Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4Tubs implementation 26 // G4Tubs implementation 27 // 27 // 28 // 1994-95 P.Kent: first implementation 28 // 1994-95 P.Kent: first implementation 29 // 08.08.00 V.Grichine: more stable roots of 2 29 // 08.08.00 V.Grichine: more stable roots of 2-equation in DistanceToOut(p,v,..) 30 // 07.12.00 V.Grichine: phi-section algorithm 30 // 07.12.00 V.Grichine: phi-section algorithm was changed in Inside(p) 31 // 03.05.05 V.Grichine: SurfaceNormal(p) accor 31 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J.Apostolakis proposal 32 // 24.08.16 E.Tcherniaev: reimplemented Calcul 32 // 24.08.16 E.Tcherniaev: reimplemented CalculateExtent(). 33 // ------------------------------------------- 33 // -------------------------------------------------------------------- 34 34 35 #include "G4Tubs.hh" 35 #include "G4Tubs.hh" 36 36 37 #if !defined(G4GEOM_USE_UTUBS) 37 #if !defined(G4GEOM_USE_UTUBS) 38 38 39 #include "G4GeomTools.hh" 39 #include "G4GeomTools.hh" 40 #include "G4VoxelLimits.hh" 40 #include "G4VoxelLimits.hh" 41 #include "G4AffineTransform.hh" 41 #include "G4AffineTransform.hh" 42 #include "G4GeometryTolerance.hh" 42 #include "G4GeometryTolerance.hh" 43 #include "G4BoundingEnvelope.hh" 43 #include "G4BoundingEnvelope.hh" 44 44 45 #include "G4VPVParameterisation.hh" 45 #include "G4VPVParameterisation.hh" 46 #include "G4QuickRand.hh" << 46 >> 47 #include "Randomize.hh" >> 48 >> 49 #include "meshdefs.hh" 47 50 48 #include "G4VGraphicsScene.hh" 51 #include "G4VGraphicsScene.hh" 49 #include "G4Polyhedron.hh" << 50 52 51 using namespace CLHEP; 53 using namespace CLHEP; 52 54 53 ////////////////////////////////////////////// 55 ///////////////////////////////////////////////////////////////////////// 54 // 56 // 55 // Constructor - check parameters, convert ang 57 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI 56 // - note if pdphi>2PI then reset 58 // - note if pdphi>2PI then reset to 2PI 57 59 58 G4Tubs::G4Tubs( const G4String& pName, << 60 G4Tubs::G4Tubs( const G4String &pName, 59 G4double pRMin, G4double 61 G4double pRMin, G4double pRMax, 60 G4double pDz, 62 G4double pDz, 61 G4double pSPhi, G4double 63 G4double pSPhi, G4double pDPhi ) 62 : G4CSGSolid(pName), fRMin(pRMin), fRMax(pR 64 : G4CSGSolid(pName), fRMin(pRMin), fRMax(pRMax), fDz(pDz), 63 fSPhi(0), fDPhi(0), 65 fSPhi(0), fDPhi(0), 64 fInvRmax( pRMax > 0.0 ? 1.0/pRMax : 0.0 ) 66 fInvRmax( pRMax > 0.0 ? 1.0/pRMax : 0.0 ), 65 fInvRmin( pRMin > 0.0 ? 1.0/pRMin : 0.0 ) 67 fInvRmin( pRMin > 0.0 ? 1.0/pRMin : 0.0 ) 66 { 68 { 67 kRadTolerance = G4GeometryTolerance::GetInst 69 kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 68 kAngTolerance = G4GeometryTolerance::GetInst 70 kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance(); 69 71 70 halfCarTolerance=kCarTolerance*0.5; 72 halfCarTolerance=kCarTolerance*0.5; 71 halfRadTolerance=kRadTolerance*0.5; 73 halfRadTolerance=kRadTolerance*0.5; 72 halfAngTolerance=kAngTolerance*0.5; 74 halfAngTolerance=kAngTolerance*0.5; 73 75 74 if (pDz<=0) // Check z-len 76 if (pDz<=0) // Check z-len 75 { 77 { 76 std::ostringstream message; 78 std::ostringstream message; 77 message << "Negative Z half-length (" << p 79 message << "Negative Z half-length (" << pDz << ") in solid: " << GetName(); 78 G4Exception("G4Tubs::G4Tubs()", "GeomSolid 80 G4Exception("G4Tubs::G4Tubs()", "GeomSolids0002", FatalException, message); 79 } 81 } 80 if ( (pRMin >= pRMax) || (pRMin < 0) ) // Ch 82 if ( (pRMin >= pRMax) || (pRMin < 0) ) // Check radii 81 { 83 { 82 std::ostringstream message; 84 std::ostringstream message; 83 message << "Invalid values for radii in so 85 message << "Invalid values for radii in solid: " << GetName() 84 << G4endl 86 << G4endl 85 << " pRMin = " << pRMin << 87 << " pRMin = " << pRMin << ", pRMax = " << pRMax; 86 G4Exception("G4Tubs::G4Tubs()", "GeomSolid 88 G4Exception("G4Tubs::G4Tubs()", "GeomSolids0002", FatalException, message); 87 } 89 } 88 90 89 // Check angles 91 // Check angles 90 // 92 // 91 CheckPhiAngles(pSPhi, pDPhi); 93 CheckPhiAngles(pSPhi, pDPhi); 92 } 94 } 93 95 94 ////////////////////////////////////////////// 96 /////////////////////////////////////////////////////////////////////// 95 // 97 // 96 // Fake default constructor - sets only member 98 // Fake default constructor - sets only member data and allocates memory 97 // for usage restri 99 // for usage restricted to object persistency. 98 // 100 // 99 G4Tubs::G4Tubs( __void__& a ) 101 G4Tubs::G4Tubs( __void__& a ) 100 : G4CSGSolid(a) << 102 : G4CSGSolid(a), kRadTolerance(0.), kAngTolerance(0.), >> 103 fRMin(0.), fRMax(0.), fDz(0.), fSPhi(0.), fDPhi(0.), >> 104 sinCPhi(0.), cosCPhi(0.), cosHDPhi(0.), cosHDPhiOT(0.), cosHDPhiIT(0.), >> 105 sinSPhi(0.), cosSPhi(0.), sinEPhi(0.), cosEPhi(0.), >> 106 fPhiFullTube(false), fInvRmax(0.), fInvRmin(0.), >> 107 halfCarTolerance(0.), halfRadTolerance(0.), >> 108 halfAngTolerance(0.) 101 { 109 { 102 } 110 } 103 111 104 ////////////////////////////////////////////// 112 ////////////////////////////////////////////////////////////////////////// 105 // 113 // 106 // Destructor 114 // Destructor 107 115 108 G4Tubs::~G4Tubs() = default; << 116 G4Tubs::~G4Tubs() >> 117 { >> 118 } 109 119 110 ////////////////////////////////////////////// 120 ////////////////////////////////////////////////////////////////////////// 111 // 121 // 112 // Copy constructor 122 // Copy constructor 113 123 114 G4Tubs::G4Tubs(const G4Tubs&) = default; << 124 G4Tubs::G4Tubs(const G4Tubs& rhs) >> 125 : G4CSGSolid(rhs), >> 126 kRadTolerance(rhs.kRadTolerance), kAngTolerance(rhs.kAngTolerance), >> 127 fRMin(rhs.fRMin), fRMax(rhs.fRMax), fDz(rhs.fDz), >> 128 fSPhi(rhs.fSPhi), fDPhi(rhs.fDPhi), >> 129 sinCPhi(rhs.sinCPhi), cosCPhi(rhs.cosCPhi), cosHDPhi(rhs.cosHDPhi), >> 130 cosHDPhiOT(rhs.cosHDPhiOT), cosHDPhiIT(rhs.cosHDPhiIT), >> 131 sinSPhi(rhs.sinSPhi), cosSPhi(rhs.cosSPhi), >> 132 sinEPhi(rhs.sinEPhi), cosEPhi(rhs.cosEPhi), fPhiFullTube(rhs.fPhiFullTube), >> 133 fInvRmax(rhs.fInvRmax), fInvRmin(rhs.fInvRmin), >> 134 halfCarTolerance(rhs.halfCarTolerance), >> 135 halfRadTolerance(rhs.halfRadTolerance), >> 136 halfAngTolerance(rhs.halfAngTolerance) >> 137 { >> 138 } 115 139 116 ////////////////////////////////////////////// 140 ////////////////////////////////////////////////////////////////////////// 117 // 141 // 118 // Assignment operator 142 // Assignment operator 119 143 120 G4Tubs& G4Tubs::operator = (const G4Tubs& rhs) << 144 G4Tubs& G4Tubs::operator = (const G4Tubs& rhs) 121 { 145 { 122 // Check assignment to self 146 // Check assignment to self 123 // 147 // 124 if (this == &rhs) { return *this; } 148 if (this == &rhs) { return *this; } 125 149 126 // Copy base class data 150 // Copy base class data 127 // 151 // 128 G4CSGSolid::operator=(rhs); 152 G4CSGSolid::operator=(rhs); 129 153 130 // Copy data 154 // Copy data 131 // 155 // 132 kRadTolerance = rhs.kRadTolerance; kAngTole 156 kRadTolerance = rhs.kRadTolerance; kAngTolerance = rhs.kAngTolerance; 133 fRMin = rhs.fRMin; fRMax = rhs.fRMax; fDz = 157 fRMin = rhs.fRMin; fRMax = rhs.fRMax; fDz = rhs.fDz; 134 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; 158 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; 135 sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPh 159 sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPhi; cosHDPhi = rhs.cosHDPhi; 136 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = r 160 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = rhs.cosHDPhiIT; 137 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPh 161 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPhi; 138 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPh 162 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPhi; 139 fPhiFullTube = rhs.fPhiFullTube; 163 fPhiFullTube = rhs.fPhiFullTube; 140 fInvRmax = rhs.fInvRmax; 164 fInvRmax = rhs.fInvRmax; 141 fInvRmin = rhs.fInvRmin; 165 fInvRmin = rhs.fInvRmin; 142 halfCarTolerance = rhs.halfCarTolerance; 166 halfCarTolerance = rhs.halfCarTolerance; 143 halfRadTolerance = rhs.halfRadTolerance; 167 halfRadTolerance = rhs.halfRadTolerance; 144 halfAngTolerance = rhs.halfAngTolerance; 168 halfAngTolerance = rhs.halfAngTolerance; 145 169 146 return *this; 170 return *this; 147 } 171 } 148 172 149 ////////////////////////////////////////////// 173 ///////////////////////////////////////////////////////////////////////// 150 // 174 // 151 // Dispatch to parameterisation for replicatio 175 // Dispatch to parameterisation for replication mechanism dimension 152 // computation & modification. 176 // computation & modification. 153 177 154 void G4Tubs::ComputeDimensions( G4VPVPar 178 void G4Tubs::ComputeDimensions( G4VPVParameterisation* p, 155 const G4int n, 179 const G4int n, 156 const G4VPhysi 180 const G4VPhysicalVolume* pRep ) 157 { 181 { 158 p->ComputeDimensions(*this,n,pRep) ; 182 p->ComputeDimensions(*this,n,pRep) ; 159 } 183 } 160 184 161 ////////////////////////////////////////////// 185 ///////////////////////////////////////////////////////////////////////// 162 // 186 // 163 // Get bounding box 187 // Get bounding box 164 188 165 void G4Tubs::BoundingLimits(G4ThreeVector& pMi 189 void G4Tubs::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const 166 { 190 { 167 G4double rmin = GetInnerRadius(); 191 G4double rmin = GetInnerRadius(); 168 G4double rmax = GetOuterRadius(); 192 G4double rmax = GetOuterRadius(); 169 G4double dz = GetZHalfLength(); 193 G4double dz = GetZHalfLength(); 170 194 171 // Find bounding box 195 // Find bounding box 172 // 196 // 173 if (GetDeltaPhiAngle() < twopi) 197 if (GetDeltaPhiAngle() < twopi) 174 { 198 { 175 G4TwoVector vmin,vmax; 199 G4TwoVector vmin,vmax; 176 G4GeomTools::DiskExtent(rmin,rmax, 200 G4GeomTools::DiskExtent(rmin,rmax, 177 GetSinStartPhi(),G 201 GetSinStartPhi(),GetCosStartPhi(), 178 GetSinEndPhi(),Get 202 GetSinEndPhi(),GetCosEndPhi(), 179 vmin,vmax); 203 vmin,vmax); 180 pMin.set(vmin.x(),vmin.y(),-dz); 204 pMin.set(vmin.x(),vmin.y(),-dz); 181 pMax.set(vmax.x(),vmax.y(), dz); 205 pMax.set(vmax.x(),vmax.y(), dz); 182 } 206 } 183 else 207 else 184 { 208 { 185 pMin.set(-rmax,-rmax,-dz); 209 pMin.set(-rmax,-rmax,-dz); 186 pMax.set( rmax, rmax, dz); 210 pMax.set( rmax, rmax, dz); 187 } 211 } 188 212 189 // Check correctness of the bounding box 213 // Check correctness of the bounding box 190 // 214 // 191 if (pMin.x() >= pMax.x() || pMin.y() >= pMax 215 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 192 { 216 { 193 std::ostringstream message; 217 std::ostringstream message; 194 message << "Bad bounding box (min >= max) 218 message << "Bad bounding box (min >= max) for solid: " 195 << GetName() << " !" 219 << GetName() << " !" 