Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4Tubs.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/CSG/src/G4Tubs.cc (Version 11.3.0) and /geometry/solids/CSG/src/G4Tubs.cc (Version 6.0.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 // G4Tubs implementation                       << 
 27 //                                                 23 //
 28 // 1994-95 P.Kent: first implementation        <<  24 // $Id: G4Tubs.cc,v 1.42 2004/01/26 09:03:20 gcosmo Exp $
                                                   >>  25 // GEANT4 tag $Name: geant4-06-00-patch-01 $
                                                   >>  26 //
                                                   >>  27 // 
                                                   >>  28 // class G4Tubs
                                                   >>  29 //
                                                   >>  30 // History:
                                                   >>  31 //
                                                   >>  32 // 1994-95  P.Kent:     implementation
                                                   >>  33 //
                                                   >>  34 // 18.06.98 V.Grichine: n-normalisation in DistanceToOut(p,v) 
                                                   >>  35 // 09.10.98 V.Grichine: modifications in DistanceToOut(p,v,...)
                                                   >>  36 // 23.03.99 V.Grichine: bug fixed in DistanceToIn(p,v) 
                                                   >>  37 // 25.05.99 V.Grichine: bugs fixed in DistanceToIn(p,v) 
                                                   >>  38 // 28.05.99 V.Grichine: bugs fixed in DistanceToOut(p,v,...)
                                                   >>  39 // 13.10.99 V.Grichine: bugs fixed in DistanceToIn(p,v) 
                                                   >>  40 // 19.11.99 V.Grichine: side = kNull in DistanceToOut(p,v,...)
                                                   >>  41 // 31.03.00 V.Grichine: bug fixed in Inside(p)
                                                   >>  42 // 17.05.00 V.Grichine: bugs (#76,#91) fixed in Distance ToOut(p,v,...)
                                                   >>  43 // 02.08.00 V.Grichine: point is outside check in Distance ToOut(p)
 29 // 08.08.00 V.Grichine: more stable roots of 2     44 // 08.08.00 V.Grichine: more stable roots of 2-equation in DistanceToOut(p,v,..)
                                                   >>  45 // 31.10.00 V.Grichine: assign sr, sphi in Distance ToOut(p,v,...)
                                                   >>  46 // 28.11.00 V.Grichine: bug fixed in Inside(p)
 30 // 07.12.00 V.Grichine: phi-section algorithm      47 // 07.12.00 V.Grichine: phi-section algorithm was changed in Inside(p)
 31 // 03.05.05 V.Grichine: SurfaceNormal(p) accor <<  48 // 20.02.01 V.Grichine: bug fixed in Inside(p) and CalculateExtent was 
 32 // 24.08.16 E.Tcherniaev: reimplemented Calcul <<  49 //                      simplified base on G4Box::CalculateExtent
                                                   >>  50 // 20.07.01 V.Grichine: bug fixed in Inside(p)
 33 // -------------------------------------------     51 // --------------------------------------------------------------------
 34                                                    52 
 35 #include "G4Tubs.hh"                               53 #include "G4Tubs.hh"
 36                                                    54 
 37 #if !defined(G4GEOM_USE_UTUBS)                 << 
 38                                                << 
 39 #include "G4GeomTools.hh"                      << 
 40 #include "G4VoxelLimits.hh"                        55 #include "G4VoxelLimits.hh"
 41 #include "G4AffineTransform.hh"                    56 #include "G4AffineTransform.hh"
 42 #include "G4GeometryTolerance.hh"              << 
 43 #include "G4BoundingEnvelope.hh"               << 
 44                                                    57 
 45 #include "G4VPVParameterisation.hh"                58 #include "G4VPVParameterisation.hh"
 46 #include "G4QuickRand.hh"                      <<  59 
                                                   >>  60 #include "meshdefs.hh"
 47                                                    61 
 48 #include "G4VGraphicsScene.hh"                     62 #include "G4VGraphicsScene.hh"
 49 #include "G4Polyhedron.hh"                         63 #include "G4Polyhedron.hh"
 50                                                <<  64 #include "G4NURBS.hh"
 51 using namespace CLHEP;                         <<  65 #include "G4NURBStube.hh"
                                                   >>  66 #include "G4NURBScylinder.hh"
                                                   >>  67 #include "G4NURBStubesector.hh"
 52                                                    68 
 53 //////////////////////////////////////////////     69 /////////////////////////////////////////////////////////////////////////
 54 //                                                 70 //
 55 // Constructor - check parameters, convert ang     71 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI
 56 //             - note if pdphi>2PI then reset      72 //             - note if pdphi>2PI then reset to 2PI
 57                                                    73 
 58 G4Tubs::G4Tubs( const G4String& pName,         <<  74 G4Tubs::G4Tubs( const G4String &pName,
 59                       G4double pRMin, G4double     75                       G4double pRMin, G4double pRMax,
 60                       G4double pDz,                76                       G4double pDz,
 61                       G4double pSPhi, G4double     77                       G4double pSPhi, G4double pDPhi )
 62    : G4CSGSolid(pName), fRMin(pRMin), fRMax(pR <<  78   : G4CSGSolid(pName)
 63      fSPhi(0), fDPhi(0),                       << 
 64      fInvRmax( pRMax > 0.0 ? 1.0/pRMax : 0.0 ) << 
 65      fInvRmin( pRMin > 0.0 ? 1.0/pRMin : 0.0 ) << 
 66 {                                                  79 {
 67   kRadTolerance = G4GeometryTolerance::GetInst << 
 68   kAngTolerance = G4GeometryTolerance::GetInst << 
 69                                                    80 
 70   halfCarTolerance=kCarTolerance*0.5;          <<  81   if (pDz>0) // Check z-len
 71   halfRadTolerance=kRadTolerance*0.5;          <<  82   {
 72   halfAngTolerance=kAngTolerance*0.5;          <<  83     fDz = pDz ;
 73                                                <<  84   }
 74   if (pDz<=0) // Check z-len                   <<  85   else
                                                   >>  86   {
                                                   >>  87     G4cerr << "ERROR - G4Tubs()::G4Tubs(): " << GetName() << G4endl
                                                   >>  88            << "        Negative Z half-length ! - "
                                                   >>  89            << pDz << G4endl;
                                                   >>  90     G4Exception("G4Tubs::G4Tubs()", "InvalidSetup", FatalException,
                                                   >>  91                 "Invalid Z half-length");
                                                   >>  92   }
                                                   >>  93   if ( pRMin < pRMax && pRMin >= 0 ) // Check radii
 75   {                                                94   {
 76     std::ostringstream message;                <<  95     fRMin = pRMin ; 
 77     message << "Negative Z half-length (" << p <<  96     fRMax = pRMax ;
 78     G4Exception("G4Tubs::G4Tubs()", "GeomSolid << 
 79   }                                                97   }
 80   if ( (pRMin >= pRMax) || (pRMin < 0) ) // Ch <<  98   else
                                                   >>  99   {
                                                   >> 100     G4cerr << "ERROR - G4Tubs()::G4Tubs(): " << GetName() << G4endl
                                                   >> 101            << "        Invalid values for radii !" << G4endl
                                                   >> 102            << "        pRMin = " << pRMin << ", pRMax = " << pRMax << G4endl;
                                                   >> 103     G4Exception("G4Tubs::G4Tubs()", "InvalidSetup", FatalException,
                                                   >> 104                 "Invalid radii.");
                                                   >> 105   }
                                                   >> 106   if ( pDPhi >= 2.0*M_PI ) // Check angles
                                                   >> 107   {
                                                   >> 108     fDPhi=2*M_PI;
                                                   >> 109   }
                                                   >> 110   else
 81   {                                               111   {
 82     std::ostringstream message;                << 112     if ( pDPhi > 0 )
 83     message << "Invalid values for radii in so << 113     {
 84             << G4endl                          << 114       fDPhi = pDPhi;
 85             << "        pRMin = " << pRMin <<  << 115     }
 86     G4Exception("G4Tubs::G4Tubs()", "GeomSolid << 116     else
                                                   >> 117     {
                                                   >> 118       G4cerr << "ERROR - G4Tubs()::G4Tubs(): " << GetName() << G4endl
                                                   >> 119              << "        Negative delta-Phi ! - "
                                                   >> 120              << pDPhi << G4endl;
                                                   >> 121       G4Exception("G4Tubs::G4Tubs()", "InvalidSetup", FatalException,
                                                   >> 122                   "Invalid dphi.");
                                                   >> 123     }
 87   }                                               124   }
                                                   >> 125   
                                                   >> 126   // Ensure fSphi in 0-2PI or -2PI-0 range if shape crosses 0
 88                                                   127 
 89   // Check angles                              << 128   fSPhi = pSPhi;
 90   //                                           << 
 91   CheckPhiAngles(pSPhi, pDPhi);                << 
 92 }                                              << 
 93                                                   129 
 94 ////////////////////////////////////////////// << 130   if ( fSPhi < 0 )
 95 //                                             << 131   {
 96 // Fake default constructor - sets only member << 132     fSPhi = 2.0*M_PI - fmod(fabs(fSPhi),2.0*M_PI) ;
 97 //                            for usage restri << 133   }
 98 //                                             << 134   else
 99 G4Tubs::G4Tubs( __void__& a )                  << 135   {
100   : G4CSGSolid(a)                              << 136     fSPhi = fmod(fSPhi,2.0*M_PI) ;
101 {                                              << 137   }
                                                   >> 138   if (fSPhi + fDPhi > 2.0*M_PI )
                                                   >> 139   {
                                                   >> 140     fSPhi -= 2.0*M_PI ;
                                                   >> 141   }
102 }                                                 142 }
103                                                   143 
104 //////////////////////////////////////////////    144 //////////////////////////////////////////////////////////////////////////
105 //                                                145 //
106 // Destructor                                     146 // Destructor
107                                                   147 
108 G4Tubs::~G4Tubs() = default;                   << 148 G4Tubs::~G4Tubs()
109                                                << 
110 ////////////////////////////////////////////// << 
111 //                                             << 
112 // Copy constructor                            << 
113                                                << 
114 G4Tubs::G4Tubs(const G4Tubs&) = default;       << 
115                                                << 
116 ////////////////////////////////////////////// << 
117 //                                             << 
118 // Assignment operator                         << 
119                                                << 
120 G4Tubs& G4Tubs::operator = (const G4Tubs& rhs) << 
121 {                                                 149 {
122    // Check assignment to self                 << 
123    //                                          << 
124    if (this == &rhs)  { return *this; }        << 
125                                                << 
126    // Copy base class data                     << 
127    //                                          << 
128    G4CSGSolid::operator=(rhs);                 << 
129                                                << 
130    // Copy data                                << 
131    //                                          << 
132    kRadTolerance = rhs.kRadTolerance; kAngTole << 
133    fRMin = rhs.fRMin; fRMax = rhs.fRMax; fDz = << 
134    fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi;       << 
135    sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPh << 
136    cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = r << 
137    sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPh << 
138    sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPh << 
139    fPhiFullTube = rhs.fPhiFullTube;            << 
140    fInvRmax = rhs.fInvRmax;                    << 
141    fInvRmin = rhs.fInvRmin;                    << 
142    halfCarTolerance = rhs.halfCarTolerance;    << 
143    halfRadTolerance = rhs.halfRadTolerance;    << 
144    halfAngTolerance = rhs.halfAngTolerance;    << 
145                                                << 
146    return *this;                               << 
147 }                                                 150 }
148                                                   151 
149 //////////////////////////////////////////////    152 /////////////////////////////////////////////////////////////////////////
150 //                                                153 //
151 // Dispatch to parameterisation for replicatio    154 // Dispatch to parameterisation for replication mechanism dimension
152 // computation & modification.                    155 // computation & modification.
