Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4Tubs implementation << 27 // 26 // 28 // 1994-95 P.Kent: first implementation << 27 // $Id: G4Tubs.cc 104316 2017-05-24 13:04:23Z gcosmo $ 29 // 08.08.00 V.Grichine: more stable roots of 2 << 28 // >> 29 // >> 30 // class G4Tubs >> 31 // >> 32 // History: >> 33 // >> 34 // 24.08.16 E.Tcherniaev: reimplemented CalculateExtent() to make use >> 35 // of G4BoundingEnvelope >> 36 // 05.04.12 M.Kelsey: Use sqrt(r) in GetPointOnSurface() for uniform points >> 37 // 02.08.07 T.Nikitina: bug fixed in DistanceToOut(p,v,..) for negative value under sqrt >> 38 // for the case: p on the surface and v is tangent to the surface >> 39 // 11.05.07 T.Nikitina: bug fixed in DistanceToOut(p,v,..) for phi < 2pi >> 40 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal >> 41 // 16.03.05 V.Grichine: SurfaceNormal(p) with edges/corners for boolean >> 42 // 20.07.01 V.Grichine: bug fixed in Inside(p) >> 43 // 20.02.01 V.Grichine: bug fixed in Inside(p) and CalculateExtent was >> 44 // simplified base on G4Box::CalculateExtent 30 // 07.12.00 V.Grichine: phi-section algorithm 45 // 07.12.00 V.Grichine: phi-section algorithm was changed in Inside(p) 31 // 03.05.05 V.Grichine: SurfaceNormal(p) accor << 46 // 28.11.00 V.Grichine: bug fixed in Inside(p) 32 // 24.08.16 E.Tcherniaev: reimplemented Calcul << 47 // 31.10.00 V.Grichine: assign srd, sphi in Distance ToOut(p,v,...) 33 // ------------------------------------------- << 48 // 08.08.00 V.Grichine: more stable roots of 2-equation in DistanceToOut(p,v,..) >> 49 // 02.08.00 V.Grichine: point is outside check in Distance ToOut(p) >> 50 // 17.05.00 V.Grichine: bugs (#76,#91) fixed in Distance ToOut(p,v,...) >> 51 // 31.03.00 V.Grichine: bug fixed in Inside(p) >> 52 // 19.11.99 V.Grichine: side = kNull in DistanceToOut(p,v,...) >> 53 // 13.10.99 V.Grichine: bugs fixed in DistanceToIn(p,v) >> 54 // 28.05.99 V.Grichine: bugs fixed in DistanceToOut(p,v,...) >> 55 // 25.05.99 V.Grichine: bugs fixed in DistanceToIn(p,v) >> 56 // 23.03.99 V.Grichine: bug fixed in DistanceToIn(p,v) >> 57 // 09.10.98 V.Grichine: modifications in DistanceToOut(p,v,...) >> 58 // 18.06.98 V.Grichine: n-normalisation in DistanceToOut(p,v) >> 59 // >> 60 // 1994-95 P.Kent: implementation >> 61 // >> 62 ///////////////////////////////////////////////////////////////////////// 34 63 35 #include "G4Tubs.hh" 64 #include "G4Tubs.hh" 36 65 37 #if !defined(G4GEOM_USE_UTUBS) 66 #if !defined(G4GEOM_USE_UTUBS) 38 67 39 #include "G4GeomTools.hh" 68 #include "G4GeomTools.hh" 40 #include "G4VoxelLimits.hh" 69 #include "G4VoxelLimits.hh" 41 #include "G4AffineTransform.hh" 70 #include "G4AffineTransform.hh" 42 #include "G4GeometryTolerance.hh" 71 #include "G4GeometryTolerance.hh" 43 #include "G4BoundingEnvelope.hh" 72 #include "G4BoundingEnvelope.hh" 44 73 45 #include "G4VPVParameterisation.hh" 74 #include "G4VPVParameterisation.hh" 46 #include "G4QuickRand.hh" << 75 >> 76 #include "Randomize.hh" >> 77 >> 78 #include "meshdefs.hh" 47 79 48 #include "G4VGraphicsScene.hh" 80 #include "G4VGraphicsScene.hh" 49 #include "G4Polyhedron.hh" << 50 81 51 using namespace CLHEP; 82 using namespace CLHEP; 52 83 53 ////////////////////////////////////////////// 84 ///////////////////////////////////////////////////////////////////////// 