196 << "\npMin = " << pMin 220 << "\npMin = " << pMin 197 << "\npMax = " << pMax; 221 << "\npMax = " << pMax; 198 G4Exception("G4Tubs::BoundingLimits()", "G 222 G4Exception("G4Tubs::BoundingLimits()", "GeomMgt0001", 199 JustWarning, message); 223 JustWarning, message); 200 DumpInfo(); 224 DumpInfo(); 201 } 225 } 202 } 226 } 203 227 204 ////////////////////////////////////////////// 228 ///////////////////////////////////////////////////////////////////////// 205 // 229 // 206 // Calculate extent under transform and specif 230 // Calculate extent under transform and specified limit 207 231 208 G4bool G4Tubs::CalculateExtent( const EAxis 232 G4bool G4Tubs::CalculateExtent( const EAxis pAxis, 209 const G4VoxelL 233 const G4VoxelLimits& pVoxelLimit, 210 const G4Affine 234 const G4AffineTransform& pTransform, 211 G4double << 235 G4double& pMin, 212 G4double 236 G4double& pMax ) const 213 { 237 { 214 G4ThreeVector bmin, bmax; 238 G4ThreeVector bmin, bmax; 215 G4bool exist; 239 G4bool exist; 216 240 217 // Get bounding box 241 // Get bounding box 218 BoundingLimits(bmin,bmax); 242 BoundingLimits(bmin,bmax); 219 243 220 // Check bounding box 244 // Check bounding box 221 G4BoundingEnvelope bbox(bmin,bmax); 245 G4BoundingEnvelope bbox(bmin,bmax); 222 #ifdef G4BBOX_EXTENT 246 #ifdef G4BBOX_EXTENT 223 return bbox.CalculateExtent(pAxis,pVoxelLimi 247 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 224 #endif 248 #endif 225 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox 249 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax)) 226 { 250 { 227 return exist = pMin < pMax; << 251 return exist = (pMin < pMax) ? true : false; 228 } 252 } 229 253 230 // Get parameters of the solid 254 // Get parameters of the solid 231 G4double rmin = GetInnerRadius(); 255 G4double rmin = GetInnerRadius(); 232 G4double rmax = GetOuterRadius(); 256 G4double rmax = GetOuterRadius(); 233 G4double dz = GetZHalfLength(); 257 G4double dz = GetZHalfLength(); 234 G4double dphi = GetDeltaPhiAngle(); 258 G4double dphi = GetDeltaPhiAngle(); 235 259 236 // Find bounding envelope and calculate exte 260 // Find bounding envelope and calculate extent 237 // 261 // 238 const G4int NSTEPS = 24; // numbe 262 const G4int NSTEPS = 24; // number of steps for whole circle 239 G4double astep = twopi/NSTEPS; // max a 263 G4double astep = twopi/NSTEPS; // max angle for one step 240 G4int ksteps = (dphi <= astep) ? 1 : (G4i 264 G4int ksteps = (dphi <= astep) ? 1 : (G4int)((dphi-deg)/astep) + 1; 241 G4double ang = dphi/ksteps; 265 G4double ang = dphi/ksteps; 242 266 243 G4double sinHalf = std::sin(0.5*ang); 267 G4double sinHalf = std::sin(0.5*ang); 244 G4double cosHalf = std::cos(0.5*ang); 268 G4double cosHalf = std::cos(0.5*ang); 245 G4double sinStep = 2.*sinHalf*cosHalf; 269 G4double sinStep = 2.*sinHalf*cosHalf; 246 G4double cosStep = 1. - 2.*sinHalf*sinHalf; 270 G4double cosStep = 1. - 2.*sinHalf*sinHalf; 247 G4double rext = rmax/cosHalf; 271 G4double rext = rmax/cosHalf; 248 272 249 // bounding envelope for full cylinder consi 273 // bounding envelope for full cylinder consists of two polygons, 250 // in other cases it is a sequence of quadri 274 // in other cases it is a sequence of quadrilaterals 251 if (rmin == 0 && dphi == twopi) 275 if (rmin == 0 && dphi == twopi) 252 { 276 { 253 G4double sinCur = sinHalf; 277 G4double sinCur = sinHalf; 254 G4double cosCur = cosHalf; 278 G4double cosCur = cosHalf; 255 279 256 G4ThreeVectorList baseA(NSTEPS),baseB(NSTE 280 G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS); 257 for (G4int k=0; k<NSTEPS; ++k) 281 for (G4int k=0; k<NSTEPS; ++k) 258 { 282 { 259 baseA[k].set(rext*cosCur,rext*sinCur,-dz 283 baseA[k].set(rext*cosCur,rext*sinCur,-dz); 260 baseB[k].set(rext*cosCur,rext*sinCur, dz 284 baseB[k].set(rext*cosCur,rext*sinCur, dz); 261 285 262 G4double sinTmp = sinCur; 286 G4double sinTmp = sinCur; 263 sinCur = sinCur*cosStep + cosCur*sinStep 287 sinCur = sinCur*cosStep + cosCur*sinStep; 264 cosCur = cosCur*cosStep - sinTmp*sinStep 288 cosCur = cosCur*cosStep - sinTmp*sinStep; 265 } 289 } 266 std::vector<const G4ThreeVectorList *> pol 290 std::vector<const G4ThreeVectorList *> polygons(2); 267 polygons[0] = &baseA; 291 polygons[0] = &baseA; 268 polygons[1] = &baseB; 292 polygons[1] = &baseB; 269 G4BoundingEnvelope benv(bmin,bmax,polygons 293 G4BoundingEnvelope benv(bmin,bmax,polygons); 270 exist = benv.CalculateExtent(pAxis,pVoxelL 294 exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 271 } 295 } 272 else 296 else 273 { 297 { 274 G4double sinStart = GetSinStartPhi(); 298 G4double sinStart = GetSinStartPhi(); 275 G4double cosStart = GetCosStartPhi(); 299 G4double cosStart = GetCosStartPhi(); 276 G4double sinEnd = GetSinEndPhi(); 300 G4double sinEnd = GetSinEndPhi(); 277 G4double cosEnd = GetCosEndPhi(); 301 G4double cosEnd = GetCosEndPhi(); 278 G4double sinCur = sinStart*cosHalf + cos 302 G4double sinCur = sinStart*cosHalf + cosStart*sinHalf; 279 G4double cosCur = cosStart*cosHalf - sin 303 G4double cosCur = cosStart*cosHalf - sinStart*sinHalf; 280 304 281 // set quadrilaterals 305 // set quadrilaterals 282 G4ThreeVectorList pols[NSTEPS+2]; 306 G4ThreeVectorList pols[NSTEPS+2]; 283 for (G4int k=0; k<ksteps+2; ++k) pols[k].r 307 for (G4int k=0; k<ksteps+2; ++k) pols[k].resize(4); 284 pols[0][0].set(rmin*cosStart,rmin*sinStart 308 pols[0][0].set(rmin*cosStart,rmin*sinStart, dz); 285 pols[0][1].set(rmin*cosStart,rmin*sinStart 309 pols[0][1].set(rmin*cosStart,rmin*sinStart,-dz); 286 pols[0][2].set(rmax*cosStart,rmax*sinStart 310 pols[0][2].set(rmax*cosStart,rmax*sinStart,-dz); 287 pols[0][3].set(rmax*cosStart,rmax*sinStart 311 pols[0][3].set(rmax*cosStart,rmax*sinStart, dz); 288 for (G4int k=1; k<ksteps+1; ++k) 312 for (G4int k=1; k<ksteps+1; ++k) 289 { 313 { 290 pols[k][0].set(rmin*cosCur,rmin*sinCur, 314 pols[k][0].set(rmin*cosCur,rmin*sinCur, dz); 291 pols[k][1].set(rmin*cosCur,rmin*sinCur,- 315 pols[k][1].set(rmin*cosCur,rmin*sinCur,-dz); 292 pols[k][2].set(rext*cosCur,rext*sinCur,- 316 pols[k][2].set(rext*cosCur,rext*sinCur,-dz); 293 pols[k][3].set(rext*cosCur,rext*sinCur, 317 pols[k][3].set(rext*cosCur,rext*sinCur, dz); 294 318 295 G4double sinTmp = sinCur; 319 G4double sinTmp = sinCur; 296 sinCur = sinCur*cosStep + cosCur*sinStep 320 sinCur = sinCur*cosStep + cosCur*sinStep; 297 cosCur = cosCur*cosStep - sinTmp*sinStep 321 cosCur = cosCur*cosStep - sinTmp*sinStep; 298 } 322 } 299 pols[ksteps+1][0].set(rmin*cosEnd,rmin*sin 323 pols[ksteps+1][0].set(rmin*cosEnd,rmin*sinEnd, dz); 300 pols[ksteps+1][1].set(rmin*cosEnd,rmin*sin 324 pols[ksteps+1][1].set(rmin*cosEnd,rmin*sinEnd,-dz); 301 pols[ksteps+1][2].set(rmax*cosEnd,rmax*sin 325 pols[ksteps+1][2].set(rmax*cosEnd,rmax*sinEnd,-dz); 302 pols[ksteps+1][3].set(rmax*cosEnd,rmax*sin 326 pols[ksteps+1][3].set(rmax*cosEnd,rmax*sinEnd, dz); 303 327 304 // set envelope and calculate extent 328 // set envelope and calculate extent 305 std::vector<const G4ThreeVectorList *> pol 329 std::vector<const G4ThreeVectorList *> polygons; 306 polygons.resize(ksteps+2); 330 polygons.resize(ksteps+2); 307 for (G4int k=0; k<ksteps+2; ++k) polygons[ 331 for (G4int k=0; k<ksteps+2; ++k) polygons[k] = &pols[k]; 308 G4BoundingEnvelope benv(bmin,bmax,polygons 332 G4BoundingEnvelope benv(bmin,bmax,polygons); 309 exist = benv.CalculateExtent(pAxis,pVoxelL 333 exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 310 } 334 } 311 return exist; 335 return exist; 312 } 336 } 313 337 314 ////////////////////////////////////////////// 338 /////////////////////////////////////////////////////////////////////////// 315 // 339 // 316 // Return whether point inside/outside/on surf 340 // Return whether point inside/outside/on surface 317 341 318 EInside G4Tubs::Inside( const G4ThreeVector& p 342 EInside G4Tubs::Inside( const G4ThreeVector& p ) const 319 { 343 { 320 G4double r2,pPhi,tolRMin,tolRMax; 344 G4double r2,pPhi,tolRMin,tolRMax; 321 EInside in = kOutside ; 345 EInside in = kOutside ; 322 346 323 if (std::fabs(p.z()) <= fDz - halfCarToleran 347 if (std::fabs(p.z()) <= fDz - halfCarTolerance) 324 { 348 { 325 r2 = p.x()*p.x() + p.y()*p.y() ; 349 r2 = p.x()*p.x() + p.y()*p.y() ; 326 350 327 if (fRMin != 0.0) { tolRMin = fRMin + half << 351 if (fRMin) { tolRMin = fRMin + halfRadTolerance ; } 328 else { tolRMin = 0 ; } 352 else { tolRMin = 0 ; } 329 353 330 tolRMax = fRMax - halfRadTolerance ; 354 tolRMax = fRMax - halfRadTolerance ; 331 << 355 332 if ((r2 >= tolRMin*tolRMin) && (r2 <= tolR 356 if ((r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax)) 333 { 357 { 334 if ( fPhiFullTube ) 358 if ( fPhiFullTube ) 335 { 359 { 336 in = kInside ; 360 in = kInside ; 337 } 361 } 338 else 362 else 339 { 363 { 340 // Try inner tolerant phi boundaries ( 364 // Try inner tolerant phi boundaries (=>inside) 341 // if not inside, try outer tolerant p 365 // if not inside, try outer tolerant phi boundaries 342 366 343 if ( (tolRMin==0) && (std::fabs(p.x()) 367 if ( (tolRMin==0) && (std::fabs(p.x())<=halfCarTolerance) 344 && (std::fabs(p.y()) 368 && (std::fabs(p.y())<=halfCarTolerance) ) 345 { 369 { 346 in=kSurface; 370 in=kSurface; 347 } 371 } 348 else 372 else 349 { 373 { 350 pPhi = std::atan2(p.y(),p.x()) ; 374 pPhi = std::atan2(p.y(),p.x()) ; 351 if ( pPhi < -halfAngTolerance ) { p 375 if ( pPhi < -halfAngTolerance ) { pPhi += twopi; } // 0<=pPhi<2pi 352 376 353 if ( fSPhi >= 0 ) 377 if ( fSPhi >= 0 ) 354 { 378 { 355 if ( (std::fabs(pPhi) < halfAngTol 379 if ( (std::fabs(pPhi) < halfAngTolerance) 356 && (std::fabs(fSPhi + fDPhi - tw 380 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 357 { << 381 { 358 pPhi += twopi ; // 0 <= pPhi < 2 382 pPhi += twopi ; // 0 <= pPhi < 2pi 359 } 383 } 360 if ( (pPhi >= fSPhi + halfAngToler 384 if ( (pPhi >= fSPhi + halfAngTolerance) 361 && (pPhi <= fSPhi + fDPhi - half 385 && (pPhi <= fSPhi + fDPhi - halfAngTolerance) ) 362 { 386 { 363 in = kInside ; 387 in = kInside ; 364 } 388 } 365 else if ( (pPhi >= fSPhi - halfAng 389 else if ( (pPhi >= fSPhi - halfAngTolerance) 366 && (pPhi <= fSPhi + fDPhi + 390 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 367 { 391 { 368 in = kSurface ; 392 in = kSurface ; 369 } 393 } 370 } 394 } 371 else // fSPhi < 0 395 else // fSPhi < 0 372 { 396 { 373 if ( (pPhi <= fSPhi + twopi - half 397 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 374 && (pPhi >= fSPhi + fDPhi + hal 398 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} //kOutside 375 else if ( (pPhi <= fSPhi + twopi + 399 else if ( (pPhi <= fSPhi + twopi + halfAngTolerance) 376 && (pPhi >= fSPhi + fDPhi 400 && (pPhi >= fSPhi + fDPhi - halfAngTolerance) ) 377 { 401 { 378 in = kSurface ; 402 in = kSurface ; 379 } 403 } 380 else 404 else 381 { 405 { 382 in = kInside ; 406 in = kInside ; 383 } 407 } 384 } 408 } 385 } << 409 } 386 } 410 } 387 } 411 } 388 else // Try generous boundaries 412 else // Try generous boundaries 389 { 413 { 390 tolRMin = fRMin - halfRadTolerance ; 414 tolRMin = fRMin - halfRadTolerance ; 391 tolRMax = fRMax + halfRadTolerance ; 415 tolRMax = fRMax + halfRadTolerance ; 392 416 393 if ( tolRMin < 0 ) { tolRMin = 0; } 417 if ( tolRMin < 0 ) { tolRMin = 0; } 394 418 395 if ( (r2 >= tolRMin*tolRMin) && (r2 <= t 419 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) ) 396 { 420 { 397 if (fPhiFullTube || (r2 <=halfRadToler 421 if (fPhiFullTube || (r2 <=halfRadTolerance*halfRadTolerance) ) 398 { // Continuous 422 { // Continuous in phi or on z-axis 399 in = kSurface ; 423 in = kSurface ; 400 } 424 } 401 else // Try outer tolerant phi boundar 425 else // Try outer tolerant phi boundaries only 402 { 426 { 403 pPhi = std::atan2(p.y(),p.x()) ; 427 pPhi = std::atan2(p.y(),p.x()) ; 404 428 405 if ( pPhi < -halfAngTolerance) { pP 429 if ( pPhi < -halfAngTolerance) { pPhi += twopi; } // 0<=pPhi<2pi 406 if ( fSPhi >= 0 ) 430 if ( fSPhi >= 0 ) 407 { 431 { 408 if ( (std::fabs(pPhi) < halfAngTol 432 if ( (std::fabs(pPhi) < halfAngTolerance) 409 && (std::fabs(fSPhi + fDPhi - tw 433 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 410 { << 434 { 411 pPhi += twopi ; // 0 <= pPhi < 2 435 pPhi += twopi ; // 0 <= pPhi < 2pi 412 } 436 } 413 if ( (pPhi >= fSPhi - halfAngToler 437 if ( (pPhi >= fSPhi - halfAngTolerance) 414 && (pPhi <= fSPhi + fDPhi + half 438 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 415 { 439 { 416 in = kSurface ; 440 in = kSurface ; 417 } 441 } 418 } 442 } 419 else // fSPhi < 0 443 else // fSPhi < 0 420 { 444 { 421 if ( (pPhi <= fSPhi + twopi - half 445 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 422 && (pPhi >= fSPhi + fDPhi + half 446 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} // kOutside 423 else 447 else 424 { 448 { 425 in = kSurface ; 449 in = kSurface ; 426 } 450 } 427 } 451 } 428 } 452 } 429 } 453 } 430 } 454 } 431 } 455 } 432 else if (std::fabs(p.z()) <= fDz + halfCarTo 456 else if (std::fabs(p.z()) <= fDz + halfCarTolerance) 433 { / 457 { // Check within tolerant r limits 434 r2 = p.x()*p.x() + p.y()*p.y() ; 458 r2 = p.x()*p.x() + p.y()*p.y() ; 435 tolRMin = fRMin - halfRadTolerance ; 459 tolRMin = fRMin - halfRadTolerance ; 436 tolRMax = fRMax + halfRadTolerance ; 460 tolRMax = fRMax + halfRadTolerance ; 437 461 438 if ( tolRMin < 0 ) { tolRMin = 0; } 462 if ( tolRMin < 0 ) { tolRMin = 0; } 439 463 440 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tol 464 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) ) 441 { 465 { 442 if (fPhiFullTube || (r2 <=halfRadToleran 466 if (fPhiFullTube || (r2 <=halfRadTolerance*halfRadTolerance)) 443 { // Continuous i 467 { // Continuous in phi or on z-axis 444 in = kSurface ; 468 in = kSurface ; 445 } 469 } 446 else // Try outer tolerant phi boundarie 470 else // Try outer tolerant phi boundaries 447 { 471 { 448 pPhi = std::atan2(p.y(),p.x()) ; 472 pPhi = std::atan2(p.y(),p.x()) ; 449 473 450 if ( pPhi < -halfAngTolerance ) { pPh 474 if ( pPhi < -halfAngTolerance ) { pPhi += twopi; } // 0<=pPhi<2pi 451 if ( fSPhi >= 0 ) 475 if ( fSPhi >= 0 ) 452 { 476 { 453 if ( (std::fabs(pPhi) < halfAngToler 477 if ( (std::fabs(pPhi) < halfAngTolerance) 454 && (std::fabs(fSPhi + fDPhi - twop 478 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 455 { << 479 { 456 pPhi += twopi ; // 0 <= pPhi < 2pi 480 pPhi += twopi ; // 0 <= pPhi < 2pi 457 } 481 } 458 if ( (pPhi >= fSPhi - halfAngToleran 482 if ( (pPhi >= fSPhi - halfAngTolerance) 459 && (pPhi <= fSPhi + fDPhi + halfAn 483 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 460 { 484 { 461 in = kSurface; 485 in = kSurface; 462 } 486 } 463 } 487 } 464 else // fSPhi < 0 488 else // fSPhi < 0 465 { 489 { 466 if ( (pPhi <= fSPhi + twopi - halfAn 490 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 467 && (pPhi >= fSPhi + fDPhi + halfA 491 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} 468 else 492 else 469 { 493 { 470 in = kSurface ; 494 in = kSurface ; 471 } 495 } 472 } << 496 } 473 } 497 } 474 } 498 } 475 } 499 } 476 return in; 500 return in; 477 } 501 } 478 502 479 ////////////////////////////////////////////// 503 /////////////////////////////////////////////////////////////////////////// 480 // 504 // 481 // Return unit normal of surface closest to p 505 // Return unit normal of surface closest to p 482 // - note if point on z axis, ignore phi divid 506 // - note if point on z axis, ignore phi divided sides 483 // - unsafe if point close to z axis a rmin=0 507 // - unsafe if point close to z axis a rmin=0 - no explicit checks 484 508 485 G4ThreeVector G4Tubs::SurfaceNormal( const G4T 509 G4ThreeVector G4Tubs::SurfaceNormal( const G4ThreeVector& p ) const 486 { 510 { 487 G4int noSurfaces = 0; 511 G4int noSurfaces = 0; 488 G4double rho, pPhi; 512 G4double rho, pPhi; 489 G4double distZ, distRMin, distRMax; 513 G4double distZ, distRMin, distRMax; 490 G4double distSPhi = kInfinity, distEPhi = kI 514 G4double distSPhi = kInfinity, distEPhi = kInfinity; 491 515 492 G4ThreeVector norm, sumnorm(0.,0.,0.); 516 G4ThreeVector norm, sumnorm(0.,0.,0.); 493 G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0); 517 G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0); 494 G4ThreeVector nR, nPs, nPe; 518 G4ThreeVector nR, nPs, nPe; 495 519 496 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()); 520 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()); 497 521 498 distRMin = std::fabs(rho - fRMin); 522 distRMin = std::fabs(rho - fRMin); 499 distRMax = std::fabs(rho - fRMax); 523 distRMax = std::fabs(rho - fRMax); 500 distZ = std::fabs(std::fabs(p.z()) - fDz) 524 distZ = std::fabs(std::fabs(p.z()) - fDz); 501 525 502 if (!fPhiFullTube) // Protected against ( << 526 if (!fPhiFullTube) // Protected against (0,0,z) 503 { 527 { 504 if ( rho > halfCarTolerance ) 528 if ( rho > halfCarTolerance ) 505 { 529 { 506 pPhi = std::atan2(p.y(),p.x()); 530 pPhi = std::atan2(p.y(),p.x()); 507 << 531 508 if (pPhi < fSPhi-halfCarTolerance) 532 if (pPhi < fSPhi-halfCarTolerance) { pPhi += twopi; } 509 else if (pPhi > fSPhi+fDPhi+halfCarToler 533 else if (pPhi > fSPhi+fDPhi+halfCarTolerance) { pPhi -= twopi; } 510 534 511 distSPhi = std::fabs( pPhi - fSPhi ); << 535 distSPhi = std::fabs( pPhi - fSPhi ); 512 distEPhi = std::fabs( pPhi - fSPhi - fDP << 536 distEPhi = std::fabs( pPhi - fSPhi - fDPhi ); 513 } 537 } 514 else if ( fRMin == 0.0 ) << 538 else if ( !fRMin ) 515 { 539 { 516 distSPhi = 0.; << 540 distSPhi = 0.; 517 distEPhi = 0.; << 541 distEPhi = 0.; 518 } 542 } 519 nPs = G4ThreeVector( sinSPhi, -cosSPhi, 0 543 nPs = G4ThreeVector( sinSPhi, -cosSPhi, 0 ); 520 nPe = G4ThreeVector( -sinEPhi, cosEPhi, 0 544 nPe = G4ThreeVector( -sinEPhi, cosEPhi, 0 ); 521 } 545 } 522 if ( rho > halfCarTolerance ) { nR = G4Three 546 if ( rho > halfCarTolerance ) { nR = G4ThreeVector(p.x()/rho,p.y()/rho,0); } 523 547 524 if( distRMax <= halfCarTolerance ) 548 if( distRMax <= halfCarTolerance ) 525 { 549 { 526 ++noSurfaces; 550 ++noSurfaces; 527 sumnorm += nR; 551 sumnorm += nR; 528 } 552 } 529 if( (fRMin != 0.0) && (distRMin <= halfCarTo << 553 if( fRMin && (distRMin <= halfCarTolerance) ) 530 { 554 { 531 ++noSurfaces; 555 ++noSurfaces; 532 sumnorm -= nR; 556 sumnorm -= nR; 533 } 557 } 534 if( fDPhi < twopi ) << 558 if( fDPhi < twopi ) 535 { 559 { 536 if (distSPhi <= halfAngTolerance) << 560 if (distSPhi <= halfAngTolerance) 537 { 561 { 538 ++noSurfaces; 562 ++noSurfaces; 539 sumnorm += nPs; 563 sumnorm += nPs; 540 } 564 } 541 if (distEPhi <= halfAngTolerance) << 565 if (distEPhi <= halfAngTolerance) 542 { 566 { 543 ++noSurfaces; 567 ++noSurfaces; 544 sumnorm += nPe; 568 sumnorm += nPe; 545 } 569 } 546 } 570 } 547 if (distZ <= halfCarTolerance) << 571 if (distZ <= halfCarTolerance) 548 { 572 { 549 ++noSurfaces; 573 ++noSurfaces; 550 if ( p.z() >= 0.) { sumnorm += nZ; } 574 if ( p.z() >= 0.) { sumnorm += nZ; } 551 else { sumnorm -= nZ; } 575 else { sumnorm -= nZ; } 552 } 576 } 553 if ( noSurfaces == 0 ) 577 if ( noSurfaces == 0 ) 554 { 578 { 555 #ifdef G4CSGDEBUG 579 #ifdef G4CSGDEBUG 556 G4Exception("G4Tubs::SurfaceNormal(p)", "G 580 G4Exception("G4Tubs::SurfaceNormal(p)", "GeomSolids1002", 557 JustWarning, "Point p is not o 581 JustWarning, "Point p is not on surface !?" ); 558 G4long oldprc = G4cout.precision(20); << 582 G4int oldprc = G4cout.precision(20); 559 G4cout<< "G4Tubs::SN ( "<<p.x()<<", "<<p.y 583 G4cout<< "G4Tubs::SN ( "<<p.x()<<", "<<p.y()<<", "<<p.z()<<" ); " 560 << G4endl << G4endl; 584 << G4endl << G4endl; 561 G4cout.precision(oldprc) ; 585 G4cout.precision(oldprc) ; 562 #endif << 586 #endif 563 norm = ApproxSurfaceNormal(p); 587 norm = ApproxSurfaceNormal(p); 564 } 588 } 565 else if ( noSurfaces == 1 ) { norm = sumnor 589 else if ( noSurfaces == 1 ) { norm = sumnorm; } 566 else { norm = sumnor 590 else { norm = sumnorm.unit(); } 567 591 568 return norm; 592 return norm; 569 } 593 } 570 594 571 ////////////////////////////////////////////// 595 ///////////////////////////////////////////////////////////////////////////// 572 // 596 // 573 // Algorithm for SurfaceNormal() following the 597 // Algorithm for SurfaceNormal() following the original specification 574 // for points not on the surface 598 // for points not on the surface 575 599 576 G4ThreeVector G4Tubs::ApproxSurfaceNormal( con 600 G4ThreeVector G4Tubs::ApproxSurfaceNormal( const G4ThreeVector& p ) const 577 { 601 { 578 ENorm side ; 602 ENorm side ; 579 G4ThreeVector norm ; 603 G4ThreeVector norm ; 580 G4double rho, phi ; 604 G4double rho, phi ; 581 G4double distZ, distRMin, distRMax, distSPhi 605 G4double distZ, distRMin, distRMax, distSPhi, distEPhi, distMin ; 582 606 583 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 607 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 584 608 585 distRMin = std::fabs(rho - fRMin) ; 609 distRMin = std::fabs(rho - fRMin) ; 586 distRMax = std::fabs(rho - fRMax) ; 610 distRMax = std::fabs(rho - fRMax) ; 587 distZ = std::fabs(std::fabs(p.z()) - fDz) 611 distZ = std::fabs(std::fabs(p.z()) - fDz) ; 588 612 589 if (distRMin < distRMax) // First minimum 613 if (distRMin < distRMax) // First minimum 590 { 614 { 591 if ( distZ < distRMin ) 615 if ( distZ < distRMin ) 592 { 616 { 593 distMin = distZ ; 617 distMin = distZ ; 594 side = kNZ ; 618 side = kNZ ; 595 } 619 } 596 else 620 else 597 { 621 { 598 distMin = distRMin ; 622 distMin = distRMin ; 599 side = kNRMin ; 623 side = kNRMin ; 600 } 624 } 601 } 625 } 602 else 626 else 603 { 627 { 604 if ( distZ < distRMax ) 628 if ( distZ < distRMax ) 605 { 629 { 606 distMin = distZ ; 630 distMin = distZ ; 607 side = kNZ ; 631 side = kNZ ; 608 } 632 } 609 else 633 else 610 { 634 { 611 distMin = distRMax ; 635 distMin = distRMax ; 612 side = kNRMax ; 636 side = kNRMax ; 613 } 637 } 614 } << 638 } 615 if (!fPhiFullTube && (rho != 0.0) ) // Pro << 639 if (!fPhiFullTube && rho ) // Protected against (0,0,z) 616 { 640 { 617 phi = std::atan2(p.y(),p.x()) ; 641 phi = std::atan2(p.y(),p.x()) ; 618 642 619 if ( phi < 0 ) { phi += twopi; } 643 if ( phi < 0 ) { phi += twopi; } 620 644 621 if ( fSPhi < 0 ) 645 if ( fSPhi < 0 ) 622 { 646 { 623 distSPhi = std::fabs(phi - (fSPhi + twop 647 distSPhi = std::fabs(phi - (fSPhi + twopi))*rho ; 624 } 648 } 625 else 649 else 626 { 