153                                                   156 
154 void G4Tubs::ComputeDimensions(       G4VPVPar    157 void G4Tubs::ComputeDimensions(       G4VPVParameterisation* p,
155                                 const G4int n,    158                                 const G4int n,
156                                 const G4VPhysi    159                                 const G4VPhysicalVolume* pRep )
157 {                                                 160 {
158   p->ComputeDimensions(*this,n,pRep) ;            161   p->ComputeDimensions(*this,n,pRep) ;
159 }                                                 162 }
160                                                   163 
161 ////////////////////////////////////////////// << 164 ////////////////////////////////////////////////////////////////////////
162 //                                             << 
163 // Get bounding box                            << 
164                                                << 
165 void G4Tubs::BoundingLimits(G4ThreeVector& pMi << 
166 {                                              << 
167   G4double rmin = GetInnerRadius();            << 
168   G4double rmax = GetOuterRadius();            << 
169   G4double dz   = GetZHalfLength();            << 
170                                                << 
171   // Find bounding box                         << 
172   //                                           << 
173   if (GetDeltaPhiAngle() < twopi)              << 
174   {                                            << 
175     G4TwoVector vmin,vmax;                     << 
176     G4GeomTools::DiskExtent(rmin,rmax,         << 
177                             GetSinStartPhi(),G << 
178                             GetSinEndPhi(),Get << 
179                             vmin,vmax);        << 
180     pMin.set(vmin.x(),vmin.y(),-dz);           << 
181     pMax.set(vmax.x(),vmax.y(), dz);           << 
182   }                                            << 
183   else                                         << 
184   {                                            << 
185     pMin.set(-rmax,-rmax,-dz);                 << 
186     pMax.set( rmax, rmax, dz);                 << 
187   }                                            << 
188                                                << 
189   // Check correctness of the bounding box     << 
190   //                                           << 
191   if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 
192   {                                            << 
193     std::ostringstream message;                << 
194     message << "Bad bounding box (min >= max)  << 
195             << GetName() << " !"               << 
196             << "\npMin = " << pMin             << 
197             << "\npMax = " << pMax;            << 
198     G4Exception("G4Tubs::BoundingLimits()", "G << 
199                 JustWarning, message);         << 
200     DumpInfo();                                << 
201   }                                            << 
202 }                                              << 
203                                                << 
204 ////////////////////////////////////////////// << 
205 //                                                165 //
206 // Calculate extent under transform and specif    166 // Calculate extent under transform and specified limit
207                                                   167 
208 G4bool G4Tubs::CalculateExtent( const EAxis       168 G4bool G4Tubs::CalculateExtent( const EAxis              pAxis,
209                                 const G4VoxelL    169                                 const G4VoxelLimits&     pVoxelLimit,
210                                 const G4Affine    170                                 const G4AffineTransform& pTransform,
211                                       G4double << 171                                       G4double&          pMin, 
212                                       G4double    172                                       G4double&          pMax    ) const
213 {                                                 173 {
214   G4ThreeVector bmin, bmax;                    << 
215   G4bool exist;                                << 
216                                                   174 
217   // Get bounding box                          << 175   if ( !pTransform.IsRotated() && fDPhi == 2.0*M_PI && fRMin == 0 )
218   BoundingLimits(bmin,bmax);                   << 
219                                                << 
220   // Check bounding box                        << 
221   G4BoundingEnvelope bbox(bmin,bmax);          << 
222 #ifdef G4BBOX_EXTENT                           << 
223   return bbox.CalculateExtent(pAxis,pVoxelLimi << 
224 #endif                                         << 
225   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 
226   {                                               176   {
227     return exist = pMin < pMax;                << 177     // Special case handling for unrotated solid tubes
228   }                                            << 178     // Compute x/y/z mins and maxs fro bounding box respecting limits,
                                                   >> 179     // with early returns if outside limits. Then switch() on pAxis,
                                                   >> 180     // and compute exact x and y limit for x/y case
                                                   >> 181       
                                                   >> 182     G4double xoffset, xMin, xMax ;
                                                   >> 183     G4double yoffset, yMin, yMax ;
                                                   >> 184     G4double zoffset, zMin, zMax ;
                                                   >> 185 
                                                   >> 186     G4double diff1, diff2, maxDiff, newMin, newMax ;
                                                   >> 187     G4double xoff1, xoff2, yoff1, yoff2 ;
                                                   >> 188 
                                                   >> 189     xoffset = pTransform.NetTranslation().x() ;
                                                   >> 190     xMin = xoffset - fRMax ;
                                                   >> 191     xMax = xoffset + fRMax ;
229                                                   192 
230   // Get parameters of the solid               << 193     if (pVoxelLimit.IsXLimited())
231   G4double rmin = GetInnerRadius();            << 194     {
232   G4double rmax = GetOuterRadius();            << 195       if ( (xMin > pVoxelLimit.GetMaxXExtent())
233   G4double dz   = GetZHalfLength();            << 196         || (xMax < pVoxelLimit.GetMinXExtent()) )
234   G4double dphi = GetDeltaPhiAngle();          << 197       {
                                                   >> 198         return false;
                                                   >> 199       }
                                                   >> 200       else
                                                   >> 201       {
                                                   >> 202         if ( xMin < pVoxelLimit.GetMinXExtent() )
                                                   >> 203         {
                                                   >> 204           xMin = pVoxelLimit.GetMinXExtent() ;
                                                   >> 205         }
                                                   >> 206         if (xMax > pVoxelLimit.GetMaxXExtent() )
                                                   >> 207         {
                                                   >> 208           xMax = pVoxelLimit.GetMaxXExtent() ;
                                                   >> 209         }
                                                   >> 210       }
                                                   >> 211     }
                                                   >> 212     yoffset = pTransform.NetTranslation().y() ;
                                                   >> 213     yMin    = yoffset - fRMax ;
                                                   >> 214     yMax    = yoffset + fRMax ;
235                                                   215 
236   // Find bounding envelope and calculate exte << 216     if ( pVoxelLimit.IsYLimited() )
237   //                                           << 217     {
238   const G4int NSTEPS = 24;            // numbe << 218       if ( (yMin > pVoxelLimit.GetMaxYExtent())
239   G4double astep  = twopi/NSTEPS;     // max a << 219         || (yMax < pVoxelLimit.GetMinYExtent()) )
240   G4int    ksteps = (dphi <= astep) ? 1 : (G4i << 220       {
241   G4double ang    = dphi/ksteps;               << 221         return false ;
242                                                << 222       }
243   G4double sinHalf = std::sin(0.5*ang);        << 223       else
244   G4double cosHalf = std::cos(0.5*ang);        << 224       {
245   G4double sinStep = 2.*sinHalf*cosHalf;       << 225         if ( yMin < pVoxelLimit.GetMinYExtent() )
246   G4double cosStep = 1. - 2.*sinHalf*sinHalf;  << 226         {
247   G4double rext    = rmax/cosHalf;             << 227           yMin = pVoxelLimit.GetMinYExtent() ;
248                                                << 228         }
249   // bounding envelope for full cylinder consi << 229         if ( yMax > pVoxelLimit.GetMaxYExtent() )
250   // in other cases it is a sequence of quadri << 230         {
251   if (rmin == 0 && dphi == twopi)              << 231           yMax=pVoxelLimit.GetMaxYExtent();
252   {                                            << 232         }
253     G4double sinCur = sinHalf;                 << 233       }
254     G4double cosCur = cosHalf;                 << 234     }
255                                                << 235     zoffset = pTransform.NetTranslation().z() ;
256     G4ThreeVectorList baseA(NSTEPS),baseB(NSTE << 236     zMin    = zoffset - fDz ;
257     for (G4int k=0; k<NSTEPS; ++k)             << 237     zMax    = zoffset + fDz ;
258     {                                          << 238 
259       baseA[k].set(rext*cosCur,rext*sinCur,-dz << 239     if ( pVoxelLimit.IsZLimited() )
260       baseB[k].set(rext*cosCur,rext*sinCur, dz << 240     {
261                                                << 241       if ( (zMin > pVoxelLimit.GetMaxZExtent())
262       G4double sinTmp = sinCur;                << 242         || (zMax < pVoxelLimit.GetMinZExtent()) )
263       sinCur = sinCur*cosStep + cosCur*sinStep << 243       {
264       cosCur = cosCur*cosStep - sinTmp*sinStep << 244         return false ;
265     }                                          << 245       }
266     std::vector<const G4ThreeVectorList *> pol << 246       else
267     polygons[0] = &baseA;                      << 247       {
268     polygons[1] = &baseB;                      << 248         if ( zMin < pVoxelLimit.GetMinZExtent() )
269     G4BoundingEnvelope benv(bmin,bmax,polygons << 249         {
270     exist = benv.CalculateExtent(pAxis,pVoxelL << 250           zMin = pVoxelLimit.GetMinZExtent() ;
271   }                                            << 251         }
272   else                                         << 252         if ( zMax > pVoxelLimit.GetMaxZExtent() )
273   {                                            << 253         {
274     G4double sinStart = GetSinStartPhi();      << 254           zMax = pVoxelLimit.GetMaxZExtent();
275     G4double cosStart = GetCosStartPhi();      << 255         }
276     G4double sinEnd   = GetSinEndPhi();        << 256       }
277     G4double cosEnd   = GetCosEndPhi();        << 257     }
278     G4double sinCur   = sinStart*cosHalf + cos << 258     switch ( pAxis )  // Known to cut cylinder
279     G4double cosCur   = cosStart*cosHalf - sin << 259     {
280                                                << 260       case kXAxis :
281     // set quadrilaterals                      << 261       {
282     G4ThreeVectorList pols[NSTEPS+2];          << 262         yoff1 = yoffset - yMin ;
283     for (G4int k=0; k<ksteps+2; ++k) pols[k].r << 263         yoff2 = yMax    - yoffset ;
284     pols[0][0].set(rmin*cosStart,rmin*sinStart << 264 
285     pols[0][1].set(rmin*cosStart,rmin*sinStart << 265         if ( yoff1 >= 0 && yoff2 >= 0 ) // Y limits cross max/min x => no change
286     pols[0][2].set(rmax*cosStart,rmax*sinStart << 266         {
287     pols[0][3].set(rmax*cosStart,rmax*sinStart << 267           pMin = xMin ;
288     for (G4int k=1; k<ksteps+1; ++k)           << 268           pMax = xMax ;
289     {                                          << 269         }
290       pols[k][0].set(rmin*cosCur,rmin*sinCur,  << 270         else
291       pols[k][1].set(rmin*cosCur,rmin*sinCur,- << 271         {
292       pols[k][2].set(rext*cosCur,rext*sinCur,- << 272           // Y limits don't cross max/min x => compute max delta x,
293       pols[k][3].set(rext*cosCur,rext*sinCur,  << 273           // hence new mins/maxs
294                                                << 274 
295       G4double sinTmp = sinCur;                << 275           diff1   = sqrt(fRMax*fRMax - yoff1*yoff1);
296       sinCur = sinCur*cosStep + cosCur*sinStep << 276           diff2   = sqrt(fRMax*fRMax - yoff2*yoff2);
297       cosCur = cosCur*cosStep - sinTmp*sinStep << 277           maxDiff = (diff1 > diff2) ? diff1:diff2;
298     }                                          << 278           newMin  = xoffset - maxDiff;
299     pols[ksteps+1][0].set(rmin*cosEnd,rmin*sin << 279           newMax  = xoffset + maxDiff;
300     pols[ksteps+1][1].set(rmin*cosEnd,rmin*sin << 280           pMin    = (newMin < xMin) ? xMin : newMin;
301     pols[ksteps+1][2].set(rmax*cosEnd,rmax*sin << 281           pMax    = (newMax > xMax) ? xMax : newMax;
302     pols[ksteps+1][3].set(rmax*cosEnd,rmax*sin << 282         }    
303                                                << 283         break;
304     // set envelope and calculate extent       << 284       }
305     std::vector<const G4ThreeVectorList *> pol << 285       case kYAxis :
306     polygons.resize(ksteps+2);                 << 286       {
307     for (G4int k=0; k<ksteps+2; ++k) polygons[ << 287         xoff1 = xoffset - xMin ;
308     G4BoundingEnvelope benv(bmin,bmax,polygons << 288         xoff2 = xMax - xoffset ;
309     exist = benv.CalculateExtent(pAxis,pVoxelL << 289 
                                                   >> 290         if ( xoff1 >= 0 && xoff2 >= 0 ) // X limits cross max/min y => no change
                                                   >> 291         {
                                                   >> 292           pMin = yMin ;
                                                   >> 293           pMax = yMax ;
                                                   >> 294         }
                                                   >> 295         else
                                                   >> 296         {
                                                   >> 297           // X limits don't cross max/min y => compute max delta y,
                                                   >> 298           // hence new mins/maxs
                                                   >> 299 
                                                   >> 300           diff1   = sqrt(fRMax*fRMax - xoff1*xoff1) ;
                                                   >> 301           diff2   = sqrt(fRMax*fRMax - xoff2*xoff2) ;
                                                   >> 302           maxDiff = (diff1 > diff2) ? diff1 : diff2 ;
                                                   >> 303           newMin  = yoffset - maxDiff ;
                                                   >> 304           newMax  = yoffset + maxDiff ;
                                                   >> 305           pMin    = (newMin < yMin) ? yMin : newMin ;
                                                   >> 306           pMax     =(newMax > yMax) ? yMax : newMax ;
                                                   >> 307         }
                                                   >> 308         break ;
                                                   >> 309       }
                                                   >> 310       case kZAxis:
                                                   >> 311       {
                                                   >> 312         pMin = zMin ;
                                                   >> 313         pMax = zMax ;
                                                   >> 314         break ;
                                                   >> 315       }
                                                   >> 316       default:
                                                   >> 317         break;
                                                   >> 318     }
                                                   >> 319     pMin -= kCarTolerance ;
                                                   >> 320     pMax += kCarTolerance ;
                                                   >> 321     return true;    
                                                   >> 322   }
                                                   >> 323   else // Calculate rotated vertex coordinates
                                                   >> 324   {
                                                   >> 325     G4int i, noEntries, noBetweenSections4 ;
                                                   >> 326     G4bool existsAfterClip = false ;
                                                   >> 327     G4ThreeVectorList* vertices = CreateRotatedVertices(pTransform) ;
                                                   >> 328     
                                                   >> 329     pMin = +kInfinity ;
                                                   >> 330     pMax = -kInfinity ;
                                                   >> 331 
                                                   >> 332     noEntries = vertices->size() ;
                                                   >> 333     noBetweenSections4 = noEntries - 4 ;
                                                   >> 334     /*
                                                   >> 335     G4cout << "vertices = " << noEntries << "\t"
                                                   >> 336            << "v-4 = " << noBetweenSections4 << G4endl;
                                                   >> 337     G4cout << G4endl;
                                                   >> 338     for(i = 0 ; i < noEntries ; i++ )
                                                   >> 339     {
                                                   >> 340       G4cout << i << "\t" << "v.x = " << ((*vertices)[i]).x() << "\t"
                                                   >> 341                           << "v.y = " << ((*vertices)[i]).y() << "\t"
                                                   >> 342                           << "v.z = " << ((*vertices)[i]).z() << "\t" << G4endl;
                                                   >> 343     }      
                                                   >> 344     G4cout << G4endl;
                                                   >> 345     G4cout << "ClipCrossSection" << G4endl;
                                                   >> 346     */
                                                   >> 347     for (i = 0 ; i < noEntries ; i += 4 )
                                                   >> 348     {
                                                   >> 349       // G4cout << "section = " << i << G4endl;
                                                   >> 350       ClipCrossSection(vertices,i,pVoxelLimit,pAxis,pMin,pMax) ;
                                                   >> 351     }
                                                   >> 352     // G4cout << "ClipBetweenSections" << G4endl;
                                                   >> 353     for (i = 0 ; i < noBetweenSections4 ; i += 4 )
                                                   >> 354     {
                                                   >> 355       // G4cout << "between sections = " << i << G4endl;
                                                   >> 356       ClipBetweenSections(vertices,i,pVoxelLimit,pAxis,pMin,pMax) ;
                                                   >> 357     }
                                                   >> 358     if (pMin != kInfinity || pMax != -kInfinity )
                                                   >> 359     {
                                                   >> 360       existsAfterClip = true ;
                                                   >> 361       pMin -= kCarTolerance ; // Add 2*tolerance to avoid precision troubles
                                                   >> 362       pMax += kCarTolerance ;
                                                   >> 363     }
                                                   >> 364     else
                                                   >> 365     {
                                                   >> 366       // Check for case where completely enveloping clipping volume
                                                   >> 367       // If point inside then we are confident that the solid completely
                                                   >> 368       // envelopes the clipping volume. Hence set min/max extents according
                                                   >> 369       // to clipping volume extents along the specified axis.