54 // 85 // 55 // Constructor - check parameters, convert ang 86 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI 56 // - note if pdphi>2PI then reset 87 // - note if pdphi>2PI then reset to 2PI 57 88 58 G4Tubs::G4Tubs( const G4String& pName, << 89 G4Tubs::G4Tubs( const G4String &pName, 59 G4double pRMin, G4double 90 G4double pRMin, G4double pRMax, 60 G4double pDz, 91 G4double pDz, 61 G4double pSPhi, G4double 92 G4double pSPhi, G4double pDPhi ) 62 : G4CSGSolid(pName), fRMin(pRMin), fRMax(pR << 93 : G4CSGSolid(pName), fRMin(pRMin), fRMax(pRMax), fDz(pDz), fSPhi(0), fDPhi(0) 63 fSPhi(0), fDPhi(0), << 64 fInvRmax( pRMax > 0.0 ? 1.0/pRMax : 0.0 ) << 65 fInvRmin( pRMin > 0.0 ? 1.0/pRMin : 0.0 ) << 66 { 94 { >> 95 67 kRadTolerance = G4GeometryTolerance::GetInst 96 kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 68 kAngTolerance = G4GeometryTolerance::GetInst 97 kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance(); 69 98 70 halfCarTolerance=kCarTolerance*0.5; 99 halfCarTolerance=kCarTolerance*0.5; 71 halfRadTolerance=kRadTolerance*0.5; 100 halfRadTolerance=kRadTolerance*0.5; 72 halfAngTolerance=kAngTolerance*0.5; 101 halfAngTolerance=kAngTolerance*0.5; 73 102 74 if (pDz<=0) // Check z-len 103 if (pDz<=0) // Check z-len 75 { 104 { 76 std::ostringstream message; 105 std::ostringstream message; 77 message << "Negative Z half-length (" << p 106 message << "Negative Z half-length (" << pDz << ") in solid: " << GetName(); 78 G4Exception("G4Tubs::G4Tubs()", "GeomSolid 107 G4Exception("G4Tubs::G4Tubs()", "GeomSolids0002", FatalException, message); 79 } 108 } 80 if ( (pRMin >= pRMax) || (pRMin < 0) ) // Ch 109 if ( (pRMin >= pRMax) || (pRMin < 0) ) // Check radii 81 { 110 { 82 std::ostringstream message; 111 std::ostringstream message; 83 message << "Invalid values for radii in so 112 message << "Invalid values for radii in solid: " << GetName() 84 << G4endl 113 << G4endl 85 << " pRMin = " << pRMin << 114 << " pRMin = " << pRMin << ", pRMax = " << pRMax; 86 G4Exception("G4Tubs::G4Tubs()", "GeomSolid 115 G4Exception("G4Tubs::G4Tubs()", "GeomSolids0002", FatalException, message); 87 } 116 } 88 117 89 // Check angles 118 // Check angles 90 // 119 // 91 CheckPhiAngles(pSPhi, pDPhi); 120 CheckPhiAngles(pSPhi, pDPhi); 92 } 121 } 93 122 94 ////////////////////////////////////////////// 123 /////////////////////////////////////////////////////////////////////// 95 // 124 // 96 // Fake default constructor - sets only member 125 // Fake default constructor - sets only member data and allocates memory 97 // for usage restri 126 // for usage restricted to object persistency. 98 // 127 // 99 G4Tubs::G4Tubs( __void__& a ) 128 G4Tubs::G4Tubs( __void__& a ) 100 : G4CSGSolid(a) << 129 : G4CSGSolid(a), kRadTolerance(0.), kAngTolerance(0.), >> 130 fRMin(0.), fRMax(0.), fDz(0.), fSPhi(0.), fDPhi(0.), >> 131 sinCPhi(0.), cosCPhi(0.), cosHDPhiOT(0.), cosHDPhiIT(0.), >> 132 sinSPhi(0.), cosSPhi(0.), sinEPhi(0.), cosEPhi(0.), >> 133 fPhiFullTube(false), halfCarTolerance(0.), halfRadTolerance(0.), >> 134 halfAngTolerance(0.) 