Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4Tubs implementation << 27 // 23 // 28 // 1994-95 P.Kent: first implementation << 24 // $Id: G4Tubs.cc,v 1.54 2005/06/08 16:14:25 gcosmo Exp $ 29 // 08.08.00 V.Grichine: more stable roots of 2 << 25 // GEANT4 tag $Name: geant4-07-01 $ >> 26 // >> 27 // >> 28 // class G4Tubs >> 29 // >> 30 // History: >> 31 // >> 32 // >> 33 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal >> 34 // 16.03.05 V.Grichine: SurfaceNormal(p) with edges/corners for boolean >> 35 // 20.07.01 V.Grichine: bug fixed in Inside(p) >> 36 // 20.02.01 V.Grichine: bug fixed in Inside(p) and CalculateExtent was >> 37 // simplified base on G4Box::CalculateExtent 30 // 07.12.00 V.Grichine: phi-section algorithm 38 // 07.12.00 V.Grichine: phi-section algorithm was changed in Inside(p) 31 // 03.05.05 V.Grichine: SurfaceNormal(p) accor << 39 // 28.11.00 V.Grichine: bug fixed in Inside(p) 32 // 24.08.16 E.Tcherniaev: reimplemented Calcul << 40 // 31.10.00 V.Grichine: assign sr, sphi in Distance ToOut(p,v,...) 33 // ------------------------------------------- << 41 // 08.08.00 V.Grichine: more stable roots of 2-equation in DistanceToOut(p,v,..) >> 42 // 02.08.00 V.Grichine: point is outside check in Distance ToOut(p) >> 43 // 17.05.00 V.Grichine: bugs (#76,#91) fixed in Distance ToOut(p,v,...) >> 44 // 31.03.00 V.Grichine: bug fixed in Inside(p) >> 45 // 19.11.99 V.Grichine: side = kNull in DistanceToOut(p,v,...) >> 46 // 13.10.99 V.Grichine: bugs fixed in DistanceToIn(p,v) >> 47 // 28.05.99 V.Grichine: bugs fixed in DistanceToOut(p,v,...) >> 48 // 25.05.99 V.Grichine: bugs fixed in DistanceToIn(p,v) >> 49 // 23.03.99 V.Grichine: bug fixed in DistanceToIn(p,v) >> 50 // 09.10.98 V.Grichine: modifications in DistanceToOut(p,v,...) >> 51 // 18.06.98 V.Grichine: n-normalisation in DistanceToOut(p,v) >> 52 // >> 53 // 1994-95 P.Kent: implementation 34 54 35 #include "G4Tubs.hh" 55 #include "G4Tubs.hh" 36 56 37 #if !defined(G4GEOM_USE_UTUBS) << 38 << 39 #include "G4GeomTools.hh" << 40 #include "G4VoxelLimits.hh" 57 #include "G4VoxelLimits.hh" 41 #include "G4AffineTransform.hh" 58 #include "G4AffineTransform.hh" 42 #include "G4GeometryTolerance.hh" << 43 #include "G4BoundingEnvelope.hh" << 44 59 45 #include "G4VPVParameterisation.hh" 60 #include "G4VPVParameterisation.hh" 46 #include "G4QuickRand.hh" << 61 >> 62 #include "meshdefs.hh" 47 63 48 #include "G4VGraphicsScene.hh" 64 #include "G4VGraphicsScene.hh" 49 #include "G4Polyhedron.hh" 65 #include "G4Polyhedron.hh" 50 << 66 #include "G4NURBS.hh" 51 using namespace CLHEP; << 67 #include "G4NURBStube.hh" >> 68 #include "G4NURBScylinder.hh" >> 69 #include "G4NURBStubesector.hh" 52 70 53 ////////////////////////////////////////////// 71 ///////////////////////////////////////////////////////////////////////// 54 // 72 // 55 // Constructor - check parameters, convert ang 73 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI 56 // - note if pdphi>2PI then reset 74 // - note if pdphi>2PI then reset to 2PI 57 75 58 G4Tubs::G4Tubs( const G4String& pName, << 76 G4Tubs::G4Tubs( const G4String &pName, 59 G4double pRMin, G4double 77 G4double pRMin, G4double pRMax, 60 G4double pDz, 78 G4double pDz, 61 G4double pSPhi, G4double 79 G4double pSPhi, G4double pDPhi ) 62 : G4CSGSolid(pName), fRMin(pRMin), fRMax(pR << 80 : G4CSGSolid(pName) 63 fSPhi(0), fDPhi(0), << 64 fInvRmax( pRMax > 0.0 ? 1.0/pRMax : 0.0 ) << 65 fInvRmin( pRMin > 0.0 ? 1.0/pRMin : 0.0 ) << 66 { 81 { 67 kRadTolerance = G4GeometryTolerance::GetInst << 68 kAngTolerance = G4GeometryTolerance::GetInst << 69 82 70 halfCarTolerance=kCarTolerance*0.5; << 83 if (pDz>0) // Check z-len 71 halfRadTolerance=kRadTolerance*0.5; << 72 halfAngTolerance=kAngTolerance*0.5; << 73 << 74 if (pDz<=0) // Check z-len << 75 { 84 { 76 std::ostringstream message; << 85 fDz = pDz ; 77 message << "Negative Z half-length (" << p << 78 G4Exception("G4Tubs::G4Tubs()", "GeomSolid << 79 } 86 } 80 if ( (pRMin >= pRMax) || (pRMin < 0) ) // Ch << 87 else 81 { 88 { 82 std::ostringstream message; << 89 G4cerr << "ERROR - G4Tubs()::G4Tubs(): " << GetName() << G4endl 83 message << "Invalid values for radii in so << 90 << " Negative Z half-length ! - " 84 << G4endl << 91 << pDz << G4endl; 85 << " pRMin = " << pRMin << << 92 G4Exception("G4Tubs::G4Tubs()", "InvalidSetup", FatalException, 86 G4Exception("G4Tubs::G4Tubs()", "GeomSolid << 93 "Invalid Z half-length"); 87 } 94 } >> 95 if ( pRMin < pRMax && pRMin >= 0 ) // Check radii >> 96 { >> 97 fRMin = pRMin ; >> 98 fRMax = pRMax ; >> 99 } >> 100 else >> 101 { >> 102 G4cerr << "ERROR - G4Tubs()::G4Tubs(): " << GetName() << G4endl >> 103 << " Invalid values for radii !" << G4endl >> 104 << " pRMin = " << pRMin << ", pRMax = " << pRMax << G4endl; >> 105 G4Exception("G4Tubs::G4Tubs()", "InvalidSetup", FatalException, >> 106 "Invalid radii."); >> 107 } >> 108 if ( pDPhi >= twopi ) // Check angles >> 109 { >> 110 fDPhi=twopi; >> 111 } >> 112 else >> 113 { >> 114 if ( pDPhi > 0 ) >> 115 { >> 116 fDPhi = pDPhi; >> 117 } >> 118 else >> 119 { >> 120 G4cerr << "ERROR - G4Tubs()::G4Tubs(): " << GetName() << G4endl >> 121 << " Negative delta-Phi ! - " >> 122 << pDPhi << G4endl; >> 123 G4Exception("G4Tubs::G4Tubs()", "InvalidSetup", FatalException, >> 124 "Invalid dphi."); >> 125 } >> 126 } >> 127 >> 128 // Ensure fSphi in 0-2PI or -2PI-0 range if shape crosses 0 88 129 89 // Check angles << 130 fSPhi = pSPhi; 90 // << 91 CheckPhiAngles(pSPhi, pDPhi); << 92 } << 93 131 94 ////////////////////////////////////////////// << 132 if ( fSPhi < 0 ) 95 // << 133 { 96 // Fake default constructor - sets only member << 134 fSPhi = twopi - std::fmod(std::fabs(fSPhi),twopi) ; 97 // for usage restri << 135 } 98 // << 136 else 99 G4Tubs::G4Tubs( __void__& a ) << 137 { 100 : G4CSGSolid(a) << 138 fSPhi = std::fmod(fSPhi,twopi) ; 101 { << 139 } >> 140 if (fSPhi + fDPhi > twopi ) >> 141 { >> 142 fSPhi -= twopi ; >> 143 } 102 } 144 } 103 145 104 ////////////////////////////////////////////// 146 ////////////////////////////////////////////////////////////////////////// 105 // 147 // 106 // Destructor 148 // Destructor 107 149 108 G4Tubs::~G4Tubs() = default; << 150 G4Tubs::~G4Tubs() 109 << 110 ////////////////////////////////////////////// << 111 // << 112 // Copy constructor << 113 << 114 G4Tubs::G4Tubs(const G4Tubs&) = default; << 115 << 116 ////////////////////////////////////////////// << 117 // << 118 // Assignment operator << 119 << 120 G4Tubs& G4Tubs::operator = (const G4Tubs& rhs) << 121 { 151 { 122 // Check assignment to self << 123 // << 124 if (this == &rhs) { return *this; } << 125 << 126 // Copy base class data << 127 // << 128 G4CSGSolid::operator=(rhs); << 129 << 130 // Copy data << 131 // << 132 kRadTolerance = rhs.kRadTolerance; kAngTole << 133 fRMin = rhs.fRMin; fRMax = rhs.fRMax; fDz = << 134 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; << 135 sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPh << 136 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = r << 137 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPh << 138 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPh << 139 fPhiFullTube = rhs.fPhiFullTube; << 140 fInvRmax = rhs.fInvRmax; << 141 fInvRmin = rhs.fInvRmin; << 142 halfCarTolerance = rhs.halfCarTolerance; << 143 halfRadTolerance = rhs.halfRadTolerance; << 144 halfAngTolerance = rhs.halfAngTolerance; << 145 << 146 return *this; << 147 } 152 } 148 153 149 ////////////////////////////////////////////// 154 ///////////////////////////////////////////////////////////////////////// 150 // 155 // 151 // Dispatch to parameterisation for replicatio 156 // Dispatch to parameterisation for replication mechanism dimension 152 // computation & modification. 157 // computation & modification. 153 158 154 void G4Tubs::ComputeDimensions( G4VPVPar 159 void G4Tubs::ComputeDimensions( G4VPVParameterisation* p, 155 const G4int n, 160 const G4int n, 156 const G4VPhysi 161 const G4VPhysicalVolume* pRep ) 157 { 162 { 158 p->ComputeDimensions(*this,n,pRep) ; 163 p->ComputeDimensions(*this,n,pRep) ; 159 } 164 } 160 165 161 ////////////////////////////////////////////// << 166 //////////////////////////////////////////////////////////////////////// 162 // << 163 // Get bounding box << 164 << 165 void G4Tubs::BoundingLimits(G4ThreeVector& pMi << 166 { << 167 G4double rmin = GetInnerRadius(); << 168 G4double rmax = GetOuterRadius(); << 169 G4double dz = GetZHalfLength(); << 170 << 171 // Find bounding box << 172 // << 173 if (GetDeltaPhiAngle() < twopi) << 174 { << 175 G4TwoVector vmin,vmax; << 176 G4GeomTools::DiskExtent(rmin,rmax, << 177 GetSinStartPhi(),G << 178 GetSinEndPhi(),Get << 179 vmin,vmax); << 180 pMin.set(vmin.x(),vmin.y(),-dz); << 181 pMax.set(vmax.x(),vmax.y(), dz); << 182 } << 183 else << 184 { << 185 pMin.set(-rmax,-rmax,-dz); << 186 pMax.set( rmax, rmax, dz); << 187 } << 188 << 189 // Check correctness of the bounding box << 190 // << 191 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 192 { << 193 std::ostringstream message; << 194 message << "Bad bounding box (min >= max) << 195 << GetName() << " !" << 196 << "\npMin = " << pMin << 197 << "\npMax = " << pMax; << 198 G4Exception("G4Tubs::BoundingLimits()", "G << 199 JustWarning, message); << 200 DumpInfo(); << 201 } << 202 } << 203 << 204 ////////////////////////////////////////////// << 205 // 167 // 206 // Calculate extent under transform and specif 168 // Calculate extent under transform and specified limit 207 169 208 G4bool G4Tubs::CalculateExtent( const EAxis 170 G4bool G4Tubs::CalculateExtent( const EAxis pAxis, 209 const G4VoxelL 171 const G4VoxelLimits& pVoxelLimit, 210 const G4Affine 172 const G4AffineTransform& pTransform, 211 G4double << 173 G4double& pMin, 212 G4double 174 G4double& pMax ) const 213 { 175 { 214 G4ThreeVector bmin, bmax; << 215 G4bool exist; << 216 << 217 // Get bounding box << 218 BoundingLimits(bmin,bmax); << 219 176 220 // Check bounding box << 177 if ( !pTransform.IsRotated() && fDPhi == twopi && fRMin == 0 ) 221 G4BoundingEnvelope bbox(bmin,bmax); << 222 #ifdef G4BBOX_EXTENT << 223 return bbox.CalculateExtent(pAxis,pVoxelLimi << 224 #endif << 225 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 226 { 178 { 227 return exist = pMin < pMax; << 179 // Special case handling for unrotated solid tubes 228 } << 180 // Compute x/y/z mins and maxs fro bounding box respecting limits, >> 181 // with early returns if outside limits. Then switch() on pAxis, >> 182 // and compute exact x and y limit for x/y case >> 183 >> 184 G4double xoffset, xMin, xMax ; >> 185 G4double yoffset, yMin, yMax ; >> 186 G4double zoffset, zMin, zMax ; >> 187 >> 188 G4double diff1, diff2, maxDiff, newMin, newMax ; >> 189 G4double xoff1, xoff2, yoff1, yoff2 ; >> 190 >> 191 xoffset = pTransform.NetTranslation().x() ; >> 192 xMin = xoffset - fRMax ; >> 193 xMax = xoffset + fRMax ; 229 194 230 // Get parameters of the solid << 195 if (pVoxelLimit.IsXLimited()) 231 G4double rmin = GetInnerRadius(); << 196 { 232 G4double rmax = GetOuterRadius(); << 197 if ( (xMin > pVoxelLimit.GetMaxXExtent()) 233 G4double dz = GetZHalfLength(); << 198 || (xMax < pVoxelLimit.GetMinXExtent()) ) 234 G4double dphi = GetDeltaPhiAngle(); << 199 { >> 200 return false; >> 201 } >> 202 else >> 203 { >> 204 if ( xMin < pVoxelLimit.GetMinXExtent() ) >> 205 { >> 206 xMin = pVoxelLimit.GetMinXExtent() ; >> 207 } >> 208 if (xMax > pVoxelLimit.GetMaxXExtent() ) >> 209 { >> 210 xMax = pVoxelLimit.GetMaxXExtent() ; >> 211 } >> 212 } >> 213 } >> 214 yoffset = pTransform.NetTranslation().y() ; >> 215 yMin = yoffset - fRMax ; >> 216 yMax = yoffset + fRMax ; 235 217 236 // Find bounding envelope and calculate exte << 218 if ( pVoxelLimit.IsYLimited() ) 237 // << 219 { 238 const G4int NSTEPS = 24; // numbe << 220 if ( (yMin > pVoxelLimit.GetMaxYExtent()) 239 G4double astep = twopi/NSTEPS; // max a << 221 || (yMax < pVoxelLimit.GetMinYExtent()) ) 240 G4int ksteps = (dphi <= astep) ? 