                                                   >> 370 
                                                   >> 371       G4ThreeVector clipCentre(
                                                   >> 372              (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5,
                                                   >> 373              (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5,
                                                   >> 374              (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5 ) ;
                                                   >> 375         
                                                   >> 376       if ( Inside(pTransform.Inverse().TransformPoint(clipCentre)) != kOutside )
                                                   >> 377       {
                                                   >> 378         existsAfterClip = true ;
                                                   >> 379         pMin            = pVoxelLimit.GetMinExtent(pAxis) ;
                                                   >> 380         pMax            = pVoxelLimit.GetMaxExtent(pAxis) ;
                                                   >> 381       }
                                                   >> 382     }
                                                   >> 383     delete vertices;
                                                   >> 384     return existsAfterClip;
310   }                                               385   }
311   return exist;                                << 
312 }                                                 386 }
313                                                   387 
                                                   >> 388 
314 //////////////////////////////////////////////    389 ///////////////////////////////////////////////////////////////////////////
315 //                                                390 //
316 // Return whether point inside/outside/on surf    391 // Return whether point inside/outside/on surface
317                                                   392 
318 EInside G4Tubs::Inside( const G4ThreeVector& p    393 EInside G4Tubs::Inside( const G4ThreeVector& p ) const
319 {                                                 394 {
320   G4double r2,pPhi,tolRMin,tolRMax;               395   G4double r2,pPhi,tolRMin,tolRMax;
321   EInside in = kOutside ;                         396   EInside in = kOutside ;
322                                                   397 
323   if (std::fabs(p.z()) <= fDz - halfCarToleran << 398   if (fabs(p.z()) <= fDz - kCarTolerance*0.5)
324   {                                               399   {
325     r2 = p.x()*p.x() + p.y()*p.y() ;              400     r2 = p.x()*p.x() + p.y()*p.y() ;
326                                                   401 
327     if (fRMin != 0.0) { tolRMin = fRMin + half << 402     if (fRMin) tolRMin = fRMin + kRadTolerance*0.5 ;
328     else       { tolRMin = 0 ; }               << 403     else       tolRMin = 0 ;
329                                                << 
330     tolRMax = fRMax - halfRadTolerance ;       << 
331                                                   404 
332     if ((r2 >= tolRMin*tolRMin) && (r2 <= tolR << 405     tolRMax = fRMax - kRadTolerance*0.5 ;
                                                   >> 406       
                                                   >> 407     if (r2 >= tolRMin*tolRMin && r2 <= tolRMax*tolRMax)
333     {                                             408     {
334       if ( fPhiFullTube )                      << 409       //  if ( fDPhi == 2*M_PI || r2 == 0 )  in = kInside ;
335       {                                        << 410       if ( fDPhi == 2*M_PI )  in = kInside ;
336         in = kInside ;                         << 
337       }                                        << 
338       else                                        411       else
339       {                                           412       {
340         // Try inner tolerant phi boundaries (    413         // Try inner tolerant phi boundaries (=>inside)
341         // if not inside, try outer tolerant p    414         // if not inside, try outer tolerant phi boundaries
342                                                   415 
343         if ( (tolRMin==0) && (std::fabs(p.x()) << 416         pPhi = atan2(p.y(),p.x()) ;
344                           && (std::fabs(p.y()) << 417 
                                                   >> 418         if ( pPhi < -kAngTolerance*0.5 ) pPhi += 2*M_PI ; // 0<=pPhi<2pi
                                                   >> 419 
                                                   >> 420         if ( fSPhi >= 0 )
345         {                                         421         {
346           in=kSurface;                         << 422           if ( (abs(pPhi) < kAngTolerance*0.5)
                                                   >> 423             && (abs(fSPhi + fDPhi - 2*M_PI) < kAngTolerance*0.5) )
                                                   >> 424           { 
                                                   >> 425             pPhi += 2*M_PI ; // 0 <= pPhi < 2pi
                                                   >> 426           }
                                                   >> 427           if ( (pPhi >= fSPhi + kAngTolerance*0.5)
                                                   >> 428             && (pPhi <= fSPhi + fDPhi - kAngTolerance*0.5) )
                                                   >> 429           {
                                                   >> 430             in = kInside ;
                                                   >> 431           }
                                                   >> 432           else if ( (pPhi >= fSPhi - kAngTolerance*0.5)
                                                   >> 433                  && (pPhi <= fSPhi + fDPhi + kAngTolerance*0.5) )
                                                   >> 434           {
                                                   >> 435             in = kSurface ;
                                                   >> 436           }
347         }                                         437         }
348         else                                   << 438         else  // fSPhi < 0
349         {                                         439         {
350           pPhi = std::atan2(p.y(),p.x()) ;     << 440           if ( (pPhi <= fSPhi + 2*M_PI - kAngTolerance*0.5)
351           if ( pPhi < -halfAngTolerance )  { p << 441             && (pPhi >= fSPhi + fDPhi  + kAngTolerance*0.5) ) ;
352                                                << 442           else if ( (pPhi <= fSPhi + 2*M_PI + kAngTolerance*0.5)
353           if ( fSPhi >= 0 )                    << 443                  && (pPhi >= fSPhi + fDPhi  - kAngTolerance*0.5) )
354           {                                       444           {
355             if ( (std::fabs(pPhi) < halfAngTol << 445             in = kSurface ;
356               && (std::fabs(fSPhi + fDPhi - tw << 
357             {                                  << 
358               pPhi += twopi ; // 0 <= pPhi < 2 << 
359             }                                  << 
360             if ( (pPhi >= fSPhi + halfAngToler << 
361               && (pPhi <= fSPhi + fDPhi - half << 
362             {                                  << 
363               in = kInside ;                   << 
364             }                                  << 
365             else if ( (pPhi >= fSPhi - halfAng << 
366                    && (pPhi <= fSPhi + fDPhi + << 
367             {                                  << 
368               in = kSurface ;                  << 
369             }                                  << 
370           }                                       446           }
371           else  // fSPhi < 0                   << 447           else
372           {                                       448           {
373             if ( (pPhi <= fSPhi + twopi - half << 449             in = kInside ;
374               && (pPhi >= fSPhi + fDPhi  + hal << 
375             else if ( (pPhi <= fSPhi + twopi + << 
376                    && (pPhi >= fSPhi + fDPhi   << 
377             {                                  << 
378               in = kSurface ;                  << 
379             }                                  << 
380             else                               << 
381             {                                  << 
382               in = kInside ;                   << 
383             }                                  << 
384           }                                       450           }
385         }                                      << 451         }                    
386       }                                           452       }
387     }                                             453     }
388     else  // Try generous boundaries              454     else  // Try generous boundaries
389     {                                             455     {
390       tolRMin = fRMin - halfRadTolerance ;     << 456       tolRMin = fRMin - kRadTolerance*0.5 ;
391       tolRMax = fRMax + halfRadTolerance ;     << 457       tolRMax = fRMax + kRadTolerance*0.5 ;
392                                                   458 
393       if ( tolRMin < 0 )  { tolRMin = 0; }     << 459       if ( tolRMin < 0 ) tolRMin = 0 ;
394                                                   460 
395       if ( (r2 >= tolRMin*tolRMin) && (r2 <= t    461       if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) )
396       {                                           462       {
397         if (fPhiFullTube || (r2 <=halfRadToler << 463         if ( fDPhi == 2*M_PI || r2 == 0 ) // Continuous in phi or on z-axis
398         {                        // Continuous << 464         {
399           in = kSurface ;                         465           in = kSurface ;
400         }                                         466         }
401         else // Try outer tolerant phi boundar    467         else // Try outer tolerant phi boundaries only
402         {                                         468         {
403           pPhi = std::atan2(p.y(),p.x()) ;     << 469           pPhi = atan2(p.y(),p.x()) ;
404                                                   470 
405           if ( pPhi < -halfAngTolerance)  { pP << 471           if ( pPhi < -kAngTolerance*0.5 ) pPhi += 2*M_PI ; // 0<=pPhi<2pi
406           if ( fSPhi >= 0 )                       472           if ( fSPhi >= 0 )
407           {                                       473           {
408             if ( (std::fabs(pPhi) < halfAngTol << 474             if ( (abs(pPhi) < kAngTolerance*0.5)
409               && (std::fabs(fSPhi + fDPhi - tw << 475               && (abs(fSPhi + fDPhi - 2*M_PI) < kAngTolerance*0.5) )
410             {                                  << 476             { 
411               pPhi += twopi ; // 0 <= pPhi < 2 << 477               pPhi += 2*M_PI ; // 0 <= pPhi < 2pi
412             }                                     478             }
413             if ( (pPhi >= fSPhi - halfAngToler << 479             if ( (pPhi >= fSPhi - kAngTolerance*0.5)
414               && (pPhi <= fSPhi + fDPhi + half << 480               && (pPhi <= fSPhi + fDPhi + kAngTolerance*0.5) )
415             {                                     481             {
416               in = kSurface ;                     482               in = kSurface ;
417             }                                     483             }
418           }                                       484           }
419           else  // fSPhi < 0                      485           else  // fSPhi < 0
420           {                                       486           {
421             if ( (pPhi <= fSPhi + twopi - half << 487             if ( (pPhi <= fSPhi + 2*M_PI - kAngTolerance*0.5)
422               && (pPhi >= fSPhi + fDPhi + half << 488               && (pPhi >= fSPhi + fDPhi  + kAngTolerance*0.5) )  ;
423             else                                  489             else
424             {                                     490             {
425               in = kSurface ;                     491               in = kSurface ;
426             }                                     492             }
427           }                                       493           }
428         }                                         494         }
429       }                                           495       }
430     }                                             496     }
431   }                                               497   }
432   else if (std::fabs(p.z()) <= fDz + halfCarTo << 498   else if (fabs(p.z()) <= fDz + kCarTolerance*0.5)
433   {                                          /    499   {                                          // Check within tolerant r limits
434     r2      = p.x()*p.x() + p.y()*p.y() ;         500     r2      = p.x()*p.x() + p.y()*p.y() ;
435     tolRMin = fRMin - halfRadTolerance ;       << 501     tolRMin = fRMin - kRadTolerance*0.5 ;
436     tolRMax = fRMax + halfRadTolerance ;       << 502     tolRMax = fRMax + kRadTolerance*0.5 ;
437                                                   503 
438     if ( tolRMin < 0 )  { tolRMin = 0; }       << 504     if ( tolRMin < 0 ) tolRMin = 0 ;
439                                                   505 
440     if ( (r2 >= tolRMin*tolRMin) && (r2 <= tol    506     if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) )
441     {                                             507     {
442       if (fPhiFullTube || (r2 <=halfRadToleran << 508       if (fDPhi == 2*M_PI || r2 == 0 ) // Continuous in phi or on z-axis
443       {                        // Continuous i << 509       {
444         in = kSurface ;                           510         in = kSurface ;
445       }                                           511       }
446       else // Try outer tolerant phi boundarie    512       else // Try outer tolerant phi boundaries
447       {                                           513       {
448         pPhi = std::atan2(p.y(),p.x()) ;       << 514         pPhi = atan2(p.y(),p.x()) ;
449                                                   515 
450         if ( pPhi < -halfAngTolerance )  { pPh << 516         if ( pPhi < -kAngTolerance*0.5 ) pPhi += 2*M_PI ;   // 0<=pPhi<2pi
451         if ( fSPhi >= 0 )                         517         if ( fSPhi >= 0 )
452         {                                         518         {
453           if ( (std::fabs(pPhi) < halfAngToler << 519           if ( (abs(pPhi) < kAngTolerance*0.5)
454             && (std::fabs(fSPhi + fDPhi - twop << 520             && (abs(fSPhi + fDPhi - 2*M_PI) < kAngTolerance*0.5) )
455           {                                    << 521           { 
456             pPhi += twopi ; // 0 <= pPhi < 2pi << 522             pPhi += 2*M_PI ; // 0 <= pPhi < 2pi
457           }                                       523           }
458           if ( (pPhi >= fSPhi - halfAngToleran << 524           if ( (pPhi >= fSPhi - kAngTolerance*0.5)
459             && (pPhi <= fSPhi + fDPhi + halfAn << 525             && (pPhi <= fSPhi + fDPhi + kAngTolerance*0.5) )
460           {                                       526           {
461             in = kSurface;                        527             in = kSurface;
462           }                                       528           }
463         }                                         529         }
464         else  // fSPhi < 0                        530         else  // fSPhi < 0
465         {                                         531         {
466           if ( (pPhi <= fSPhi + twopi - halfAn << 532           if ( (pPhi <= fSPhi + 2*M_PI - kAngTolerance*0.5)
467             && (pPhi >= fSPhi + fDPhi  + halfA << 533             && (pPhi >= fSPhi + fDPhi  + kAngTolerance*0.5) )  ;
468           else                                    534           else
469           {                                       535           {
470             in = kSurface ;                       536             in = kSurface ;
471           }                                       537           }
472         }                                      << 538         }      
473       }                                           539       }
474     }                                             540     }
475   }                                               541   }
476   return in;                                   << 542   return in ;
477 }                                                 543 }
478                                                   544 
479 //////////////////////////////////////////////    545 ///////////////////////////////////////////////////////////////////////////
480 //                                                546 //
481 // Return unit normal of surface closest to p     547 // Return unit normal of surface closest to p
482 // - note if point on z axis, ignore phi divid    548 // - note if point on z axis, ignore phi divided sides
483 // - unsafe if point close to z axis a rmin=0     549 // - unsafe if point close to z axis a rmin=0 - no explicit checks
484                                                   550 
485 G4ThreeVector G4Tubs::SurfaceNormal( const G4T    551 G4ThreeVector G4Tubs::SurfaceNormal( const G4ThreeVector& p ) const
486 {                                                 552 {
487   G4int noSurfaces = 0;                        << 
488   G4double rho, pPhi;                          << 
489   G4double distZ, distRMin, distRMax;          << 
490   G4double distSPhi = kInfinity, distEPhi = kI << 
491                                                << 
492   G4ThreeVector norm, sumnorm(0.,0.,0.);       << 
493   G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0); << 
494   G4ThreeVector nR, nPs, nPe;                  << 
495                                                << 
496   rho = std::sqrt(p.x()*p.x() + p.y()*p.y());  << 
497                                                << 
498   distRMin = std::fabs(rho - fRMin);           << 
499   distRMax = std::fabs(rho - fRMax);           << 
500   distZ    = std::fabs(std::fabs(p.z()) - fDz) << 
501                                                << 
502   if (!fPhiFullTube)    // Protected against ( << 
503   {                                            << 
504     if ( rho > halfCarTolerance )              << 
505     {                                          << 
506       pPhi = std::atan2(p.y(),p.x());          << 
507                                                << 
508       if (pPhi  < fSPhi-halfCarTolerance)      << 
509       else if (pPhi > fSPhi+fDPhi+halfCarToler << 
510                                                << 
511       distSPhi = std::fabs( pPhi - fSPhi );    << 
512       distEPhi = std::fabs( pPhi - fSPhi - fDP << 
513     }                                          << 
514     else if ( fRMin == 0.0 )                   << 
515     {                                          << 
516       distSPhi = 0.;                           << 
517       distEPhi = 0.;                           << 
518     }                                          << 
519     nPs = G4ThreeVector( sinSPhi, -cosSPhi, 0  << 
520     nPe = G4ThreeVector( -sinEPhi, cosEPhi, 0  << 
521   }                                            << 
522   if ( rho > halfCarTolerance ) { nR = G4Three << 
523                                                << 
524   if( distRMax <= halfCarTolerance )           << 
525   {                                            << 
526     ++noSurfaces;                              << 
527     sumnorm += nR;                             << 
528   }                                            << 
529   if( (fRMin != 0.0) && (distRMin <= halfCarTo << 
530   {                                            << 
531     ++noSurfaces;                              << 
532     sumnorm -= nR;                             << 
533   }                                            << 
534   if( fDPhi < twopi )                          << 
535   {                                            << 
536     if (distSPhi <= halfAngTolerance)          << 
537     {                                          << 
538       ++noSurfaces;                            << 
539       sumnorm += nPs;                          << 
540     }                                          << 
541     if (distEPhi <= halfAngTolerance)          << 
542     {                                          << 
543       ++noSurfaces;                            << 
544       sumnorm += nPe;                          << 
545     }                                          << 
546   }                                            << 
547   if (distZ <= halfCarTolerance)               << 
548   {                                            << 
549     ++noSurfaces;                              << 
550     if ( p.z() >= 0.)  { sumnorm += nZ; }      << 
551     else               { sumnorm -= nZ; }      << 
552   }                                            << 
553   if ( noSurfaces == 0 )                       << 
554   {                                            << 
555 #ifdef G4CSGDEBUG                              << 
556     G4Exception("G4Tubs::SurfaceNormal(p)", "G << 
557                 JustWarning, "Point p is not o << 