101 { 135 { 102 } 136 } 103 137 104 ////////////////////////////////////////////// 138 ////////////////////////////////////////////////////////////////////////// 105 // 139 // 106 // Destructor 140 // Destructor 107 141 108 G4Tubs::~G4Tubs() = default; << 142 G4Tubs::~G4Tubs() >> 143 { >> 144 } 109 145 110 ////////////////////////////////////////////// 146 ////////////////////////////////////////////////////////////////////////// 111 // 147 // 112 // Copy constructor 148 // Copy constructor 113 149 114 G4Tubs::G4Tubs(const G4Tubs&) = default; << 150 G4Tubs::G4Tubs(const G4Tubs& rhs) >> 151 : G4CSGSolid(rhs), >> 152 kRadTolerance(rhs.kRadTolerance), kAngTolerance(rhs.kAngTolerance), >> 153 fRMin(rhs.fRMin), fRMax(rhs.fRMax), fDz(rhs.fDz), >> 154 fSPhi(rhs.fSPhi), fDPhi(rhs.fDPhi), >> 155 sinCPhi(rhs.sinCPhi), cosCPhi(rhs.cosCPhi), >> 156 cosHDPhiOT(rhs.cosHDPhiOT), cosHDPhiIT(rhs.cosHDPhiIT), >> 157 sinSPhi(rhs.sinSPhi), cosSPhi(rhs.cosSPhi), >> 158 sinEPhi(rhs.sinEPhi), cosEPhi(rhs.cosEPhi), fPhiFullTube(rhs.fPhiFullTube), >> 159 halfCarTolerance(rhs.halfCarTolerance), >> 160 halfRadTolerance(rhs.halfRadTolerance), >> 161 halfAngTolerance(rhs.halfAngTolerance) >> 162 { >> 163 } 115 164 116 ////////////////////////////////////////////// 165 ////////////////////////////////////////////////////////////////////////// 117 // 166 // 118 // Assignment operator 167 // Assignment operator 119 168 120 G4Tubs& G4Tubs::operator = (const G4Tubs& rhs) << 169 G4Tubs& G4Tubs::operator = (const G4Tubs& rhs) 121 { 170 { 122 // Check assignment to self 171 // Check assignment to self 123 // 172 // 124 if (this == &rhs) { return *this; } 173 if (this == &rhs) { return *this; } 125 174 126 // Copy base class data 175 // Copy base class data 127 // 176 // 128 G4CSGSolid::operator=(rhs); 177 G4CSGSolid::operator=(rhs); 129 178 130 // Copy data 179 // Copy data 131 // 180 // 132 kRadTolerance = rhs.kRadTolerance; kAngTole 181 kRadTolerance = rhs.kRadTolerance; kAngTolerance = rhs.kAngTolerance; 133 fRMin = rhs.fRMin; fRMax = rhs.fRMax; fDz = 182 fRMin = rhs.fRMin; fRMax = rhs.fRMax; fDz = rhs.fDz; 134 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; 183 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; 135 sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPh << 184 sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPhi; 136 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = r 185 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = rhs.cosHDPhiIT; 137 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPh 186 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPhi; 138 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPh 187 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPhi; 139 fPhiFullTube = rhs.fPhiFullTube; 188 fPhiFullTube = rhs.fPhiFullTube; 140 fInvRmax = rhs.fInvRmax; << 141 fInvRmin = rhs.fInvRmin; << 142 halfCarTolerance = rhs.halfCarTolerance; 189 halfCarTolerance = rhs.halfCarTolerance; 143 halfRadTolerance = rhs.halfRadTolerance; 190 halfRadTolerance = rhs.halfRadTolerance; 144 halfAngTolerance = rhs.halfAngTolerance; 191 halfAngTolerance = rhs.halfAngTolerance; 145 192 146 return *this; 193 return *this; 147 } 194 } 148 195 149 ////////////////////////////////////////////// 196 ///////////////////////////////////////////////////////////////////////// 150 // 197 // 151 // Dispatch to parameterisation for replicatio 198 // Dispatch to parameterisation for replication mechanism dimension 152 // computation & modification. 