1 : (G4i << 222 { 241 G4double ang = dphi/ksteps; << 223 return false ; 242 << 224 } 243 G4double sinHalf = std::sin(0.5*ang); << 225 else 244 G4double cosHalf = std::cos(0.5*ang); << 226 { 245 G4double sinStep = 2.*sinHalf*cosHalf; << 227 if ( yMin < pVoxelLimit.GetMinYExtent() ) 246 G4double cosStep = 1. - 2.*sinHalf*sinHalf; << 228 { 247 G4double rext = rmax/cosHalf; << 229 yMin = pVoxelLimit.GetMinYExtent() ; 248 << 230 } 249 // bounding envelope for full cylinder consi << 231 if ( yMax > pVoxelLimit.GetMaxYExtent() ) 250 // in other cases it is a sequence of quadri << 232 { 251 if (rmin == 0 && dphi == twopi) << 233 yMax=pVoxelLimit.GetMaxYExtent(); 252 { << 234 } 253 G4double sinCur = sinHalf; << 235 } 254 G4double cosCur = cosHalf; << 236 } 255 << 237 zoffset = pTransform.NetTranslation().z() ; 256 G4ThreeVectorList baseA(NSTEPS),baseB(NSTE << 238 zMin = zoffset - fDz ; 257 for (G4int k=0; k<NSTEPS; ++k) << 239 zMax = zoffset + fDz ; 258 { << 240 259 baseA[k].set(rext*cosCur,rext*sinCur,-dz << 241 if ( pVoxelLimit.IsZLimited() ) 260 baseB[k].set(rext*cosCur,rext*sinCur, dz << 242 { 261 << 243 if ( (zMin > pVoxelLimit.GetMaxZExtent()) 262 G4double sinTmp = sinCur; << 244 || (zMax < pVoxelLimit.GetMinZExtent()) ) 263 sinCur = sinCur*cosStep + cosCur*sinStep << 245 { 264 cosCur = cosCur*cosStep - sinTmp*sinStep << 246 return false ; 265 } << 247 } 266 std::vector<const G4ThreeVectorList *> pol << 248 else 267 polygons[0] = &baseA; << 249 { 268 polygons[1] = &baseB; << 250 if ( zMin < pVoxelLimit.GetMinZExtent() ) 269 G4BoundingEnvelope benv(bmin,bmax,polygons << 251 { 270 exist = benv.CalculateExtent(pAxis,pVoxelL << 252 zMin = pVoxelLimit.GetMinZExtent() ; 271 } << 253 } 272 else << 254 if ( zMax > pVoxelLimit.GetMaxZExtent() ) 273 { << 255 { 274 G4double sinStart = GetSinStartPhi(); << 256 zMax = pVoxelLimit.GetMaxZExtent(); 275 G4double cosStart = GetCosStartPhi(); << 257 } 276 G4double sinEnd = GetSinEndPhi(); << 258 } 277 G4double cosEnd = GetCosEndPhi(); << 259 } 278 G4double sinCur = sinStart*cosHalf + cos << 260 switch ( pAxis ) // Known to cut cylinder 279 G4double cosCur = cosStart*cosHalf - sin << 261 { 280 << 262 case kXAxis : 281 // set quadrilaterals << 263 { 282 G4ThreeVectorList pols[NSTEPS+2]; << 264 yoff1 = yoffset - yMin ; 283 for (G4int k=0; k<ksteps+2; ++k) pols[k].r << 265 yoff2 = yMax - yoffset ; 284 pols[0][0].set(rmin*cosStart,rmin*sinStart << 266 285 pols[0][1].set(rmin*cosStart,rmin*sinStart << 267 if ( yoff1 >= 0 && yoff2 >= 0 ) // Y limits cross max/min x => no change 286 pols[0][2].set(rmax*cosStart,rmax*sinStart << 268 { 287 pols[0][3].set(rmax*cosStart,rmax*sinStart << 269 pMin = xMin ; 288 for (G4int k=1; k<ksteps+1; ++k) << 270 pMax = xMax ; 289 { << 271 } 290 pols[k][0].set(rmin*cosCur,rmin*sinCur, << 272 else 291 pols[k][1].set(rmin*cosCur,rmin*sinCur,- << 273 { 292 pols[k][2].set(rext*cosCur,rext*sinCur,- << 274 // Y limits don't cross max/min x => compute max delta x, 293 pols[k][3].set(rext*cosCur,rext*sinCur, << 275 // hence new mins/maxs 294 << 276 295 G4double sinTmp = sinCur; << 277 diff1 = std::sqrt(fRMax*fRMax - yoff1*yoff1); 296 sinCur = sinCur*cosStep + cosCur*sinStep << 278 diff2 = std::sqrt(fRMax*fRMax - yoff2*yoff2); 297 cosCur = cosCur*cosStep - sinTmp*sinStep << 279 maxDiff = (diff1 > diff2) ? diff1:diff2; 298 } << 280 newMin = xoffset - maxDiff; 299 pols[ksteps+1][0].set(rmin*cosEnd,rmin*sin << 281 newMax = xoffset + maxDiff; 300 pols[ksteps+1][1].set(rmin*cosEnd,rmin*sin << 282 pMin = (newMin < xMin) ? xMin : newMin; 301 pols[ksteps+1][2].set(rmax*cosEnd,rmax*sin << 283 pMax = (newMax > xMax) ? xMax : newMax; 302 pols[ksteps+1][3].set(rmax*cosEnd,rmax*sin << 284 } 303 << 285 break; 304 // set envelope and calculate extent << 286 } 305 std::vector<const G4ThreeVectorList *> pol << 287 case kYAxis : 306 polygons.resize(ksteps+2); << 288 { 307 for (G4int k=0; k<ksteps+2; ++k) polygons[ << 289 xoff1 = xoffset - xMin ; 308 G4BoundingEnvelope benv(bmin,bmax,polygons << 290 xoff2 = xMax - xoffset ; 309 exist = benv.CalculateExtent(pAxis,pVoxelL << 291 >> 292 if ( xoff1 >= 0 && xoff2 >= 0 ) // X limits cross max/min y => no change >> 293 { >> 294 pMin = yMin ; >> 295 pMax = yMax ; >> 296 } >> 297 else >> 298 { >> 299 // X limits don't cross max/min y => compute max delta y, >> 300 // hence new mins/maxs >> 301 >> 302 diff1 = std::sqrt(fRMax*fRMax - xoff1*xoff1) ; >> 303 diff2 = std::sqrt(fRMax*fRMax - xoff2*xoff2) ; >> 304 maxDiff = (diff1 > diff2) ? diff1 : diff2 ; >> 305 newMin = yoffset - maxDiff ; >> 306 newMax = yoffset + maxDiff ; >> 307 pMin = (newMin < yMin) ? yMin : newMin ; >> 308 pMax =(newMax > yMax) ? yMax : newMax ; >> 309 } >> 310 break ; >> 311 } >> 312 case kZAxis: >> 313 { >> 314 pMin = zMin ; >> 315 pMax = zMax ; >> 316 break ; >> 317 } >> 318 default: >> 319 break; >> 320 } >> 321 pMin -= kCarTolerance ; >> 322 pMax += kCarTolerance ; >> 323 return true; >> 324 } >> 325 else // Calculate rotated vertex coordinates >> 326 { >> 327 G4int i, noEntries, noBetweenSections4 ; >> 328 G4bool existsAfterClip = false ; >> 329 G4ThreeVectorList* vertices = CreateRotatedVertices(pTransform) ; >> 330 >> 331 pMin = +kInfinity ; >> 332 pMax = -kInfinity ; >> 333 >> 334 noEntries = vertices->size() ; >> 335 noBetweenSections4 = noEntries - 4 ; >> 336 /* >> 337 G4cout << "vertices = " << noEntries << "\t" >> 338 << "v-4 = " << noBetweenSections4 << G4endl; >> 339 G4cout << G4endl; >> 340 for(i = 0 ; i < noEntries ; i++ ) >> 341 { >> 342 G4cout << i << "\t" << "v.x = " << ((*vertices)[i]).x() << "\t" >> 343 << "v.y = " << ((*vertices)[i]).y() << "\t" >> 344 << "v.z = " << ((*vertices)[i]).z() << "\t" << G4endl; >> 345 } >> 346 G4cout << G4endl; >> 347 G4cout << "ClipCrossSection" << G4endl; >> 348 */ >> 349 for (i = 0 ; i < noEntries ; i += 4 ) >> 350 { >> 351 // G4cout << "section = " << i << G4endl; >> 352 ClipCrossSection(vertices,i,pVoxelLimit,pAxis,pMin,pMax) ; >> 353 } >> 354 // G4cout << "ClipBetweenSections" << G4endl; >> 355 for (i = 0 ; i < noBetweenSections4 ; i += 4 ) >> 356 { >> 357 // G4cout << "between sections = " << i << G4endl; >> 358 ClipBetweenSections(vertices,i,pVoxelLimit,pAxis,pMin,pMax) ; >> 359 } >> 360 if (pMin != kInfinity || pMax != -kInfinity ) >> 361 { >> 362 existsAfterClip = true ; >> 363 pMin -= kCarTolerance ; // Add 2*tolerance to avoid precision troubles >> 364 pMax += kCarTolerance ; >> 365 } >> 366 else >> 367 { >> 368 // Check for case where completely enveloping clipping volume >> 369 // If point inside then we are confident that the solid completely >> 370 // envelopes the clipping volume. Hence set min/max extents according >> 371 // to clipping volume extents along the specified axis. >> 372 >> 373 G4ThreeVector clipCentre( >> 374 (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5, >> 375 (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5, >> 376 (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5 ) ; >> 377 >> 378 if ( Inside(pTransform.Inverse().TransformPoint(clipCentre)) != kOutside ) >> 379 { >> 380 existsAfterClip = true ; >> 381 pMin = pVoxelLimit.GetMinExtent(pAxis) ; >> 382 pMax = pVoxelLimit.GetMaxExtent(pAxis) ; >> 383 } >> 384 } >> 385 delete vertices; >> 386 return existsAfterClip; 310 } 387 } 311 return exist; << 312 } 388 } 313 389 >> 390 314 ////////////////////////////////////////////// 391 /////////////////////////////////////////////////////////////////////////// 315 // 392 // 316 // Return whether point inside/outside/on surf 393 // Return whether point inside/outside/on surface 317 394 318 EInside G4Tubs::Inside( const G4ThreeVector& p 395 EInside G4Tubs::Inside( const G4ThreeVector& p ) const 319 { 396 { 320 G4double r2,pPhi,tolRMin,tolRMax; 397 G4double r2,pPhi,tolRMin,tolRMax; 321 EInside in = kOutside ; 398 EInside in = kOutside ; 322 399 323 if (std::fabs(p.z()) <= fDz - halfCarToleran << 400 if (std::fabs(p.z()) <= fDz - kCarTolerance*0.5) 324 { 401 { 325 r2 = p.x()*p.x() + p.y()*p.y() ; 402 r2 = p.x()*p.x() + p.y()*p.y() ; 326 403 327 if (fRMin != 0.0) { tolRMin = fRMin + half << 404 if (fRMin) tolRMin = fRMin + kRadTolerance*0.5 ; 328 else { tolRMin = 0 ; } << 405 else tolRMin = 0 ; 329 << 330 tolRMax = fRMax - halfRadTolerance ; << 331 406 332 if ((r2 >= tolRMin*tolRMin) && (r2 <= tolR << 407 tolRMax = fRMax - kRadTolerance*0.5 ; >> 408 >> 409 if (r2 >= tolRMin*tolRMin && r2 <= tolRMax*tolRMax) 333 { 410 { 334 if ( fPhiFullTube ) << 411 // if ( fDPhi == twopi || r2 == 0 ) in = kInside ; 335 { << 412 if ( fDPhi == twopi ) in = kInside ; 336 in = kInside ; << 337 } << 338 else 413 else 339 { 414 { 340 // Try inner tolerant phi boundaries ( 415 // Try inner tolerant phi boundaries (=>inside) 341 // if not inside, try outer tolerant p 416 // if not inside, try outer tolerant phi boundaries 342 417 343 if ( (tolRMin==0) && (std::fabs(p.x()) << 418 pPhi = std::atan2(p.y(),p.x()) ; 344 && (std::fabs(p.y()) << 419 >> 420 if ( pPhi < -kAngTolerance*0.5 ) pPhi += twopi ; // 0<=pPhi<2pi >> 421 >> 422 if ( fSPhi >= 0 ) 345 { 423 { 346 in=kSurface; << 424 if ( (std::abs(pPhi) < kAngTolerance*0.5) >> 425 && (std::abs(fSPhi + fDPhi - twopi) < kAngTolerance*0.5) ) >> 426 { >> 427 pPhi += twopi ; // 0 <= pPhi < 2pi >> 428 } >> 429 if ( (pPhi >= fSPhi + kAngTolerance*0.5) >> 430 && (pPhi <= fSPhi + fDPhi - kAngTolerance*0.5) ) >> 431 { >> 432 in = kInside ; >> 433 } >> 434 else if ( (pPhi >= fSPhi - kAngTolerance*0.5) >> 435 && (pPhi <= fSPhi + fDPhi + kAngTolerance*0.5) ) >> 436 { >> 437 in = kSurface ; >> 438 } 347 } 439 } 348 else << 440 else // fSPhi < 0 349 { 441 { 350 pPhi = std::atan2(p.y(),p.x()) ; << 442 if ( (pPhi <= fSPhi + twopi - kAngTolerance*0.5) 351 if ( pPhi < -halfAngTolerance ) { p << 443 && (pPhi >= fSPhi + fDPhi + kAngTolerance*0.5) ) ; 352 << 444 else if ( (pPhi <= fSPhi + twopi + kAngTolerance*0.5) 353 if ( fSPhi >= 0 ) << 445 && (pPhi >= fSPhi + fDPhi - kAngTolerance*0.5) ) 354 { 446 { 355 if ( (std::fabs(pPhi) < halfAngTol << 447 in = kSurface ; 356 && (std::fabs(fSPhi + fDPhi - tw << 357 { << 358 pPhi += twopi ; // 0 <= pPhi < 2 << 359 } << 360 if ( (pPhi >= fSPhi + halfAngToler << 361 && (pPhi <= fSPhi + fDPhi - half << 362 { << 363 in = kInside ; << 364 } << 365 else if ( (pPhi >= fSPhi - halfAng << 366 && (pPhi <= fSPhi + fDPhi + << 367 { << 368 in = kSurface ; << 369 } << 370 } 448 } 371 else // fSPhi < 0 << 449 else 372 { 450 { 373 if ( (pPhi <= fSPhi + twopi - half << 451 in = kInside ; 374 && (pPhi >= fSPhi + fDPhi + hal << 375 else if ( (pPhi <= fSPhi + twopi + << 376 && (pPhi >= fSPhi + fDPhi << 377 { << 378 in = kSurface ; << 379 } << 380 else << 381 { << 382 in = kInside ; << 383 } << 384 } 452 } 385 } << 453 } 386 } 454 } 387 } 455 } 388 else // Try generous boundaries 456 else // Try generous boundaries 389 { 457 { 390 tolRMin = fRMin - halfRadTolerance ; << 458 tolRMin = fRMin - kRadTolerance*0.5 ; 391 tolRMax = fRMax + halfRadTolerance ; << 459 tolRMax = fRMax + kRadTolerance*0.5 ; 392 460 393 if ( tolRMin < 0 ) { tolRMin = 0; } << 461 if ( tolRMin < 0 ) tolRMin = 0 ; 394 462 395 if ( (r2 >= tolRMin*tolRMin) && (r2 <= t 463 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) ) 396 { 464 { 397 if (fPhiFullTube || (r2 <=halfRadToler << 465 if ( fDPhi == twopi || r2 == 0 ) // Continuous in phi or on z-axis 398 { // Continuous << 466 { 399 in = kSurface ; 467 in = kSurface ; 400 } 468 } 401 else // Try outer tolerant phi boundar 469 else // Try outer tolerant phi boundaries only 402 { 470 { 403 pPhi = std::atan2(p.y(),p.x()) ; 471 pPhi = std::atan2(p.y(),p.x()) ; 404 472 405 if ( pPhi < -halfAngTolerance) { pP << 473 if ( pPhi < -kAngTolerance*0.5 ) pPhi += twopi ; // 0<=pPhi<2pi 406 if ( fSPhi >= 0 ) 474 if ( fSPhi >= 0 ) 407 { 475 { 408 if ( (std::fabs(pPhi) < halfAngTol << 476 if ( (std::abs(pPhi) < kAngTolerance*0.5) 409 && (std::fabs(fSPhi + fDPhi - tw << 477 && (std::abs(fSPhi + fDPhi - twopi) < kAngTolerance*0.5) ) 410 { << 478 { 411 pPhi += twopi ; // 0 <= pPhi < 2 479 pPhi += twopi ; // 0 <= pPhi < 2pi 412 } 480 } 413 if ( (pPhi >= fSPhi - halfAngToler << 481 if ( (pPhi >= fSPhi - kAngTolerance*0.5) 414 && (pPhi <= fSPhi + fDPhi + half << 482 && (pPhi <= fSPhi + fDPhi + kAngTolerance*0.5) ) 415 { 483 { 416 in = kSurface ; 484 in = kSurface ; 417 } 485 } 418 } 486 } 419 else // fSPhi < 0 487 else // fSPhi < 0 420 { 488 { 421 if ( (pPhi <= fSPhi + twopi - half << 489 if ( (pPhi <= fSPhi + twopi - kAngTolerance*0.5) 422 && (pPhi >= fSPhi + fDPhi + half << 490 && (pPhi >= fSPhi + fDPhi + kAngTolerance*0.5) ) ; 423 else 491 else 424 { 492 { 425 in = kSurface ; 493 in = kSurface ; 426 } 494 } 427 } 495 } 428 } 496 } 429 } 497 } 430 } 498 } 431 } 499 } 432 else if (std::fabs(p.z()) <= fDz + halfCarTo << 500 else if (std::fabs(p.z()) <= fDz + kCarTolerance*0.5) 433 { / 501 { // Check within tolerant r limits 434 r2 = p.x()*p.x() + p.y()*p.y() ; 502 r2 = p.x()*p.x() + p.y()*p.y() ; 435 tolRMin = fRMin - halfRadTolerance ; << 503 tolRMin = fRMin - kRadTolerance*0.5 ; 436 tolRMax = fRMax + halfRadTolerance ; << 504 tolRMax = fRMax + kRadTolerance*0.5 ; 437 505 438 if ( tolRMin < 0 ) { tolRMin = 0; } << 506 if ( tolRMin < 0 ) tolRMin = 0 ; 439 507 440 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tol 508 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) ) 441 { 509 { 442 if (fPhiFullTube || (r2 <=halfRadToleran << 510 if (fDPhi == twopi || r2 == 0 ) // Continuous in phi or on z-axis 443 { // Continuous i << 511 { 444 in = kSurface ; 512 in = kSurface ; 445 } 513 } 446 else // Try outer tolerant phi boundarie 514 else // Try outer tolerant phi boundaries 447 { 515 { 448 pPhi = std::atan2(p.y(),p.x()) ; 516 pPhi = std::atan2(p.y(),p.x()) ; 449 517 450 if ( pPhi < -halfAngTolerance ) { pPh << 518 if ( pPhi < -kAngTolerance*0.5 ) pPhi += twopi ; // 0<=pPhi<2pi 451 if ( fSPhi >= 0 ) 519 if ( fSPhi >= 0 ) 452 { 520 { 453 if ( (std::fabs(pPhi) < halfAngToler << 521 if ( (std::abs(pPhi) < kAngTolerance*0.5) 454 && (std::fabs(fSPhi + fDPhi - twop << 522 && (std::abs(fSPhi + fDPhi - twopi) < kAngTolerance*0.5) ) 455 { << 523 { 456 pPhi += twopi ; // 0 <= pPhi < 2pi 524 pPhi += twopi ; // 0 <= pPhi < 2pi 457 } 525 } 458 if ( (pPhi >= fSPhi - halfAngToleran << 526 if ( (pPhi >= fSPhi - kAngTolerance*0.5) 459 && (pPhi <= fSPhi + fDPhi + halfAn << 527 && (pPhi <= fSPhi + fDPhi + kAngTolerance*0.5) ) 460 { 528 { 461 in = kSurface; 529 in = kSurface; 462 } 530 } 463 } 531 } 464 else // fSPhi < 0 532 else // fSPhi < 0 465 { 533 { 466 if ( (pPhi <= fSPhi + twopi - halfAn << 534 if ( (pPhi <= fSPhi + twopi - kAngTolerance*0.5) 467 && (pPhi >= fSPhi + fDPhi + halfA << 535 && (pPhi >= fSPhi + fDPhi + kAngTolerance*0.5) ) ; 468 else 536 else 469 { 537 { 470 in = kSurface ; 538 in = kSurface ; 471 } 539 } 472 } << 540 } 473 } 541 } 474 } 542 } 475 } 543 } 476 return in; << 544 return in ; 477 } 545 } 478 546 479 ////////////////////////////////////////////// 547 /////////////////////////////////////////////////////////////////////////// 480 // 548 // 481 // Return unit normal of surface closest to p 549 // Return unit normal of surface closest to p 482 // - note if point on z axis, ignore phi divid 550 // - note if point on z axis, ignore phi divided sides 483 // - unsafe if point close to z axis a rmin=0 551 // - unsafe if point close to z axis a rmin=0 - no explicit checks 484 552 485 G4ThreeVector G4Tubs::SurfaceNormal( const G4T 553 G4ThreeVector G4Tubs::SurfaceNormal( const G4ThreeVector& p ) const 486 { 554 { 487 G4int noSurfaces = 0; 555 G4int noSurfaces = 0; 488 G4double rho, pPhi; 556 G4double rho, pPhi; >> 557 G4double delta = 0.5*kCarTolerance, dAngle = 0.5*kAngTolerance; 489 G4double distZ, distRMin, distRMax; 558 G4double distZ, distRMin, distRMax; 490 G4double distSPhi = kInfinity, distEPhi = kI 559 G4double distSPhi = kInfinity, distEPhi = kInfinity; 491 << 492 G4ThreeVector norm, sumnorm(0.,0.,0.); 560 G4ThreeVector norm, sumnorm(0.,0.,0.); 493 G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0); 561 G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0); 494 G4ThreeVector nR, nPs, nPe; 562 G4ThreeVector nR, nPs, nPe; 495 563 496 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()); 564 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()); 497 565 498 distRMin = std::fabs(rho - fRMin); 566 distRMin = std::fabs(rho - fRMin); 499 distRMax = std::fabs(rho - fRMax); 567 distRMax = std::fabs(rho - fRMax); 500 distZ = std::fabs(std::fabs(p.z()) - fDz) 568 distZ = std::fabs(std::fabs(p.z()) - fDz); 501 569 502 if (!fPhiFullTube) // Protected against ( << 570 if (fDPhi < twopi) // && rho ) // Protected against (0,0,z) 503 { 571 { 504 if ( rho > halfCarTolerance ) << 572 if ( rho ) 505 { 573 { 506 pPhi = std::atan2(p.y(),p.x()); 574 pPhi = std::atan2(p.y(),p.x()); >> 575 >> 576 if(pPhi < fSPhi-delta) pPhi += twopi; >> 577 else if(pPhi > fSPhi+fDPhi+delta) pPhi -= twopi; 507 578 508 if (pPhi < fSPhi-halfCarTolerance) << 579 distSPhi = std::fabs( pPhi - fSPhi ); 509 else if (pPhi > fSPhi+fDPhi+halfCarToler << 580 distEPhi = std::fabs(pPhi - fSPhi - fDPhi); 510 << 511 distSPhi = std::fabs( pPhi - fSPhi ); << 512 distEPhi = std::fabs( pPhi - fSPhi - fDP << 513 } 581 } 514 else if ( fRMin == 0.0 ) << 582 else if( !fRMin ) 515 { 583 { 516 distSPhi = 0.; << 584 distSPhi = 0.; 517 distEPhi = 0.; << 585 distEPhi = 0.; 518 } 586 } 519 nPs = G4ThreeVector( sinSPhi, -cosSPhi, 0 << 587 nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0); 520 nPe = G4ThreeVector( -sinEPhi, cosEPhi, 0 << 588 nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0); 521 } 589 } 522 if ( rho > halfCarTolerance ) { nR = G4Three << 590 if ( rho > delta ) nR = G4ThreeVector(p.x()/rho,p.y()/rho,0); 523 591 524 if( distRMax <= halfCarTolerance ) << 592 if( distRMax <= delta ) 525 { 593 { 526 ++noSurfaces; << 594 noSurfaces ++; 527 sumnorm += nR; 595 sumnorm += nR; 528 } 596 } 529 if( (fRMin != 0.0) && (distRMin <= halfCarTo << 597 if( fRMin && distRMin <= delta ) 530 { 598 { 531 ++noSurfaces; << 599 noSurfaces ++; 532 sumnorm -= nR; 600 sumnorm -= nR; 533 } 601 } 534 if( fDPhi < twopi ) << 602 if( fDPhi < twopi ) 535 { 603 { 536 if (distSPhi <= halfAngTolerance) << 604 if (distSPhi <= dAngle) // delta) 537 { 605 { 538 ++noSurfaces; << 606 noSurfaces ++; 539 sumnorm += nPs; 607 sumnorm += nPs; 540 } 608 } 541 if (distEPhi <= halfAngTolerance) << 609 if (distEPhi <= dAngle) // delta) 542 { 610 { 543 ++noSurfaces; << 611 noSurfaces ++; 544 sumnorm += nPe; 612 sumnorm += nPe; 545 } 613 } 546 } 614 } 547 if (distZ <= halfCarTolerance) << 615 if (distZ <= delta) 548 { 616 { 549 ++noSurfaces; << 617 noSurfaces ++; 550 if ( p.z() >= 0.) { sumnorm += nZ; } << 618 if ( p.z() >= 0.) sumnorm += nZ; 551 else { sumnorm -= nZ; } << 619 else sumnorm -= nZ; 552 } 620 } 553 if ( noSurfaces == 0 ) 621 if ( noSurfaces == 0 ) 554 { 622 { 555 #ifdef G4CSGDEBUG 623 #ifdef G4CSGDEBUG 556 G4Exception("G4Tubs::SurfaceNormal(p)", "G << 624 G4Exception("G4Tube::SurfaceNormal(p)", "Notification", JustWarning, 557 JustWarning, "Point p is not o << 625 "Point p is not on surface !?" ); 558 G4long oldprc = G4cout.precision(20); << 626 #endif 559 G4cout<< "G4Tubs::SN ( "<<p.x()<<", "<<p.y << 560 << G4endl << G4endl; << 561 G4cout.precision(oldprc) ; << 562 #endif << 563 norm = ApproxSurfaceNormal(p); 627 norm = ApproxSurfaceNormal(p); 564 } 628 } 565 else if ( noSurfaces == 1 ) { norm = sumnor << 629 else if ( noSurfaces == 1 ) norm = sumnorm; 566 else { norm = sumnor << 630 else norm = sumnorm.unit(); 567 << 568 return norm; 631 return norm; 569 } 632 } 570 633 571 ////////////////////////////////////////////// << 634 ///////////////////////////////////////////////////////////////////////////////////// 572 // 635 // 573 // Algorithm for SurfaceNormal() following the 636 // Algorithm for SurfaceNormal() following the original specification 574 // for points not on the surface 637 // for points not on the surface 575 638 576 G4ThreeVector G4Tubs::ApproxSurfaceNormal( con 639 G4ThreeVector G4Tubs::ApproxSurfaceNormal( const G4ThreeVector& p ) const 577 { 640 { 578 ENorm side ; 641 ENorm side ; 579 G4ThreeVector norm ; 642 G4ThreeVector norm ; 580 G4double rho, phi ; 643 G4double rho, phi ; 581 G4double distZ, distRMin, distRMax, distSPhi 644 G4double distZ, distRMin, distRMax, distSPhi, distEPhi, distMin ; 582 645 583 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 646 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 584 647 585 distRMin = std::fabs(rho - fRMin) ; 648 distRMin = std::fabs(rho - fRMin) ; 586 distRMax = std::fabs(rho - fRMax) ; 649 distRMax = std::fabs(rho - fRMax) ; 587 distZ = std::fabs(std::fabs(p.z()) - fDz) 650 distZ = std::fabs(std::fabs(p.z()) - fDz) ; 588 651 589 if (distRMin < distRMax) // First minimum 652 if (distRMin < distRMax) // First minimum 590 { 653 { 591 if ( distZ < distRMin ) 654 if ( distZ < distRMin ) 592 { 655 { 593 distMin = distZ ; 656 distMin = distZ ; 594 side = kNZ ; 657 side = kNZ ; 595 } 658 } 596 else 659 else 597 { 660 { 598 distMin = distRMin ; 661 distMin = distRMin ; 599 side = kNRMin ; 662 side = kNRMin ; 600 } 663 } 601 } 664 } 602 else 665 else 603 { 666 { 604 if ( distZ < distRMax ) 667 if ( distZ < distRMax ) 605 { 668 { 606 distMin = distZ ; 669 distMin = distZ ; 607 side = kNZ ; 670 side = kNZ ; 608 } 671 } 609 else 672 else 610 { 673 { 611 distMin = distRMax ; 674 distMin = distRMax ; 612 side = kNRMax ; 675 side = kNRMax ; 613 } 676 } 614 } << 677 } 615 if (!fPhiFullTube && (rho != 0.0) ) // Pro << 678 if (fDPhi < twopi && rho ) // Protected against (0,0,z) 616 { 679 { 617 phi = std::atan2(p.y(),p.x()) ; 680 phi = std::atan2(p.y(),p.x()) ; 618 681 619 if ( phi < 0 ) { phi += twopi; } << 682 if ( phi < 0 ) phi += twopi ; 620 683 621 if ( fSPhi < 0 ) 684 if ( fSPhi < 0 ) 622 { 685 { 623 distSPhi = std::fabs(phi - (fSPhi + twop 686 distSPhi = std::fabs(phi - (fSPhi + twopi))*rho ; 624 } 687 } 625 else 688 else 626 { 689 { 627 distSPhi = std::fabs(phi - fSPhi)*rho ; 690 distSPhi = std::fabs(phi - fSPhi)*rho ; 628 } 691 } 629 distEPhi = std::fabs(phi - fSPhi - fDPhi)* 692 distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ; 630 << 693 631 if (distSPhi < distEPhi) // Find new minim 694 if (distSPhi < distEPhi) // Find new minimum 632 { 695 { 633 if ( distSPhi < distMin ) 696 if ( distSPhi < distMin ) 634 { 697 { 635 side = kNSPhi ; 698 side = kNSPhi ; 636 } 699 } 637 } 700 } 638 else 701 else 639 { 702 { 640 if ( distEPhi < distMin ) 703 if ( distEPhi < distMin ) 641 { 704 { 642 side = kNEPhi ; 705 side = kNEPhi ; 643 } 706 } 644 } 707 } 645 } << 708 } 646 switch ( side ) 709 switch ( side ) 647 { 710 { 648 case kNRMin : // Inner radius 711 case kNRMin : // Inner radius 649 { << 712 { 650 norm = G4ThreeVector(-p.x()/rho, -p.y()/ << 713 norm = G4ThreeVector(-p.x()/rho,-p.y()/rho,0) ; 651 break ; 714 break ; 652 } 715 } 653 case kNRMax : // Outer radius 716 case kNRMax : // Outer radius 654 { << 717 { 655 norm = G4ThreeVector(p.x()/rho, p.y()/rh << 718 norm = G4ThreeVector(p.x()/rho,p.y()/rho,0) ; 656 break ; 719 break ; 657 } 720 } 658 case kNZ : // + or - dz << 721 case kNZ : // + or - dz 659 { << 722 { 660 if ( p.z() > 0 ) { norm = G4ThreeVector << 723 if ( p.z() > 0 ) norm = G4ThreeVector(0,0,1) ; 661 else { norm = G4ThreeVector << 724 else norm = G4ThreeVector(0,0,-1) ; 662 break ; 725 break ; 663 } 726 } 664 case kNSPhi: 727 case kNSPhi: 665 { 728 { 666 norm = G4ThreeVector(sinSPhi, -cosSPhi, << 729 norm = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0) ; 667 break ; 730 break ; 668 } 731 } 669 case kNEPhi: 732 case kNEPhi: 670 { 733 { 671 norm = G4ThreeVector(-sinEPhi, cosEPhi, << 734 norm = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0) ; 672 break; 735 break; 673 } 736 } 674 default: // Should never reach this c << 737 default: 675 { 738 { 676 DumpInfo(); 739 DumpInfo(); 677 G4Exception("G4Tubs::ApproxSurfaceNormal << 740 G4Exception("G4Tubs::ApproxSurfaceNormal()", "Notification", JustWarning, 678 "GeomSolids1002", JustWarnin << 679 "Undefined side for valid su 741 "Undefined side for valid surface normal to solid."); 680 break ; 742 break ; 681 } << 743 } 682 } << 744 } 683 return norm; 745 return norm; 684 } 746 } 685 747 686 ////////////////////////////////////////////// 748 //////////////////////////////////////////////////////////////////// 687 // 749 // 688 // 750 // 689 // Calculate distance to shape from outside, a 751 // Calculate distance to shape from outside, along normalised vector 690 // - return kInfinity if no intersection, or i 752 // - return kInfinity if no intersection, or intersection distance <= tolerance 691 // 753 // 692 // - Compute the intersection with the z plane << 754 // - Compute the intersection with the z planes 693 // - if at valid r, phi, return 755 // - if at valid r, phi, return 694 // 756 // 695 // -> If point is outer outer radius, compute 757 // -> If point is outer outer radius, compute intersection with rmax 696 // - if at valid phi,z return 758 // - if at valid phi,z return 697 // 759 // 698 // -> Compute intersection with inner radius, 760 // -> Compute intersection with inner radius, taking largest +ve root 699 // - if valid (in z,phi), save intersct 761 // - if valid (in z,phi), save intersction 700 // 762 // 701 // -> If phi segmented, compute intersectio 763 // -> If phi segmented, compute intersections with phi half planes 702 // - return smallest of valid phi inter 764 // - return smallest of valid phi intersections and 703 // inner radius intersection 765 // inner radius intersection 704 // 766 // 705 // NOTE: 767 // NOTE: 706 // - 'if valid' implies tolerant checking of i << 768 // - Precalculations for phi trigonometry are Done `just in time' >> 769 // - `if valid' implies tolerant checking of intersection points 707 770 708 G4double G4Tubs::DistanceToIn( const G4ThreeVe 771 G4double G4Tubs::DistanceToIn( const G4ThreeVector& p, 709 const G4ThreeVe 772 const G4ThreeVector& v ) const 710 { 773 { 711 G4double snxt = kInfinity ; // snxt = d << 774 G4double snxt = kInfinity ; // snxt = default return value 712 G4double tolORMin2, tolIRMax2 ; // 'generou << 775 >> 776 // Precalculated trig for phi intersections - used by r,z intersections to >> 777 // check validity >> 778 >> 779 G4bool seg ; // true if segmented >> 780 >> 781 G4double hDPhi, hDPhiOT, hDPhiIT, cosHDPhiOT=0., cosHDPhiIT=0. ; >> 782 // half dphi + outer tolerance >> 783 >> 784 G4double cPhi, sinCPhi=0., cosCPhi=0. ; // central phi >> 785 >> 786 G4double tolORMin2, tolIRMax2 ; // `generous' radii squared >> 787 713 G4double tolORMax2, tolIRMin2, tolODz, tolID 788 G4double tolORMax2, tolIRMin2, tolODz, tolIDz ; 714 const G4double dRmax = 100.*fRMax; << 715 789 716 // Intersection point variables 790 // Intersection point variables 717 // 791 // 718 G4double Dist, sd, xi, yi, zi, rho2, inum, i << 792 G4double Dist, s, xi, yi, zi, rho2, inum, iden, cosPsi ; 719 G4double t1, t2, t3, b, c, d ; // Quadra << 793 >> 794 G4double t1, t2, t3, b, c, d ; // Quadratic solver variables >> 795 >> 796 G4double Comp ; >> 797 G4double cosSPhi, sinSPhi ; // Trig for phi start intersect >> 798 >> 799 G4double ePhi, cosEPhi, sinEPhi ; // for phi end intersect >> 800 >> 801 // Set phi divided flag and precalcs >> 802 >> 803 if ( fDPhi < twopi ) >> 804 { >> 805 seg = true ; >> 806 hDPhi = 0.5*fDPhi ; // half delta phi >> 807 cPhi = fSPhi + hDPhi ; >> 808 hDPhiOT = hDPhi + 0.5*kAngTolerance ; // outers tol' half delta phi >> 809 hDPhiIT = hDPhi - 0.5*kAngTolerance ; >> 810 sinCPhi = std::sin(cPhi) ; >> 811 cosCPhi = std::cos(cPhi) ; >> 812 cosHDPhiOT = std::cos(hDPhiOT) ; >> 813 cosHDPhiIT = std::cos(hDPhiIT) ; >> 814 } >> 815 else >> 816 { >> 817 seg = false ; >> 818 } 720 819 721 // Calculate tolerant rmin and rmax 820 // Calculate tolerant rmin and rmax 722 821 723 if (fRMin > kRadTolerance) 822 if (fRMin > kRadTolerance) 724 { 823 { 725 tolORMin2 = (fRMin - halfRadTolerance)*(fR << 824 tolORMin2 = (fRMin - 0.5*kRadTolerance)*(fRMin - 0.5*kRadTolerance) ; 726 tolIRMin2 = (fRMin + halfRadTolerance)*(fR << 825 tolIRMin2 = (fRMin + 0.5*kRadTolerance)*(fRMin + 0.5*kRadTolerance) ; 727 } 826 } 728 else 827 else 729 { 828 { 730 tolORMin2 = 0.0 ; 829 tolORMin2 = 0.0 ; 731 tolIRMin2 = 0.0 ; 830 tolIRMin2 = 0.0 ; 732 } 831 } 733 tolORMax2 = (fRMax + halfRadTolerance)*(fRMa << 832 tolORMax2 = (fRMax + 0.5*kRadTolerance)*(fRMax + 0.5*kRadTolerance) ; 734 tolIRMax2 = (fRMax - halfRadTolerance)*(fRMa << 833 tolIRMax2 = (fRMax - 0.5*kRadTolerance)*(fRMax - 0.5*kRadTolerance) ; 735 834 736 // Intersection with Z surfaces 835 // Intersection with Z surfaces 737 836 738 tolIDz = fDz - halfCarTolerance ; << 837 tolIDz = fDz - kCarTolerance*0.5 ; 739 tolODz = fDz + halfCarTolerance ; << 838 tolODz = fDz + kCarTolerance*0.5 ; 740 839 741 if (std::fabs(p.z()) >= tolIDz) 840 if (std::fabs(p.z()) >= tolIDz) 742 { 841 { 743 if ( p.z()*v.z() < 0 ) // at +Z going i 842 if ( p.z()*v.z() < 0 ) // at +Z going in -Z or visa versa 744 { 843 { 745 sd = (std::fabs(p.z()) - fDz)/std::fabs( << 844 s = (std::fabs(p.z()) - fDz)/std::fabs(v.z()) ; // Z intersect distance 746 845 747 if(sd < 0.0) { sd = 0.0; } << 846 if(s < 0.0) s = 0.0 ; 748 847 749 xi = p.x() + sd*v.x() ; << 848 xi = p.x() + s*v.x() ; // Intersection coords 750 yi = p.y() + sd*v.y() ; << 849 yi = p.y() + s*v.y() ; 751 rho2 = xi*xi + yi*yi ; 850 rho2 = xi*xi + yi*yi ; 752 851 753 // Check validity of intersection 852 // Check validity of intersection 754 853 755 if ((tolIRMin2 <= rho2) && (rho2 <= tolI << 854 if (tolIRMin2 <= rho2 && rho2 <= tolIRMax2) 756 { 855 { 757 if (!fPhiFullTube && (rho2 != 0.0)) << 856 if (seg && rho2) 758 { 857 { 759 // Psi = angle made with central (av 858 // Psi = angle made with central (average) phi of shape 760 // 859 // 761 inum = xi*cosCPhi + yi*sinCPhi ; 860 inum = xi*cosCPhi + yi*sinCPhi ; 762 iden = std::sqrt(rho2) ; 861 iden = std::sqrt(rho2) ; 763 cosPsi = inum/iden ; 862 cosPsi = inum/iden ; 764 if (cosPsi >= cosHDPhiIT) { return << 863 if (cosPsi >= cosHDPhiIT) return s ; 765 } << 766 else << 767 { << 768 return sd ; << 769 } 864 } >> 865 else return s ; 770 } 866 } 771 } 867 } 772 else 868 else 773 { 869 { 774 if ( snxt<halfCarTolerance ) { snxt=0; << 870 if ( snxt<kCarTolerance*0.5 ) snxt=0 ; 775 return snxt ; // On/outside extent, and 871 return snxt ; // On/outside extent, and heading away 776 // -> cannot intersect 872 // -> cannot intersect 777 } 873 } 778 } 874 } 779 875 780 // -> Can not intersect z surfaces 876 // -> Can not intersect z surfaces 781 // 877 // 782 // Intersection with rmax (possible return) 878 // Intersection with rmax (possible return) and rmin (must also check phi) 783 // 879 // 784 // Intersection point (xi,yi,zi) on line x=p 880 // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc. 785 // 881 // 786 // Intersects with x^2+y^2=R^2 882 // Intersects with x^2+y^2=R^2 787 // 883 // 788 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v. 884 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0 789 // t1 t2 885 // t1 t2 t3 790 886 791 t1 = 1.0 - v.z()*v.z() ; 887 t1 = 1.0 - v.z()*v.z() ; 792 t2 = p.x()*v.x() + p.y()*v.y() ; 888 t2 = p.x()*v.x() + p.y()*v.y() ; 793 t3 = p.x()*p.x() + p.y()*p.y() ; 889 t3 = p.x()*p.x() + p.y()*p.y() ; 794 890 795 if ( t1 > 0 ) // Check not || to z ax 891 if ( t1 > 0 ) // Check not || to z axis 796 { 892 { 797 b = t2/t1 ; 893 b = t2/t1 ; 798 c = t3 - fRMax*fRMax ; 894 c = t3 - fRMax*fRMax ; 799 if ((t3 >= tolORMax2) && (t2<0)) // This << 895 if (t3 >= tolORMax2 && t2<0) // This also handles the tangent case 800 { 896 { 801 // Try outer cylinder intersection 897 // Try outer cylinder intersection 802 // c=(t3-fRMax*fRMax)/t1; 898 // c=(t3-fRMax*fRMax)/t1; 803 899 804 c /= t1 ; 900 c /= t1 ; 805 d = b*b - c ; 901 d = b*b - c ; 806 902 807 if (d >= 0) // If real root 903 if (d >= 0) // If real root 808 { 904 { 809 sd = c/(-b+std::sqrt(d)); << 905 s = -b - std::sqrt(d) ; 810 if (sd >= 0) // If 'forwards' << 906 if (s >= 0) // If 'forwards' 811 { 907 { 812 if ( sd>dRmax ) // Avoid rounding er << 813 { // 64 bits systems. << 814 G4double fTerm = sd-std::fmod(sd,d << 815 sd = fTerm + DistanceToIn(p+fTerm* << 816 } << 817 // Check z intersection 908 // Check z intersection 818 // 909 // 819 zi = p.z() + sd*v.z() ; << 910 zi = p.z() + s*v.z() ; 820 if (std::fabs(zi)<=tolODz) 911 if (std::fabs(zi)<=tolODz) 821 { 912 { 822 // Z ok. Check phi intersection if 913 // Z ok. Check phi intersection if reqd 823 // 914 // 824 if (fPhiFullTube) << 915 if (!seg) 825 { 916 { 826 return sd ; << 917 return s ; 827 } 918 } 828 else 919 else 829 { 920 { 830 xi = p.x() + sd*v.x() ; << 921 xi = p.x() + s*v.x() ; 831 yi = p.y() + sd*v.y() ; << 922 yi = p.y() + s*v.y() ; 832 cosPsi = (xi*cosCPhi + yi*sinCPh 923 cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMax ; 833 if (cosPsi >= cosHDPhiIT) { ret << 924 if (cosPsi >= cosHDPhiIT) return s ; 834 } 925 } 835 } // end if std::fabs(zi) 926 } // end if std::fabs(zi) 836 } // end if (sd>=0) << 927 } // end if (s>=0) 837 } // end if (d>=0) 928 } // end if (d>=0) 838 } // end if (r>=fRMax) 929 } // end if (r>=fRMax) 839 else << 930 else 840 { 931 { 841 // Inside outer radius : 932 // Inside outer radius : 842 // check not inside, and heading through 933 // check not inside, and heading through tubs (-> 0 to in) 843 934 844 if ((t3 > tolIRMin2) && (t2 < 0) && (std << 935 if (t3 > tolIRMin2 && t2 < 0 && std::fabs(p.z()) <= tolIDz) 845 { 936 { 846 // Inside both radii, delta r -ve, ins 937 // Inside both radii, delta r -ve, inside z extent 847 938 848 if (!fPhiFullTube) << 939 if (seg) 849 { 940 { 850 inum = p.x()*cosCPhi + p.y()*sinCP 941 inum = p.x()*cosCPhi + p.y()*sinCPhi ; 851 iden = std::sqrt(t3) ; 942 iden = std::sqrt(t3) ; 852 cosPsi = inum/iden ; 943 cosPsi = inum/iden ; 853 if (cosPsi >= cosHDPhiIT) << 944 if (cosPsi >= cosHDPhiIT) return 0.0 ; 854 { << 855 // In the old version, the small n << 856 // on surface was not taken in acc << 857 // New version: check the tangent << 858 // if no intersection, return kInf << 859 // return sd. << 860 // << 861 c = t3-fRMax*fRMax; << 862 if ( c<=0.0 ) << 863 { << 864 return 0.0; << 865 } << 866 else << 867 { << 868 c = c/t1 ; << 869 d = b*b-c; << 870 if ( d>=0.0 ) << 871 { << 872 snxt = c/(-b+std::sqrt(d)); // << 873 // << 874 if ( snxt < halfCarTolerance ) << 875 return snxt ; << 876 } << 877 else << 878 { << 879 return kInfinity; << 880 } << 881 } << 882 } << 883 } 945 } 884 else 946 else 885 { 947 { 886 // In the old version, the small neg << 948 return 0.0 ; 887 // on surface was not taken in accou << 949 } 888 // New version: check the tangent fo << 950 } 889 // if no intersection, return kInfin << 951 } 890 // return sd. << 952 if ( fRMin ) // Try inner cylinder intersection 891 // << 892 c = t3 - fRMax*fRMax; << 893 if ( c<=0.0 ) << 894 { << 895 return 0.0; << 896 } << 897 else << 898 { << 899 c = c/t1 ; << 900 d = b*b-c; << 901 if ( d>=0.0 ) << 902 { << 903 snxt= c/(-b+std::sqrt(d)); // us << 904 // fo << 905 if ( snxt < halfCarTolerance ) { << 906 return snxt ; << 907 } << 908 else << 909 { << 910 return kInfinity; << 911 } << 912 } << 913 } // end if (!fPhiFullTube) << 914 } // end if (t3>tolIRMin2) << 915 } // end if (Inside Outer Radius) << 916 if ( fRMin != 0.0 ) // Try inner cylind << 917 { 953 { 918 c = (t3 - fRMin*fRMin)/t1 ; 954 c = (t3 - fRMin*fRMin)/t1 ; 919 d = b*b - c ; 955 d = b*b - c ; 920 if ( d >= 0.0 ) // If real root 956 if ( d >= 0.0 ) // If real root 921 { 957 { 922 // Always want 2nd root - we are outsi 958 // Always want 2nd root - we are outside and know rmax Hit was bad 923 // - If on surface of rmin also need f 959 // - If on surface of rmin also need farthest root 924 960 925 sd =( b > 0. )? c/(-b - std::sqrt(d)) << 961 s = -b + std::sqrt(d) ; 926 if (sd >= -halfCarTolerance) // check << 962 if (s >= -0.5*kCarTolerance) // check forwards 927 { 963 { 928 // Check z intersection 964 // Check z intersection 929 // 965 // 930 if(sd < 0.0) { sd = 0.0; } << 966 if(s < 0.0) s = 0.0 ; 931 if ( sd>dRmax ) // Avoid rounding er << 967 zi = p.z() + s*v.z() ; 932 { // 64 bits systems. << 933 G4double fTerm = sd-std::fmod(sd,d << 934 sd = fTerm + DistanceToIn(p+fTerm* << 935 } << 936 zi = p.z() + sd*v.z() ; << 937 if (std::fabs(zi) <= tolODz) 968 if (std::fabs(zi) <= tolODz) 938 { 969 { 939 // Z ok. Check phi 970 // Z ok. Check phi 940 // 971 // 941 if ( fPhiFullTube ) << 972 if ( !seg ) 942 { 973 { 943 return sd ; << 974 return s ; 944 } 975 } 945 else 976 else 946 { 977 { 947 xi = p.x() + sd*v.x() ; << 978 xi = p.x() + s*v.x() ; 948 yi = p.y() + sd*v.y() ; << 979 yi = p.y() + s*v.y() ; 949 cosPsi = (xi*cosCPhi + yi*sinCPh << 980 cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMin ; 950 if (cosPsi >= cosHDPhiIT) 981 if (cosPsi >= cosHDPhiIT) 951 { 982 { 952 // Good inner radius isect 983 // Good inner radius isect 953 // - but earlier phi isect sti 984 // - but earlier phi isect still possible 954 985 955 snxt = sd ; << 986 snxt = s ; 956 } 987 } 957 } 988 } 958 } // end if std::fabs(zi) 989 } // end if std::fabs(zi) 959 } // end if (sd>=0) << 990 } // end if (s>=0) 960 } // end if (d>=0) 991 } // end if (d>=0) 961 } // end if (fRMin) 992 } // end if (fRMin) 962 } 993 } 963 994 964 // Phi segment intersection 995 // Phi segment intersection 965 // 996 // 966 // o Tolerant of points inside phi planes by 997 // o Tolerant of points inside phi planes by up to kCarTolerance*0.5 967 // 998 // 968 // o NOTE: Large duplication of code between 999 // o NOTE: Large duplication of code between sphi & ephi checks 969 // -> only diffs: sphi -> ephi, Comp 1000 // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane 970 // intersection check <=0 -> >=0 1001 // intersection check <=0 -> >=0 971 // -> use some form of loop Construc 1002 // -> use some form of loop Construct ? 972 // 1003 // 973 if ( !fPhiFullTube ) << 1004 if ( seg ) 974 { 1005 { 975 // First phi surface (Starting phi) << 1006 // First phi surface (`S'tarting phi) 976 // << 977 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; << 978 1007 >> 1008 sinSPhi = std::sin(fSPhi) ; >> 1009 cosSPhi = std::cos(fSPhi) ; >> 1010 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; >> 1011 979 if ( Comp < 0 ) // Component in outwards 1012 if ( Comp < 0 ) // Component in outwards normal dirn 980 { 1013 { 981 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 1014 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 982 1015 983 if ( Dist < halfCarTolerance ) << 1016 if ( Dist < kCarTolerance*0.5 ) 984 { 1017 { 985 sd = Dist/Comp ; << 1018 s = Dist/Comp ; 986 1019 987 if (sd < snxt) << 1020 if (s < snxt) 988 { 1021 { 989 if ( sd < 0 ) { sd = 0.0; } << 1022 if ( s < 0 ) s = 0.0 ; 990 zi = p.z() + sd*v.z() ; << 1023 zi = p.z() + s*v.z() ; 991 if ( std::fabs(zi) <= tolODz ) 1024 if ( std::fabs(zi) <= tolODz ) 992 { 1025 { 993 xi = p.x() + sd*v.x() ; << 1026 xi = p.x() + s*v.x() ; 994 yi = p.y() + sd*v.y() ; << 1027 yi = p.y() + s*v.y() ; 995 rho2 = xi*xi + yi*yi ; 1028 rho2 = xi*xi + yi*yi ; 996 1029 997 if ( ( (rho2 >= tolIRMin2) && (rho 1030 if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) ) 998 || ( (rho2 > tolORMin2) && (rho 1031 || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2) 999 && ( v.y()*cosSPhi - v.x()*sin 1032 && ( v.y()*cosSPhi - v.x()*sinSPhi > 0 ) 1000 && ( v.x()*cosSPhi + v.y()*si 1033 && ( v.x()*cosSPhi + v.y()*sinSPhi >= 0 ) ) 1001 || ( (rho2 > tolIRMax2) && (rho 1034 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2) 1002 && (v.y()*cosSPhi - v.x()*sin 1035 && (v.y()*cosSPhi - v.x()*sinSPhi > 0) 1003 && (v.x()*cosSPhi + v.y()*sin 1036 && (v.x()*cosSPhi + v.y()*sinSPhi < 0) ) ) 1004 { 1037 { 1005 // z and r intersections good 1038 // z and r intersections good 1006 // - check intersecting with co 1039 // - check intersecting with correct half-plane 1007 // 1040 // 1008 if ((yi*cosCPhi-xi*sinCPhi) <= << 1041 if ((yi*cosCPhi-xi*sinCPhi) <= 0) snxt = s ; 1009 } << 1042 } 1010 } 1043 } 1011 } 1044 } 1012 } << 1045 } 1013 } 1046 } >> 1047 >> 1048 // Second phi surface (`E'nding phi) 1014 1049 1015 // Second phi surface (Ending phi) << 1050 ePhi = fSPhi + fDPhi ; 1016 << 1051 sinEPhi = std::sin(ePhi) ; >> 1052 cosEPhi = std::cos(ePhi) ; 1017 Comp = -(v.x()*sinEPhi - v.y()*cosEPhi 1053 Comp = -(v.x()*sinEPhi - v.y()*cosEPhi) ; 1018 << 1054 1019 if (Comp < 0 ) // Component in outwards 1055 if (Comp < 0 ) // Component in outwards normal dirn 1020 { 1056 { 1021 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) 1057 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ; 1022 1058 1023 if ( Dist < halfCarTolerance ) << 1059 if ( Dist < kCarTolerance*0.5 ) 1024 { 1060 { 1025 sd = Dist/Comp ; << 1061 s = Dist/Comp ; 1026 1062 1027 if (sd < snxt) << 1063 if (s < snxt) 1028 { 1064 { 1029 if ( sd < 0 ) { sd = 0; } << 1065 if ( s < 0 ) s = 0 ; 1030 zi = p.z() + sd*v.z() ; << 1066 zi = p.z() + s*v.z() ; 1031 if ( std::fabs(zi) <= tolODz ) 1067 if ( std::fabs(zi) <= tolODz ) 1032 { 1068 { 1033 xi = p.x() + sd*v.x() ; << 1069 xi = p.x() + s*v.x() ; 1034 yi = p.y() + sd*v.y() ; << 1070 yi = p.y() + s*v.y() ; 1035 rho2 = xi*xi + yi*yi ; 1071 rho2 = xi*xi + yi*yi ; 1036 if ( ( (rho2 >= tolIRMin2) && (rh 1072 if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) ) 1037 || ( (rho2 > tolORMin2) && ( 1073 || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2) 1038 && (v.x()*sinEPhi - v.y()*c 1074 && (v.x()*sinEPhi - v.y()*cosEPhi > 0) 1039 && (v.x()*cosEPhi + v.y()*s 1075 && (v.x()*cosEPhi + v.y()*sinEPhi >= 0) ) 1040 || ( (rho2 > tolIRMax2) && (r 1076 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2) 1041 && (v.x()*sinEPhi - v.y()*c 1077 && (v.x()*sinEPhi - v.y()*cosEPhi > 0) 1042 && (v.x()*cosEPhi + v.y()*s 1078 && (v.x()*cosEPhi + v.y()*sinEPhi < 0) ) ) 1043 { 1079 { 1044 // z and r intersections good 1080 // z and r intersections good 1045 // - check intersecting with co 1081 // - check intersecting with correct half-plane 1046 // 1082 // 1047 if ( (yi*cosCPhi-xi*sinCPhi) >= << 1083 if ( (yi*cosCPhi-xi*sinCPhi) >= 0 ) snxt = s ; 1048 } //?? >= << 1084 } 1049 } 1085 } 1050 } 1086 } 1051 } 1087 } 1052 } // Comp < 0 1088 } // Comp < 0 1053 } // !fPhiFullTube << 1089 } // seg != 0 1054 if ( snxt<halfCarTolerance ) { snxt=0; } << 1090 if ( snxt<kCarTolerance*0.5 ) snxt=0 ; 1055 return snxt ; 1091 return snxt ; 1056 } 1092 } 1057 << 1093 1058 ///////////////////////////////////////////// 1094 ////////////////////////////////////////////////////////////////// 1059 // 1095 // 1060 // Calculate distance to shape from outside, 1096 // Calculate distance to shape from outside, along normalised vector 1061 // - return kInfinity if no intersection, or 1097 // - return kInfinity if no intersection, or intersection distance <= tolerance 1062 // 1098 // 1063 // - Compute the intersection with the z plan << 1099 // - Compute the intersection with the z planes 1064 // - if at valid r, phi, return 1100 // - if at valid r, phi, return 1065 // 1101 // 1066 // -> If point is outer outer radius, compute 1102 // -> If point is outer outer radius, compute intersection with rmax 1067 // - if at valid phi,z return 1103 // - if at valid phi,z return 1068 // 1104 // 1069 // -> Compute intersection with inner radius, 1105 // -> Compute intersection with inner radius, taking largest +ve root 1070 // - if valid (in z,phi), save intersc 1106 // - if valid (in z,phi), save intersction 1071 // 1107 // 1072 // -> If phi segmented, compute intersecti 1108 // -> If phi segmented, compute intersections with phi half planes 1073 // - return smallest of valid phi inte 1109 // - return smallest of valid phi intersections and 1074 // inner radius intersection 1110 // inner radius intersection 1075 // 1111 // 1076 // NOTE: 1112 // NOTE: 1077 // - Precalculations for phi trigonometry are 1113 // - Precalculations for phi trigonometry are Done `just in time' 1078 // - `if valid' implies tolerant checking of 1114 // - `if