558     G4long oldprc = G4cout.precision(20);      << 
559     G4cout<< "G4Tubs::SN ( "<<p.x()<<", "<<p.y << 
560           << G4endl << G4endl;                 << 
561     G4cout.precision(oldprc) ;                 << 
562 #endif                                         << 
563      norm = ApproxSurfaceNormal(p);            << 
564   }                                            << 
565   else if ( noSurfaces == 1 )  { norm = sumnor << 
566   else                         { norm = sumnor << 
567                                                << 
568   return norm;                                 << 
569 }                                              << 
570                                                << 
571 ////////////////////////////////////////////// << 
572 //                                             << 
573 // Algorithm for SurfaceNormal() following the << 
574 // for points not on the surface               << 
575                                                << 
576 G4ThreeVector G4Tubs::ApproxSurfaceNormal( con << 
577 {                                              << 
578   ENorm side ;                                    553   ENorm side ;
579   G4ThreeVector norm ;                            554   G4ThreeVector norm ;
580   G4double rho, phi ;                             555   G4double rho, phi ;
581   G4double distZ, distRMin, distRMax, distSPhi    556   G4double distZ, distRMin, distRMax, distSPhi, distEPhi, distMin ;
582                                                   557 
583   rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; << 558   rho = sqrt(p.x()*p.x() + p.y()*p.y()) ;
584                                                   559 
585   distRMin = std::fabs(rho - fRMin) ;          << 560   distRMin = fabs(rho - fRMin) ;
586   distRMax = std::fabs(rho - fRMax) ;          << 561   distRMax = fabs(rho - fRMax) ;
587   distZ    = std::fabs(std::fabs(p.z()) - fDz) << 562   distZ    = fabs(fabs(p.z()) - fDz) ;
588                                                   563 
589   if (distRMin < distRMax) // First minimum       564   if (distRMin < distRMax) // First minimum
590   {                                               565   {
591     if ( distZ < distRMin )                       566     if ( distZ < distRMin )
592     {                                             567     {
593        distMin = distZ ;                          568        distMin = distZ ;
594        side    = kNZ ;                            569        side    = kNZ ;
595     }                                             570     }
596     else                                          571     else
597     {                                             572     {
598       distMin = distRMin ;                        573       distMin = distRMin ;
599       side    = kNRMin   ;                        574       side    = kNRMin   ;
600     }                                             575     }
601   }                                               576   }
602   else                                            577   else
603   {                                               578   {
604     if ( distZ < distRMax )                       579     if ( distZ < distRMax )
605     {                                             580     {
606       distMin = distZ ;                           581       distMin = distZ ;
607       side    = kNZ   ;                           582       side    = kNZ   ;
608     }                                             583     }
609     else                                          584     else
610     {                                             585     {
611       distMin = distRMax ;                        586       distMin = distRMax ;
612       side    = kNRMax   ;                        587       side    = kNRMax   ;
613     }                                             588     }
614   }                                            << 589   }   
615   if (!fPhiFullTube  &&  (rho != 0.0) ) // Pro << 590   if (fDPhi < 2.0*M_PI  &&  rho ) // Protected against (0,0,z) 
616   {                                               591   {
617     phi = std::atan2(p.y(),p.x()) ;            << 592     phi = atan2(p.y(),p.x()) ;
618                                                   593 
619     if ( phi < 0 )  { phi += twopi; }          << 594     if ( phi < 0 ) phi += 2*M_PI ;
620                                                   595 
621     if ( fSPhi < 0 )                              596     if ( fSPhi < 0 )
622     {                                             597     {
623       distSPhi = std::fabs(phi - (fSPhi + twop << 598       distSPhi = fabs(phi - (fSPhi + 2.0*M_PI))*rho ;
624     }                                             599     }
625     else                                          600     else
626     {                                             601     {
627       distSPhi = std::fabs(phi - fSPhi)*rho ;  << 602       distSPhi = fabs(phi - fSPhi)*rho ;
628     }                                             603     }
629     distEPhi = std::fabs(phi - fSPhi - fDPhi)* << 604     distEPhi = fabs(phi - fSPhi - fDPhi)*rho ;
630                                                << 605                                       
631     if (distSPhi < distEPhi) // Find new minim    606     if (distSPhi < distEPhi) // Find new minimum
632     {                                             607     {
633       if ( distSPhi < distMin )                   608       if ( distSPhi < distMin )
634       {                                           609       {
635         side = kNSPhi ;                           610         side = kNSPhi ;
636       }                                           611       }
637     }                                             612     }
638     else                                          613     else
639     {                                             614     {
640       if ( distEPhi < distMin )                   615       if ( distEPhi < distMin )
641       {                                           616       {
642         side = kNEPhi ;                           617         side = kNEPhi ;
643       }                                           618       }
644     }                                             619     }
645   }                                            << 620   }    
646   switch ( side )                                 621   switch ( side )
647   {                                               622   {
648     case kNRMin : // Inner radius                 623     case kNRMin : // Inner radius
649     {                                          << 624     {                      
650       norm = G4ThreeVector(-p.x()/rho, -p.y()/ << 625       norm = G4ThreeVector(-p.x()/rho,-p.y()/rho,0) ;
651       break ;                                     626       break ;
652     }                                             627     }
653     case kNRMax : // Outer radius                 628     case kNRMax : // Outer radius
654     {                                          << 629     {                  
655       norm = G4ThreeVector(p.x()/rho, p.y()/rh << 630       norm = G4ThreeVector(p.x()/rho,p.y()/rho,0) ;
656       break ;                                     631       break ;
657     }                                             632     }
658     case kNZ :    // + or - dz                 << 633     case kNZ : //    + or - dz
659     {                                          << 634     {                              
660       if ( p.z() > 0 )  { norm = G4ThreeVector << 635       if ( p.z() > 0 ) norm = G4ThreeVector(0,0,1)  ; 
661       else              { norm = G4ThreeVector << 636       else             norm = G4ThreeVector(0,0,-1) ; 
662       break ;                                     637       break ;
663     }                                             638     }
664     case kNSPhi:                                  639     case kNSPhi:
665     {                                             640     {
666       norm = G4ThreeVector(sinSPhi, -cosSPhi,  << 641       norm = G4ThreeVector(sin(fSPhi),-cos(fSPhi),0) ;
667       break ;                                     642       break ;
668     }                                             643     }
669     case kNEPhi:                                  644     case kNEPhi:
670     {                                             645     {
671       norm = G4ThreeVector(-sinEPhi, cosEPhi,  << 646       norm = G4ThreeVector(-sin(fSPhi+fDPhi),cos(fSPhi+fDPhi),0) ;
672       break;                                      647       break;
673     }                                             648     }
674     default:      // Should never reach this c << 649     default:
675     {                                             650     {
676       DumpInfo();                                 651       DumpInfo();
677       G4Exception("G4Tubs::ApproxSurfaceNormal << 652       G4Exception("G4Tubs::SurfaceNormal()", "Notification", JustWarning,
678                   "GeomSolids1002", JustWarnin << 
679                   "Undefined side for valid su    653                   "Undefined side for valid surface normal to solid.");
680       break ;                                     654       break ;
681     }                                          << 655     }    
682   }                                            << 656   }                
683   return norm;                                    657   return norm;
684 }                                                 658 }
685                                                   659 
686 //////////////////////////////////////////////    660 ////////////////////////////////////////////////////////////////////
687 //                                                661 //
688 //                                                662 //
689 // Calculate distance to shape from outside, a    663 // Calculate distance to shape from outside, along normalised vector
690 // - return kInfinity if no intersection, or i    664 // - return kInfinity if no intersection, or intersection distance <= tolerance
691 //                                                665 //
692 // - Compute the intersection with the z plane << 666 // - Compute the intersection with the z planes 
693 //        - if at valid r, phi, return            667 //        - if at valid r, phi, return
694 //                                                668 //
695 // -> If point is outer outer radius, compute     669 // -> If point is outer outer radius, compute intersection with rmax
696 //        - if at valid phi,z return              670 //        - if at valid phi,z return
697 //                                                671 //
698 // -> Compute intersection with inner radius,     672 // -> Compute intersection with inner radius, taking largest +ve root
699 //        - if valid (in z,phi), save intersct    673 //        - if valid (in z,phi), save intersction
700 //                                                674 //
701 //    -> If phi segmented, compute intersectio    675 //    -> If phi segmented, compute intersections with phi half planes
702 //        - return smallest of valid phi inter    676 //        - return smallest of valid phi intersections and
703 //          inner radius intersection             677 //          inner radius intersection
704 //                                                678 //
705 // NOTE:                                          679 // NOTE:
706 // - 'if valid' implies tolerant checking of i << 680 // - Precalculations for phi trigonometry are Done `just in time'
                                                   >> 681 // - `if valid' implies tolerant checking of intersection points
707                                                   682 
708 G4double G4Tubs::DistanceToIn( const G4ThreeVe    683 G4double G4Tubs::DistanceToIn( const G4ThreeVector& p,
709                                const G4ThreeVe    684                                const G4ThreeVector& v  ) const
710 {                                                 685 {
711   G4double snxt = kInfinity ;      // snxt = d << 686   G4double snxt = kInfinity ;  // snxt = default return value
712   G4double tolORMin2, tolIRMax2 ;  // 'generou << 687 
                                                   >> 688   // Precalculated trig for phi intersections - used by r,z intersections to
                                                   >> 689   //                                            check validity
                                                   >> 690 
                                                   >> 691   G4bool seg ;        // true if segmented
                                                   >> 692 
                                                   >> 693   G4double hDPhi, hDPhiOT, hDPhiIT, cosHDPhiOT=0., cosHDPhiIT=0. ;
                                                   >> 694           // half dphi + outer tolerance
                                                   >> 695 
                                                   >> 696   G4double cPhi, sinCPhi=0., cosCPhi=0. ;  // central phi
                                                   >> 697 
                                                   >> 698   G4double tolORMin2, tolIRMax2 ;  // `generous' radii squared
                                                   >> 699 
713   G4double tolORMax2, tolIRMin2, tolODz, tolID    700   G4double tolORMax2, tolIRMin2, tolODz, tolIDz ;
714   const G4double dRmax = 100.*fRMax;           << 
715                                                   701 
716   // Intersection point variables                 702   // Intersection point variables
717   //                                              703   //
718   G4double Dist, sd, xi, yi, zi, rho2, inum, i << 704   G4double Dist, s, xi, yi, zi, rho2, inum, iden, cosPsi ; 
719   G4double t1, t2, t3, b, c, d ;     // Quadra << 705 
                                                   >> 706   G4double t1, t2, t3, b, c, d ;   // Quadratic solver variables 
                                                   >> 707 
                                                   >> 708   G4double Comp ;
                                                   >> 709   G4double cosSPhi, sinSPhi ;    // Trig for phi start intersect
                                                   >> 710 
                                                   >> 711   G4double ePhi, cosEPhi, sinEPhi ;  // for phi end intersect
                                                   >> 712 
                                                   >> 713   // Set phi divided flag and precalcs
                                                   >> 714 
                                                   >> 715   if ( fDPhi < 2.0*M_PI )
                                                   >> 716   {
                                                   >> 717     seg        = true ;
                                                   >> 718     hDPhi      = 0.5*fDPhi ;    // half delta phi
                                                   >> 719     cPhi       = fSPhi + hDPhi ; 
                                                   >> 720     hDPhiOT    = hDPhi + 0.5*kAngTolerance ;  // outers tol' half delta phi 
                                                   >> 721     hDPhiIT    = hDPhi - 0.5*kAngTolerance ;
                                                   >> 722     sinCPhi    = sin(cPhi) ;
                                                   >> 723     cosCPhi    = cos(cPhi) ;
                                                   >> 724     cosHDPhiOT = cos(hDPhiOT) ;
                                                   >> 725     cosHDPhiIT = cos(hDPhiIT) ;
                                                   >> 726   }
                                                   >> 727   else
                                                   >> 728   {
                                                   >> 729     seg = false  ;
                                                   >> 730   }
720                                                   731 
721   // Calculate tolerant rmin and rmax             732   // Calculate tolerant rmin and rmax
722                                                   733 
723   if (fRMin > kRadTolerance)                      734   if (fRMin > kRadTolerance)
724   {                                               735   {
725     tolORMin2 = (fRMin - halfRadTolerance)*(fR << 736     tolORMin2 = (fRMin - 0.5*kRadTolerance)*(fRMin - 0.5*kRadTolerance) ;
726     tolIRMin2 = (fRMin + halfRadTolerance)*(fR << 737     tolIRMin2 = (fRMin + 0.5*kRadTolerance)*(fRMin + 0.5*kRadTolerance) ;
727   }                                               738   }
728   else                                            739   else
729   {                                               740   {
730     tolORMin2 = 0.0 ;                             741     tolORMin2 = 0.0 ;
731     tolIRMin2 = 0.0 ;                             742     tolIRMin2 = 0.0 ;
732   }                                               743   }
733   tolORMax2 = (fRMax + halfRadTolerance)*(fRMa << 744   tolORMax2 = (fRMax + 0.5*kRadTolerance)*(fRMax + 0.5*kRadTolerance) ;
734   tolIRMax2 = (fRMax - halfRadTolerance)*(fRMa << 745   tolIRMax2 = (fRMax - 0.5*kRadTolerance)*(fRMax - 0.5*kRadTolerance) ;
735                                                   746 
736   // Intersection with Z surfaces                 747   // Intersection with Z surfaces
737                                                   748 
738   tolIDz = fDz - halfCarTolerance ;            << 749   tolIDz = fDz - kCarTolerance*0.5 ;
739   tolODz = fDz + halfCarTolerance ;            << 750   tolODz = fDz + kCarTolerance*0.5 ;
740                                                   751 
741   if (std::fabs(p.z()) >= tolIDz)              << 752   if (fabs(p.z()) >= tolIDz)
742   {                                               753   {
743     if ( p.z()*v.z() < 0 )    // at +Z going i    754     if ( p.z()*v.z() < 0 )    // at +Z going in -Z or visa versa
744     {                                             755     {
745       sd = (std::fabs(p.z()) - fDz)/std::fabs( << 756       s = (fabs(p.z()) - fDz)/fabs(v.z()) ;     // Z intersect distance
746                                                   757 
747       if(sd < 0.0)  { sd = 0.0; }              << 758       if(s < 0.0) s = 0.0 ;
748                                                   759 
749       xi   = p.x() + sd*v.x() ;                << 760       xi   = p.x() + s*v.x() ;                // Intersection coords
750       yi   = p.y() + sd*v.y() ;                << 761       yi   = p.y() + s*v.y() ;
751       rho2 = xi*xi + yi*yi ;                      762       rho2 = xi*xi + yi*yi ;
752                                                   763 
753       // Check validity of intersection           764       // Check validity of intersection
754                                                   765 
755       if ((tolIRMin2 <= rho2) && (rho2 <= tolI << 766       if (tolIRMin2 <= rho2 && rho2 <= tolIRMax2)
756       {                                           767       {
757         if (!fPhiFullTube && (rho2 != 0.0))    << 768         if (seg && rho2)
758         {                                         769         {
759           // Psi = angle made with central (av    770           // Psi = angle made with central (average) phi of shape
760           //                                      771           //
761           inum   = xi*cosCPhi + yi*sinCPhi ;      772           inum   = xi*cosCPhi + yi*sinCPhi ;
762           iden   = std::sqrt(rho2) ;           << 773           iden   = sqrt(rho2) ;
763           cosPsi = inum/iden ;                    774           cosPsi = inum/iden ;
764           if (cosPsi >= cosHDPhiIT)  { return  << 775           if (cosPsi >= cosHDPhiIT) return s ;
765         }                                      << 
766         else                                   << 
767         {                                      << 
768           return sd ;                          << 
769         }                                         776         }
                                                   >> 777         else return s ;
770       }                                           778       }
771     }                                             779     }
772     else                                          780     else
773     {                                             781     {
774       if ( snxt<halfCarTolerance )  { snxt=0;  << 782       if ( snxt<kCarTolerance*0.5 ) snxt=0 ;
775       return snxt ;  // On/outside extent, and    783       return snxt ;  // On/outside extent, and heading away
776                      // -> cannot intersect       784                      // -> cannot intersect
777     }                                             785     }
778   }                                               786   }
779                                                   787 
780   // -> Can not intersect z surfaces              788   // -> Can not intersect z surfaces
781   //                                              789   //
782   // Intersection with rmax (possible return)     790   // Intersection with rmax (possible return) and rmin (must also check phi)
783   //                                              791   //
784   // Intersection point (xi,yi,zi) on line x=p    792   // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc.