650 { 627 distSPhi = std::fabs(phi - fSPhi)*rho ; 651 distSPhi = std::fabs(phi - fSPhi)*rho ; 628 } 652 } 629 distEPhi = std::fabs(phi - fSPhi - fDPhi)* 653 distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ; 630 << 654 631 if (distSPhi < distEPhi) // Find new minim 655 if (distSPhi < distEPhi) // Find new minimum 632 { 656 { 633 if ( distSPhi < distMin ) 657 if ( distSPhi < distMin ) 634 { 658 { 635 side = kNSPhi ; 659 side = kNSPhi ; 636 } 660 } 637 } 661 } 638 else 662 else 639 { 663 { 640 if ( distEPhi < distMin ) 664 if ( distEPhi < distMin ) 641 { 665 { 642 side = kNEPhi ; 666 side = kNEPhi ; 643 } 667 } 644 } 668 } 645 } << 669 } 646 switch ( side ) 670 switch ( side ) 647 { 671 { 648 case kNRMin : // Inner radius 672 case kNRMin : // Inner radius 649 { << 673 { 650 norm = G4ThreeVector(-p.x()/rho, -p.y()/ 674 norm = G4ThreeVector(-p.x()/rho, -p.y()/rho, 0) ; 651 break ; 675 break ; 652 } 676 } 653 case kNRMax : // Outer radius 677 case kNRMax : // Outer radius 654 { << 678 { 655 norm = G4ThreeVector(p.x()/rho, p.y()/rh 679 norm = G4ThreeVector(p.x()/rho, p.y()/rho, 0) ; 656 break ; 680 break ; 657 } 681 } 658 case kNZ : // + or - dz 682 case kNZ : // + or - dz 659 { << 683 { 660 if ( p.z() > 0 ) { norm = G4ThreeVector 684 if ( p.z() > 0 ) { norm = G4ThreeVector(0,0,1) ; } 661 else { norm = G4ThreeVector 685 else { norm = G4ThreeVector(0,0,-1); } 662 break ; 686 break ; 663 } 687 } 664 case kNSPhi: 688 case kNSPhi: 665 { 689 { 666 norm = G4ThreeVector(sinSPhi, -cosSPhi, 690 norm = G4ThreeVector(sinSPhi, -cosSPhi, 0) ; 667 break ; 691 break ; 668 } 692 } 669 case kNEPhi: 693 case kNEPhi: 670 { 694 { 671 norm = G4ThreeVector(-sinEPhi, cosEPhi, 695 norm = G4ThreeVector(-sinEPhi, cosEPhi, 0) ; 672 break; 696 break; 673 } 697 } 674 default: // Should never reach this c 698 default: // Should never reach this case ... 675 { 699 { 676 DumpInfo(); 700 DumpInfo(); 677 G4Exception("G4Tubs::ApproxSurfaceNormal 701 G4Exception("G4Tubs::ApproxSurfaceNormal()", 678 "GeomSolids1002", JustWarnin 702 "GeomSolids1002", JustWarning, 679 "Undefined side for valid su 703 "Undefined side for valid surface normal to solid."); 680 break ; 704 break ; 681 } << 705 } 682 } << 706 } 683 return norm; 707 return norm; 684 } 708 } 685 709 686 ////////////////////////////////////////////// 710 //////////////////////////////////////////////////////////////////// 687 // 711 // 688 // 712 // 689 // Calculate distance to shape from outside, a 713 // Calculate distance to shape from outside, along normalised vector 690 // - return kInfinity if no intersection, or i 714 // - return kInfinity if no intersection, or intersection distance <= tolerance 691 // 715 // 692 // - Compute the intersection with the z plane << 716 // - Compute the intersection with the z planes 693 // - if at valid r, phi, return 717 // - if at valid r, phi, return 694 // 718 // 695 // -> If point is outer outer radius, compute 719 // -> If point is outer outer radius, compute intersection with rmax 696 // - if at valid phi,z return 720 // - if at valid phi,z return 697 // 721 // 698 // -> Compute intersection with inner radius, 722 // -> Compute intersection with inner radius, taking largest +ve root 699 // - if valid (in z,phi), save intersct 723 // - if valid (in z,phi), save intersction 700 // 724 // 701 // -> If phi segmented, compute intersectio 725 // -> If phi segmented, compute intersections with phi half planes 702 // - return smallest of valid phi inter 726 // - return smallest of valid phi intersections and 703 // inner radius intersection 727 // inner radius intersection 704 // 728 // 705 // NOTE: 729 // NOTE: 706 // - 'if valid' implies tolerant checking of i 730 // - 'if valid' implies tolerant checking of intersection points 707 731 708 G4double G4Tubs::DistanceToIn( const G4ThreeVe 732 G4double G4Tubs::DistanceToIn( const G4ThreeVector& p, 709 const G4ThreeVe 733 const G4ThreeVector& v ) const 710 { 734 { 711 G4double snxt = kInfinity ; // snxt = d 735 G4double snxt = kInfinity ; // snxt = default return value 712 G4double tolORMin2, tolIRMax2 ; // 'generou 736 G4double tolORMin2, tolIRMax2 ; // 'generous' radii squared 713 G4double tolORMax2, tolIRMin2, tolODz, tolID 737 G4double tolORMax2, tolIRMin2, tolODz, tolIDz ; 714 const G4double dRmax = 100.*fRMax; 738 const G4double dRmax = 100.*fRMax; 715 739 716 // Intersection point variables 740 // Intersection point variables 717 // 741 // 718 G4double Dist, sd, xi, yi, zi, rho2, inum, i 742 G4double Dist, sd, xi, yi, zi, rho2, inum, iden, cosPsi, Comp ; 719 G4double t1, t2, t3, b, c, d ; // Quadra << 743 G4double t1, t2, t3, b, c, d ; // Quadratic solver variables 720 << 744 721 // Calculate tolerant rmin and rmax 745 // Calculate tolerant rmin and rmax 722 746 723 if (fRMin > kRadTolerance) 747 if (fRMin > kRadTolerance) 724 { 748 { 725 tolORMin2 = (fRMin - halfRadTolerance)*(fR 749 tolORMin2 = (fRMin - halfRadTolerance)*(fRMin - halfRadTolerance) ; 726 tolIRMin2 = (fRMin + halfRadTolerance)*(fR 750 tolIRMin2 = (fRMin + halfRadTolerance)*(fRMin + halfRadTolerance) ; 727 } 751 } 728 else 752 else 729 { 753 { 730 tolORMin2 = 0.0 ; 754 tolORMin2 = 0.0 ; 731 tolIRMin2 = 0.0 ; 755 tolIRMin2 = 0.0 ; 732 } 756 } 733 tolORMax2 = (fRMax + halfRadTolerance)*(fRMa 757 tolORMax2 = (fRMax + halfRadTolerance)*(fRMax + halfRadTolerance) ; 734 tolIRMax2 = (fRMax - halfRadTolerance)*(fRMa 758 tolIRMax2 = (fRMax - halfRadTolerance)*(fRMax - halfRadTolerance) ; 735 759 736 // Intersection with Z surfaces 760 // Intersection with Z surfaces 737 761 738 tolIDz = fDz - halfCarTolerance ; 762 tolIDz = fDz - halfCarTolerance ; 739 tolODz = fDz + halfCarTolerance ; 763 tolODz = fDz + halfCarTolerance ; 740 764 741 if (std::fabs(p.z()) >= tolIDz) 765 if (std::fabs(p.z()) >= tolIDz) 742 { 766 { 743 if ( p.z()*v.z() < 0 ) // at +Z going i 767 if ( p.z()*v.z() < 0 ) // at +Z going in -Z or visa versa 744 { 768 { 745 sd = (std::fabs(p.z()) - fDz)/std::fabs( 769 sd = (std::fabs(p.z()) - fDz)/std::fabs(v.z()) ; // Z intersect distance 746 770 747 if(sd < 0.0) { sd = 0.0; } 771 if(sd < 0.0) { sd = 0.0; } 748 772 749 xi = p.x() + sd*v.x() ; 773 xi = p.x() + sd*v.x() ; // Intersection coords 750 yi = p.y() + sd*v.y() ; 774 yi = p.y() + sd*v.y() ; 751 rho2 = xi*xi + yi*yi ; 775 rho2 = xi*xi + yi*yi ; 752 776 753 // Check validity of intersection 777 // Check validity of intersection 754 778 755 if ((tolIRMin2 <= rho2) && (rho2 <= tolI 779 if ((tolIRMin2 <= rho2) && (rho2 <= tolIRMax2)) 756 { 780 { 757 if (!fPhiFullTube && (rho2 != 0.0)) << 781 if (!fPhiFullTube && rho2) 758 { 782 { 759 // Psi = angle made with central (av 783 // Psi = angle made with central (average) phi of shape 760 // 784 // 761 inum = xi*cosCPhi + yi*sinCPhi ; 785 inum = xi*cosCPhi + yi*sinCPhi ; 762 iden = std::sqrt(rho2) ; 786 iden = std::sqrt(rho2) ; 763 cosPsi = inum/iden ; 787 cosPsi = inum/iden ; 764 if (cosPsi >= cosHDPhiIT) { return 788 if (cosPsi >= cosHDPhiIT) { return sd ; } 765 } 789 } 766 else 790 else 767 { 791 { 768 return sd ; 792 return sd ; 769 } 793 } 770 } 794 } 771 } 795 } 772 else 796 else 773 { 797 { 774 if ( snxt<halfCarTolerance ) { snxt=0; 798 if ( snxt<halfCarTolerance ) { snxt=0; } 775 return snxt ; // On/outside extent, and 799 return snxt ; // On/outside extent, and heading away 776 // -> cannot intersect 800 // -> cannot intersect 777 } 801 } 778 } 802 } 779 803 780 // -> Can not intersect z surfaces 804 // -> Can not intersect z surfaces 781 // 805 // 782 // Intersection with rmax (possible return) 806 // Intersection with rmax (possible return) and rmin (must also check phi) 783 // 807 // 784 // Intersection point (xi,yi,zi) on line x=p 808 // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc. 785 // 809 // 786 // Intersects with x^2+y^2=R^2 810 // Intersects with x^2+y^2=R^2 787 // 811 // 788 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v. 812 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0 789 // t1 t2 813 // t1 t2 t3 790 814 791 t1 = 1.0 - v.z()*v.z() ; 815 t1 = 1.0 - v.z()*v.z() ; 792 t2 = p.x()*v.x() + p.y()*v.y() ; 816 t2 = p.x()*v.x() + p.y()*v.y() ; 793 t3 = p.x()*p.x() + p.y()*p.y() ; 817 t3 = p.x()*p.x() + p.y()*p.y() ; 794 818 795 if ( t1 > 0 ) // Check not || to z ax 819 if ( t1 > 0 ) // Check not || to z axis 796 { 820 { 797 b = t2/t1 ; 821 b = t2/t1 ; 798 c = t3 - fRMax*fRMax ; 822 c = t3 - fRMax*fRMax ; 799 if ((t3 >= tolORMax2) && (t2<0)) // This 823 if ((t3 >= tolORMax2) && (t2<0)) // This also handles the tangent case 800 { 824 { 801 // Try outer cylinder intersection 825 // Try outer cylinder intersection 802 // c=(t3-fRMax*fRMax)/t1; 826 // c=(t3-fRMax*fRMax)/t1; 803 827 804 c /= t1 ; 828 c /= t1 ; 805 d = b*b - c ; 829 d = b*b - c ; 806 830 807 if (d >= 0) // If real root 831 if (d >= 0) // If real root 808 { 832 { 809 sd = c/(-b+std::sqrt(d)); 833 sd = c/(-b+std::sqrt(d)); 810 if (sd >= 0) // If 'forwards' 834 if (sd >= 0) // If 'forwards' 811 { 835 { 812 if ( sd>dRmax ) // Avoid rounding er 836 if ( sd>dRmax ) // Avoid rounding errors due to precision issues on 813 { // 64 bits systems. 837 { // 64 bits systems. Split long distances and recompute 814 G4double fTerm = sd-std::fmod(sd,d 838 G4double fTerm = sd-std::fmod(sd,dRmax); 815 sd = fTerm + DistanceToIn(p+fTerm* 839 sd = fTerm + DistanceToIn(p+fTerm*v,v); 816 } << 840 } 817 // Check z intersection 841 // Check z intersection 818 // 842 // 819 zi = p.z() + sd*v.z() ; 843 zi = p.z() + sd*v.z() ; 820 if (std::fabs(zi)<=tolODz) 844 if (std::fabs(zi)<=tolODz) 821 { 845 { 822 // Z ok. Check phi intersection if 846 // Z ok. Check phi intersection if reqd 823 // 847 // 824 if (fPhiFullTube) 848 if (fPhiFullTube) 825 { 849 { 826 return sd ; 850 return sd ; 827 } 851 } 828 else 852 else 829 { 853 { 830 xi = p.x() + sd*v.x() ; 854 xi = p.x() + sd*v.x() ; 831 yi = p.y() + sd*v.y() ; 855 yi = p.y() + sd*v.y() ; 832 cosPsi = (xi*cosCPhi + yi*sinCPh 856 cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMax ; 833 if (cosPsi >= cosHDPhiIT) { ret 857 if (cosPsi >= cosHDPhiIT) { return sd ; } 834 } 858 } 835 } // end if std::fabs(zi) 859 } // end if std::fabs(zi) 836 } // end if (sd>=0) 860 } // end if (sd>=0) 837 } // end if (d>=0) 861 } // end if (d>=0) 838 } // end if (r>=fRMax) 862 } // end if (r>=fRMax) 839 else << 863 else 840 { 864 { 841 // Inside outer radius : 865 // Inside outer radius : 842 // check not inside, and heading through 866 // check not inside, and heading through tubs (-> 0 to in) 843 867 844 if ((t3 > tolIRMin2) && (t2 < 0) && (std 868 if ((t3 > tolIRMin2) && (t2 < 0) && (std::fabs(p.z()) <= tolIDz)) 845 { 869 { 846 // Inside both radii, delta r -ve, ins 870 // Inside both radii, delta r -ve, inside z extent 847 871 848 if (!fPhiFullTube) 872 if (!fPhiFullTube) 849 { 873 { 850 inum = p.x()*cosCPhi + p.y()*sinCP 874 inum = p.x()*cosCPhi + p.y()*sinCPhi ; 851 iden = std::sqrt(t3) ; 875 iden = std::sqrt(t3) ; 852 cosPsi = inum/iden ; 876 cosPsi = inum/iden ; 853 if (cosPsi >= cosHDPhiIT) 877 if (cosPsi >= cosHDPhiIT) 854 { 878 { 855 // In the old version, the small n 879 // In the old version, the small negative tangent for the point 856 // on surface was not taken in acc 880 // on surface was not taken in account, and returning 0.0 ... 