valid' implies tolerant checking of intersection points 1079 // Calculate distance (<= actual) to closes 1115 // Calculate distance (<= actual) to closest surface of shape from outside 1080 // - Calculate distance to z, radial planes 1116 // - Calculate distance to z, radial planes 1081 // - Only to phi planes if outside phi extent 1117 // - Only to phi planes if outside phi extent 1082 // - Return 0 if point inside 1118 // - Return 0 if point inside 1083 1119 1084 G4double G4Tubs::DistanceToIn( const G4ThreeV 1120 G4double G4Tubs::DistanceToIn( const G4ThreeVector& p ) const 1085 { 1121 { 1086 G4double safe=0.0, rho, safe1, safe2, safe3 1122 G4double safe=0.0, rho, safe1, safe2, safe3 ; 1087 G4double safePhi, cosPsi ; << 1123 G4double phiC, cosPhiC, sinPhiC, safePhi, ePhi, cosPsi ; 1088 1124 1089 rho = std::sqrt(p.x()*p.x() + p.y()*p.y() 1125 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 1090 safe1 = fRMin - rho ; 1126 safe1 = fRMin - rho ; 1091 safe2 = rho - fRMax ; 1127 safe2 = rho - fRMax ; 1092 safe3 = std::fabs(p.z()) - fDz ; 1128 safe3 = std::fabs(p.z()) - fDz ; 1093 1129 1094 if ( safe1 > safe2 ) { safe = safe1; } << 1130 if ( safe1 > safe2 ) safe = safe1 ; 1095 else { safe = safe2; } << 1131 else safe = safe2 ; 1096 if ( safe3 > safe ) { safe = safe3; } << 1132 if ( safe3 > safe ) safe = safe3 ; >> 1133 >> 1134 if (fDPhi < twopi && rho) >> 1135 { >> 1136 phiC = fSPhi + fDPhi*0.5 ; >> 1137 cosPhiC = std::cos(phiC) ; >> 1138 sinPhiC = std::sin(phiC) ; 1097 1139 1098 if ( (!fPhiFullTube) && ((rho) != 0.0) ) << 1099 { << 1100 // Psi=angle from central phi to point 1140 // Psi=angle from central phi to point 1101 // 1141 // 1102 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/ << 1142 cosPsi = (p.x()*cosPhiC + p.y()*sinPhiC)/rho ; 1103 1143 1104 if ( cosPsi < cosHDPhi ) << 1144 if ( cosPsi < std::cos(fDPhi*0.5) ) 1105 { 1145 { 1106 // Point lies outside phi range 1146 // Point lies outside phi range 1107 1147 1108 if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= << 1148 if ( (p.y()*cosPhiC - p.x()*sinPhiC) <= 0 ) 1109 { 1149 { 1110 safePhi = std::fabs(p.x()*sinSPhi - p << 1150 safePhi = std::fabs(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ; 1111 } 1151 } 1112 else 1152 else 1113 { 1153 { 1114 safePhi = std::fabs(p.x()*sinEPhi - p << 1154 ePhi = fSPhi + fDPhi ; >> 1155 safePhi = std::fabs(p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ; 1115 } 1156 } 1116 if ( safePhi > safe ) { safe = safePhi << 1157 if ( safePhi > safe ) safe = safePhi ; 1117 } 1158 } 1118 } 1159 } 1119 if ( safe < 0 ) { safe = 0; } << 1160 if ( safe < 0 ) safe = 0 ; 1120 return safe ; 1161 return safe ; 1121 } 1162 } 1122 1163 1123 ///////////////////////////////////////////// 1164 ////////////////////////////////////////////////////////////////////////////// 1124 // 1165 // 1125 // Calculate distance to surface of shape fro 1166 // Calculate distance to surface of shape from `inside', allowing for tolerance 1126 // - Only Calc rmax intersection if no valid 1167 // - Only Calc rmax intersection if no valid rmin intersection 1127 1168 1128 G4double G4Tubs::DistanceToOut( const G4Three 1169 G4double G4Tubs::DistanceToOut( const G4ThreeVector& p, 1129 const G4Three 1170 const G4ThreeVector& v, 1130 const G4bool 1171 const G4bool calcNorm, 1131 G4bool* << 1172 G4bool *validNorm, 1132 G4Three << 1173 G4ThreeVector *n ) const 1133 { 1174 { 1134 ESide side=kNull , sider=kNull, sidephi=kNu << 1175 ESide side = kNull , sider = kNull, sidephi = kNull ; 1135 G4double snxt, srd=kInfinity, sphi=kInfinit << 1176 G4double snxt, sr = kInfinity, sphi = kInfinity, pdist ; 1136 G4double deltaR, t1, t2, t3, b, c, d2, roMi 1177 G4double deltaR, t1, t2, t3, b, c, d2, roMin2 ; 1137 1178 1138 // Vars for phi intersection: 1179 // Vars for phi intersection: 1139 1180 >> 1181 G4double sinSPhi, cosSPhi, ePhi, sinEPhi, cosEPhi ; >> 1182 G4double cPhi, sinCPhi, cosCPhi ; 1140 G4double pDistS, compS, pDistE, compE, sphi 1183 G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, vphi, roi2 ; 1141 1184 1142 // Z plane intersection 1185 // Z plane intersection 1143 1186 1144 if (v.z() > 0 ) 1187 if (v.z() > 0 ) 1145 { 1188 { 1146 pdist = fDz - p.z() ; 1189 pdist = fDz - p.z() ; 1147 if ( pdist > halfCarTolerance ) << 1190 if ( pdist > kCarTolerance*0.5 ) 1148 { 1191 { 1149 snxt = pdist/v.z() ; 1192 snxt = pdist/v.z() ; 1150 side = kPZ ; 1193 side = kPZ ; 1151 } 1194 } 1152 else 1195 else 1153 { 1196 { 1154 if (calcNorm) 1197 if (calcNorm) 1155 { 1198 { 1156 *n = G4ThreeVector(0,0,1) ; 1199 *n = G4ThreeVector(0,0,1) ; 1157 *validNorm = true ; 1200 *validNorm = true ; 1158 } 1201 } 1159 return snxt = 0 ; 1202 return snxt = 0 ; 1160 } 1203 } 1161 } 1204 } 1162 else if ( v.z() < 0 ) 1205 else if ( v.z() < 0 ) 1163 { 1206 { 1164 pdist = fDz + p.z() ; 1207 pdist = fDz + p.z() ; 1165 1208 1166 if ( pdist > halfCarTolerance ) << 1209 if ( pdist > kCarTolerance*0.5 ) 1167 { 1210 { 1168 snxt = -pdist/v.z() ; 1211 snxt = -pdist/v.z() ; 1169 side = kMZ ; 1212 side = kMZ ; 1170 } 1213 } 1171 else 1214 else 1172 { 1215 { 1173 if (calcNorm) 1216 if (calcNorm) 1174 { 1217 { 1175 *n = G4ThreeVector(0,0,-1) ; 1218 *n = G4ThreeVector(0,0,-1) ; 1176 *validNorm = true ; 1219 *validNorm = true ; 1177 } 1220 } 1178 return snxt = 0.0 ; 1221 return snxt = 0.0 ; 1179 } 1222 } 1180 } 1223 } 1181 else 1224 else 1182 { 1225 { 1183 snxt = kInfinity ; // Travel perpendic 1226 snxt = kInfinity ; // Travel perpendicular to z axis 1184 side = kNull; 1227 side = kNull; 1185 } 1228 } 1186 1229 1187 // Radial Intersections 1230 // Radial Intersections 1188 // 1231 // 1189 // Find intersection with cylinders at rmax << 1232 // Find intersction with cylinders at rmax/rmin 1190 // Intersection point (xi,yi,zi) on line x= 1233 // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc. 1191 // 1234 // 1192 // Intersects with x^2+y^2=R^2 1235 // Intersects with x^2+y^2=R^2 1193 // 1236 // 1194 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v 1237 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0 1195 // 1238 // 1196 // t1 t2 1239 // t1 t2 t3 1197 1240 1198 t1 = 1.0 - v.z()*v.z() ; // since v 1241 t1 = 1.0 - v.z()*v.z() ; // since v normalised 1199 t2 = p.x()*v.x() + p.y()*v.y() ; 1242 t2 = p.x()*v.x() + p.y()*v.y() ; 1200 t3 = p.x()*p.x() + p.y()*p.y() ; 1243 t3 = p.x()*p.x() + p.y()*p.y() ; 1201 1244 1202 if ( snxt > 10*(fDz+fRMax) ) { roi2 = 2*fR << 1245 if ( snxt > 10*(fDz+fRMax) ) roi2 = 2*fRMax*fRMax; 1203 else { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t << 1246 else roi2 = snxt*snxt*t1 + 2*snxt*t2 + t3 ; // radius^2 on +-fDz 1204 1247 1205 if ( t1 > 0 ) // Check not parallel 1248 if ( t1 > 0 ) // Check not parallel 1206 { 1249 { 1207 // Calculate srd, r exit distance << 1250 // Calculate sr, r exit distance 1208 << 1251 1209 if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax 1252 if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax + kRadTolerance)) ) 1210 { 1253 { 1211 // Delta r not negative => leaving via 1254 // Delta r not negative => leaving via rmax 1212 1255 1213 deltaR = t3 - fRMax*fRMax ; 1256 deltaR = t3 - fRMax*fRMax ; 1214 1257 1215 // NOTE: Should use rho-fRMax<-kRadTole 1258 // NOTE: Should use rho-fRMax<-kRadTolerance*0.5 1216 // - avoid sqrt for efficiency 1259 // - avoid sqrt for efficiency 1217 1260 1218 if ( deltaR < -kRadTolerance*fRMax ) 1261 if ( deltaR < -kRadTolerance*fRMax ) 1219 { 1262 { 1220 b = t2/t1 ; 1263 b = t2/t1 ; 1221 c = deltaR/t1 ; 1264 c = deltaR/t1 ; 1222 d2 = b*b-c; << 1265 sr = -b + std::sqrt(b*b - c); 1223 if( d2 >= 0 ) { srd = c/( -b - std::s << 1224 else { srd = 0.; } << 1225 sider = kRMax ; 1266 sider = kRMax ; 1226 } 1267 } 1227 else 1268 else 1228 { 1269 { 1229 // On tolerant boundary & heading out 1270 // On tolerant boundary & heading outwards (or perpendicular to) 1230 // outer radial surface -> leaving im 1271 // outer radial surface -> leaving immediately 1231 1272 1232 if ( calcNorm ) << 1273 if ( calcNorm ) 1233 { 1274 { 1234 G4double invRho = FastInverseRxy( p << 1275 // if ( p.x() || p.y() ) 1235 *n = G4ThreeVector(p.x()*in << 1276 // { >> 1277 // *n=G4ThreeVector(p.x(),p.y(),0); >> 1278 // } >> 1279 // else >> 1280 // { >> 1281 // *n=v; >> 1282 // } >> 1283 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1236 *validNorm = true ; 1284 *validNorm = true ; 1237 } 1285 } 1238 return snxt = 0 ; // Leaving by rmax 1286 return snxt = 0 ; // Leaving by rmax immediately 1239 } 1287 } 1240 } << 1288 } 1241 else if ( t2 < 0. ) // i.e. t2 < 0; Poss 1289 else if ( t2 < 0. ) // i.e. t2 < 0; Possible rmin intersection 1242 { 1290 { 1243 roMin2 = t3 - t2*t2/t1 ; // min ro2 of << 1291 roMin2 = t3 - t2*t2/t1 ; // min ro2 of the plane of movement 1244 1292 1245 if ( (fRMin != 0.0) && (roMin2 < fRMin* << 1293 if ( fRMin && (roMin2 < fRMin*(fRMin - kRadTolerance)) ) 1246 { 1294 { 1247 deltaR = t3 - fRMin*fRMin ; 1295 deltaR = t3 - fRMin*fRMin ; 1248 b = t2/t1 ; 1296 b = t2/t1 ; 1249 c = deltaR/t1 ; 1297 c = deltaR/t1 ; 1250 d2 = b*b - c ; 1298 d2 = b*b - c ; 1251 1299 1252 if ( d2 >= 0 ) // Leaving via rmin 1300 if ( d2 >= 0 ) // Leaving via rmin 1253 { 1301 { 1254 // NOTE: SHould use rho-rmin>kRadTo 1302 // NOTE: SHould use rho-rmin>kRadTolerance*0.5 1255 // - avoid sqrt for efficiency 1303 // - avoid sqrt for efficiency 1256 1304 1257 if (deltaR > kRadTolerance*fRMin) 1305 if (deltaR > kRadTolerance*fRMin) 1258 { 1306 { 1259 srd = c/(-b+std::sqrt(d2)); << 1307 sr = -b-std::sqrt(d2) ; 1260 sider = kRMin ; 1308 sider = kRMin ; 1261 } 1309 } 1262 else 1310 else 1263 { 1311 { 1264 if ( calcNorm ) { << 1312 if ( calcNorm ) *validNorm = false ; // Concave side 1265 *validNorm = false; << 1313 return snxt = 0.0 ; 1266 } // Concave side << 1267 return snxt = 0.0; << 1268 } 1314 } 1269 } 1315 } 1270 else // No rmin intersect -> must 1316 else // No rmin intersect -> must be rmax intersect 1271 { 1317 { 1272 deltaR = t3 - fRMax*fRMax ; 1318 deltaR = t3 - fRMax*fRMax ; 1273 c = deltaR/t1 ; << 1319 c = deltaR/t1 ; 1274 d2 = b*b-c; << 1320 sr = -b + std::sqrt(b*b - c) ; 1275 if( d2 >=0. ) << 1321 sider = kRMax ; 1276 { << 1277 srd = -b + std::sqrt(d2) ; << 1278 sider = kRMax ; << 1279 } << 1280 else // Case: On the border+t2<kRad << 1281 // (v is perpendicular t << 1282 { << 1283 if (calcNorm) << 1284 { << 1285 G4double invRho = FastInverseRx << 1286 *n = G4ThreeVector(p.x()*invRho << 1287 *validNorm = true ; << 1288 } << 1289 return snxt = 0.0; << 1290 } << 1291 } 1322 } 1292 } 1323 } 1293 else if ( roi2 > fRMax*(fRMax + kRadTol 1324 else if ( roi2 > fRMax*(fRMax + kRadTolerance) ) 1294 // No rmin intersect -> must be rm 1325 // No rmin intersect -> must be rmax intersect 1295 { 1326 { 1296 deltaR = t3 - fRMax*fRMax ; 1327 deltaR = t3 - fRMax*fRMax ; 1297 b = t2/t1 ; 1328 b = t2/t1 ; 1298 c = deltaR/t1; 1329 c = deltaR/t1; 1299 d2 = b*b-c; << 1330 sr = -b + std::sqrt(b*b - c) ; 1300 if( d2 >= 0 ) << 1331 sider = kRMax ; 1301 { << 1302 srd = -b + std::sqrt(d2) ; << 1303 sider = kRMax ; << 1304 } << 1305 else // Case: On the border+t2<kRadTo << 1306 // (v is perpendicular to << 1307 { << 1308 if (calcNorm) << 1309 { << 1310 G4double invRho = FastInverseRxy( << 