785   //                                              793   //
786   // Intersects with x^2+y^2=R^2                  794   // Intersects with x^2+y^2=R^2
787   //                                              795   //
788   // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.    796   // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0
789   //            t1                t2              797   //            t1                t2                t3
790                                                   798 
791   t1 = 1.0 - v.z()*v.z() ;                        799   t1 = 1.0 - v.z()*v.z() ;
792   t2 = p.x()*v.x() + p.y()*v.y() ;                800   t2 = p.x()*v.x() + p.y()*v.y() ;
793   t3 = p.x()*p.x() + p.y()*p.y() ;                801   t3 = p.x()*p.x() + p.y()*p.y() ;
794                                                   802 
795   if ( t1 > 0 )        // Check not || to z ax    803   if ( t1 > 0 )        // Check not || to z axis
796   {                                               804   {
797     b = t2/t1 ;                                   805     b = t2/t1 ;
798     c = t3 - fRMax*fRMax ;                        806     c = t3 - fRMax*fRMax ;
799     if ((t3 >= tolORMax2) && (t2<0))   // This << 807     if (t3 >= tolORMax2 && t2<0)   // This also handles the tangent case
800     {                                             808     {
801       // Try outer cylinder intersection          809       // Try outer cylinder intersection
802       //          c=(t3-fRMax*fRMax)/t1;          810       //          c=(t3-fRMax*fRMax)/t1;
803                                                   811 
804       c /= t1 ;                                   812       c /= t1 ;
805       d = b*b - c ;                               813       d = b*b - c ;
806                                                   814 
807       if (d >= 0)  // If real root                815       if (d >= 0)  // If real root
808       {                                           816       {
809         sd = c/(-b+std::sqrt(d));              << 817         s = -b - sqrt(d) ;
810         if (sd >= 0)  // If 'forwards'         << 818         if (s >= 0)  // If 'forwards'
811         {                                         819         {
812           if ( sd>dRmax ) // Avoid rounding er << 
813           {               // 64 bits systems.  << 
814             G4double fTerm = sd-std::fmod(sd,d << 
815             sd = fTerm + DistanceToIn(p+fTerm* << 
816           }                                    << 
817           // Check z intersection                 820           // Check z intersection
818           //                                      821           //
819           zi = p.z() + sd*v.z() ;              << 822           zi = p.z() + s*v.z() ;
820           if (std::fabs(zi)<=tolODz)           << 823           if (fabs(zi)<=tolODz)
821           {                                       824           {
822             // Z ok. Check phi intersection if    825             // Z ok. Check phi intersection if reqd
823             //                                    826             //
824             if (fPhiFullTube)                  << 827             if (!seg)
825             {                                     828             {
826               return sd ;                      << 829               return s ;
827             }                                     830             }
828             else                                  831             else
829             {                                     832             {
830               xi     = p.x() + sd*v.x() ;      << 833               xi     = p.x() + s*v.x() ;
831               yi     = p.y() + sd*v.y() ;      << 834               yi     = p.y() + s*v.y() ;
832               cosPsi = (xi*cosCPhi + yi*sinCPh    835               cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMax ;
833               if (cosPsi >= cosHDPhiIT)  { ret << 836               if (cosPsi >= cosHDPhiIT) return s ;
834             }                                     837             }
835           }  //  end if std::fabs(zi)          << 838           }  //  end if fabs(zi)
836         }    //  end if (sd>=0)                << 839         }    //  end if (s>=0)
837       }      //  end if (d>=0)                    840       }      //  end if (d>=0)
838     }        //  end if (r>=fRMax)                841     }        //  end if (r>=fRMax)
839     else                                       << 842     else 
840     {                                             843     {
841       // Inside outer radius :                    844       // Inside outer radius :
842       // check not inside, and heading through    845       // check not inside, and heading through tubs (-> 0 to in)
843                                                   846 
844       if ((t3 > tolIRMin2) && (t2 < 0) && (std << 847       if (t3 > tolIRMin2 && t2 < 0 && fabs(p.z()) <= tolIDz)
845       {                                           848       {
846         // Inside both radii, delta r -ve, ins    849         // Inside both radii, delta r -ve, inside z extent
847                                                   850 
848         if (!fPhiFullTube)                     << 851         if (seg)
849         {                                         852         {
850           inum   = p.x()*cosCPhi + p.y()*sinCP    853           inum   = p.x()*cosCPhi + p.y()*sinCPhi ;
851           iden   = std::sqrt(t3) ;             << 854           iden   = sqrt(t3) ;
852           cosPsi = inum/iden ;                    855           cosPsi = inum/iden ;
853           if (cosPsi >= cosHDPhiIT)            << 856           if (cosPsi >= cosHDPhiIT) return 0.0 ;
854           {                                    << 
855             // In the old version, the small n << 
856             // on surface was not taken in acc << 
857             // New version: check the tangent  << 
858             // if no intersection, return kInf << 
859             // return sd.                      << 
860             //                                 << 
861             c = t3-fRMax*fRMax;                << 
862             if ( c<=0.0 )                      << 
863             {                                  << 
864               return 0.0;                      << 
865             }                                  << 
866             else                               << 
867             {                                  << 
868               c = c/t1 ;                       << 
869               d = b*b-c;                       << 
870               if ( d>=0.0 )                    << 
871               {                                << 
872                 snxt = c/(-b+std::sqrt(d)); // << 
873                                             // << 
874                 if ( snxt < halfCarTolerance ) << 
875                 return snxt ;                  << 
876               }                                << 
877               else                             << 
878               {                                << 
879                 return kInfinity;              << 
880               }                                << 
881             }                                  << 
882           }                                    << 
883         }                                         857         }
884         else                                      858         else
885         {                                         859         {
886           // In the old version, the small neg << 860           return 0.0 ;
887           // on surface was not taken in accou << 861         }
888           // New version: check the tangent fo << 862       }
889           // if no intersection, return kInfin << 863     }      
890           // return sd.                        << 864     if ( fRMin )    // Try inner cylinder intersection
891           //                                   << 
892           c = t3 - fRMax*fRMax;                << 
893           if ( c<=0.0 )                        << 
894           {                                    << 
895             return 0.0;                        << 
896           }                                    << 
897           else                                 << 
898           {                                    << 
899             c = c/t1 ;                         << 
900             d = b*b-c;                         << 
901             if ( d>=0.0 )                      << 
902             {                                  << 
903               snxt= c/(-b+std::sqrt(d)); // us << 
904                                          // fo << 
905               if ( snxt < halfCarTolerance ) { << 
906               return snxt ;                    << 
907             }                                  << 
908             else                               << 
909             {                                  << 
910               return kInfinity;                << 
911             }                                  << 
912           }                                    << 
913         } // end if   (!fPhiFullTube)          << 
914       }   // end if   (t3>tolIRMin2)           << 
915     }     // end if   (Inside Outer Radius)    << 
916     if ( fRMin != 0.0 )    // Try inner cylind << 
917     {                                             865     {
918       c = (t3 - fRMin*fRMin)/t1 ;                 866       c = (t3 - fRMin*fRMin)/t1 ;
919       d = b*b - c ;                               867       d = b*b - c ;
920       if ( d >= 0.0 )  // If real root            868       if ( d >= 0.0 )  // If real root
921       {                                           869       {
922         // Always want 2nd root - we are outsi    870         // Always want 2nd root - we are outside and know rmax Hit was bad
923         // - If on surface of rmin also need f    871         // - If on surface of rmin also need farthest root
924                                                   872 
925         sd =( b > 0. )? c/(-b - std::sqrt(d))  << 873         s = -b + sqrt(d) ;
926         if (sd >= -halfCarTolerance)  // check << 874         if (s >= -0.5*kCarTolerance)  // check forwards
927         {                                         875         {
928           // Check z intersection                 876           // Check z intersection
929           //                                      877           //
930           if(sd < 0.0)  { sd = 0.0; }          << 878           if(s < 0.0) s = 0.0 ;
931           if ( sd>dRmax ) // Avoid rounding er << 879           zi = p.z() + s*v.z() ;
932           {               // 64 bits systems.  << 880           if (fabs(zi) <= tolODz)
933             G4double fTerm = sd-std::fmod(sd,d << 
934             sd = fTerm + DistanceToIn(p+fTerm* << 
935           }                                    << 
936           zi = p.z() + sd*v.z() ;              << 
937           if (std::fabs(zi) <= tolODz)         << 
938           {                                       881           {
939             // Z ok. Check phi                    882             // Z ok. Check phi
940             //                                    883             //
941             if ( fPhiFullTube )                << 884             if ( !seg )
942             {                                     885             {
943               return sd ;                      << 886               return s ; 
944             }                                     887             }
945             else                                  888             else
946             {                                     889             {
947               xi     = p.x() + sd*v.x() ;      << 890               xi     = p.x() + s*v.x() ;
948               yi     = p.y() + sd*v.y() ;      << 891               yi     = p.y() + s*v.y() ;
949               cosPsi = (xi*cosCPhi + yi*sinCPh << 892               cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMin ;
950               if (cosPsi >= cosHDPhiIT)           893               if (cosPsi >= cosHDPhiIT)
951               {                                   894               {
952                 // Good inner radius isect        895                 // Good inner radius isect
953                 // - but earlier phi isect sti    896                 // - but earlier phi isect still possible
954                                                   897 
955                 snxt = sd ;                    << 898                 snxt = s ;
956               }                                   899               }
957             }                                     900             }
958           }        //    end if std::fabs(zi)  << 901           }        //    end if fabs(zi)
959         }          //    end if (sd>=0)        << 902         }          //    end if (s>=0)
960       }            //    end if (d>=0)            903       }            //    end if (d>=0)
961     }              //    end if (fRMin)           904     }              //    end if (fRMin)
962   }                                               905   }
963                                                   906 
964   // Phi segment intersection                     907   // Phi segment intersection
965   //                                              908   //
966   // o Tolerant of points inside phi planes by    909   // o Tolerant of points inside phi planes by up to kCarTolerance*0.5
967   //                                              910   //
968   // o NOTE: Large duplication of code between    911   // o NOTE: Large duplication of code between sphi & ephi checks
969   //         -> only diffs: sphi -> ephi, Comp    912   //         -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane
970   //            intersection check <=0 -> >=0     913   //            intersection check <=0 -> >=0
971   //         -> use some form of loop Construc    914   //         -> use some form of loop Construct ?
972   //                                              915   //
973   if ( !fPhiFullTube )                         << 916   if ( seg )
974   {                                               917   {
975     // First phi surface (Starting phi)        << 918     // First phi surface (`S'tarting phi)
976     //                                         << 
977     Comp    = v.x()*sinSPhi - v.y()*cosSPhi ;  << 
978                                                   919 
                                                   >> 920     sinSPhi = sin(fSPhi) ;
                                                   >> 921     cosSPhi = cos(fSPhi) ;
                                                   >> 922     Comp    = v.x()*sinSPhi - v.y()*cosSPhi ;
                                                   >> 923                     
979     if ( Comp < 0 )  // Component in outwards     924     if ( Comp < 0 )  // Component in outwards normal dirn
980     {                                             925     {
981       Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ;    926       Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ;
982                                                   927 
983       if ( Dist < halfCarTolerance )           << 928       if ( Dist < kCarTolerance*0.5 )
984       {                                           929       {
985         sd = Dist/Comp ;                       << 930         s = Dist/Comp ;
986                                                   931 
987         if (sd < snxt)                         << 932         if (s < snxt)
988         {                                         933         {
989           if ( sd < 0 )  { sd = 0.0; }         << 934           if ( s < 0 ) s = 0.0 ;
990           zi = p.z() + sd*v.z() ;              << 935           zi = p.z() + s*v.z() ;
991           if ( std::fabs(zi) <= tolODz )       << 936           if ( fabs(zi) <= tolODz )
992           {                                       937           {
993             xi   = p.x() + sd*v.x() ;          << 938             xi   = p.x() + s*v.x() ;
994             yi   = p.y() + sd*v.y() ;          << 939             yi   = p.y() + s*v.y() ;
995             rho2 = xi*xi + yi*yi ;                940             rho2 = xi*xi + yi*yi ;
996                                                   941 
997             if ( ( (rho2 >= tolIRMin2) && (rho    942             if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) )
998               || ( (rho2 >  tolORMin2) && (rho    943               || ( (rho2 >  tolORMin2) && (rho2 <  tolIRMin2)
999                 && ( v.y()*cosSPhi - v.x()*sin    944                 && ( v.y()*cosSPhi - v.x()*sinSPhi >  0 )
1000                 && ( v.x()*cosSPhi + v.y()*si    945                 && ( v.x()*cosSPhi + v.y()*sinSPhi >= 0 )     )
1001               || ( (rho2 > tolIRMax2) && (rho    946               || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2)
1002                 && (v.y()*cosSPhi - v.x()*sin    947                 && (v.y()*cosSPhi - v.x()*sinSPhi > 0)
1003                 && (v.x()*cosSPhi + v.y()*sin    948                 && (v.x()*cosSPhi + v.y()*sinSPhi < 0) )    )
1004             {                                    949             {
1005               // z and r intersections good      950               // z and r intersections good
1006               // - check intersecting with co    951               // - check intersecting with correct half-plane
1007               //                                 952               //
1008               if ((yi*cosCPhi-xi*sinCPhi) <=  << 953               if ((yi*cosCPhi-xi*sinCPhi) <= 0) snxt = s ;
1009             }                                 << 954             }    
1010           }                                      955           }
1011         }                                        956         }
1012       }                                       << 957       }    
1013     }                                            958     }
                                                   >> 959       
                                                   >> 960     // Second phi surface (`E'nding phi)
1014                                                  961 
1015     // Second phi surface (Ending phi)        << 962     ePhi    = fSPhi + fDPhi ;
1016                                               << 963     sinEPhi = sin(ePhi) ;
                                                   >> 964     cosEPhi = cos(ePhi) ;
1017     Comp    = -(v.x()*sinEPhi - v.y()*cosEPhi    965     Comp    = -(v.x()*sinEPhi - v.y()*cosEPhi) ;
1018                                               << 966         
1019     if (Comp < 0 )  // Component in outwards     967     if (Comp < 0 )  // Component in outwards normal dirn
1020     {                                            968     {
1021       Dist = -(p.y()*cosEPhi - p.x()*sinEPhi)    969       Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ;
1022                                                  970 
1023       if ( Dist < halfCarTolerance )          << 971       if ( Dist < kCarTolerance*0.5 )
1024       {                                          972       {
1025         sd = Dist/Comp ;                      << 973         s = Dist/Comp ;
1026                                                  974 
1027         if (sd < snxt)                        << 975         if (s < snxt)
1028         {                                        976         {
1029           if ( sd < 0 )  { sd = 0; }          << 977           if ( s < 0 ) s = 0 ;
1030           zi = p.z() + sd*v.z() ;             << 978           zi = p.z() + s*v.z() ;
1031           if ( std::fabs(zi) <= tolODz )      << 979           if ( fabs(zi) <= tolODz )
1032           {                                      980           {
1033             xi   = p.x() + sd*v.x() ;         << 981             xi   = p.x() + s*v.x() ;
1034             yi   = p.y() + sd*v.y() ;         << 982             yi   = p.y() + s*v.y() ;
1035             rho2 = xi*xi + yi*yi ;               983             rho2 = xi*xi + yi*yi ;
1036             if ( ( (rho2 >= tolIRMin2) && (rh    984             if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) )
1037                 || ( (rho2 > tolORMin2)  && (    985                 || ( (rho2 > tolORMin2)  && (rho2 < tolIRMin2)
1038                   && (v.x()*sinEPhi - v.y()*c    986                   && (v.x()*sinEPhi - v.y()*cosEPhi >  0)
1039                   && (v.x()*cosEPhi + v.y()*s    987                   && (v.x()*cosEPhi + v.y()*sinEPhi >= 0) )
1040                 || ( (rho2 > tolIRMax2) && (r    988                 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2)
1041                   && (v.x()*sinEPhi - v.y()*c    989                   && (v.x()*sinEPhi - v.y()*cosEPhi > 0)
1042                   && (v.x()*cosEPhi + v.y()*s    990                   && (v.x()*cosEPhi + v.y()*sinEPhi < 0) ) )
1043             {                                    991             {
1044               // z and r intersections good      992               // z and r intersections good
1045               // - check intersecting with co    993               // - check intersecting with correct half-plane
1046               //                                 994               //
1047               if ( (yi*cosCPhi-xi*sinCPhi) >= << 995               if ( (yi*cosCPhi-xi*sinCPhi) >= 0 ) snxt = s ;
1048             }                         //?? >= << 996             }    
1049           }                                      997           }
1050         }                                        998         }
1051       }                                          999       }
1052     }         //  Comp < 0                       1000     }         //  Comp < 0
1053   }           //  !fPhiFullTube               << 1001   }           //  seg != 0
1054   if ( snxt<halfCarTolerance )  { snxt=0; }   << 1002   if ( snxt<kCarTolerance*0.5 ) snxt=0 ;
1055   return snxt ;                                  1003   return snxt ;
1056 }                                                1004 }
1057                                               << 1005  
1058 /////////////////////////////////////////////    1006 //////////////////////////////////////////////////////////////////
1059 //                                               1007 //
1060 // Calculate distance to shape from outside,     1008 // Calculate distance to shape from outside, along normalised vector
1061 // - return kInfinity if no intersection, or     1009 // - return kInfinity if no intersection, or intersection distance <= tolerance