199 // computation & modification. 153 200 154 void G4Tubs::ComputeDimensions( G4VPVPar 201 void G4Tubs::ComputeDimensions( G4VPVParameterisation* p, 155 const G4int n, 202 const G4int n, 156 const G4VPhysi 203 const G4VPhysicalVolume* pRep ) 157 { 204 { 158 p->ComputeDimensions(*this,n,pRep) ; 205 p->ComputeDimensions(*this,n,pRep) ; 159 } 206 } 160 207 161 ////////////////////////////////////////////// 208 ///////////////////////////////////////////////////////////////////////// 162 // 209 // 163 // Get bounding box 210 // Get bounding box 164 211 165 void G4Tubs::BoundingLimits(G4ThreeVector& pMi 212 void G4Tubs::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const 166 { 213 { 167 G4double rmin = GetInnerRadius(); 214 G4double rmin = GetInnerRadius(); 168 G4double rmax = GetOuterRadius(); 215 G4double rmax = GetOuterRadius(); 169 G4double dz = GetZHalfLength(); 216 G4double dz = GetZHalfLength(); 170 217 171 // Find bounding box 218 // Find bounding box 172 // 219 // 173 if (GetDeltaPhiAngle() < twopi) 220 if (GetDeltaPhiAngle() < twopi) 174 { 221 { 175 G4TwoVector vmin,vmax; 222 G4TwoVector vmin,vmax; 176 G4GeomTools::DiskExtent(rmin,rmax, 223 G4GeomTools::DiskExtent(rmin,rmax, 177 GetSinStartPhi(),G 224 GetSinStartPhi(),GetCosStartPhi(), 178 GetSinEndPhi(),Get 225 GetSinEndPhi(),GetCosEndPhi(), 179 vmin,vmax); 226 vmin,vmax); 180 pMin.set(vmin.x(),vmin.y(),-dz); 227 pMin.set(vmin.x(),vmin.y(),-dz); 181 pMax.set(vmax.x(),vmax.y(), dz); 228 pMax.set(vmax.x(),vmax.y(), dz); 182 } 229 } 183 else 230 else 184 { 231 { 185 pMin.set(-rmax,-rmax,-dz); 232 pMin.set(-rmax,-rmax,-dz); 186 pMax.set( rmax, rmax, dz); 233 pMax.set( rmax, rmax, dz); 187 } 234 } 188 235 189 // Check correctness of the bounding box 236 // Check correctness of the bounding box 190 // 237 // 191 if (pMin.x() >= pMax.x() || pMin.y() >= pMax 238 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 192 { 239 { 193 std::ostringstream message; 240 std::ostringstream message; 194 message << "Bad bounding box (min >= max) 241 message << "Bad bounding box (min >= max) for solid: " 195 << GetName() << " !" 242 << GetName() << " !" 196 << "\npMin = " << pMin 243 << "\npMin = " << pMin 197 << "\npMax = " << pMax; 244 << "\npMax = " << pMax; 198 G4Exception("G4Tubs::BoundingLimits()", "G 245 G4Exception("G4Tubs::BoundingLimits()", "GeomMgt0001", 199 JustWarning, message); 246 JustWarning, message); 200 DumpInfo(); 247 DumpInfo(); 201 } 248 } 202 } 249 } 203 250 204 ////////////////////////////////////////////// 251 ///////////////////////////////////////////////////////////////////////// 205 // 252 // 206 // Calculate extent under transform and specif 253 // Calculate extent under transform and specified limit 207 254 208 G4bool G4Tubs::CalculateExtent( const EAxis 255 G4bool G4Tubs::CalculateExtent( const EAxis pAxis, 209 const G4VoxelL 256 const G4VoxelLimits& pVoxelLimit, 210 const G4Affine 257 const G4AffineTransform& pTransform, 211 G4double << 258 G4double& pMin, 212 G4double 259 G4double& pMax ) const 213 { 260 { 214 G4ThreeVector bmin, bmax; 261 G4ThreeVector bmin, bmax; 215 G4bool exist; 262 G4bool exist; 216 263 217 // Get bounding box 264 // Get bounding box 218 BoundingLimits(bmin,bmax); 265 