857 // New version: check the tangent << 881 // New version: check the tangent for the point on surface and 858 // if no intersection, return kInf 882 // if no intersection, return kInfinity, if intersection instead 859 // return sd. 883 // return sd. 860 // 884 // 861 c = t3-fRMax*fRMax; << 885 c = t3-fRMax*fRMax; 862 if ( c<=0.0 ) 886 if ( c<=0.0 ) 863 { 887 { 864 return 0.0; 888 return 0.0; 865 } 889 } 866 else 890 else 867 { 891 { 868 c = c/t1 ; 892 c = c/t1 ; 869 d = b*b-c; 893 d = b*b-c; 870 if ( d>=0.0 ) 894 if ( d>=0.0 ) 871 { 895 { 872 snxt = c/(-b+std::sqrt(d)); // 896 snxt = c/(-b+std::sqrt(d)); // using safe solution 873 // << 897 // for quadratic equation 874 if ( snxt < halfCarTolerance ) 898 if ( snxt < halfCarTolerance ) { snxt=0; } 875 return snxt ; 899 return snxt ; 876 } << 900 } 877 else 901 else 878 { 902 { 879 return kInfinity; 903 return kInfinity; 880 } 904 } 881 } 905 } 882 } << 906 } 883 } 907 } 884 else 908 else 885 { << 909 { 886 // In the old version, the small neg 910 // In the old version, the small negative tangent for the point 887 // on surface was not taken in accou 911 // on surface was not taken in account, and returning 0.0 ... 888 // New version: check the tangent fo << 912 // New version: check the tangent for the point on surface and 889 // if no intersection, return kInfin 913 // if no intersection, return kInfinity, if intersection instead 890 // return sd. 914 // return sd. 891 // 915 // 892 c = t3 - fRMax*fRMax; << 916 c = t3 - fRMax*fRMax; 893 if ( c<=0.0 ) 917 if ( c<=0.0 ) 894 { 918 { 895 return 0.0; 919 return 0.0; 896 } 920 } 897 else 921 else 898 { 922 { 899 c = c/t1 ; 923 c = c/t1 ; 900 d = b*b-c; 924 d = b*b-c; 901 if ( d>=0.0 ) 925 if ( d>=0.0 ) 902 { 926 { 903 snxt= c/(-b+std::sqrt(d)); // us 927 snxt= c/(-b+std::sqrt(d)); // using safe solution 904 // fo << 928 // for quadratic equation 905 if ( snxt < halfCarTolerance ) { 929 if ( snxt < halfCarTolerance ) { snxt=0; } 906 return snxt ; 930 return snxt ; 907 } << 931 } 908 else 932 else 909 { 933 { 910 return kInfinity; 934 return kInfinity; 911 } 935 } 912 } 936 } 913 } // end if (!fPhiFullTube) 937 } // end if (!fPhiFullTube) 914 } // end if (t3>tolIRMin2) 938 } // end if (t3>tolIRMin2) 915 } // end if (Inside Outer Radius) << 939 } // end if (Inside Outer Radius) 916 if ( fRMin != 0.0 ) // Try inner cylind << 940 if ( fRMin ) // Try inner cylinder intersection 917 { 941 { 918 c = (t3 - fRMin*fRMin)/t1 ; 942 c = (t3 - fRMin*fRMin)/t1 ; 919 d = b*b - c ; 943 d = b*b - c ; 920 if ( d >= 0.0 ) // If real root 944 if ( d >= 0.0 ) // If real root 921 { 945 { 922 // Always want 2nd root - we are outsi 946 // Always want 2nd root - we are outside and know rmax Hit was bad 923 // - If on surface of rmin also need f 947 // - If on surface of rmin also need farthest root 924 948 925 sd =( b > 0. )? c/(-b - std::sqrt(d)) 949 sd =( b > 0. )? c/(-b - std::sqrt(d)) : (-b + std::sqrt(d)); 926 if (sd >= -halfCarTolerance) // check 950 if (sd >= -halfCarTolerance) // check forwards 927 { 951 { 928 // Check z intersection 952 // Check z intersection 929 // 953 // 930 if(sd < 0.0) { sd = 0.0; } 954 if(sd < 0.0) { sd = 0.0; } 931 if ( sd>dRmax ) // Avoid rounding er 955 if ( sd>dRmax ) // Avoid rounding errors due to precision issues seen 932 { // 64 bits systems. 956 { // 64 bits systems. Split long distances and recompute 933 G4double fTerm = sd-std::fmod(sd,d 957 G4double fTerm = sd-std::fmod(sd,dRmax); 934 sd = fTerm + DistanceToIn(p+fTerm* 958 sd = fTerm + DistanceToIn(p+fTerm*v,v); 935 } << 959 } 936 zi = p.z() + sd*v.z() ; 960 zi = p.z() + sd*v.z() ; 937 if (std::fabs(zi) <= tolODz) 961 if (std::fabs(zi) <= tolODz) 938 { 962 { 939 // Z ok. Check phi 963 // Z ok. Check phi 940 // 964 // 941 if ( fPhiFullTube ) 965 if ( fPhiFullTube ) 942 { 966 { 943 return sd ; << 967 return sd ; 944 } 968 } 945 else 969 else 946 { 970 { 947 xi = p.x() + sd*v.x() ; 971 xi = p.x() + sd*v.x() ; 948 yi = p.y() + sd*v.y() ; 972 yi = p.y() + sd*v.y() ; 949 cosPsi = (xi*cosCPhi + yi*sinCPh 973 cosPsi = (xi*cosCPhi + yi*sinCPhi)*fInvRmin; 950 if (cosPsi >= cosHDPhiIT) 974 if (cosPsi >= cosHDPhiIT) 951 { 975 { 952 // Good inner radius isect 976 // Good inner radius isect 953 // - but earlier phi isect sti 977 // - but earlier phi isect still possible 954 978 955 snxt = sd ; 979 snxt = sd ; 956 } 980 } 957 } 981 } 958 } // end if std::fabs(zi) 982 } // end if std::fabs(zi) 959 } // end if (sd>=0) 983 } // end if (sd>=0) 960 } // end if (d>=0) 984 } // end if (d>=0) 961 } // end if (fRMin) 985 } // end if (fRMin) 962 } 986 } 963 987 964 // Phi segment intersection 988 // Phi segment intersection 965 // 989 // 966 // o Tolerant of points inside phi planes by 990 // o Tolerant of points inside phi planes by up to kCarTolerance*0.5 967 // 991 // 968 // o NOTE: Large duplication of code between 992 // o NOTE: Large duplication of code between sphi & ephi checks 969 // -> only diffs: sphi -> ephi, Comp 993 // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane 970 // intersection check <=0 -> >=0 994 // intersection check <=0 -> >=0 971 // -> use some form of loop Construc 995 // -> use some form of loop Construct ? 972 // 996 // 973 if ( !fPhiFullTube ) 997 if ( !fPhiFullTube ) 974 { 998 { 975 // First phi surface (Starting phi) 999 // First phi surface (Starting phi) 976 // 1000 // 977 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 1001 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 978 << 1002 979 if ( Comp < 0 ) // Component in outwards 1003 if ( Comp < 0 ) // Component in outwards normal dirn 980 { 1004 { 981 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 1005 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 982 1006 983 if ( Dist < halfCarTolerance ) 1007 if ( Dist < halfCarTolerance ) 984 { 1008 { 985 sd = Dist/Comp ; 1009 sd = Dist/Comp ; 986 1010 987 if (sd < snxt) 1011 if (sd < snxt) 988 { 1012 { 989 if ( sd < 0 ) { sd = 0.0; } 1013 if ( sd < 0 ) { sd = 0.0; } 990 zi = p.z() + sd*v.z() ; 1014 zi = p.z() + sd*v.z() ; 991 if ( std::fabs(zi) <= tolODz ) 1015 if ( std::fabs(zi) <= tolODz ) 992 { 1016 { 993 xi = p.x() + sd*v.x() ; 1017 xi = p.x() + sd*v.x() ; 994 yi = p.y() + sd*v.y() ; 1018 yi = p.y() + sd*v.y() ; 995 rho2 = xi*xi + yi*yi ; 1019 rho2 = xi*xi + yi*yi ; 996 1020 997 if ( ( (rho2 >= tolIRMin2) && (rho 1021 if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) ) 998 || ( (rho2 > tolORMin2) && (rho 1022 || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2) 999 && ( v.y()*cosSPhi - v.x()*sin 1023 && ( v.y()*cosSPhi - v.x()*sinSPhi > 0 ) 1000 && ( v.x()*cosSPhi + v.y()*si 1024 && ( v.x()*cosSPhi + v.y()*sinSPhi >= 0 ) ) 1001 || ( (rho2 > tolIRMax2) && (rho 1025 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2) 1002 && (v.y()*cosSPhi - v.x()*sin 1026 && (v.y()*cosSPhi - v.x()*sinSPhi > 0) 1003 && (v.x()*cosSPhi + v.y()*sin 1027 && (v.x()*cosSPhi + v.y()*sinSPhi < 0) ) ) 1004 { 1028 { 1005 // z and r intersections good 1029 // z and r intersections good 1006 // - check intersecting with co 1030 // - check intersecting with correct half-plane 1007 // 1031 // 1008 if ((yi*cosCPhi-xi*sinCPhi) <= 1032 if ((yi*cosCPhi-xi*sinCPhi) <= halfCarTolerance) { snxt = sd; } 1009 } 1033 } 1010 } 1034 } 1011 } 1035 } 1012 } << 1036 } 1013 } 1037 } 1014 << 1038 1015 // Second phi surface (Ending phi) 1039 // Second phi surface (Ending phi) 1016 1040 1017 Comp = -(v.x()*sinEPhi - v.y()*cosEPhi 1041 Comp = -(v.x()*sinEPhi - v.y()*cosEPhi) ; 1018 << 1042 1019 if (Comp < 0 ) // Component in outwards 1043 if (Comp < 0 ) // Component in outwards normal dirn 1020 { 1044 { 1021 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) 1045 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ; 1022 1046 1023 if ( Dist < halfCarTolerance ) 1047 if ( Dist < halfCarTolerance ) 1024 { 1048 { 1025 sd = Dist/Comp ; 1049 sd = Dist/Comp ; 1026 1050 1027 if (sd < snxt) 1051 if (sd < snxt) 1028 { 1052 { 1029 if ( sd < 0 ) { sd = 0; } 1053 if ( sd < 0 ) { sd = 0; } 1030 zi = p.z() + sd*v.z() ; 1054 zi = p.z() + sd*v.z() ; 1031 if ( std::fabs(zi) <= tolODz ) 1055 if ( std::fabs(zi) <= tolODz ) 1032 { 1056 { 1033 xi = p.x() + sd*v.x() ; 1057 xi = p.x() + sd*v.x() ; 1034 yi = p.y() + sd*v.y() ; 1058 yi = p.y() + sd*v.y() ; 1035 rho2 = xi*xi + yi*yi ; 1059 rho2 = xi*xi + yi*yi ; 1036 if ( ( (rho2 >= tolIRMin2) && (rh 1060 if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) ) 1037 || ( (rho2 > tolORMin2) && ( 1061 || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2) 1038 && (v.x()*sinEPhi - v.y()*c 1062 && (v.x()*sinEPhi - v.y()*cosEPhi > 0) 1039 && (v.x()*cosEPhi + v.y()*s 1063 && (v.x()*cosEPhi + v.y()*sinEPhi >= 0) ) 1040 || ( (rho2 > tolIRMax2) && (r 1064 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2) 1041 && (v.x()*sinEPhi - v.y()*c 1065 && (v.x()*sinEPhi - v.y()*cosEPhi > 0) 1042 && (v.x()*cosEPhi + v.y()*s 1066 && (v.x()*cosEPhi + v.y()*sinEPhi < 0) ) ) 1043 { 1067 { 1044 // z and r intersections good 1068 // z and r intersections good 1045 // - check intersecting with co 1069 // - check intersecting with correct half-plane 1046 // 1070 // 1047 if ( (yi*cosCPhi-xi*sinCPhi) >= 1071 if ( (yi*cosCPhi-xi*sinCPhi) >= 0 ) { snxt = sd; } 1048 } //?? >= 1072 } //?? >=-halfCarTolerance 1049 } 1073 } 1050 } 1074 } 1051 } 1075 } 1052 } // Comp < 0 1076 } // Comp < 0 1053 } // !fPhiFullTube << 1077 } // !fPhiFullTube 1054 if ( snxt<halfCarTolerance ) { snxt=0; } 1078 if ( snxt<halfCarTolerance ) { snxt=0; } 1055 return snxt ; 1079 return snxt ; 1056 } 1080 } 1057 << 1081 1058 ///////////////////////////////////////////// 1082 ////////////////////////////////////////////////////////////////// 1059 // 1083 // 1060 // Calculate distance to shape from outside, 1084 // Calculate distance to shape from outside, along normalised vector 1061 // - return kInfinity if no intersection, or 1085 // - return kInfinity if no intersection, or intersection distance <= tolerance 1062 // 1086 // 1063 // - Compute the intersection with the z plan << 1087 // - Compute the intersection with the z planes 1064 // - if at valid r, phi, return 1088 // - if at valid r, phi, return 1065 // 1089 // 1066 // -> If point is outer outer radius, compute 1090 // -> If point is outer outer radius, compute intersection with rmax 1067 // - if at valid phi,z return 1091 // - if at valid phi,z return 1068 // 1092 // 1069 // -> Compute intersection with inner radius, 1093 // -> Compute intersection with inner radius, taking largest +ve root 1070 // - if valid (in z,phi), save intersc 1094 // - if valid (in z,phi), save intersction 1071 // 1095 // 1072 // -> If phi segmented, compute intersecti 1096 // -> If phi segmented, compute