1062 //                                               1010 //
1063 // - Compute the intersection with the z plan << 1011 // - Compute the intersection with the z planes 
1064 //        - if at valid r, phi, return           1012 //        - if at valid r, phi, return
1065 //                                               1013 //
1066 // -> If point is outer outer radius, compute    1014 // -> If point is outer outer radius, compute intersection with rmax
1067 //        - if at valid phi,z return             1015 //        - if at valid phi,z return
1068 //                                               1016 //
1069 // -> Compute intersection with inner radius,    1017 // -> Compute intersection with inner radius, taking largest +ve root
1070 //        - if valid (in z,phi), save intersc    1018 //        - if valid (in z,phi), save intersction
1071 //                                               1019 //
1072 //    -> If phi segmented, compute intersecti    1020 //    -> If phi segmented, compute intersections with phi half planes
1073 //        - return smallest of valid phi inte    1021 //        - return smallest of valid phi intersections and
1074 //          inner radius intersection            1022 //          inner radius intersection
1075 //                                               1023 //
1076 // NOTE:                                         1024 // NOTE:
1077 // - Precalculations for phi trigonometry are    1025 // - Precalculations for phi trigonometry are Done `just in time'
1078 // - `if valid' implies tolerant checking of     1026 // - `if valid' implies tolerant checking of intersection points
1079 //   Calculate distance (<= actual) to closes    1027 //   Calculate distance (<= actual) to closest surface of shape from outside
1080 // - Calculate distance to z, radial planes      1028 // - Calculate distance to z, radial planes
1081 // - Only to phi planes if outside phi extent    1029 // - Only to phi planes if outside phi extent
1082 // - Return 0 if point inside                    1030 // - Return 0 if point inside
1083                                                  1031 
1084 G4double G4Tubs::DistanceToIn( const G4ThreeV    1032 G4double G4Tubs::DistanceToIn( const G4ThreeVector& p ) const
1085 {                                                1033 {
1086   G4double safe=0.0, rho, safe1, safe2, safe3    1034   G4double safe=0.0, rho, safe1, safe2, safe3 ;
1087   G4double safePhi, cosPsi ;                  << 1035   G4double phiC, cosPhiC, sinPhiC, safePhi, ePhi, cosPsi ;
1088                                                  1036 
1089   rho   = std::sqrt(p.x()*p.x() + p.y()*p.y() << 1037   rho   = sqrt(p.x()*p.x() + p.y()*p.y()) ;
1090   safe1 = fRMin - rho ;                          1038   safe1 = fRMin - rho ;
1091   safe2 = rho - fRMax ;                          1039   safe2 = rho - fRMax ;
1092   safe3 = std::fabs(p.z()) - fDz ;            << 1040   safe3 = fabs(p.z()) - fDz ;
1093                                                  1041 
1094   if ( safe1 > safe2 ) { safe = safe1; }      << 1042   if ( safe1 > safe2 ) safe = safe1 ;
1095   else                 { safe = safe2; }      << 1043   else                 safe = safe2 ;
1096   if ( safe3 > safe )  { safe = safe3; }      << 1044   if ( safe3 > safe )  safe = safe3 ;
1097                                                  1045 
1098   if ( (!fPhiFullTube) && ((rho) != 0.0) )    << 1046   if (fDPhi < 2.0*M_PI && rho)
1099   {                                              1047   {
                                                   >> 1048     phiC    = fSPhi + fDPhi*0.5 ;
                                                   >> 1049     cosPhiC = cos(phiC) ;
                                                   >> 1050     sinPhiC = sin(phiC) ;
                                                   >> 1051 
1100     // Psi=angle from central phi to point       1052     // Psi=angle from central phi to point
1101     //                                           1053     //
1102     cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/ << 1054     cosPsi = (p.x()*cosPhiC + p.y()*sinPhiC)/rho ;
1103                                                  1055 
1104     if ( cosPsi < cosHDPhi )                  << 1056     if ( cosPsi < cos(fDPhi*0.5) )
1105     {                                            1057     {
1106       // Point lies outside phi range            1058       // Point lies outside phi range
1107                                                  1059 
1108       if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= << 1060       if ( (p.y()*cosPhiC - p.x()*sinPhiC) <= 0 )
1109       {                                          1061       {
1110         safePhi = std::fabs(p.x()*sinSPhi - p << 1062         safePhi = fabs(p.x()*sin(fSPhi) - p.y()*cos(fSPhi)) ;
1111       }                                          1063       }
1112       else                                       1064       else
1113       {                                          1065       {
1114         safePhi = std::fabs(p.x()*sinEPhi - p << 1066         ePhi    = fSPhi + fDPhi ;
                                                   >> 1067         safePhi = fabs(p.x()*sin(ePhi) - p.y()*cos(ePhi)) ;
1115       }                                          1068       }
1116       if ( safePhi > safe )  { safe = safePhi << 1069       if ( safePhi > safe ) safe = safePhi ;
1117     }                                            1070     }
1118   }                                              1071   }
1119   if ( safe < 0 )  { safe = 0; }              << 1072   if ( safe < 0 ) safe = 0 ;
1120   return safe ;                                  1073   return safe ;
1121 }                                                1074 }
1122                                                  1075 
1123 /////////////////////////////////////////////    1076 //////////////////////////////////////////////////////////////////////////////
1124 //                                               1077 //
1125 // Calculate distance to surface of shape fro    1078 // Calculate distance to surface of shape from `inside', allowing for tolerance
1126 // - Only Calc rmax intersection if no valid     1079 // - Only Calc rmax intersection if no valid rmin intersection
1127                                                  1080 
1128 G4double G4Tubs::DistanceToOut( const G4Three    1081 G4double G4Tubs::DistanceToOut( const G4ThreeVector& p,
1129                                 const G4Three    1082                                 const G4ThreeVector& v,
1130                                 const G4bool     1083                                 const G4bool calcNorm,
1131                                       G4bool* << 1084                                       G4bool *validNorm,
1132                                       G4Three << 1085                                       G4ThreeVector *n    ) const
1133 {                                                1086 {
1134   ESide side=kNull , sider=kNull, sidephi=kNu << 1087   ESide side = kNull , sider = kNull, sidephi = kNull ;
1135   G4double snxt, srd=kInfinity, sphi=kInfinit << 1088   G4double snxt, sr = kInfinity, sphi = kInfinity, pdist ;
1136   G4double deltaR, t1, t2, t3, b, c, d2, roMi    1089   G4double deltaR, t1, t2, t3, b, c, d2, roMin2 ;
1137                                                  1090 
1138   // Vars for phi intersection:                  1091   // Vars for phi intersection:
1139                                                  1092 
                                                   >> 1093   G4double sinSPhi, cosSPhi, ePhi, sinEPhi, cosEPhi ;
                                                   >> 1094   G4double cPhi, sinCPhi, cosCPhi ;
1140   G4double pDistS, compS, pDistE, compE, sphi    1095   G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, vphi, roi2 ;
1141                                                  1096 
1142   // Z plane intersection                        1097   // Z plane intersection
1143                                                  1098 
1144   if (v.z() > 0 )                                1099   if (v.z() > 0 )
1145   {                                              1100   {
1146     pdist = fDz - p.z() ;                        1101     pdist = fDz - p.z() ;
1147     if ( pdist > halfCarTolerance )           << 1102     if ( pdist > kCarTolerance*0.5 )
1148     {                                            1103     {
1149       snxt = pdist/v.z() ;                       1104       snxt = pdist/v.z() ;
1150       side = kPZ ;                               1105       side = kPZ ;
1151     }                                            1106     }
1152     else                                         1107     else
1153     {                                            1108     {
1154       if (calcNorm)                              1109       if (calcNorm)
1155       {                                          1110       {
1156         *n         = G4ThreeVector(0,0,1) ;      1111         *n         = G4ThreeVector(0,0,1) ;
1157         *validNorm = true ;                      1112         *validNorm = true ;
1158       }                                          1113       }
1159       return snxt = 0 ;                          1114       return snxt = 0 ;
1160     }                                            1115     }
1161   }                                              1116   }
1162   else if ( v.z() < 0 )                          1117   else if ( v.z() < 0 )
1163   {                                              1118   {
1164     pdist = fDz + p.z() ;                        1119     pdist = fDz + p.z() ;
1165                                                  1120 
1166     if ( pdist > halfCarTolerance )           << 1121     if ( pdist > kCarTolerance*0.5 )
1167     {                                            1122     {
1168       snxt = -pdist/v.z() ;                      1123       snxt = -pdist/v.z() ;
1169       side = kMZ ;                               1124       side = kMZ ;
1170     }                                            1125     }
1171     else                                         1126     else
1172     {                                            1127     {
1173       if (calcNorm)                              1128       if (calcNorm)
1174       {                                          1129       {
1175         *n         = G4ThreeVector(0,0,-1) ;     1130         *n         = G4ThreeVector(0,0,-1) ;
1176         *validNorm = true ;                      1131         *validNorm = true ;
1177       }                                          1132       }
1178       return snxt = 0.0 ;                        1133       return snxt = 0.0 ;
1179     }                                            1134     }
1180   }                                              1135   }
1181   else                                           1136   else
1182   {                                              1137   {
1183     snxt = kInfinity ;    // Travel perpendic    1138     snxt = kInfinity ;    // Travel perpendicular to z axis
1184     side = kNull;                                1139     side = kNull;
1185   }                                              1140   }
1186                                                  1141 
1187   // Radial Intersections                        1142   // Radial Intersections
1188   //                                             1143   //
1189   // Find intersection with cylinders at rmax << 1144   // Find intersction with cylinders at rmax/rmin
1190   // Intersection point (xi,yi,zi) on line x=    1145   // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc.
1191   //                                             1146   //
1192   // Intersects with x^2+y^2=R^2                 1147   // Intersects with x^2+y^2=R^2
1193   //                                             1148   //
1194   // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v    1149   // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0
1195   //                                             1150   //
1196   //            t1                t2             1151   //            t1                t2                    t3
1197                                                  1152 
1198   t1   = 1.0 - v.z()*v.z() ;      // since v     1153   t1   = 1.0 - v.z()*v.z() ;      // since v normalised
1199   t2   = p.x()*v.x() + p.y()*v.y() ;             1154   t2   = p.x()*v.x() + p.y()*v.y() ;
1200   t3   = p.x()*p.x() + p.y()*p.y() ;             1155   t3   = p.x()*p.x() + p.y()*p.y() ;
1201                                                  1156 
1202   if ( snxt > 10*(fDz+fRMax) )  { roi2 = 2*fR << 1157   if ( snxt > 10*(fDz+fRMax) )  roi2 = 2*fRMax*fRMax;
1203   else  { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t << 1158   else  roi2 = snxt*snxt*t1 + 2*snxt*t2 + t3 ; // radius^2 on +-fDz
1204                                                  1159 
1205   if ( t1 > 0 ) // Check not parallel            1160   if ( t1 > 0 ) // Check not parallel
1206   {                                              1161   {
1207     // Calculate srd, r exit distance         << 1162     // Calculate sr, r exit distance
1208                                               << 1163      
1209     if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax     1164     if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax + kRadTolerance)) )
1210     {                                            1165     {
1211       // Delta r not negative => leaving via     1166       // Delta r not negative => leaving via rmax
1212                                                  1167 
1213       deltaR = t3 - fRMax*fRMax ;                1168       deltaR = t3 - fRMax*fRMax ;
1214                                                  1169 
1215       // NOTE: Should use rho-fRMax<-kRadTole    1170       // NOTE: Should use rho-fRMax<-kRadTolerance*0.5
1216       // - avoid sqrt for efficiency             1171       // - avoid sqrt for efficiency
1217                                                  1172 
1218       if ( deltaR < -kRadTolerance*fRMax )       1173       if ( deltaR < -kRadTolerance*fRMax )
1219       {                                          1174       {
1220         b     = t2/t1 ;                          1175         b     = t2/t1 ;
1221         c     = deltaR/t1 ;                      1176         c     = deltaR/t1 ;
1222         d2    = b*b-c;                        << 1177         sr    = -b + sqrt(b*b - c);
1223         if( d2 >= 0 ) { srd = c/( -b - std::s << 
1224         else          { srd = 0.; }           << 
1225         sider = kRMax ;                          1178         sider = kRMax ;
1226       }                                          1179       }
1227       else                                       1180       else
1228       {                                          1181       {
1229         // On tolerant boundary & heading out    1182         // On tolerant boundary & heading outwards (or perpendicular to)
1230         // outer radial surface -> leaving im    1183         // outer radial surface -> leaving immediately
1231                                                  1184 
1232         if ( calcNorm )                       << 1185         if ( calcNorm ) 
1233         {                                        1186         {
1234           G4double invRho = FastInverseRxy( p << 1187           // if ( p.x() || p.y() )
1235           *n         = G4ThreeVector(p.x()*in << 1188           // {
                                                   >> 1189           //  *n=G4ThreeVector(p.x(),p.y(),0);
                                                   >> 1190           // }
                                                   >> 1191           // else
                                                   >> 1192           // {
                                                   >> 1193           //  *n=v;
                                                   >> 1194           // }
                                                   >> 1195           *n         = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ;
1236           *validNorm = true ;                    1196           *validNorm = true ;
1237         }                                        1197         }
1238         return snxt = 0 ; // Leaving by rmax     1198         return snxt = 0 ; // Leaving by rmax immediately
1239       }                                          1199       }
1240     }                                         << 1200     }             
1241     else if ( t2 < 0. ) // i.e.  t2 < 0; Poss    1201     else if ( t2 < 0. ) // i.e.  t2 < 0; Possible rmin intersection
1242     {                                            1202     {
1243       roMin2 = t3 - t2*t2/t1 ; // min ro2 of  << 1203       roMin2 = t3 - t2*t2/t1 ; // min ro2 of the plane of movement 
1244                                                  1204 
1245       if ( (fRMin != 0.0) && (roMin2 < fRMin* << 1205       if ( fRMin && (roMin2 < fRMin*(fRMin - kRadTolerance)) )
1246       {                                          1206       {
1247         deltaR = t3 - fRMin*fRMin ;              1207         deltaR = t3 - fRMin*fRMin ;
1248         b      = t2/t1 ;                         1208         b      = t2/t1 ;
1249         c      = deltaR/t1 ;                     1209         c      = deltaR/t1 ;
1250         d2     = b*b - c ;                       1210         d2     = b*b - c ;
1251                                                  1211 
1252         if ( d2 >= 0 )   // Leaving via rmin     1212         if ( d2 >= 0 )   // Leaving via rmin
1253         {                                        1213         {
1254           // NOTE: SHould use rho-rmin>kRadTo    1214           // NOTE: SHould use rho-rmin>kRadTolerance*0.5
1255           // - avoid sqrt for efficiency         1215           // - avoid sqrt for efficiency
1256                                                  1216 
1257           if (deltaR > kRadTolerance*fRMin)      1217           if (deltaR > kRadTolerance*fRMin)
1258           {                                      1218           {
1259             srd = c/(-b+std::sqrt(d2));       << 1219             sr    = -b-sqrt(d2) ;
1260             sider = kRMin ;                      1220             sider = kRMin ;
1261           }                                      1221           }
1262           else                                   1222           else
1263           {                                      1223           {
1264             if ( calcNorm ) {                 << 1224             if ( calcNorm ) *validNorm = false ; // Concave side
1265                *validNorm = false;            << 1225             return           snxt      = 0.0 ;
1266             }  // Concave side                << 
1267             return snxt = 0.0;                << 
1268           }                                      1226           }
1269         }                                        1227         }
1270         else    // No rmin intersect -> must     1228         else    // No rmin intersect -> must be rmax intersect
1271         {                                        1229         {
1272           deltaR = t3 - fRMax*fRMax ;            1230           deltaR = t3 - fRMax*fRMax ;
1273           c     = deltaR/t1 ;                 << 1231           c      = deltaR/t1 ;
1274           d2    = b*b-c;                      << 1232           sr     = -b + sqrt(b*b - c) ;
1275           if( d2 >=0. )                       << 1233           sider  = kRMax ;
1276           {                                   << 
1277             srd     = -b + std::sqrt(d2) ;    << 
1278             sider  = kRMax ;                  << 
1279           }                                   << 
1280           else // Case: On the border+t2<kRad << 
1281                //       (v is perpendicular t << 
1282           {                                   << 
1283             if (calcNorm)                     << 
1284             {                                 << 
1285               G4double invRho = FastInverseRx << 
1286               *n = G4ThreeVector(p.x()*invRho << 
1287               *validNorm = true ;             << 
1288             }                                 << 
1289             return snxt = 0.0;                << 
1290           }                                   << 
1291         }                                        1234         }
1292       }                                          1235       }
1293       else if ( roi2 > fRMax*(fRMax + kRadTol    1236       else if ( roi2 > fRMax*(fRMax + kRadTolerance) )
1294            // No rmin intersect -> must be rm    1237            // No rmin intersect -> must be rmax intersect
1295       {                                          1238       {
1296         deltaR = t3 - fRMax*fRMax ;              1239         deltaR = t3 - fRMax*fRMax ;
1297         b      = t2/t1 ;                         1240         b      = t2/t1 ;
1298         c      = deltaR/t1;                      1241         c      = deltaR/t1;
1299         d2     = b*b-c;                       << 1242         sr     = -b + sqrt(b*b - c) ;
1300         if( d2 >= 0 )                         << 1243         sider  = kRMax ;
1301         {                                     << 
1302           srd     = -b + std::sqrt(d2) ;      << 
1303           sider  = kRMax ;                    << 
1304         }                                     << 
1305         else // Case: On the border+t2<kRadTo << 
1306              //       (v is perpendicular to  << 
1307         {                                     << 
1308           if (calcNorm)                       << 
1309           {                                   << 
1310             G4double invRho = FastInverseRxy( << 
1311             *n = G4ThreeVector(p.x()*invRho,p << 
1312             *validNorm = true ;               << 
1313           }                                   << 
1314           return snxt = 0.0;                  << 
1315         }                                     << 
1316       }                                          1244       }
1317     }                                            1245     }
1318                                               << 1246     
1319     // Phi Intersection                          1247     // Phi Intersection
1320                                                  1248 
1321     if ( !fPhiFullTube )                      << 1249     if ( fDPhi < 2.0*M_PI )