BoundingLimits(bmin,bmax); 219 266 220 // Check bounding box 267 // Check bounding box 221 G4BoundingEnvelope bbox(bmin,bmax); 268 G4BoundingEnvelope bbox(bmin,bmax); 222 #ifdef G4BBOX_EXTENT 269 #ifdef G4BBOX_EXTENT 223 return bbox.CalculateExtent(pAxis,pVoxelLimi << 270 if (true) return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 224 #endif 271 #endif 225 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox 272 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax)) 226 { 273 { 227 return exist = pMin < pMax; << 274 return exist = (pMin < pMax) ? true : false; 228 } 275 } 229 276 230 // Get parameters of the solid 277 // Get parameters of the solid 231 G4double rmin = GetInnerRadius(); 278 G4double rmin = GetInnerRadius(); 232 G4double rmax = GetOuterRadius(); 279 G4double rmax = GetOuterRadius(); 233 G4double dz = GetZHalfLength(); 280 G4double dz = GetZHalfLength(); 234 G4double dphi = GetDeltaPhiAngle(); 281 G4double dphi = GetDeltaPhiAngle(); 235 282 236 // Find bounding envelope and calculate exte 283 // Find bounding envelope and calculate extent 237 // 284 // 238 const G4int NSTEPS = 24; // numbe 285 const G4int NSTEPS = 24; // number of steps for whole circle 239 G4double astep = twopi/NSTEPS; // max a 286 G4double astep = twopi/NSTEPS; // max angle for one step 240 G4int ksteps = (dphi <= astep) ? 1 : (G4i 287 G4int ksteps = (dphi <= astep) ? 1 : (G4int)((dphi-deg)/astep) + 1; 241 G4double ang = dphi/ksteps; 288 G4double ang = dphi/ksteps; 242 289 243 G4double sinHalf = std::sin(0.5*ang); 290 G4double sinHalf = std::sin(0.5*ang); 244 G4double cosHalf = std::cos(0.5*ang); 291 G4double cosHalf = std::cos(0.5*ang); 245 G4double sinStep = 2.*sinHalf*cosHalf; 292 G4double sinStep = 2.*sinHalf*cosHalf; 246 G4double cosStep = 1. - 2.*sinHalf*sinHalf; 293 G4double cosStep = 1. - 2.*sinHalf*sinHalf; 247 G4double rext = rmax/cosHalf; 294 G4double rext = rmax/cosHalf; 248 295 249 // bounding envelope for full cylinder consi 296 // bounding envelope for full cylinder consists of two polygons, 250 // in other cases it is a sequence of quadri 297 // in other cases it is a sequence of quadrilaterals 251 if (rmin == 0 && dphi == twopi) 298 if (rmin == 0 && dphi == twopi) 252 { 299 { 253 G4double sinCur = sinHalf; 300 G4double sinCur = sinHalf; 254 G4double cosCur = cosHalf; 301 G4double cosCur = cosHalf; 255 302 256 G4ThreeVectorList baseA(NSTEPS),baseB(NSTE 303 G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS); 257 for (G4int k=0; k<NSTEPS; ++k) 304 for (G4int k=0; k<NSTEPS; ++k) 258 { 305 { 259 baseA[k].set(rext*cosCur,rext*sinCur,-dz 306 baseA[k].set(rext*cosCur,rext*sinCur,-dz); 260 baseB[k].set(rext*cosCur,rext*sinCur, dz 307 baseB[k].set(rext*cosCur,rext*sinCur, dz); 261 308 262 G4double sinTmp = sinCur; 309 G4double sinTmp = sinCur; 263 sinCur = sinCur*cosStep + cosCur*sinStep 310 sinCur = sinCur*cosStep + cosCur*sinStep; 264 cosCur = cosCur*cosStep - sinTmp*sinStep 311 cosCur = cosCur*cosStep - sinTmp*sinStep; 265 } 312 } 266 std::vector<const G4ThreeVectorList *> pol 313 std::vector<const G4ThreeVectorList *> polygons(2); 267 polygons[0] = &baseA; 314 polygons[0] = &baseA; 268 polygons[1] = &baseB; 315 polygons[1] = &baseB; 269 G4BoundingEnvelope benv(bmin,bmax,polygons 316 G4BoundingEnvelope