intersections with phi half planes 1073 // - return smallest of valid phi inte 1097 // - return smallest of valid phi intersections and 1074 // inner radius intersection 1098 // inner radius intersection 1075 // 1099 // 1076 // NOTE: 1100 // NOTE: 1077 // - Precalculations for phi trigonometry are 1101 // - Precalculations for phi trigonometry are Done `just in time' 1078 // - `if valid' implies tolerant checking of 1102 // - `if valid' implies tolerant checking of intersection points 1079 // Calculate distance (<= actual) to closes 1103 // Calculate distance (<= actual) to closest surface of shape from outside 1080 // - Calculate distance to z, radial planes 1104 // - Calculate distance to z, radial planes 1081 // - Only to phi planes if outside phi extent 1105 // - Only to phi planes if outside phi extent 1082 // - Return 0 if point inside 1106 // - Return 0 if point inside 1083 1107 1084 G4double G4Tubs::DistanceToIn( const G4ThreeV 1108 G4double G4Tubs::DistanceToIn( const G4ThreeVector& p ) const 1085 { 1109 { 1086 G4double safe=0.0, rho, safe1, safe2, safe3 1110 G4double safe=0.0, rho, safe1, safe2, safe3 ; 1087 G4double safePhi, cosPsi ; 1111 G4double safePhi, cosPsi ; 1088 1112 1089 rho = std::sqrt(p.x()*p.x() + p.y()*p.y() 1113 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 1090 safe1 = fRMin - rho ; 1114 safe1 = fRMin - rho ; 1091 safe2 = rho - fRMax ; 1115 safe2 = rho - fRMax ; 1092 safe3 = std::fabs(p.z()) - fDz ; 1116 safe3 = std::fabs(p.z()) - fDz ; 1093 1117 1094 if ( safe1 > safe2 ) { safe = safe1; } 1118 if ( safe1 > safe2 ) { safe = safe1; } 1095 else { safe = safe2; } 1119 else { safe = safe2; } 1096 if ( safe3 > safe ) { safe = safe3; } 1120 if ( safe3 > safe ) { safe = safe3; } 1097 1121 1098 if ( (!fPhiFullTube) && ((rho) != 0.0) ) << 1122 if ( (!fPhiFullTube) && (rho) ) 1099 { 1123 { 1100 // Psi=angle from central phi to point 1124 // Psi=angle from central phi to point 1101 // 1125 // 1102 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/ 1126 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/rho ; 1103 << 1127 1104 if ( cosPsi < cosHDPhi ) 1128 if ( cosPsi < cosHDPhi ) 1105 { 1129 { 1106 // Point lies outside phi range 1130 // Point lies outside phi range 1107 1131 1108 if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= 1132 if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= 0 ) 1109 { 1133 { 1110 safePhi = std::fabs(p.x()*sinSPhi - p 1134 safePhi = std::fabs(p.x()*sinSPhi - p.y()*cosSPhi) ; 1111 } 1135 } 1112 else 1136 else 1113 { 1137 { 1114 safePhi = std::fabs(p.x()*sinEPhi - p 1138 safePhi = std::fabs(p.x()*sinEPhi - p.y()*cosEPhi) ; 1115 } 1139 } 1116 if ( safePhi > safe ) { safe = safePhi 1140 if ( safePhi > safe ) { safe = safePhi; } 1117 } 1141 } 1118 } 1142 } 1119 if ( safe < 0 ) { safe = 0; } 1143 if ( safe < 0 ) { safe = 0; } 1120 return safe ; 1144 return safe ; 1121 } 1145 } 1122 1146 1123 ///////////////////////////////////////////// 1147 ////////////////////////////////////////////////////////////////////////////// 1124 // 1148 // 1125 // Calculate distance to surface of shape fro 1149 // Calculate distance to surface of shape from `inside', allowing for tolerance 1126 // - Only Calc rmax intersection if no valid 1150 // - Only Calc rmax intersection if no valid rmin intersection 1127 1151 1128 G4double G4Tubs::DistanceToOut( const G4Three 1152 G4double G4Tubs::DistanceToOut( const G4ThreeVector& p, 1129 const G4Three 1153 const G4ThreeVector& v, 1130 const G4bool 1154 const G4bool calcNorm, 1131 G4bool* 1155 G4bool* validNorm, 1132 G4Three 1156 G4ThreeVector* n ) const 1133 { 1157 { 1134 ESide side=kNull , sider=kNull, sidephi=kNu 1158 ESide side=kNull , sider=kNull, sidephi=kNull ; 1135 G4double snxt, srd=kInfinity, sphi=kInfinit 1159 G4double snxt, srd=kInfinity, sphi=kInfinity, pdist ; 1136 G4double deltaR, t1, t2, t3, b, c, d2, roMi 1160 G4double deltaR, t1, t2, t3, b, c, d2, roMin2 ; 1137 << 1161 1138 // Vars for phi intersection: 1162 // Vars for phi intersection: 1139 1163 1140 G4double pDistS, compS, pDistE, compE, sphi 1164 G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, vphi, roi2 ; 1141 << 1165 1142 // Z plane intersection 1166 // Z plane intersection 1143 1167 1144 if (v.z() > 0 ) 1168 if (v.z() > 0 ) 1145 { 1169 { 1146 pdist = fDz - p.z() ; 1170 pdist = fDz - p.z() ; 1147 if ( pdist > halfCarTolerance ) 1171 if ( pdist > halfCarTolerance ) 1148 { 1172 { 1149 snxt = pdist/v.z() ; 1173 snxt = pdist/v.z() ; 1150 side = kPZ ; 1174 side = kPZ ; 1151 } 1175 } 1152 else 1176 else 1153 { 1177 { 1154 if (calcNorm) 1178 if (calcNorm) 1155 { 1179 { 1156 *n = G4ThreeVector(0,0,1) ; 1180 *n = G4ThreeVector(0,0,1) ; 1157 *validNorm = true ; 1181 *validNorm = true ; 1158 } 1182 } 1159 return snxt = 0 ; 1183 return snxt = 0 ; 1160 } 1184 } 1161 } 1185 } 1162 else if ( v.z() < 0 ) 1186 else if ( v.z() < 0 ) 1163 { 1187 { 1164 pdist = fDz + p.z() ; 1188 pdist = fDz + p.z() ; 1165 1189 1166 if ( pdist > halfCarTolerance ) 1190 if ( pdist > halfCarTolerance ) 1167 { 1191 { 1168 snxt = -pdist/v.z() ; 1192 snxt = -pdist/v.z() ; 1169 side = kMZ ; 1193 side = kMZ ; 1170 } 1194 } 1171 else 1195 else 1172 { 1196 { 1173 if (calcNorm) 1197 if (calcNorm) 1174 { 1198 { 1175 *n = G4ThreeVector(0,0,-1) ; 1199 *n = G4ThreeVector(0,0,-1) ; 1176 *validNorm = true ; 1200 *validNorm = true ; 1177 } 1201 } 1178 return snxt = 0.0 ; 1202 return snxt = 0.0 ; 1179 } 1203 } 1180 } 1204 } 1181 else 1205 else 1182 { 1206 { 1183 snxt = kInfinity ; // Travel perpendic 1207 snxt = kInfinity ; // Travel perpendicular to z axis 1184 side = kNull; 1208 side = kNull; 1185 } 1209 } 1186 1210 1187 // Radial Intersections 1211 // Radial Intersections 1188 // 1212 // 1189 // Find intersection with cylinders at rmax 1213 // Find intersection with cylinders at rmax/rmin 1190 // Intersection point (xi,yi,zi) on line x= 1214 // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc. 1191 // 1215 // 1192 // Intersects with x^2+y^2=R^2 1216 // Intersects with x^2+y^2=R^2 1193 // 1217 // 1194 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v 1218 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0 1195 // 1219 // 1196 // t1 t2 1220 // t1 t2 t3 1197 1221 1198 t1 = 1.0 - v.z()*v.z() ; // since v 1222 t1 = 1.0 - v.z()*v.z() ; // since v normalised 1199 t2 = p.x()*v.x() + p.y()*v.y() ; 1223 t2 = p.x()*v.x() + p.y()*v.y() ; 1200 t3 = p.x()*p.x() + p.y()*p.y() ; 1224 t3 = p.x()*p.x() + p.y()*p.y() ; 1201 1225 1202 if ( snxt > 10*(fDz+fRMax) ) { roi2 = 2*fR 1226 if ( snxt > 10*(fDz+fRMax) ) { roi2 = 2*fRMax*fRMax; } 1203 else { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t 1227 else { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t3; } // radius^2 on +-fDz 1204 1228 1205 if ( t1 > 0 ) // Check not parallel 1229 if ( t1 > 0 ) // Check not parallel 1206 { 1230 { 1207 // Calculate srd, r exit distance 1231 // Calculate srd, r exit distance 1208 << 1232 1209 if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax 1233 if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax + kRadTolerance)) ) 1210 { 1234 { 1211 // Delta r not negative => leaving via 1235 // Delta r not negative => leaving via rmax 1212 1236 1213 deltaR = t3 - fRMax*fRMax ; 1237 deltaR = t3 - fRMax*fRMax ; 1214 1238 1215 // NOTE: Should use rho-fRMax<-kRadTole 1239 // NOTE: Should use rho-fRMax<-kRadTolerance*0.5 1216 // - avoid sqrt for efficiency 1240 // - avoid sqrt for efficiency 1217 1241 1218 if ( deltaR < -kRadTolerance*fRMax ) 1242 if ( deltaR < -kRadTolerance*fRMax ) 1219 { 1243 { 1220 b = t2/t1 ; 1244 b = t2/t1 ; 1221 c = deltaR/t1 ; 1245 c = deltaR/t1 ; 1222 d2 = b*b-c; 1246 d2 = b*b-c; 1223 if( d2 >= 0 ) { srd = c/( -b - std::s 1247 if( d2 >= 0 ) { srd = c/( -b - std::sqrt(d2)); } 1224 else { srd = 0.; } 1248 else { srd = 0.; } 1225 sider = kRMax ; 1249 sider = kRMax ; 1226 } 1250 } 1227 else 1251 else 1228 { 1252 { 1229 // On tolerant boundary & heading out 1253 // On tolerant boundary & heading outwards (or perpendicular to) 1230 // outer radial surface -> leaving im 1254 // outer radial surface -> leaving immediately 1231 1255 1232 if ( calcNorm ) << 1256 if ( calcNorm ) 1233 { 1257 { 1234 G4double invRho = FastInverseRxy( p 1258 G4double invRho = FastInverseRxy( p, fInvRmax, kNormTolerance ); 1235 *n = G4ThreeVector(p.x()*in 1259 *n = G4ThreeVector(p.x()*invRho,p.y()*invRho,0) ; 1236 *validNorm = true ; 1260 *validNorm = true ; 1237 } 1261 } 1238 return snxt = 0 ; // Leaving by rmax 1262 return snxt = 0 ; // Leaving by rmax immediately 1239 } 1263 } 1240 } << 1264 } 1241 else if ( t2 < 0. ) // i.e. t2 < 0; Poss 1265 else if ( t2 < 0. ) // i.e. t2 < 0; Possible rmin intersection 1242 { 1266 { 1243 roMin2 = t3 - t2*t2/t1 ; // min ro2 of << 1267 roMin2 = t3 - t2*t2/t1 ; // min ro2 of the plane of movement 1244 1268 1245 if ( (fRMin != 0.0) && (roMin2 < fRMin* << 1269 if ( fRMin && (roMin2 < fRMin*(fRMin - kRadTolerance)) ) 1246 { 1270 { 1247 deltaR = t3 - fRMin*fRMin ; 1271 deltaR = t3 - fRMin*fRMin ; 1248 b = t2/t1 ; 1272 b = t2/t1 ; 1249 c = deltaR/t1 ; 1273 c = deltaR/t1 ; 1250 d2 = b*b - c ; 1274 d2 = b*b - c ; 1251 1275 1252 if ( d2 >= 0 ) // Leaving via rmin 1276 if ( d2 >= 0 ) // Leaving via rmin 1253 { 1277 { 1254 // NOTE: SHould use rho-rmin>kRadTo 1278 // NOTE: SHould use rho-rmin>kRadTolerance*0.5 1255 // - avoid sqrt for efficiency 1279 // - avoid sqrt for efficiency 1256 1280 1257 if (deltaR > kRadTolerance*fRMin) 1281 if (deltaR > kRadTolerance*fRMin) 1258 { 1282 { 1259 srd = c/(-b+std::sqrt(d2)); << 1283 srd = c/(-b+std::sqrt(d2)); 1260 sider = kRMin ; 1284 sider = kRMin ; 1261 } 1285 } 1262 else 1286 else 1263 { 1287 { 1264 if ( calcNorm ) { 1288 if ( calcNorm ) { 1265 *validNorm = false; 1289 *validNorm = false; 1266 } // Concave side 1290 } // Concave side 1267 return snxt = 0.0; 1291 return snxt = 0.0; 1268 } 1292 } 1269 } 1293 } 1270 else // No rmin intersect -> must 1294 else // No rmin intersect -> must be rmax intersect 1271 { 1295 { 1272 deltaR = t3 - fRMax*fRMax ; 1296 deltaR = t3 - fRMax*fRMax ; 1273 c = deltaR/t1 ; 1297 c = deltaR/t1 ; 1274 d2 = b*b-c; 1298 d2 = b*b-c; 1275 if( d2 >=0. ) 1299 if( d2 >=0. ) 1276 { 1300 { 1277 srd = -b + std::sqrt(d2) ; 1301 srd = -b + std::sqrt(d2) ; 1278 sider = kRMax ; 1302 sider = kRMax ; 1279 } 1303 } 1280 else // Case: On the border+t2<kRad 1304 else // Case: On the border+t2<kRadTolerance 1281 // (v is perpendicular t 1305 // (v is perpendicular to the surface) 1282 { 1306 { 1283 if (calcNorm) 1307 if (calcNorm) 1284 { 1308 { 1285 G4double invRho = FastInverseRx 1309 G4double invRho = FastInverseRxy( p, fInvRmax, kNormTolerance ); 1286 *n = G4ThreeVector(p.x()*invRho << 1310 *n = G4ThreeVector(p.x()*invRho,p.y()*invRho,0) ; 1287 *validNorm = true ; 1311 *validNorm = true ; 1288 } 1312 } 1289 return snxt = 0.0; 1313 return snxt = 0.0; 1290 } 1314 } 1291 } 1315 } 1292 } 1316 } 1293 else if ( roi2 > fRMax*(fRMax + kRadTol 1317 else if ( roi2 > fRMax*(fRMax + kRadTolerance) ) 1294 // No rmin intersect -> must be rm 1318 // No rmin intersect -> must be rmax intersect 1295 { 1319 { 1296 deltaR = t3 - fRMax*fRMax ; 1320 deltaR = t3 - fRMax*fRMax ; 1297 b = t2/t1 ; 1321 b = t2/t1 ; 1298 c = deltaR/t1; 1322 c = deltaR/t1; 1299 d2 = b*b-c; 1323 d2 = b*b-c; 1300 if( d2 >= 0 ) 1324 if( d2 >= 0 ) 1301 { 1325 { 1302 srd = -b + std::sqrt(d2) ; 1326 srd = -b + std::sqrt(d2) ; 1303 sider = kRMax ; 1327 sider = kRMax ; 1304 } 1328 } 1305 else // Case: On the border+t2<kRadTo 1329 else // Case: On the border+t2<kRadTolerance 1306 // (v is perpendicular to 1330 // (v is perpendicular to the surface) 1307 { 1331 { 1308 if (calcNorm) 1332 if (calcNorm) 1309 { 1333 { 1310 G4double invRho = FastInverseRxy( 1334 G4double invRho = FastInverseRxy( p, fInvRmax, kNormTolerance ); 1311 *n = G4ThreeVector(p.x()*invRho,p 1335 *n = G4ThreeVector(p.x()*invRho,p.y()*invRho,0) ; 1312 *validNorm = true ; 1336 *validNorm = true ; 1313 } 1337 } 1314 return snxt = 0.0; 1338 return snxt = 0.0; 1315 } 1339 } 1316 } 1340 } 1317 } 1341 } 1318 << 1342 1319 // Phi Intersection 1343 // Phi Intersection 1320 1344 1321 if ( !fPhiFullTube ) 1345 if ( !fPhiFullTube ) 1322 { 1346 { 1323 // add angle calculation with correctio << 1347 // add angle calculation with correction 1324 // of the difference in domain of atan2 1348 // of the difference in domain of atan2 and Sphi 1325 // 1349 // 1326 vphi = std::atan2(v.y(),v.x()) ; 1350 vphi = std::atan2(v.y(),v.x()) ; 1327 << 1351 1328 if ( vphi < fSPhi - halfAngTolerance ) 1352 if ( vphi < fSPhi - halfAngTolerance ) { vphi += twopi; } 1329 else if ( vphi > fSPhi + fDPhi + halfAn 1353 else if ( vphi > fSPhi + fDPhi + halfAngTolerance ) { vphi -= twopi; } 1330 1354 1331 1355 1332 if ( (p.x() != 0.0) || (p.y() != 0.0) ) << 1356 if ( p.x() || p.y() ) // Check if on z axis (rho not needed later) 1333 { 1357 { 1334 // pDist -ve when inside 1358 // pDist -ve when inside 1335 1359 1336 pDistS = p.x()*sinSPhi - p.y()*cosSPh 1360 pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; 1337 pDistE = -p.x()*sinEPhi + p.y()*cosEP 1361 pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ; 1338 1362 1339 // Comp -ve when in direction of outw 1363 // Comp -ve when in direction of outwards normal 1340 1364 1341 compS = -sinSPhi*v.x() + cosSPhi*v.y( 1365 compS = -sinSPhi*v.x() + cosSPhi*v.y() ; 1342 compE = sinEPhi*v.x() - cosEPhi*v.y( 1366 compE = sinEPhi*v.x() - cosEPhi*v.y() ; 1343 << 1367 1344 sidephi = kNull; 1368 sidephi = kNull; 1345 << 1369 1346 if( ( (fDPhi <= pi) && ( (pDistS <= h 1370 if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance) 1347 && (pDistE <= h 1371 && (pDistE <= halfCarTolerance) ) ) 1348 || ( (fDPhi > pi) && ((pDistS <= h << 1372 || ( (fDPhi > pi) && !((pDistS > halfCarTolerance) 1349 || (pDistE <= << 1373 && (pDistE > halfCarTolerance) ) ) ) 1350 { 1374 { 1351 // Inside both phi *full* planes 1375 // Inside both phi *full* planes 1352 << 1376 1353 if ( compS < 0 ) 1377 if ( compS < 0 ) 1354 { 1378 { 1355 sphi = pDistS/compS ; 1379 sphi = pDistS/compS ; 1356 << 1380 1357 if (sphi >= -halfCarTolerance) 1381 if (sphi >= -halfCarTolerance) 1358 { 1382 { 1359 xi = p.x() + sphi*v.x() ; 1383 xi = p.x() + sphi*v.x() ; 1360 yi = p.y() + sphi*v.y() ; 1384 yi = p.y() + sphi*v.y() ; 1361 << 1385 1362 // Check intersecting with corr 1386 // Check intersecting with correct half-plane 1363 // (if not -> no intersect) 1387 // (if not -> no intersect) 1364 // 1388 // 1365 if((std::fabs(xi)<=kCarToleranc 1389 if((std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance)) 1366 { 1390 { 1367 sidephi = kSPhi; 1391 sidephi = kSPhi; 1368 if (((fSPhi-halfAngTolerance) 1392 if (((fSPhi-halfAngTolerance)<=vphi) 1369 &&((fSPhi+fDPhi+halfAngTol 1393 &&((fSPhi+fDPhi+halfAngTolerance)>=vphi)) 1370 { 1394 { 1371 sphi = kInfinity; 1395 sphi = kInfinity; 1372 } 1396 } 1373 } 1397 } 1374 else if ( yi*cosCPhi-xi*sinCPhi 1398 else if ( yi*cosCPhi-xi*sinCPhi >=0 ) 1375 { 1399 { 1376 sphi = kInfinity ; 1400 sphi = kInfinity ; 1377 } 1401 } 1378 else 1402 else 1379 { 1403 { 1380 sidephi = kSPhi ; 1404 sidephi = kSPhi ; 1381 if ( pDistS > -halfCarToleran 1405 if ( pDistS > -halfCarTolerance ) 1382 { 1406 { 1383 sphi = 0.0 ; // Leave by sp 1407 sphi = 0.0 ; // Leave by sphi immediately 1384 } << 1408 } 1385 } << 1409 } 1386 } 1410 } 1387 else 1411 else 1388 { 1412 { 1389 sphi = kInfinity ; 1413 sphi = kInfinity ; 1390 } 1414 } 1391 } 1415 } 1392 else 1416 else 1393 { 1417 { 1394 sphi = kInfinity ; 1418 sphi = kInfinity ; 1395 } 1419 } 1396 1420 1397 if ( compE < 0 ) 1421 if ( compE < 0 ) 1398 { 1422 { 1399 sphi2 = pDistE/compE ; 1423 sphi2 = pDistE/compE ; 1400 << 1424 1401 // Only check further if < starti 1425 // Only check further if < starting phi intersection 1402 // 1426 // 1403 if ( (sphi2 > -halfCarTolerance) 1427 if ( (sphi2 > -halfCarTolerance) && (sphi2 < sphi) ) 1404 { 1428 { 1405 xi = p.x() + sphi2*v.x() ; 1429 xi = p.x() + sphi2*v.x() ; 1406 yi = p.y() + sphi2*v.y() ; 1430 yi = p.y() + sphi2*v.y() ; 1407 << 1431 1408 if((std::fabs(xi)<=kCarToleranc 1432 if((std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance)) 1409 { 1433 { 1410 // Leaving via ending phi 1434 // Leaving via ending phi 1411 // 1435 // 1412 if( (fSPhi-halfAngTolerance > << 1436 if( !((fSPhi-halfAngTolerance <= vphi) 1413 ||(fSPhi+fDPhi+halfAngTo << 1437 &&(fSPhi+fDPhi+halfAngTolerance >= vphi)) ) 1414 { 1438 { 1415 sidephi = kEPhi ; 1439 sidephi = kEPhi ; 1416 if ( pDistE <= -halfCarTole 1440 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; } 1417 else 1441 else { sphi = 0.0 ; } 1418 } 1442 } 1419 } << 1443 } 1420 else // Check intersecting w << 1444 else // Check intersecting with correct half-plane 1421 1445 1422 if ( (yi*cosCPhi-xi*sinCPhi) >= 1446 if ( (yi*cosCPhi-xi*sinCPhi) >= 0) 1423 { 1447 { 1424 // Leaving via ending phi 1448 // Leaving via ending phi 1425 // 1449 // 1426 sidephi = kEPhi ; 1450 sidephi = kEPhi ; 1427 if ( pDistE <= -halfCarTolera 1451 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; } 1428 else 1452 else { sphi = 0.0 ; } 1429 } 1453 } 1430 } 1454 } 1431 } 1455 } 1432 } 1456 } 1433 else 1457 else 1434 { 1458 { 1435 sphi = kInfinity ; 1459 sphi = kInfinity ; 1436 } 1460 } 1437 } 1461 } 1438 else 1462 else 1439 { 1463 { 1440 // On z axis + travel not || to z axi 1464 // On z axis + travel not || to z axis -> if phi of vector direction 1441 // within phi of shape, Step limited 1465 // within phi of shape, Step limited by rmax, else Step =0 1442 << 1466 1443 if ( (fSPhi - halfAngTolerance <= vph 1467 if ( (fSPhi - halfAngTolerance <= vphi) 1444 && (vphi <= fSPhi + fDPhi + halfAn 1468 && (vphi <= fSPhi + fDPhi + halfAngTolerance ) ) 1445 { 1469 { 1446 sphi = kInfinity ; 1470 sphi = kInfinity ; 1447 } 1471 } 1448 else 1472 else 1449 { 1473 { 1450 sidephi = kSPhi ; // arbitrary << 1474 sidephi = kSPhi ; // arbitrary 1451 sphi = 0.0 ; 1475 sphi = 0.0 ; 1452 } 1476 } 1453 } 1477 } 1454 if (sphi < snxt) // Order intersecttio 1478 if (sphi < snxt) // Order intersecttions 1455 { 1479 { 1456 snxt = sphi ; 1480 snxt = sphi ; 1457 side = sidephi ; 1481 side = sidephi ; 1458 } 1482 } 1459 } 1483 } 1460 if (srd < snxt) // Order intersections 1484 if (srd < snxt) // Order intersections 1461 { 1485 { 1462 snxt = srd ; 1486 snxt = srd ; 1463 side = sider ; 1487 side = sider ; 1464 } 1488 } 1465 } 1489 } 1466 if (calcNorm) 1490 if (calcNorm) 1467 { 1491 { 1468 switch(side) 1492 switch(side) 1469 { 1493 { 1470 case kRMax: 1494 case kRMax: 1471 // Note: returned vector not normalis 1495 // Note: returned vector not normalised 1472 // (divide by fRMax for unit vector) 1496 // (divide by fRMax for unit vector) 1473 // 1497 // 1474 xi = p.x() + snxt*v.x() ; 1498 xi = p.x() + snxt*v.x() ; 1475 yi = p.y() + snxt*v.y() ; 1499 yi = p.y() + snxt*v.y() ; 1476 *n = G4ThreeVector(xi/fRMax,yi/fRMax, 1500 *n = G4ThreeVector(xi/fRMax,yi/fRMax,0) ; 1477 *validNorm = true ; 1501 *validNorm = true ; 1478 break ; 1502 break ; 1479 1503 1480 case kRMin: 1504 case kRMin: 1481 *validNorm = false ; // Rmin is inco 1505 *validNorm = false ; // Rmin is inconvex 1482 break ; 1506 break ; 1483 1507 1484 case kSPhi: 1508 case kSPhi: 1485 if ( fDPhi <= pi ) 1509 if ( fDPhi <= pi ) 1486 { 1510 { 1487 *n = G4ThreeVector(sinSPhi, 1511 *n = G4ThreeVector(sinSPhi,-cosSPhi,0) ; 1488 *validNorm = true ; 1512 *validNorm = true ; 1489 } 1513 } 1490 else 1514 else 1491 { 1515 { 1492 *validNorm = false ; 1516 *validNorm = false ; 1493 } 1517 } 1494 break ; 1518 break ; 1495 1519 1496 case kEPhi: 1520 case kEPhi: 1497 if (fDPhi <= pi) 1521 if (fDPhi <= pi) 1498 { 1522 { 1499 *n = G4ThreeVector(-sinEPhi,cosEPhi 1523 *n = G4ThreeVector(-sinEPhi,cosEPhi,0) ; 1500 *validNorm = true ; 1524 *validNorm = true ; 1501 } 1525 } 1502 else 1526 else 1503 { 1527 { 1504 *validNorm = false ; 1528 *validNorm = false ; 1505 } 1529 } 1506 break ; 1530 break ; 1507 1531 1508 case kPZ: 1532 case kPZ: 1509 *n = G4ThreeVector(0,0,1) ; 1533 *n = G4ThreeVector(0,0,1) ; 1510 *validNorm = true ; 1534 *validNorm = true ; 1511 break ; 1535 break ; 1512 1536 1513 case kMZ: 1537 case kMZ: 1514 *n = G4ThreeVector(0,0,-1) ; 1538 *n = G4ThreeVector(0,0,-1) ; 1515 *validNorm = true ; 1539 *validNorm = true ; 1516 break ; 1540 break ; 1517 1541 1518 default: 1542 default: 1519 G4cout << G4endl ; 1543 G4cout << G4endl ; 1520 DumpInfo(); 1544 DumpInfo(); 1521 std::ostringstream message; 1545 std::ostringstream message; 1522 G4long oldprc = message.precision(16) << 1546 G4int oldprc = message.precision(16); 1523 message << "Undefined side for valid 1547 message << "Undefined side for valid surface normal to solid." 