1322     {                                            1250     {
1323       // add angle calculation with correctio << 1251       sinSPhi = sin(fSPhi) ;
1324       // of the difference in domain of atan2 << 1252       cosSPhi = cos(fSPhi) ;
1325       //                                      << 1253       ePhi    = fSPhi + fDPhi ;
1326       vphi = std::atan2(v.y(),v.x()) ;        << 1254       sinEPhi = sin(ePhi) ;
1327                                               << 1255       cosEPhi = cos(ePhi) ;
1328       if ( vphi < fSPhi - halfAngTolerance  ) << 1256       cPhi    = fSPhi + fDPhi*0.5 ;
1329       else if ( vphi > fSPhi + fDPhi + halfAn << 1257       sinCPhi = sin(cPhi) ;
1330                                               << 1258       cosCPhi = cos(cPhi) ;
1331                                                  1259 
1332       if ( (p.x() != 0.0) || (p.y() != 0.0) ) << 1260       if ( p.x() || p.y() )  // Check if on z axis (rho not needed later)
1333       {                                          1261       {
1334         // pDist -ve when inside                 1262         // pDist -ve when inside
1335                                                  1263 
1336         pDistS = p.x()*sinSPhi - p.y()*cosSPh    1264         pDistS = p.x()*sinSPhi - p.y()*cosSPhi ;
1337         pDistE = -p.x()*sinEPhi + p.y()*cosEP    1265         pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ;
1338                                                  1266 
1339         // Comp -ve when in direction of outw    1267         // Comp -ve when in direction of outwards normal
1340                                                  1268 
1341         compS = -sinSPhi*v.x() + cosSPhi*v.y( << 1269         compS   = -sinSPhi*v.x() + cosSPhi*v.y() ;
1342         compE =  sinEPhi*v.x() - cosEPhi*v.y( << 1270         compE   =  sinEPhi*v.x() - cosEPhi*v.y() ;
1343                                               << 
1344         sidephi = kNull;                         1271         sidephi = kNull;
1345                                                  1272 
1346         if( ( (fDPhi <= pi) && ( (pDistS <= h << 1273         //       if ( pDistS <= 0 && pDistE <= 0 )
1347                               && (pDistE <= h << 1274 
1348          || ( (fDPhi >  pi) && ((pDistS <=  h << 1275         if( ( (fDPhi <= pi) && ( (pDistS <= 0.5*kCarTolerance)
1349                               || (pDistE <=   << 1276                               && (pDistE <= 0.5*kCarTolerance) ) )
                                                   >> 1277          || ( (fDPhi >  pi) && !((pDistS >  0.5*kCarTolerance)
                                                   >> 1278                               && (pDistE >  0.5*kCarTolerance) ) )  )
1350         {                                        1279         {
1351           // Inside both phi *full* planes       1280           // Inside both phi *full* planes
1352                                               << 
1353           if ( compS < 0 )                       1281           if ( compS < 0 )
1354           {                                      1282           {
1355             sphi = pDistS/compS ;                1283             sphi = pDistS/compS ;
1356                                               << 1284             if (sphi >= -0.5*kCarTolerance)
1357             if (sphi >= -halfCarTolerance)    << 
1358             {                                    1285             {
1359               xi = p.x() + sphi*v.x() ;          1286               xi = p.x() + sphi*v.x() ;
1360               yi = p.y() + sphi*v.y() ;          1287               yi = p.y() + sphi*v.y() ;
1361                                                  1288 
1362               // Check intersecting with corr    1289               // Check intersecting with correct half-plane
1363               // (if not -> no intersect)        1290               // (if not -> no intersect)
1364               //                                 1291               //
1365               if((std::fabs(xi)<=kCarToleranc << 1292               if ((yi*cosCPhi-xi*sinCPhi)>=0)
1366               {                               << 
1367                 sidephi = kSPhi;              << 
1368                 if (((fSPhi-halfAngTolerance) << 
1369                    &&((fSPhi+fDPhi+halfAngTol << 
1370                 {                             << 
1371                   sphi = kInfinity;           << 
1372                 }                             << 
1373               }                               << 
1374               else if ( yi*cosCPhi-xi*sinCPhi << 
1375               {                                  1293               {
1376                 sphi = kInfinity ;               1294                 sphi = kInfinity ;
1377               }                                  1295               }
1378               else                               1296               else
1379               {                                  1297               {
1380                 sidephi = kSPhi ;                1298                 sidephi = kSPhi ;
1381                 if ( pDistS > -halfCarToleran << 1299                 if ( pDistS > -kCarTolerance*0.5 )
1382                 {                                1300                 {
1383                   sphi = 0.0 ; // Leave by sp    1301                   sphi = 0.0 ; // Leave by sphi immediately
1384                 }                             << 1302                 }    
1385               }                               << 1303               }       
1386             }                                    1304             }
1387             else                                 1305             else
1388             {                                    1306             {
1389               sphi = kInfinity ;                 1307               sphi = kInfinity ;
1390             }                                    1308             }
1391           }                                      1309           }
1392           else                                   1310           else
1393           {                                      1311           {
1394             sphi = kInfinity ;                   1312             sphi = kInfinity ;
1395           }                                      1313           }
1396                                                  1314 
1397           if ( compE < 0 )                       1315           if ( compE < 0 )
1398           {                                      1316           {
1399             sphi2 = pDistE/compE ;               1317             sphi2 = pDistE/compE ;
1400                                                  1318 
1401             // Only check further if < starti    1319             // Only check further if < starting phi intersection
1402             //                                   1320             //
1403             if ( (sphi2 > -halfCarTolerance)  << 1321             if ( (sphi2 > -0.5*kCarTolerance) && (sphi2 < sphi) )
1404             {                                    1322             {
1405               xi = p.x() + sphi2*v.x() ;         1323               xi = p.x() + sphi2*v.x() ;
1406               yi = p.y() + sphi2*v.y() ;         1324               yi = p.y() + sphi2*v.y() ;
1407                                                  1325 
1408               if((std::fabs(xi)<=kCarToleranc << 1326               // Check intersecting with correct half-plane 
1409               {                               << 
1410                 // Leaving via ending phi     << 
1411                 //                            << 
1412                 if( (fSPhi-halfAngTolerance > << 
1413                      ||(fSPhi+fDPhi+halfAngTo << 
1414                 {                             << 
1415                   sidephi = kEPhi ;           << 
1416                   if ( pDistE <= -halfCarTole << 
1417                   else                        << 
1418                 }                             << 
1419               }                               << 
1420               else    // Check intersecting w << 
1421                                                  1327 
1422               if ( (yi*cosCPhi-xi*sinCPhi) >=    1328               if ( (yi*cosCPhi-xi*sinCPhi) >= 0)
1423               {                                  1329               {
1424                 // Leaving via ending phi        1330                 // Leaving via ending phi
1425                 //                            << 1331 
1426                 sidephi = kEPhi ;                1332                 sidephi = kEPhi ;
1427                 if ( pDistE <= -halfCarTolera << 1333                 if ( pDistE <= -kCarTolerance*0.5 ) sphi = sphi2 ;
1428                 else                          << 1334                 else                                sphi = 0.0 ;
1429               }                                  1335               }
1430             }                                    1336             }
1431           }                                      1337           }
1432         }                                        1338         }
1433         else                                     1339         else
1434         {                                        1340         {
1435           sphi = kInfinity ;                     1341           sphi = kInfinity ;
1436         }                                        1342         }
1437       }                                          1343       }
1438       else                                       1344       else
1439       {                                          1345       {
1440         // On z axis + travel not || to z axi    1346         // On z axis + travel not || to z axis -> if phi of vector direction
1441         // within phi of shape, Step limited     1347         // within phi of shape, Step limited by rmax, else Step =0
1442                                                  1348 
1443         if ( (fSPhi - halfAngTolerance <= vph << 1349         vphi = atan2(v.y(),v.x()) ;
1444            && (vphi <= fSPhi + fDPhi + halfAn << 1350         if ( (fSPhi < vphi) && (vphi < fSPhi + fDPhi) )
1445         {                                        1351         {
1446           sphi = kInfinity ;                     1352           sphi = kInfinity ;
1447         }                                        1353         }
1448         else                                     1354         else
1449         {                                        1355         {
1450           sidephi = kSPhi ; // arbitrary      << 1356           sidephi = kSPhi ; // arbitrary 
1451           sphi    = 0.0 ;                        1357           sphi    = 0.0 ;
1452         }                                        1358         }
1453       }                                          1359       }
1454       if (sphi < snxt)  // Order intersecttio    1360       if (sphi < snxt)  // Order intersecttions
1455       {                                          1361       {
1456         snxt = sphi ;                            1362         snxt = sphi ;
1457         side = sidephi ;                         1363         side = sidephi ;
1458       }                                          1364       }
1459     }                                            1365     }
1460     if (srd < snxt)  // Order intersections   << 1366     if (sr < snxt)  // Order intersections
1461     {                                            1367     {
1462       snxt = srd ;                            << 1368       snxt = sr ;
1463       side = sider ;                             1369       side = sider ;
1464     }                                            1370     }
1465   }                                              1371   }
1466   if (calcNorm)                                  1372   if (calcNorm)
1467   {                                              1373   {
1468     switch(side)                                 1374     switch(side)
1469     {                                            1375     {
1470       case kRMax:                                1376       case kRMax:
1471         // Note: returned vector not normalis    1377         // Note: returned vector not normalised
1472         // (divide by fRMax for unit vector)     1378         // (divide by fRMax for unit vector)
1473         //                                       1379         //
1474         xi = p.x() + snxt*v.x() ;                1380         xi = p.x() + snxt*v.x() ;
1475         yi = p.y() + snxt*v.y() ;                1381         yi = p.y() + snxt*v.y() ;
1476         *n = G4ThreeVector(xi/fRMax,yi/fRMax,    1382         *n = G4ThreeVector(xi/fRMax,yi/fRMax,0) ;
1477         *validNorm = true ;                      1383         *validNorm = true ;
1478         break ;                                  1384         break ;
1479                                                  1385 
1480       case kRMin:                                1386       case kRMin:
1481         *validNorm = false ;  // Rmin is inco    1387         *validNorm = false ;  // Rmin is inconvex
1482         break ;                                  1388         break ;
1483                                                  1389 
1484       case kSPhi:                                1390       case kSPhi:
1485         if ( fDPhi <= pi )                    << 1391         if ( fDPhi <= M_PI )
1486         {                                        1392         {
1487           *n         = G4ThreeVector(sinSPhi, << 1393           *n         = G4ThreeVector(sin(fSPhi),-cos(fSPhi),0) ;
1488           *validNorm = true ;                    1394           *validNorm = true ;
1489         }                                        1395         }
1490         else                                     1396         else
1491         {                                        1397         {
1492           *validNorm = false ;                   1398           *validNorm = false ;
1493         }                                        1399         }
1494         break ;                                  1400         break ;
1495                                                  1401 
1496       case kEPhi:                                1402       case kEPhi:
1497         if (fDPhi <= pi)                      << 1403         if (fDPhi <= M_PI)
1498         {                                        1404         {
1499           *n = G4ThreeVector(-sinEPhi,cosEPhi << 1405           *n         = G4ThreeVector(-sin(fSPhi+fDPhi),cos(fSPhi+fDPhi),0) ;
1500           *validNorm = true ;                    1406           *validNorm = true ;
1501         }                                        1407         }
1502         else                                     1408         else
1503         {                                        1409         {
1504           *validNorm = false ;                   1410           *validNorm = false ;
1505         }                                        1411         }
1506         break ;                                  1412         break ;
1507                                                  1413 
1508       case kPZ:                                  1414       case kPZ:
1509         *n         = G4ThreeVector(0,0,1) ;   << 1415         *n=G4ThreeVector(0,0,1) ;
1510         *validNorm = true ;                   << 1416         *validNorm=true ;
1511         break ;                                  1417         break ;
1512                                                  1418 
1513       case kMZ:                                  1419       case kMZ:
1514         *n         = G4ThreeVector(0,0,-1) ;     1420         *n         = G4ThreeVector(0,0,-1) ;
1515         *validNorm = true ;                      1421         *validNorm = true ;
1516         break ;                                  1422         break ;
1517                                                  1423 
1518       default:                                   1424       default:
                                                   >> 1425         G4cout.precision(16) ;
1519         G4cout << G4endl ;                       1426         G4cout << G4endl ;
1520         DumpInfo();                              1427         DumpInfo();
1521         std::ostringstream message;           << 1428         G4cout << "Position:"  << G4endl << G4endl ;
1522         G4long oldprc = message.precision(16) << 1429         G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl ;
1523         message << "Undefined side for valid  << 1430         G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl ;
1524                 << G4endl                     << 1431         G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl ;
1525                 << "Position:"  << G4endl <<  << 1432         G4cout << "Direction:" << G4endl << G4endl ;
1526                 << "p.x() = "   << p.x()/mm < << 1433         G4cout << "v.x() = "   << v.x() << G4endl ;
1527                 << "p.y() = "   << p.y()/mm < << 1434         G4cout << "v.y() = "   << v.y() << G4endl ;
1528                 << "p.z() = "   << p.z()/mm < << 1435         G4cout << "v.z() = "   << v.z() << G4endl << G4endl ;
1529                 << "Direction:" << G4endl <<  << 1436         G4cout << "Proposed distance :" << G4endl << G4endl ;
1530                 << "v.x() = "   << v.x() << G << 1437         G4cout << "snxt = "    << snxt/mm << " mm" << G4endl << G4endl ;
1531                 << "v.y() = "   << v.y() << G << 1438         G4Exception("G4Tubs::DistanceToOut(p,v,..)","Notification",JustWarning,
1532                 << "v.z() = "   << v.z() << G << 1439                     "Undefined side for valid surface normal to solid.");
1533                 << "Proposed distance :" << G << 
1534                 << "snxt = "    << snxt/mm << << 
1535         message.precision(oldprc) ;           << 
1536         G4Exception("G4Tubs::DistanceToOut(p, << 
1537                     JustWarning, message);    << 
1538         break ;                                  1440         break ;
1539     }                                            1441     }
1540   }                                              1442   }
1541   if ( snxt<halfCarTolerance )  { snxt=0 ; }  << 1443   if ( snxt<kCarTolerance*0.5 ) snxt=0 ;
1542                                               << 
1543   return snxt ;                                  1444   return snxt ;
1544 }                                                1445 }
1545                                                  1446 
1546 /////////////////////////////////////////////    1447 //////////////////////////////////////////////////////////////////////////
1547 //                                               1448 //
1548 // Calculate distance (<=actual) to closest s    1449 // Calculate distance (<=actual) to closest surface of shape from inside
1549                                                  1450 
1550 G4double G4Tubs::DistanceToOut( const G4Three    1451 G4double G4Tubs::DistanceToOut( const G4ThreeVector& p ) const
1551 {                                                1452 {
1552   G4double safe=0.0, rho, safeR1, safeR2, saf << 1453   G4double safe=0.0, rho, safeR1, safeR2, safeZ ;
1553   rho = std::sqrt(p.x()*p.x() + p.y()*p.y())  << 1454   G4double safePhi, phiC, cosPhiC, sinPhiC, ePhi ;
                                                   >> 1455   rho = sqrt(p.x()*p.x() + p.y()*p.y()) ;
1554                                                  1456 
1555 #ifdef G4CSGDEBUG                                1457 #ifdef G4CSGDEBUG
1556   if( Inside(p) == kOutside )                    1458   if( Inside(p) == kOutside )
1557   {                                              1459   {
1558     G4long oldprc = G4cout.precision(16) ;    << 1460     G4cout.precision(16) ;
1559     G4cout << G4endl ;                           1461     G4cout << G4endl ;
1560     DumpInfo();                                  1462     DumpInfo();
1561     G4cout << "Position:"  << G4endl << G4end    1463     G4cout << "Position:"  << G4endl << G4endl ;
1562     G4cout << "p.x() = "   << p.x()/mm << " m    1464     G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl ;
1563     G4cout << "p.y() = "   << p.y()/mm << " m    1465     G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl ;
1564     G4cout << "p.z() = "   << p.z()/mm << " m    1466     G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl ;
1565     G4cout.precision(oldprc) ;                << 1467     G4Exception("G4Tubs::DistanceToOut(p)", "Notification", JustWarning, 
1566     G4Exception("G4Tubs::DistanceToOut(p)", " << 1468                  "Point p is outside !?");
1567                 JustWarning, "Point p is outs << 
1568   }                                              1469   }
1569 #endif                                           1470 #endif
1570                                                  1471 
1571   if ( fRMin != 0.0 )                         << 1472   if ( fRMin )
1572   {                                              1473   {
1573     safeR1 = rho   - fRMin ;                     1474     safeR1 = rho   - fRMin ;
1574     safeR2 = fRMax - rho ;                       1475     safeR2 = fRMax - rho ;
1575                                               << 1476  
1576     if ( safeR1 < safeR2 ) { safe = safeR1 ;  << 1477     if ( safeR1 < safeR2 ) safe = safeR1 ;
1577     else                   { safe = safeR2 ;  << 1478     else                   safe = safeR2 ;
1578   }                                              1479   }
1579   else                                           1480   else
1580   {                                              1481   {
1581     safe = fRMax - rho ;                         1482     safe = fRMax - rho ;
1582   }                                              1483   }
1583   safeZ = fDz - std::fabs(p.z()) ;            << 1484   safeZ = fDz - fabs(p.z()) ;
1584                                                  1485 
1585   if ( safeZ < safe )  { safe = safeZ ; }     << 1486   if ( safeZ < safe ) safe = safeZ ;
1586                                                  1487 
1587   // Check if phi divided, Calc distances clo    1488   // Check if phi divided, Calc distances closest phi plane
1588   //                                             1489   //
1589   if ( !fPhiFullTube )                        << 1490   if ( fDPhi < 2.0*M_PI )
1590   {                                              1491   {
1591     if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 )   << 1492     // Above/below central phi of Tubs?