1311 *n = G4ThreeVector(p.x()*invRho,p << 1312 *validNorm = true ; << 1313 } << 1314 return snxt = 0.0; << 1315 } << 1316 } 1332 } 1317 } 1333 } 1318 << 1334 1319 // Phi Intersection 1335 // Phi Intersection 1320 1336 1321 if ( !fPhiFullTube ) << 1337 if ( fDPhi < twopi ) 1322 { 1338 { 1323 // add angle calculation with correctio << 1339 sinSPhi = std::sin(fSPhi) ; 1324 // of the difference in domain of atan2 << 1340 cosSPhi = std::cos(fSPhi) ; 1325 // << 1341 ePhi = fSPhi + fDPhi ; 1326 vphi = std::atan2(v.y(),v.x()) ; << 1342 sinEPhi = std::sin(ePhi) ; 1327 << 1343 cosEPhi = std::cos(ePhi) ; 1328 if ( vphi < fSPhi - halfAngTolerance ) << 1344 cPhi = fSPhi + fDPhi*0.5 ; 1329 else if ( vphi > fSPhi + fDPhi + halfAn << 1345 sinCPhi = std::sin(cPhi) ; >> 1346 cosCPhi = std::cos(cPhi) ; 1330 1347 1331 << 1348 if ( p.x() || p.y() ) // Check if on z axis (rho not needed later) 1332 if ( (p.x() != 0.0) || (p.y() != 0.0) ) << 1333 { 1349 { 1334 // pDist -ve when inside 1350 // pDist -ve when inside 1335 1351 1336 pDistS = p.x()*sinSPhi - p.y()*cosSPh 1352 pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; 1337 pDistE = -p.x()*sinEPhi + p.y()*cosEP 1353 pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ; 1338 1354 1339 // Comp -ve when in direction of outw 1355 // Comp -ve when in direction of outwards normal 1340 1356 1341 compS = -sinSPhi*v.x() + cosSPhi*v.y( << 1357 compS = -sinSPhi*v.x() + cosSPhi*v.y() ; 1342 compE = sinEPhi*v.x() - cosEPhi*v.y( << 1358 compE = sinEPhi*v.x() - cosEPhi*v.y() ; 1343 << 1344 sidephi = kNull; 1359 sidephi = kNull; 1345 1360 1346 if( ( (fDPhi <= pi) && ( (pDistS <= h << 1361 // if ( pDistS <= 0 && pDistE <= 0 ) 1347 && (pDistE <= h << 1362 1348 || ( (fDPhi > pi) && ((pDistS <= h << 1363 if( ( (fDPhi <= pi) && ( (pDistS <= 0.5*kCarTolerance) 1349 || (pDistE <= << 1364 && (pDistE <= 0.5*kCarTolerance) ) ) >> 1365 || ( (fDPhi > pi) && !((pDistS > 0.5*kCarTolerance) >> 1366 && (pDistE > 0.5*kCarTolerance) ) ) ) 1350 { 1367 { 1351 // Inside both phi *full* planes 1368 // Inside both phi *full* planes 1352 << 1353 if ( compS < 0 ) 1369 if ( compS < 0 ) 1354 { 1370 { 1355 sphi = pDistS/compS ; 1371 sphi = pDistS/compS ; 1356 << 1372 if (sphi >= -0.5*kCarTolerance) 1357 if (sphi >= -halfCarTolerance) << 1358 { 1373 { 1359 xi = p.x() + sphi*v.x() ; 1374 xi = p.x() + sphi*v.x() ; 1360 yi = p.y() + sphi*v.y() ; 1375 yi = p.y() + sphi*v.y() ; 1361 1376 1362 // Check intersecting with corr 1377 // Check intersecting with correct half-plane 1363 // (if not -> no intersect) 1378 // (if not -> no intersect) 1364 // 1379 // 1365 if((std::fabs(xi)<=kCarToleranc << 1380 if ((yi*cosCPhi-xi*sinCPhi)>=0) 1366 { << 1367 sidephi = kSPhi; << 1368 if (((fSPhi-halfAngTolerance) << 1369 &&((fSPhi+fDPhi+halfAngTol << 1370 { << 1371 sphi = kInfinity; << 1372 } << 1373 } << 1374 else if ( yi*cosCPhi-xi*sinCPhi << 1375 { 1381 { 1376 sphi = kInfinity ; 1382 sphi = kInfinity ; 1377 } 1383 } 1378 else 1384 else 1379 { 1385 { 1380 sidephi = kSPhi ; 1386 sidephi = kSPhi ; 1381 if ( pDistS > -halfCarToleran << 1387 if ( pDistS > -kCarTolerance*0.5 ) 1382 { 1388 { 1383 sphi = 0.0 ; // Leave by sp 1389 sphi = 0.0 ; // Leave by sphi immediately 1384 } << 1390 } 1385 } << 1391 } 1386 } 1392 } 1387 else 1393 else 1388 { 1394 { 1389 sphi = kInfinity ; 1395 sphi = kInfinity ; 1390 } 1396 } 1391 } 1397 } 1392 else 1398 else 1393 { 1399 { 1394 sphi = kInfinity ; 1400 sphi = kInfinity ; 1395 } 1401 } 1396 1402 1397 if ( compE < 0 ) 1403 if ( compE < 0 ) 1398 { 1404 { 1399 sphi2 = pDistE/compE ; 1405 sphi2 = pDistE/compE ; 1400 1406 1401 // Only check further if < starti 1407 // Only check further if < starting phi intersection 1402 // 1408 // 1403 if ( (sphi2 > -halfCarTolerance) << 1409 if ( (sphi2 > -0.5*kCarTolerance) && (sphi2 < sphi) ) 1404 { 1410 { 1405 xi = p.x() + sphi2*v.x() ; 1411 xi = p.x() + sphi2*v.x() ; 1406 yi = p.y() + sphi2*v.y() ; 1412 yi = p.y() + sphi2*v.y() ; 1407 1413 1408 if((std::fabs(xi)<=kCarToleranc << 1414 // Check intersecting with correct half-plane 1409 { << 1410 // Leaving via ending phi << 1411 // << 1412 if( (fSPhi-halfAngTolerance > << 1413 ||(fSPhi+fDPhi+halfAngTo << 1414 { << 1415 sidephi = kEPhi ; << 1416 if ( pDistE <= -halfCarTole << 1417 else << 1418 } << 1419 } << 1420 else // Check intersecting w << 1421 1415 1422 if ( (yi*cosCPhi-xi*sinCPhi) >= 1416 if ( (yi*cosCPhi-xi*sinCPhi) >= 0) 1423 { 1417 { 1424 // Leaving via ending phi 1418 // Leaving via ending phi 1425 // << 1419 1426 sidephi = kEPhi ; 1420 sidephi = kEPhi ; 1427 if ( pDistE <= -halfCarTolera << 1421 if ( pDistE <= -kCarTolerance*0.5 ) sphi = sphi2 ; 1428 else << 1422 else sphi = 0.0 ; 1429 } 1423 } 1430 } 1424 } 1431 } 1425 } 1432 } 1426 } 1433 else 1427 else 1434 { 1428 { 1435 sphi = kInfinity ; 1429 sphi = kInfinity ; 1436 } 1430 } 1437 } 1431 } 1438 else 1432 else 1439 { 1433 { 1440 // On z axis + travel not || to z axi 1434 // On z axis + travel not || to z axis -> if phi of vector direction 1441 // within phi of shape, Step limited 1435 // within phi of shape, Step limited by rmax, else Step =0 1442 1436 1443 if ( (fSPhi - halfAngTolerance <= vph << 1437 vphi = std::atan2(v.y(),v.x()) ; 1444 && (vphi <= fSPhi + fDPhi + halfAn << 1438 if ( (fSPhi < vphi) && (vphi < fSPhi + fDPhi) ) 1445 { 1439 { 1446 sphi = kInfinity ; 1440 sphi = kInfinity ; 1447 } 1441 } 1448 else 1442 else 1449 { 1443 { 1450 sidephi = kSPhi ; // arbitrary << 1444 sidephi = kSPhi ; // arbitrary 1451 sphi = 0.0 ; 1445 sphi = 0.0 ; 1452 } 1446 } 1453 } 1447 } 1454 if (sphi < snxt) // Order intersecttio 1448 if (sphi < snxt) // Order intersecttions 1455 { 1449 { 1456 snxt = sphi ; 1450 snxt = sphi ; 1457 side = sidephi ; 1451 side = sidephi ; 1458 } 1452 } 1459 } 1453 } 1460 if (srd < snxt) // Order intersections << 1454 if (sr < snxt) // Order intersections 1461 { 1455 { 1462 snxt = srd ; << 1456 snxt = sr ; 1463 side = sider ; 1457 side = sider ; 1464 } 1458 } 1465 } 1459 } 1466 if (calcNorm) 1460 if (calcNorm) 1467 { 1461 { 1468 switch(side) 1462 switch(side) 1469 { 1463 { 1470 case kRMax: 1464 case kRMax: 1471 // Note: returned vector not normalis 1465 // Note: returned vector not normalised 1472 // (divide by fRMax for unit vector) 1466 // (divide by fRMax for unit vector) 1473 // 1467 // 1474 xi = p.x() + snxt*v.x() ; 1468 xi = p.x() + snxt*v.x() ; 1475 yi = p.y() + snxt*v.y() ; 1469 yi = p.y() + snxt*v.y() ; 1476 *n = G4ThreeVector(xi/fRMax,yi/fRMax, 1470 *n = G4ThreeVector(xi/fRMax,yi/fRMax,0) ; 1477 *validNorm = true ; 1471 *validNorm = true ; 1478 break ; 1472 break ; 1479 1473 1480 case kRMin: 1474 case kRMin: 1481 *validNorm = false ; // Rmin is inco 1475 *validNorm = false ; // Rmin is inconvex 1482 break ; 1476 break ; 1483 1477 1484 case kSPhi: 1478 case kSPhi: 1485 if ( fDPhi <= pi ) 1479 if ( fDPhi <= pi ) 1486 { 1480 { 1487 *n = G4ThreeVector(sinSPhi, << 1481 *n = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0) ; 1488 *validNorm = true ; 1482 *validNorm = true ; 1489 } 1483 } 1490 else 1484 else 1491 { 1485 { 1492 *validNorm = false ; 1486 *validNorm = false ; 1493 } 1487 } 1494 break ; 1488 break ; 1495 1489 1496 case kEPhi: 1490 case kEPhi: 1497 if (fDPhi <= pi) 1491 if (fDPhi <= pi) 1498 { 1492 { 1499 *n = G4ThreeVector(-sinEPhi,cosEPhi << 1493 *n = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0) ; 1500 *validNorm = true ; 1494 *validNorm = true ; 1501 } 1495 } 1502 else 1496 else 1503 { 1497 { 1504 *validNorm = false ; 1498 *validNorm = false ; 1505 } 1499 } 1506 break ; 1500 break ; 1507 1501 1508 case kPZ: 1502 case kPZ: 1509 *n = G4ThreeVector(0,0,1) ; << 1503 *n=G4ThreeVector(0,0,1) ; 1510 *validNorm = true ; << 1504 *validNorm=true ; 1511 break ; 1505 break ; 1512 1506 1513 case kMZ: 1507 case kMZ: 1514 *n = G4ThreeVector(0,0,-1) ; 1508 *n = G4ThreeVector(0,0,-1) ; 1515 *validNorm = true ; 1509 *validNorm = true ; 1516 break ; 1510 break ; 1517 1511 1518 default: 1512 default: >> 1513 G4cout.precision(16) ; 1519 G4cout << G4endl ; 1514 G4cout << G4endl ; 1520 DumpInfo(); 1515 DumpInfo(); 1521 std::ostringstream message; << 1516 G4cout << "Position:" << G4endl << G4endl ; 1522 G4long oldprc = message.precision(16) << 1517 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 1523 message << "Undefined side for valid << 1518 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 1524 << G4endl << 1519 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 1525 << "Position:" << G4endl << << 1520 G4cout << "Direction:" << G4endl << G4endl ; 1526 << "p.x() = " << p.x()/mm < << 1521 G4cout << "v.x() = " << v.x() << G4endl ; 1527 << "p.y() = " << p.y()/mm < << 1522 G4cout << "v.y() = " << v.y() << G4endl ; 1528 << "p.z() = " << p.z()/mm < << 1523 G4cout << "v.z() = " << v.z() << G4endl << G4endl ; 1529 << "Direction:" << G4endl << << 1524 G4cout << "Proposed distance :" << G4endl << G4endl ; 1530 << "v.x() = " << v.x() << G << 1525 G4cout << "snxt = " << snxt/mm << " mm" << G4endl << G4endl ; 1531 << "v.y() = " << v.y() << G << 1526 G4Exception("G4Tubs::DistanceToOut(p,v,..)","Notification",JustWarning, 1532 << "v.z() = " << v.z() << G << 1527 "Undefined side for valid surface normal to solid."); 1533 << "Proposed distance :" << G << 1534 << "snxt = " << snxt/mm << << 1535 message.precision(oldprc) ; << 1536 G4Exception("G4Tubs::DistanceToOut(p, << 1537 JustWarning, message); << 1538 break ; 1528 break ; 1539 } 1529 } 1540 } 1530 } 1541 if ( snxt<halfCarTolerance ) { snxt=0 ; } << 1531 if ( snxt<kCarTolerance*0.5 ) snxt=0 ; 1542 << 1543 return snxt ; 1532 return snxt ; 1544 } 1533 } 1545 1534 1546 ///////////////////////////////////////////// 1535 ////////////////////////////////////////////////////////////////////////// 1547 // 1536 // 1548 // Calculate distance (<=actual) to closest s 1537 // Calculate distance (<=actual) to closest surface of shape from inside 1549 1538 1550 G4double G4Tubs::DistanceToOut( const G4Three 1539 G4double G4Tubs::DistanceToOut( const G4ThreeVector& p ) const 1551 { 1540 { 1552 G4double safe=0.0, rho, safeR1, safeR2, saf << 1541 G4double safe=0.0, rho, safeR1, safeR2, safeZ ; >> 1542 G4double safePhi, phiC, cosPhiC, sinPhiC, ePhi ; 1553 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) 1543 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 1554 1544 1555 #ifdef G4CSGDEBUG 1545 #ifdef G4CSGDEBUG 1556 if( Inside(p) == kOutside ) 1546 if( Inside(p) == kOutside ) 1557 { 1547 { 1558 G4long oldprc = G4cout.precision(16) ; << 1548 G4cout.precision(16) ; 1559 G4cout << G4endl ; 1549 G4cout << G4endl ; 1560 DumpInfo(); 1550 DumpInfo(); 1561 G4cout << "Position:" << G4endl << G4end 1551 G4cout << "Position:" << G4endl << G4endl ; 1562 G4cout << "p.x() = " << p.x()/mm << " m 1552 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 1563 G4cout << "p.y() = " << p.y()/mm << " m 1553 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 1564 G4cout << "p.z() = " << p.z()/mm << " m 1554 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 1565 G4cout.precision(oldprc) ; << 1555 G4Exception("G4Tubs::DistanceToOut(p)", "Notification", JustWarning, 1566 G4Exception("G4Tubs::DistanceToOut(p)", " << 1556 "Point p is outside !?"); 1567 JustWarning, "Point