1524 << G4endl 1548 << G4endl 1525 << "Position:" << G4endl << 1549 << "Position:" << G4endl << G4endl 1526 << "p.x() = " << p.x()/mm < 1550 << "p.x() = " << p.x()/mm << " mm" << G4endl 1527 << "p.y() = " << p.y()/mm < 1551 << "p.y() = " << p.y()/mm << " mm" << G4endl 1528 << "p.z() = " << p.z()/mm < 1552 << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl 1529 << "Direction:" << G4endl << 1553 << "Direction:" << G4endl << G4endl 1530 << "v.x() = " << v.x() << G 1554 << "v.x() = " << v.x() << G4endl 1531 << "v.y() = " << v.y() << G 1555 << "v.y() = " << v.y() << G4endl 1532 << "v.z() = " << v.z() << G 1556 << "v.z() = " << v.z() << G4endl << G4endl 1533 << "Proposed distance :" << G 1557 << "Proposed distance :" << G4endl << G4endl 1534 << "snxt = " << snxt/mm << 1558 << "snxt = " << snxt/mm << " mm" << G4endl ; 1535 message.precision(oldprc) ; 1559 message.precision(oldprc) ; 1536 G4Exception("G4Tubs::DistanceToOut(p, 1560 G4Exception("G4Tubs::DistanceToOut(p,v,..)", "GeomSolids1002", 1537 JustWarning, message); 1561 JustWarning, message); 1538 break ; 1562 break ; 1539 } 1563 } 1540 } 1564 } 1541 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1565 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1542 1566 1543 return snxt ; 1567 return snxt ; 1544 } 1568 } 1545 1569 1546 ///////////////////////////////////////////// 1570 ////////////////////////////////////////////////////////////////////////// 1547 // 1571 // 1548 // Calculate distance (<=actual) to closest s 1572 // Calculate distance (<=actual) to closest surface of shape from inside 1549 1573 1550 G4double G4Tubs::DistanceToOut( const G4Three 1574 G4double G4Tubs::DistanceToOut( const G4ThreeVector& p ) const 1551 { 1575 { 1552 G4double safe=0.0, rho, safeR1, safeR2, saf 1576 G4double safe=0.0, rho, safeR1, safeR2, safeZ, safePhi ; 1553 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) 1577 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 1554 1578 1555 #ifdef G4CSGDEBUG 1579 #ifdef G4CSGDEBUG 1556 if( Inside(p) == kOutside ) 1580 if( Inside(p) == kOutside ) 1557 { 1581 { 1558 G4long oldprc = G4cout.precision(16) ; << 1582 G4int oldprc = G4cout.precision(16) ; 1559 G4cout << G4endl ; 1583 G4cout << G4endl ; 1560 DumpInfo(); 1584 DumpInfo(); 1561 G4cout << "Position:" << G4endl << G4end 1585 G4cout << "Position:" << G4endl << G4endl ; 1562 G4cout << "p.x() = " << p.x()/mm << " m 1586 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 1563 G4cout << "p.y() = " << p.y()/mm << " m 1587 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 1564 G4cout << "p.z() = " << p.z()/mm << " m 1588 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 1565 G4cout.precision(oldprc) ; 1589 G4cout.precision(oldprc) ; 1566 G4Exception("G4Tubs::DistanceToOut(p)", " 1590 G4Exception("G4Tubs::DistanceToOut(p)", "GeomSolids1002", 1567 JustWarning, "Point p is outs 1591 JustWarning, "Point p is outside !?"); 1568 } 1592 } 1569 #endif 1593 #endif 1570 1594 1571 if ( fRMin != 0.0 ) << 1595 if ( fRMin ) 1572 { 1596 { 1573 safeR1 = rho - fRMin ; 1597 safeR1 = rho - fRMin ; 1574 safeR2 = fRMax - rho ; 1598 safeR2 = fRMax - rho ; 1575 << 1599 1576 if ( safeR1 < safeR2 ) { safe = safeR1 ; 1600 if ( safeR1 < safeR2 ) { safe = safeR1 ; } 1577 else { safe = safeR2 ; 1601 else { safe = safeR2 ; } 1578 } 1602 } 1579 else 1603 else 1580 { 1604 { 1581 safe = fRMax - rho ; 1605 safe = fRMax - rho ; 1582 } 1606 } 1583 safeZ = fDz - std::fabs(p.z()) ; 1607 safeZ = fDz - std::fabs(p.z()) ; 1584 1608 1585 if ( safeZ < safe ) { safe = safeZ ; } 1609 if ( safeZ < safe ) { safe = safeZ ; } 1586 1610 1587 // Check if phi divided, Calc distances clo 1611 // Check if phi divided, Calc distances closest phi plane 1588 // 1612 // 1589 if ( !fPhiFullTube ) 1613 if ( !fPhiFullTube ) 1590 { 1614 { 1591 if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 ) 1615 if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 ) 1592 { 1616 { 1593 safePhi = -(p.x()*sinSPhi - p.y()*cosSP 1617 safePhi = -(p.x()*sinSPhi - p.y()*cosSPhi) ; 1594 } 1618 } 1595 else 1619 else 1596 { 1620 { 1597 safePhi = (p.x()*sinEPhi - p.y()*cosEPh 1621 safePhi = (p.x()*sinEPhi - p.y()*cosEPhi) ; 1598 } 1622 } 1599 if (safePhi < safe) { safe = safePhi ; } 1623 if (safePhi < safe) { safe = safePhi ; } 1600 } 1624 } 1601 if ( safe < 0 ) { safe = 0 ; } 1625 if ( safe < 0 ) { safe = 0 ; } 1602 1626 1603 return safe ; << 1627 return safe ; 1604 } 1628 } 1605 1629 1606 ///////////////////////////////////////////// 1630 ////////////////////////////////////////////////////////////////////////// 1607 // 1631 // 1608 // Stream object contents to an output stream 1632 // Stream object contents to an output stream 1609 1633 1610 G4GeometryType G4Tubs::GetEntityType() const 1634 G4GeometryType G4Tubs::GetEntityType() const 1611 { 1635 { 1612 return {"G4Tubs"}; << 1636 return G4String("G4Tubs"); 1613 } 1637 } 1614 1638 1615 ///////////////////////////////////////////// 1639 ////////////////////////////////////////////////////////////////////////// 1616 // 1640 // 1617 // Make a clone of the object 1641 // Make a clone of the object 1618 // 1642 // 1619 G4VSolid* G4Tubs::Clone() const 1643 G4VSolid* G4Tubs::Clone() const 1620 { 1644 { 1621 return new G4Tubs(*this); 1645 return new G4Tubs(*this); 1622 } 1646 } 1623 1647 1624 ///////////////////////////////////////////// 1648 ////////////////////////////////////////////////////////////////////////// 1625 // 1649 // 1626 // Stream object contents to an output stream 1650 // Stream object contents to an output stream 1627 1651 1628 std::ostream& G4Tubs::StreamInfo( std::ostrea 1652 std::ostream& G4Tubs::StreamInfo( std::ostream& os ) const 1629 { 1653 { 1630 G4long oldprc = os.precision(16); << 1654 G4int oldprc = os.precision(16); 1631 os << "------------------------------------ 1655 os << "-----------------------------------------------------------\n" 1632 << " *** Dump for solid - " << GetNam 1656 << " *** Dump for solid - " << GetName() << " ***\n" 1633 << " ================================ 1657 << " ===================================================\n" 1634 << " Solid type: G4Tubs\n" 1658 << " Solid type: G4Tubs\n" 1635 << " Parameters: \n" 1659 << " Parameters: \n" 1636 << " inner radius : " << fRMin/mm << 1660 << " inner radius : " << fRMin/mm << " mm \n" 1637 << " outer radius : " << fRMax/mm << 1661 << " outer radius : " << fRMax/mm << " mm \n" 1638 << " half length Z: " << fDz/mm << " 1662 << " half length Z: " << fDz/mm << " mm \n" 1639 << " starting phi : " << fSPhi/degree 1663 << " starting phi : " << fSPhi/degree << " degrees \n" 1640 << " delta phi : " << fDPhi/degree 1664 << " delta phi : " << fDPhi/degree << " degrees \n" 1641 << "------------------------------------ 1665 << "-----------------------------------------------------------\n"; 1642 os.precision(oldprc); 1666 os.precision(oldprc); 1643 1667 1644 return os; 1668 return os; 1645 } 1669 } 1646 1670 1647 ///////////////////////////////////////////// 1671 ///////////////////////////////////////////////////////////////////////// 1648 // 1672 // 1649 // GetPointOnSurface 1673 // GetPointOnSurface 1650 1674 1651 G4ThreeVector G4Tubs::GetPointOnSurface() con 1675 G4ThreeVector G4Tubs::GetPointOnSurface() const 1652 { 1676 { 1653 G4double Rmax = fRMax; << 1677 G4double xRand, yRand, zRand, phi, cosphi, sinphi, chose, 1654 G4double Rmin = fRMin; << 1678 aOne, aTwo, aThr, aFou; 1655 G4double hz = 2.*fDz; // height << 1679 G4double rRand; 1656 G4double lext = fDPhi*Rmax; // length of ex << 1680 1657 G4double lint = fDPhi*Rmin; // length of in << 1681 aOne = 2.*fDz*fDPhi*fRMax; 1658 << 1682 aTwo = 2.*fDz*fDPhi*fRMin; 1659 // Set array of surface areas << 1683 aThr = 0.5*fDPhi*(fRMax*fRMax-fRMin*fRMin); 1660 // << 1684 aFou = 2.*fDz*(fRMax-fRMin); 1661 G4double RRmax = Rmax * Rmax; << 1685 1662 G4double RRmin = Rmin * Rmin; << 1686 phi = G4RandFlat::shoot(fSPhi, fSPhi+fDPhi); 1663 G4double sbase = 0.5*fDPhi*(RRmax - RRmin); << 1687 cosphi = std::cos(phi); 1664 G4double scut = (fDPhi == twopi) ? 0. : hz* << 1688 sinphi = std::sin(phi); 1665 G4double ssurf[6] = { scut, scut, sbase, sb << 1689 1666 ssurf[1] += ssurf[0]; << 1690 rRand = GetRadiusInRing(fRMin,fRMax); 1667 ssurf[2] += ssurf[1]; << 1691 1668 ssurf[3] += ssurf[2]; << 1692 if( (fSPhi == 0) && (fDPhi == twopi) ) { aFou = 0; } 1669 ssurf[4] += ssurf[3]; << 1693 1670 ssurf[5] += ssurf[4]; << 1694 chose = G4RandFlat::shoot(0.,aOne+aTwo+2.*aThr+2.*aFou); 1671 << 1695 1672 // Select surface << 1696 if( (chose >=0) && (chose < aOne) ) 1673 // << 1697 { 1674 G4double select = ssurf[5]*G4QuickRand(); << 1698 xRand = fRMax*cosphi; 1675 G4int k = 5; << 1699 yRand = fRMax*sinphi; 1676 k -= (G4int)(select <= ssurf[4]); << 1700 zRand = G4RandFlat::shoot(-1.*fDz,fDz); 1677 k -= (G4int)(select <= ssurf[3]); << 1701 return G4ThreeVector (xRand, yRand, zRand); 1678 k -= (G4int)(select <= ssurf[2]); << 1702 } 1679 k -= (G4int)(select <= ssurf[1]); << 1703 else if( (chose >= aOne) && (chose < aOne + aTwo) ) 1680 k -= (G4int)(select <= ssurf[0]); << 1704 { 1681 << 1705 xRand = fRMin*cosphi; 1682 // Generate point on selected surface << 1706 yRand = fRMin*sinphi; 1683 // << 1707 zRand = G4RandFlat::shoot(-1.*fDz,fDz); 1684 switch(k) << 1708 return G4ThreeVector (xRand, yRand, zRand); >> 1709 } >> 1710 else if( (chose >= aOne + aTwo) && (chose < aOne + aTwo + aThr) ) >> 1711 { >> 1712 xRand = rRand*cosphi; >> 1713 yRand = rRand*sinphi; >> 1714 zRand = fDz; >> 1715 return G4ThreeVector (xRand, yRand, zRand); >> 1716 } >> 1717 else if( (chose >= aOne + aTwo + aThr) && (chose < aOne + aTwo + 2.*aThr) ) >> 1718 { >> 1719 xRand = rRand*cosphi; >> 1720 yRand = rRand*sinphi; >> 1721 zRand = -1.*fDz; >> 1722 return G4ThreeVector (xRand, yRand, zRand); >> 1723 } >> 1724 else if( (chose >= aOne + aTwo + 2.*aThr) >> 1725 && (chose < aOne + aTwo + 2.*aThr + aFou) ) >> 1726 { >> 1727 xRand = rRand*cosSPhi; >> 1728 yRand = rRand*sinSPhi; >> 1729 zRand = G4RandFlat::shoot(-1.*fDz,fDz); >> 1730 return G4ThreeVector (xRand, yRand, zRand); >> 1731 } >> 1732 else 1685 { 1733 { 1686 case 0: // start phi cut << 1734 xRand = rRand*cosEPhi; 1687 { << 1735 yRand = rRand*sinEPhi; 1688 G4double r = Rmin + (Rmax - Rmin)*G4Qui << 1736 zRand = G4RandFlat::shoot(-1.*fDz,fDz); 1689 return { r*cosSPhi, r*sinSPhi, hz*G4Qui << 1737 return G4ThreeVector (xRand, yRand, zRand); 1690 } << 1691 case 1: // end phi cut << 1692 { << 1693 G4double r = Rmin + (Rmax - Rmin)*G4Qui << 1694 return { r*cosEPhi, r*sinEPhi, hz*G4Qui << 1695 } << 1696 case 2: // base at -dz << 1697 { << 1698 G4double r = std::sqrt(RRmin + (RRmax - << 1699 G4double phi = fSPhi + fDPhi*G4QuickRan << 1700 return { r*std::cos(phi), r*std::sin(ph << 1701 } << 1702 case 3: // base at +dz << 1703 { << 1704 G4double r = std::sqrt(RRmin + (RRmax - << 1705 G4double phi = fSPhi + fDPhi*G4QuickRan << 1706 return { r*std::cos(phi), r*std::sin(ph << 1707 } << 1708 case 4: // external lateral surface << 1709 { << 1710 G4double phi = fSPhi + fDPhi*G4QuickRan << 1711 G4double z = hz*G4QuickRand() - fDz; << 1712 G4double x = Rmax*std::cos(phi); << 1713 G4double y = Rmax*std::sin(phi); << 1714 return { x,y,z }; << 1715 } << 1716 case 5: // internal lateral surface << 1717 { << 1718 G4double phi = fSPhi + fDPhi*G4QuickRan << 1719 G4double z = hz*G4QuickRand() - fDz; << 1720 G4double x = Rmin*std::cos(phi); << 1721 G4double y = Rmin*std::sin(phi); << 1722 return { x,y,z }; << 1723 } << 1724 } 1738 } 1725 return {0., 0., 0.}; << 1726 } 1739 } 1727 1740 1728 ///////////////////////////////////////////// 1741 /////////////////////////////////////////////////////////////////////////// 1729 // 1742 // 1730 // Methods for visualisation 1743 // Methods for visualisation 1731 1744 1732 void G4Tubs::DescribeYourselfTo ( G4VGraphics << 1745 void G4Tubs::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 1733 { 1746 { 1734 scene.AddSolid (*this) ; 1747 scene.AddSolid (*this) ; 1735 } 1748 } 1736 1749 1737 G4Polyhedron* G4Tubs::CreatePolyhedron () con << 1750 G4Polyhedron* G4Tubs::CreatePolyhedron () const 1738 { 1751 { 1739 return new G4PolyhedronTubs (fRMin, fRMax, 1752 return new G4PolyhedronTubs (fRMin, fRMax, fDz, fSPhi, fDPhi) ; 1740 } 1753 } 1741 1754 1742 #endif 1755 #endif 1743 1756