                                                   >> 1493 
                                                   >> 1494     phiC    = fSPhi + fDPhi*0.5 ;
                                                   >> 1495     cosPhiC = cos(phiC) ;
                                                   >> 1496     sinPhiC = sin(phiC) ;
                                                   >> 1497 
                                                   >> 1498     if ( (p.y()*cosPhiC - p.x()*sinPhiC) <= 0 )
1592     {                                            1499     {
1593       safePhi = -(p.x()*sinSPhi - p.y()*cosSP << 1500       safePhi = -(p.x()*sin(fSPhi) - p.y()*cos(fSPhi)) ;
1594     }                                            1501     }
1595     else                                         1502     else
1596     {                                            1503     {
1597       safePhi = (p.x()*sinEPhi - p.y()*cosEPh << 1504       ePhi    = fSPhi + fDPhi ;
                                                   >> 1505       safePhi = (p.x()*sin(ePhi) - p.y()*cos(ePhi)) ;
1598     }                                            1506     }
1599     if (safePhi < safe)  { safe = safePhi ; } << 1507     if (safePhi < safe) safe = safePhi ;
1600   }                                              1508   }
1601   if ( safe < 0 )  { safe = 0 ; }             << 1509   if ( safe < 0 ) safe = 0 ;
1602                                                  1510 
1603   return safe ;                               << 1511   return safe ;  
1604 }                                                1512 }
1605                                                  1513 
1606 ///////////////////////////////////////////// << 1514 /////////////////////////////////////////////////////////////////////////
1607 //                                               1515 //
1608 // Stream object contents to an output stream << 1516 // Create a List containing the transformed vertices
                                                   >> 1517 // Ordering [0-3] -fDz cross section
                                                   >> 1518 //          [4-7] +fDz cross section such that [0] is below [4],
                                                   >> 1519 //                                             [1] below [5] etc.
                                                   >> 1520 // Note:
                                                   >> 1521 //  Caller has deletion resposibility
                                                   >> 1522 //  Potential improvement: For last slice, use actual ending angle
                                                   >> 1523 //                         to avoid rounding error problems.
1609                                                  1524 
1610 G4GeometryType G4Tubs::GetEntityType() const  << 1525 G4ThreeVectorList*
                                                   >> 1526 G4Tubs::CreateRotatedVertices( const G4AffineTransform& pTransform ) const
1611 {                                                1527 {
1612   return {"G4Tubs"};                          << 1528   G4ThreeVectorList* vertices ;
                                                   >> 1529   G4ThreeVector vertex0, vertex1, vertex2, vertex3 ;
                                                   >> 1530   G4double meshAngle, meshRMax, crossAngle,
                                                   >> 1531            cosCrossAngle, sinCrossAngle, sAngle;
                                                   >> 1532   G4double rMaxX, rMaxY, rMinX, rMinY, meshRMin ;
                                                   >> 1533   G4int crossSection, noCrossSections;
                                                   >> 1534 
                                                   >> 1535   // Compute no of cross-sections necessary to mesh tube
                                                   >> 1536   //
                                                   >> 1537   noCrossSections = G4int(fDPhi/kMeshAngleDefault) + 1 ;
                                                   >> 1538 
                                                   >> 1539   if ( noCrossSections < kMinMeshSections )
                                                   >> 1540   {
                                                   >> 1541     noCrossSections = kMinMeshSections ;
                                                   >> 1542   }
                                                   >> 1543   else if (noCrossSections>kMaxMeshSections)
                                                   >> 1544   {
                                                   >> 1545     noCrossSections = kMaxMeshSections ;
                                                   >> 1546   }
                                                   >> 1547   // noCrossSections = 4 ;
                                                   >> 1548 
                                                   >> 1549   meshAngle = fDPhi/(noCrossSections - 1) ;
                                                   >> 1550   // meshAngle = fDPhi/(noCrossSections) ;
                                                   >> 1551 
                                                   >> 1552   meshRMax  = (fRMax+100*kCarTolerance)/cos(meshAngle*0.5) ;
                                                   >> 1553   meshRMin = fRMin - 100*kCarTolerance ; 
                                                   >> 1554  
                                                   >> 1555   // If complete in phi, set start angle such that mesh will be at fRMax
                                                   >> 1556   // on the x axis. Will give better extent calculations when not rotated.
                                                   >> 1557 
                                                   >> 1558   if (fDPhi == M_PI*2.0 && fSPhi == 0 ) sAngle = -meshAngle*0.5 ;
                                                   >> 1559   else                                  sAngle =  fSPhi ;
                                                   >> 1560     
                                                   >> 1561   vertices = new G4ThreeVectorList();
                                                   >> 1562   vertices->reserve(noCrossSections*4);
                                                   >> 1563     
                                                   >> 1564   if ( vertices )
                                                   >> 1565   {
                                                   >> 1566     for (crossSection = 0 ; crossSection < noCrossSections ; crossSection++ )
                                                   >> 1567     {
                                                   >> 1568       // Compute coordinates of cross section at section crossSection
                                                   >> 1569 
                                                   >> 1570       crossAngle    = sAngle + crossSection*meshAngle ;
                                                   >> 1571       cosCrossAngle = cos(crossAngle) ;
                                                   >> 1572       sinCrossAngle = sin(crossAngle) ;
                                                   >> 1573 
                                                   >> 1574       rMaxX = meshRMax*cosCrossAngle ;
                                                   >> 1575       rMaxY = meshRMax*sinCrossAngle ;
                                                   >> 1576 
                                                   >> 1577       if(meshRMin <= 0.0)
                                                   >> 1578       {
                                                   >> 1579         rMinX = 0.0 ;
                                                   >> 1580         rMinY = 0.0 ;
                                                   >> 1581       }
                                                   >> 1582       else
                                                   >> 1583       {
                                                   >> 1584         rMinX = meshRMin*cosCrossAngle ;
                                                   >> 1585         rMinY = meshRMin*sinCrossAngle ;
                                                   >> 1586       }
                                                   >> 1587       vertex0 = G4ThreeVector(rMinX,rMinY,-fDz) ;
                                                   >> 1588       vertex1 = G4ThreeVector(rMaxX,rMaxY,-fDz) ;
                                                   >> 1589       vertex2 = G4ThreeVector(rMaxX,rMaxY,+fDz) ;
                                                   >> 1590       vertex3 = G4ThreeVector(rMinX,rMinY,+fDz) ;
                                                   >> 1591 
                                                   >> 1592       vertices->push_back(pTransform.TransformPoint(vertex0)) ;
                                                   >> 1593       vertices->push_back(pTransform.TransformPoint(vertex1)) ;
                                                   >> 1594       vertices->push_back(pTransform.TransformPoint(vertex2)) ;
                                                   >> 1595       vertices->push_back(pTransform.TransformPoint(vertex3)) ;
                                                   >> 1596     }
                                                   >> 1597   }
                                                   >> 1598   else
                                                   >> 1599   {
                                                   >> 1600     DumpInfo();
                                                   >> 1601     G4Exception("G4Tubs::CreateRotatedVertices()",
                                                   >> 1602                 "FatalError", FatalException,
                                                   >> 1603                 "Error in allocation of vertices. Out of memory !");
                                                   >> 1604   }
                                                   >> 1605   return vertices ;
1613 }                                                1606 }
1614                                                  1607 
1615 /////////////////////////////////////////////    1608 //////////////////////////////////////////////////////////////////////////
1616 //                                               1609 //
1617 // Make a clone of the object                 << 1610 // Stream object contents to an output stream
1618 //                                            << 1611 
1619 G4VSolid* G4Tubs::Clone() const               << 1612 G4GeometryType G4Tubs::GetEntityType() const
1620 {                                                1613 {
1621   return new G4Tubs(*this);                   << 1614   return G4String("G4Tubs");
1622 }                                                1615 }
1623                                                  1616 
1624 /////////////////////////////////////////////    1617 //////////////////////////////////////////////////////////////////////////
1625 //                                               1618 //
1626 // Stream object contents to an output stream    1619 // Stream object contents to an output stream
1627                                                  1620 
1628 std::ostream& G4Tubs::StreamInfo( std::ostrea    1621 std::ostream& G4Tubs::StreamInfo( std::ostream& os ) const
1629 {                                                1622 {
1630   G4long oldprc = os.precision(16);           << 
1631   os << "------------------------------------    1623   os << "-----------------------------------------------------------\n"
1632      << "    *** Dump for solid - " << GetNam    1624      << "    *** Dump for solid - " << GetName() << " ***\n"
1633      << "    ================================    1625      << "    ===================================================\n"
1634      << " Solid type: G4Tubs\n"                  1626      << " Solid type: G4Tubs\n"
1635      << " Parameters: \n"                        1627      << " Parameters: \n"
1636      << "    inner radius : " << fRMin/mm <<     1628      << "    inner radius : " << fRMin/mm << " mm \n"
1637      << "    outer radius : " << fRMax/mm <<     1629      << "    outer radius : " << fRMax/mm << " mm \n"
1638      << "    half length Z: " << fDz/mm << "     1630      << "    half length Z: " << fDz/mm << " mm \n"
1639      << "    starting phi : " << fSPhi/degree    1631      << "    starting phi : " << fSPhi/degree << " degrees \n"
1640      << "    delta phi    : " << fDPhi/degree    1632      << "    delta phi    : " << fDPhi/degree << " degrees \n"
1641      << "------------------------------------    1633      << "-----------------------------------------------------------\n";
1642   os.precision(oldprc);                       << 
1643                                                  1634 
1644   return os;                                     1635   return os;
1645 }                                                1636 }
1646                                                  1637 
1647 ///////////////////////////////////////////// << 1638 ///////////////////////////////////////////////////////////////////////////
1648 //                                               1639 //
1649 // GetPointOnSurface                          << 1640 // Methods for visualisation
1650                                                  1641 
1651 G4ThreeVector G4Tubs::GetPointOnSurface() con << 
1652 {                                             << 
1653   G4double Rmax = fRMax;                      << 
1654   G4double Rmin = fRMin;                      << 
1655   G4double hz = 2.*fDz;       // height       << 
1656   G4double lext = fDPhi*Rmax; // length of ex << 
1657   G4double lint = fDPhi*Rmin; // length of in << 
1658                                                  1642 
1659   // Set array of surface areas               << 1643 void G4Tubs::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 
1660   //                                          << 1644 {
1661   G4double RRmax = Rmax * Rmax;               << 1645   scene.AddThis (*this) ;
1662   G4double RRmin = Rmin * Rmin;               << 1646 }
1663   G4double sbase = 0.5*fDPhi*(RRmax - RRmin); << 
1664   G4double scut = (fDPhi == twopi) ? 0. : hz* << 
1665   G4double ssurf[6] = { scut, scut, sbase, sb << 
1666   ssurf[1] += ssurf[0];                       << 
1667   ssurf[2] += ssurf[1];                       << 
1668   ssurf[3] += ssurf[2];                       << 
1669   ssurf[4] += ssurf[3];                       << 
1670   ssurf[5] += ssurf[4];                       << 
1671                                                  1647 
1672   // Select surface                           << 1648 G4Polyhedron* G4Tubs::CreatePolyhedron () const 
1673   //                                          << 1649 {
1674   G4double select = ssurf[5]*G4QuickRand();   << 1650   return new G4PolyhedronTubs (fRMin, fRMax, fDz, fSPhi, fDPhi) ;
1675   G4int k = 5;                                << 1651 }
1676   k -= (G4int)(select <= ssurf[4]);           << 
1677   k -= (G4int)(select <= ssurf[3]);           << 
1678   k -= (G4int)(select <= ssurf[2]);           << 
1679   k -= (G4int)(select <= ssurf[1]);           << 
1680   k -= (G4int)(select <= ssurf[0]);           << 
1681                                                  1652 
1682   // Generate point on selected surface       << 1653 G4NURBS* G4Tubs::CreateNURBS () const 
1683   //                                          << 1654 {
1684   switch(k)                                   << 1655   G4NURBS* pNURBS ;
                                                   >> 1656   if (fRMin != 0) 
1685   {                                              1657   {
1686     case 0: // start phi cut                  << 1658     if (fDPhi >= 2.0 * M_PI) 
1687     {                                         << 
1688       G4double r = Rmin + (Rmax - Rmin)*G4Qui << 
1689       return { r*cosSPhi, r*sinSPhi, hz*G4Qui << 
1690     }                                         << 
1691     case 1: // end phi cut                    << 
1692     {                                         << 
1693       G4double r = Rmin + (Rmax - Rmin)*G4Qui << 
1694       return { r*cosEPhi, r*sinEPhi, hz*G4Qui << 
1695     }                                         << 
1696     case 2: // base at -dz                    << 
1697     {                                            1659     {
1698       G4double r = std::sqrt(RRmin + (RRmax - << 1660       pNURBS = new G4NURBStube (fRMin,fRMax,fDz) ;
1699       G4double phi = fSPhi + fDPhi*G4QuickRan << 
1700       return { r*std::cos(phi), r*std::sin(ph << 
1701     }                                            1661     }
1702     case 3: // base at +dz                    << 1662     else 
1703     {                                            1663     {
1704       G4double r = std::sqrt(RRmin + (RRmax - << 1664       pNURBS = new G4NURBStubesector (fRMin,fRMax,fDz,fSPhi,fSPhi+fDPhi) ;
1705       G4double phi = fSPhi + fDPhi*G4QuickRan << 
1706       return { r*std::cos(phi), r*std::sin(ph << 
1707     }                                            1665     }
1708     case 4: // external lateral surface       << 1666   }
                                                   >> 1667   else 
                                                   >> 1668   {
                                                   >> 1669     if (fDPhi >= 2.0 * M_PI) 
1709     {                                            1670     {
1710       G4double phi = fSPhi + fDPhi*G4QuickRan << 1671       pNURBS = new G4NURBScylinder (fRMax,fDz) ;
1711       G4double z = hz*G4QuickRand() - fDz;    << 
1712       G4double x = Rmax*std::cos(phi);        << 
1713       G4double y = Rmax*std::sin(phi);        << 
1714       return { x,y,z };                       << 
1715     }                                            1672     }
1716     case 5: // internal lateral surface       << 1673     else 
1717     {                                            1674     {
1718       G4double phi = fSPhi + fDPhi*G4QuickRan << 1675       const G4double epsilon = 1.e-4 ; // Cylinder sector not yet available!
1719       G4double z = hz*G4QuickRand() - fDz;    << 1676       pNURBS = new G4NURBStubesector (epsilon,fRMax,fDz,fSPhi,fSPhi+fDPhi) ;
1720       G4double x = Rmin*std::cos(phi);        << 
1721       G4double y = Rmin*std::sin(phi);        << 
1722       return { x,y,z };                       << 
1723     }                                            1677     }
1724   }                                              1678   }
1725   return {0., 0., 0.};                        << 1679   return pNURBS ;
1726 }                                                1680 }
1727                                                  1681 
1728 ///////////////////////////////////////////// << 
1729 //                                               1682 //
1730 // Methods for visualisation                  << 1683 //
1731                                               << 1684 /////////////////////////////////// End of G4Tubs.cc ////////////////////////
1732 void G4Tubs::DescribeYourselfTo ( G4VGraphics << 
1733 {                                             << 
1734   scene.AddSolid (*this) ;                    << 
1735 }                                             << 
1736                                               << 
1737 G4Polyhedron* G4Tubs::CreatePolyhedron () con << 
1738 {                                             << 
1739   return new G4PolyhedronTubs (fRMin, fRMax,  << 
1740 }                                             << 
1741                                               << 
1742 #endif                                        << 
1743                                                  1685