benv(bmin,bmax,polygons); 270 exist = benv.CalculateExtent(pAxis,pVoxelL 317 exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 271 } 318 } 272 else 319 else 273 { 320 { 274 G4double sinStart = GetSinStartPhi(); 321 G4double sinStart = GetSinStartPhi(); 275 G4double cosStart = GetCosStartPhi(); 322 G4double cosStart = GetCosStartPhi(); 276 G4double sinEnd = GetSinEndPhi(); 323 G4double sinEnd = GetSinEndPhi(); 277 G4double cosEnd = GetCosEndPhi(); 324 G4double cosEnd = GetCosEndPhi(); 278 G4double sinCur = sinStart*cosHalf + cos 325 G4double sinCur = sinStart*cosHalf + cosStart*sinHalf; 279 G4double cosCur = cosStart*cosHalf - sin 326 G4double cosCur = cosStart*cosHalf - sinStart*sinHalf; 280 327 281 // set quadrilaterals 328 // set quadrilaterals 282 G4ThreeVectorList pols[NSTEPS+2]; 329 G4ThreeVectorList pols[NSTEPS+2]; 283 for (G4int k=0; k<ksteps+2; ++k) pols[k].r 330 for (G4int k=0; k<ksteps+2; ++k) pols[k].resize(4); 284 pols[0][0].set(rmin*cosStart,rmin*sinStart 331 pols[0][0].set(rmin*cosStart,rmin*sinStart, dz); 285 pols[0][1].set(rmin*cosStart,rmin*sinStart 332 pols[0][1].set(rmin*cosStart,rmin*sinStart,-dz); 286 pols[0][2].set(rmax*cosStart,rmax*sinStart 333 pols[0][2].set(rmax*cosStart,rmax*sinStart,-dz); 287 pols[0][3].set(rmax*cosStart,rmax*sinStart 334 pols[0][3].set(rmax*cosStart,rmax*sinStart, dz); 288 for (G4int k=1; k<ksteps+1; ++k) 335 for (G4int k=1; k<ksteps+1; ++k) 289 { 336 { 290 pols[k][0].set(rmin*cosCur,rmin*sinCur, 337 pols[k][0].set(rmin*cosCur,rmin*sinCur, dz); 291 pols[k][1].set(rmin*cosCur,rmin*sinCur,- 338 pols[k][1].set(rmin*cosCur,rmin*sinCur,-dz); 292 pols[k][2].set(rext*cosCur,rext*sinCur,- 339 pols[k][2].set(rext*cosCur,rext*sinCur,-dz); 293 pols[k][3].set(rext*cosCur,rext*sinCur, 340 pols[k][3].set(rext*cosCur,rext*sinCur, dz); 294 341 295 G4double sinTmp = sinCur; 342 G4double sinTmp = sinCur; 296 sinCur = sinCur*cosStep + cosCur*sinStep 343 sinCur = sinCur*cosStep + cosCur*sinStep; 297 cosCur = cosCur*cosStep - sinTmp*sinStep 344 cosCur = cosCur*cosStep - sinTmp*sinStep; 298 } 345 } 299 pols[ksteps+1][0].set(rmin*cosEnd,rmin*sin 346 pols[ksteps+1][0].set(rmin*cosEnd,rmin*sinEnd, dz); 300 pols[ksteps+1][1].set(rmin*cosEnd,rmin*sin 347 pols[ksteps+1][1].set(rmin*cosEnd,rmin*sinEnd,-dz); 301 pols[ksteps+1][2].set(rmax*cosEnd,rmax*sin 348 pols[ksteps+1][2].set(rmax*cosEnd,rmax*sinEnd,-dz); 302 pols[ksteps+1][3].set(rmax*cosEnd,rmax*sin 349 pols[ksteps+1][3].set(rmax*cosEnd,rmax*sinEnd, dz); 303 350 304 // set envelope and calculate extent 351 // set envelope and calculate extent 305 std::vector<const G4ThreeVectorList *> pol 352 std::vector<const G4ThreeVectorList *> polygons; 306 polygons.resize(ksteps+2); 353 polygons.resize(ksteps+2); 307 for (G4int k=0; k<ksteps+2; ++k) polygons[ 354 for (G4int k=0; k<ksteps+2; ++k) polygons[k] = &pols[k]; 308 G4BoundingEnvelope benv(bmin,bmax,polygons 355 G4BoundingEnvelope benv(bmin,bmax,polygons); 309 exist = benv.CalculateExtent(pAxis,pVoxelL 356 exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 310 } 357 } 311 return exist; 358 return exist; 312 } 359 } 313 360 314 ////////////////////////////////////////////// 361 /////////////////////////////////////////////////////////////////////////// 315 // 362 // 316 // Return whether point