 } 1921 } 1736 1922 1737 G4Polyhedron* G4Tubs::CreatePolyhedron () con << 1923 G4Polyhedron* G4Tubs::CreatePolyhedron () const 1738 { 1924 { 1739 return new G4PolyhedronTubs (fRMin, fRMax, 1925 return new G4PolyhedronTubs (fRMin, fRMax, fDz, fSPhi, fDPhi) ; 1740 } 1926 } 1741 1927 1742 #endif << 1928 G4NURBS* G4Tubs::CreateNURBS () const >> 1929 { >> 1930 G4NURBS* pNURBS ; >> 1931 if (fRMin != 0) >> 1932 { >> 1933 if (fPhiFullTube) >> 1934 { >> 1935 pNURBS = new G4NURBStube (fRMin,fRMax,fDz) ; >> 1936 } >> 1937 else >> 1938 { >> 1939 pNURBS = new G4NURBStubesector (fRMin,fRMax,fDz,fSPhi,fSPhi+fDPhi) ; >> 1940 } >> 1941 } >> 1942 else >> 1943 { >> 1944 if (fPhiFullTube) >> 1945 { >> 1946 pNURBS = new G4NURBScylinder (fRMax,fDz) ; >> 1947 } >> 1948 else >> 1949 { >> 1950 const G4double epsilon = 1.e-4 ; // Cylinder sector not yet available! >> 1951 pNURBS = new G4NURBStubesector (epsilon,fRMax,fDz,fSPhi,fSPhi+fDPhi) ; >> 1952 } >> 1953 } >> 1954 return pNURBS ; >> 1955 } 1743 1956