p is outs << 1568 } 1557 } 1569 #endif 1558 #endif 1570 1559 1571 if ( fRMin != 0.0 ) << 1560 if ( fRMin ) 1572 { 1561 { 1573 safeR1 = rho - fRMin ; 1562 safeR1 = rho - fRMin ; 1574 safeR2 = fRMax - rho ; 1563 safeR2 = fRMax - rho ; 1575 << 1564 1576 if ( safeR1 < safeR2 ) { safe = safeR1 ; << 1565 if ( safeR1 < safeR2 ) safe = safeR1 ; 1577 else { safe = safeR2 ; << 1566 else safe = safeR2 ; 1578 } 1567 } 1579 else 1568 else 1580 { 1569 { 1581 safe = fRMax - rho ; 1570 safe = fRMax - rho ; 1582 } 1571 } 1583 safeZ = fDz - std::fabs(p.z()) ; 1572 safeZ = fDz - std::fabs(p.z()) ; 1584 1573 1585 if ( safeZ < safe ) { safe = safeZ ; } << 1574 if ( safeZ < safe ) safe = safeZ ; 1586 1575 1587 // Check if phi divided, Calc distances clo 1576 // Check if phi divided, Calc distances closest phi plane 1588 // 1577 // 1589 if ( !fPhiFullTube ) << 1578 if ( fDPhi < twopi ) 1590 { 1579 { 1591 if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 ) << 1580 // Above/below central phi of Tubs? >> 1581 >> 1582 phiC = fSPhi + fDPhi*0.5 ; >> 1583 cosPhiC = std::cos(phiC) ; >> 1584 sinPhiC = std::sin(phiC) ; >> 1585 >> 1586 if ( (p.y()*cosPhiC - p.x()*sinPhiC) <= 0 ) 1592 { 1587 { 1593 safePhi = -(p.x()*sinSPhi - p.y()*cosSP << 1588 safePhi = -(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ; 1594 } 1589 } 1595 else 1590 else 1596 { 1591 { 1597 safePhi = (p.x()*sinEPhi - p.y()*cosEPh << 1592 ePhi = fSPhi + fDPhi ; >> 1593 safePhi = (p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ; 1598 } 1594 } 1599 if (safePhi < safe) { safe = safePhi ; } << 1595 if (safePhi < safe) safe = safePhi ; 1600 } 1596 } 1601 if ( safe < 0 ) { safe = 0 ; } << 1597 if ( safe < 0 ) safe = 0 ; 1602 1598 1603 return safe ; << 1599 return safe ; 1604 } 1600 } 1605 1601 1606 ///////////////////////////////////////////// << 1602 ///////////////////////////////////////////////////////////////////////// 1607 // 1603 // 1608 // Stream object contents to an output stream << 1604 // Create a List containing the transformed vertices >> 1605 // Ordering [0-3] -fDz cross section >> 1606 // [4-7] +fDz cross section such that [0] is below [4], >> 1607 // [1] below [5] etc. >> 1608 // Note: >> 1609 // Caller has deletion resposibility >> 1610 // Potential improvement: For last slice, use actual ending angle >> 1611 // to avoid rounding error problems. 1609 1612 1610 G4GeometryType G4Tubs::GetEntityType() const << 1613 G4ThreeVectorList* >> 1614 G4Tubs::CreateRotatedVertices( const G4AffineTransform& pTransform ) const 1611 { 1615 { 1612 return {"G4Tubs"}; << 1616 G4ThreeVectorList* vertices ; >> 1617 G4ThreeVector vertex0, vertex1, vertex2, vertex3 ; >> 1618 G4double meshAngle, meshRMax, crossAngle, >> 1619 cosCrossAngle, sinCrossAngle, sAngle; >> 1620 G4double rMaxX, rMaxY, rMinX, rMinY, meshRMin ; >> 1621 G4int crossSection, noCrossSections; >> 1622 >> 1623 // Compute no of cross-sections necessary to mesh tube >> 1624 // >> 1625 noCrossSections = G4int(fDPhi/kMeshAngleDefault) + 1 ; >> 1626 >> 1627 if ( noCrossSections < kMinMeshSections ) >> 1628 { >> 1629 noCrossSections = kMinMeshSections ; >> 1630 } >> 1631 else if (noCrossSections>kMaxMeshSections) >> 1632 { >> 1633 noCrossSections = kMaxMeshSections ; >> 1634 } >> 1635 // noCrossSections = 4 ; >> 1636 >> 1637 meshAngle = fDPhi/(noCrossSections - 1) ; >> 1638 // meshAngle = fDPhi/(noCrossSections) ; >> 1639 >> 1640 meshRMax = (fRMax+100*kCarTolerance)/std::cos(meshAngle*0.5) ; >> 1641 meshRMin = fRMin - 100*kCarTolerance ; >> 1642 >> 1643 // If complete in phi, set start angle such that mesh will be at fRMax >> 1644 // on the x axis. Will give better extent calculations when not rotated. >> 1645 >> 1646 if (fDPhi == pi*2.0 && fSPhi == 0 ) sAngle = -meshAngle*0.5 ; >> 1647 else sAngle = fSPhi ; >> 1648 >> 1649 vertices = new G4ThreeVectorList(); >> 1650 vertices->reserve(noCrossSections*4); >> 1651 >> 1652 if ( vertices ) >> 1653 { >> 1654 for (crossSection = 0 ; crossSection < noCrossSections ; crossSection++ ) >> 1655 { >> 1656 // Compute coordinates of cross section at section crossSection >> 1657 >> 1658 crossAngle = sAngle + crossSection*meshAngle ; >> 1659 cosCrossAngle = std::cos(crossAngle) ; >> 1660 sinCrossAngle = std::sin(crossAngle) ; >> 1661 >> 1662 rMaxX = meshRMax*cosCrossAngle ; >> 1663 rMaxY = meshRMax*sinCrossAngle ; >> 1664 >> 1665 if(meshRMin <= 0.0) >> 1666 { >> 1667 rMinX = 0.0 ; >> 1668 rMinY = 0.0 ; >> 1669 } >> 1670 else >> 1671 { >> 1672 rMinX = meshRMin*cosCrossAngle ; >> 1673 rMinY = meshRMin*sinCrossAngle ; >> 1674 } >> 1675 vertex0 = G4ThreeVector(rMinX,rMinY,-fDz) ; >> 1676 vertex1 = G4ThreeVector(rMaxX,rMaxY,-fDz) ; >> 1677 vertex2 = G4ThreeVector(rMaxX,rMaxY,+fDz) ; >> 1678 vertex3 = G4ThreeVector(rMinX,rMinY,+fDz) ; >> 1679 >> 1680 vertices->push_back(pTransform.TransformPoint(vertex0)) ; >> 1681 vertices->push_back(pTransform.TransformPoint(vertex1)) ; >> 1682 vertices->push_back(pTransform.TransformPoint(vertex2)) ; >> 1683 vertices->push_back(pTransform.TransformPoint(vertex3)) ; >> 1684 } >> 1685 } >> 1686 else >> 1687 { >> 1688 DumpInfo(); >> 1689 G4Exception("G4Tubs::CreateRotatedVertices()", >> 1690 "FatalError", FatalException, >> 1691 "Error in allocation of vertices. Out of memory !"); >> 1692 } >> 1693 return vertices ; 1613 } 1694 } 1614 1695 1615 ///////////////////////////////////////////// 1696 ////////////////////////////////////////////////////////////////////////// 1616 // 1697 // 1617 // Make a clone of the object << 1698 // Stream object contents to an output stream 1618 // << 1699 1619 G4VSolid* G4Tubs::Clone() const << 1700 G4GeometryType G4Tubs::GetEntityType() const 1620 { 1701 { 1621 return new G4Tubs(*this); << 1702 return G4String("G4Tubs"); 1622 } 1703 } 1623 1704 1624 ///////////////////////////////////////////// 1705 ////////////////////////////////////////////////////////////////////////// 1625 // 1706 // 1626 // Stream object contents to an output stream 1707 // Stream object contents to an output stream 1627 1708 1628 std::ostream& G4Tubs::StreamInfo( std::ostrea 1709 std::ostream& G4Tubs::StreamInfo( std::ostream& os ) const 1629 { 1710 { 1630 G4long oldprc = os.precision(16); << 1631 os << "------------------------------------ 1711 os << "-----------------------------------------------------------\n" 1632 << " *** Dump for solid - " << GetNam 1712 << " *** Dump for solid - " << GetName() << " ***\n" 1633 << " ================================ 1713 << " ===================================================\n" 1634 << " Solid type: G4Tubs\n" 1714 << " Solid type: G4Tubs\n" 1635 << " Parameters: \n" 1715 << " Parameters: \n" 1636 << " inner radius : " << fRMin/mm << 1716 << " inner radius : " << fRMin/mm << " mm \n" 1637 << " outer radius : " << fRMax/mm << 1717 << " outer radius : " << fRMax/mm << " mm \n" 1638 << " half length Z: " << fDz/mm << " 1718 << " half length Z: " << fDz/mm << " mm \n" 1639 << " starting phi : " << fSPhi/degree 1719 << " starting phi : " << fSPhi/degree << " degrees \n" 1640 << " delta phi : " << fDPhi/degree 1720 << " delta phi : " << fDPhi/degree << " degrees \n" 1641 << "------------------------------------ 1721 << "-----------------------------------------------------------\n"; 1642 os.precision(oldprc); << 1643 1722 1644 return os; 1723 return os; 1645 } 1724 } 1646 1725 1647 ///////////////////////////////////////////// << 1726 /////////////////////////////////////////////////////////////////////////// 1648 // 1727 // 1649 // GetPointOnSurface << 1728 // Methods for visualisation 1650 1729 1651 G4ThreeVector G4Tubs::GetPointOnSurface() con << 1652 { << 1653 G4double Rmax = fRMax; << 1654 G4double Rmin = fRMin; << 1655 G4double hz = 2.*fDz; // height << 1656 G4double lext = fDPhi*Rmax; // length of ex << 1657 G4double lint = fDPhi*Rmin; // length of in << 1658 1730 1659 // Set array of surface areas << 1731 void G4Tubs::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 1660 // << 1732 { 1661 G4double RRmax = Rmax * Rmax; << 1733 scene.AddSolid (*this) ; 1662 G4double RRmin = Rmin * Rmin; << 1734 } 1663 G4double sbase = 0.5*fDPhi*(RRmax - RRmin); << 1664 G4double scut = (fDPhi == twopi) ? 0. : hz* << 1665 G4double ssurf[6] = { scut, scut, sbase, sb << 1666 ssurf[1] += ssurf[0]; << 1667 ssurf[2] += ssurf[1]; << 1668 ssurf[3] += ssurf[2]; << 1669 ssurf[4] += ssurf[3]; << 1670 ssurf[5] += ssurf[4]; << 1671 1735 1672 // Select surface << 1736 G4Polyhedron* G4Tubs::CreatePolyhedron () const 1673 // << 1737 { 1674 G4double select = ssurf[5]*G4QuickRand(); << 1738 return new G4PolyhedronTubs (fRMin, fRMax, fDz, fSPhi, fDPhi) ; 1675 G4int k = 5; << 1739 } 1676 k -= (G4int)(select <= ssurf[4]); << 1677 k -= (G4int)(select <= ssurf[3]); << 1678 k -= (G4int)(select <= ssurf[2]); << 1679 k -= (G4int)(select <= ssurf[1]); << 1680 k -= (G4int)(select <= ssurf[0]); << 1681 1740 1682 // Generate point on selected surface << 1741 G4NURBS* G4Tubs::CreateNURBS () const 1683 // << 1742 { 1684 switch(k) << 1743 G4NURBS* pNURBS ; >> 1744 if (fRMin != 0) 1685 { 1745 { 1686 case 0: // start phi cut << 1746 if (fDPhi >= twopi) 1687 { << 1688 G4double r = Rmin + (Rmax - Rmin)*G4Qui << 1689 return { r*cosSPhi, r*sinSPhi, hz*G4Qui << 1690 } << 1691 case 1: // end phi cut << 1692 { << 1693 G4double r = Rmin + (Rmax - Rmin)*G4Qui << 1694 return { r*cosEPhi, r*sinEPhi, hz*G4Qui << 1695 } << 1696 case 2: // base at -dz << 1697 { 1747 { 1698 G4double r = std::sqrt(RRmin + (RRmax - << 1748 pNURBS = new G4NURBStube (fRMin,fRMax,fDz) ; 1699 G4double phi = fSPhi + fDPhi*G4QuickRan << 1700 return { r*std::cos(phi), r*std::sin(ph << 1701 } 1749 } 1702 case 3: // base at +dz << 1750 else 1703 { 1751 { 1704 G4double r = std::sqrt(RRmin + (RRmax - << 1752 pNURBS = new G4NURBStubesector (fRMin,fRMax,fDz,fSPhi,fSPhi+fDPhi) ; 1705 G4double phi = fSPhi + fDPhi*G4QuickRan << 1706 return { r*std::cos(phi), r*std::sin(ph << 1707 } 1753 } 1708 case 4: // external lateral surface << 1754 } >> 1755 else >> 1756 { >> 1757 if (fDPhi >= twopi) 1709 { 1758 { 1710 G4double phi = fSPhi + fDPhi*G4QuickRan << 1759 pNURBS = new G4NURBScylinder (fRMax,fDz) ; 1711 G4double z = hz*G4QuickRand() - fDz; << 1712 G4double x = Rmax*std::cos(phi); << 1713 G4double y = Rmax*std::sin(phi); << 1714 return { x,y,z }; << 1715 } 1760 } 1716 case 5: // internal lateral surface << 1761 else 1717 { 1762 { 1718 G4double phi = fSPhi + fDPhi*G4QuickRan << 1763 const G4double epsilon = 1.e-4 ; // Cylinder sector not yet available! 1719 G4double z = hz*G4QuickRand() - fDz; << 1764 pNURBS = new G4NURBStubesector (epsilon,fRMax,fDz,fSPhi,fSPhi+fDPhi) ; 1720 G4double x = Rmin*std::cos(phi); << 1721 G4double y = Rmin*std::sin(phi); << 1722 return { x,y,z }; << 1723 } 1765 } 1724 } 1766 } 1725 return {0., 0., 0.}; << 1767 return pNURBS ; 1726 } << 1727 << 1728 ///////////////////////////////////////////// << 1729 // << 1730 // Methods for visualisation << 1731 << 1732 void G4Tubs::DescribeYourselfTo ( G4VGraphics << 1733 { << 1734 scene.AddSolid (*this) ; << 1735 } 1768 } 1736 << 1737 G4Polyhedron* G4Tubs::CreatePolyhedron () con << 1738 { << 1739 return new G4PolyhedronTubs (fRMin, fRMax, << 1740 } << 1741 << 1742 #endif << 1743 1769