inside/outside/on surf 363 // Return whether point inside/outside/on surface 317 364 318 EInside G4Tubs::Inside( const G4ThreeVector& p 365 EInside G4Tubs::Inside( const G4ThreeVector& p ) const 319 { 366 { 320 G4double r2,pPhi,tolRMin,tolRMax; 367 G4double r2,pPhi,tolRMin,tolRMax; 321 EInside in = kOutside ; 368 EInside in = kOutside ; 322 369 323 if (std::fabs(p.z()) <= fDz - halfCarToleran 370 if (std::fabs(p.z()) <= fDz - halfCarTolerance) 324 { 371 { 325 r2 = p.x()*p.x() + p.y()*p.y() ; 372 r2 = p.x()*p.x() + p.y()*p.y() ; 326 373 327 if (fRMin != 0.0) { tolRMin = fRMin + half << 374 if (fRMin) { tolRMin = fRMin + halfRadTolerance ; } 328 else { tolRMin = 0 ; } 375 else { tolRMin = 0 ; } 329 376 330 tolRMax = fRMax - halfRadTolerance ; 377 tolRMax = fRMax - halfRadTolerance ; 331 << 378 332 if ((r2 >= tolRMin*tolRMin) && (r2 <= tolR 379 if ((r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax)) 333 { 380 { 334 if ( fPhiFullTube ) 381 if ( fPhiFullTube ) 335 { 382 { 336 in = kInside ; 383 in = kInside ; 337 } 384 } 338 else 385 else 339 { 386 { 340 // Try inner tolerant phi boundaries ( 387 // Try inner tolerant phi boundaries (=>inside) 341 // if not inside, try outer tolerant p 388 // if not inside, try outer tolerant phi boundaries 342 389 343 if ( (tolRMin==0) && (std::fabs(p.x()) 390 if ( (tolRMin==0) && (std::fabs(p.x())<=halfCarTolerance) 344 && (std::fabs(p.y()) 391 && (std::fabs(p.y())<=halfCarTolerance) ) 345 { 392 { 346 in=kSurface; 393 in=kSurface; 347 } 394 } 348 else 395 else 349 { 396 { 350 pPhi = std::atan2(p.y(),p.x()) ; 397 pPhi = std::atan2(p.y(),p.x()) ; 351 if ( pPhi < -halfAngTolerance ) { p 398 if ( pPhi < -halfAngTolerance ) { pPhi += twopi; } // 0<=pPhi<2pi 352 399 353 if ( fSPhi >= 0 ) 400 if ( fSPhi >= 0 ) 354 { 401 { 355 if ( (std::fabs(pPhi) < halfAngTol 402 if ( (std::fabs(pPhi) < halfAngTolerance) 356 && (std::fabs(fSPhi + fDPhi - tw 403 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 357 { << 404 { 358 pPhi += twopi ; // 0 <= pPhi < 2 405 pPhi += twopi ; // 0 <= pPhi < 2pi 359 } 406 } 360 if ( (pPhi >= fSPhi + halfAngToler 407 if ( (pPhi >= fSPhi + halfAngTolerance) 361 && (pPhi <= fSPhi + fDPhi - half 408 && (pPhi <= fSPhi + fDPhi - halfAngTolerance) ) 362 { 409 { 363 in = kInside ; 410 in = kInside ; 364 } 411 } 365 else if ( (pPhi >= fSPhi - halfAng 412 else if ( (pPhi >= fSPhi - halfAngTolerance) 366 && (pPhi <= fSPhi + fDPhi + 413 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 367 { 414 { 368 in = kSurface ; 415 in = kSurface ; 369 } 416 } 370 } 417 } 371 else // fSPhi < 0 418 else // fSPhi < 0 372 { 419 { 373 if ( (pPhi <= fSPhi + twopi - half 420 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 374 && (pPhi >= fSPhi + fDPhi + hal 421 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} //kOutside 375 else if ( (pPhi <= fSPhi + twopi + 422 else if ( (pPhi <= fSPhi + twopi + halfAngTolerance) 376 && (pPhi >= fSPhi + fDPhi 423 && (pPhi >= fSPhi + fDPhi - halfAngTolerance) ) 377 { 424 { 378 in = kSurface ; 425 in = kSurface ; 379 } 426 } 380 else 427 else 381 { 428 { 382 in = kInside ; 429 in = kInside ; 383 } 430 } 384 } 431 } 385 } << 432 } 386 } 433 } 387 } 434 } 388 else // Try generous boundaries 435 else // Try generous boundaries 389 { 436 { 390 tolRMin = fRMin - halfRadTolerance ; 437 tolRMin = fRMin - halfRadTolerance ; 391 tolRMax = fRMax + halfRadTolerance ; 438 tolRMax = fRMax + halfRadTolerance ; 392 439 393 if ( tolRMin < 0 ) { tolRMin = 0; } 440 if ( tolRMin < 0 ) { tolRMin = 0; } 394 441 395 if ( (r2 >= tolRMin*tolRMin) && (r2 <= t 442 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) ) 396 { 443 { 397 if (fPhiFullTube || (r2 <=halfRadToler 444 if (fPhiFullTube || (r2 <=halfRadTolerance*halfRadTolerance) ) 398 { // Continuous 445 { // Continuous in phi or on z-axis 399 in = kSurface ; 446 in = kSurface ; 400 } 447 } 401 else // Try outer tolerant phi boundar 448 else // Try outer tolerant phi boundaries only 402 { 449 { 403 pPhi = std::atan2(p.y(),p.x()) ; 450 pPhi = std::atan2(p.y(),p.x()) ; 404 451 405 if ( pPhi < -halfAngTolerance) { pP 452 if ( pPhi < -halfAngTolerance) { pPhi += twopi; } // 0<=pPhi<2pi 406 if ( fSPhi >= 0 ) 453 if ( fSPhi >= 0 ) 407 { 454 { 408 if ( (std::fabs(pPhi) < halfAngTol 455 if ( (std::fabs(pPhi) < halfAngTolerance) 409 && (std::fabs(fSPhi + fDPhi - tw 456 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 410 { << 457 { 411 pPhi += twopi ; // 0 <= pPhi < 2 458 pPhi += twopi ; // 0 <= pPhi < 2pi 412 } 459 } 413 if ( (pPhi >= fSPhi - halfAngToler 460 if ( (pPhi >= fSPhi - halfAngTolerance) 414 && (pPhi <= fSPhi + fDPhi + half 461 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 415 { 462 { 416 in = kSurface ; 463 in = kSurface ; 417 } 464 } 418 } 465 } 419 else // fSPhi < 0 466 else // fSPhi < 0 420 { 467 { 421 if ( (pPhi <= fSPhi + twopi - half 468 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 422 && (pPhi >= fSPhi + fDPhi + half 469 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} // kOutside 423 else 470 else 424 { 471 { 425 in = kSurface ; 472 in = kSurface ; 426 } 473 } 427 } 474 } 428 } 475 } 429 } 476 } 430 } 477 } 431 } 478 } 432 else if (std::fabs(p.z()) <= fDz + halfCarTo 479 else if (std::fabs(p.z()) <= fDz + halfCarTolerance) 433 { / 480 { // Check within tolerant r limits 434 r2 = p.x()*p.x() + p.y()*p.y() ; 481 r2 = p.x()*p.x() + p.y()*p.y() ; 435 tolRMin = fRMin - halfRadTolerance ; 482 tolRMin = fRMin - halfRadTolerance ; 436 tolRMax = fRMax + halfRadTolerance ; 483 tolRMax = fRMax + halfRadTolerance ; 437 484 438 if ( tolRMin < 0 ) { tolRMin = 0; } 485 if ( tolRMin < 0 ) { tolRMin = 0; } 439 486 440 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tol 487 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) ) 441 { 488 { 442 if (fPhiFullTube || (r2 <=halfRadToleran 489 if (fPhiFullTube || (r2 <=halfRadTolerance*halfRadTolerance)) 443 { // Continuous i 490 { // Continuous in phi or on z-axis 444 in = kSurface ; 491 in = kSurface ; 445 } 492 } 446 else // Try outer tolerant phi boundarie 493 else // Try outer tolerant phi boundaries 447 { 494 { 448 pPhi = std::atan2(p.y(),p.x()) ; 495 pPhi = std::atan2(p.y(),p.x()) ; 449 496 450 if ( pPhi < -halfAngTolerance ) { pPh 497 if ( pPhi < -halfAngTolerance ) { pPhi += twopi; } // 0<=pPhi<2pi 451 if ( fSPhi >= 0 ) 498 if ( fSPhi >= 0 ) 452 { 499 { 453 if ( (std::fabs(pPhi) < halfAngToler 500 if ( (std::fabs(pPhi) < halfAngTolerance) 454 && (std::fabs(fSPhi + fDPhi - twop 501 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 455 { << 502 { 456 pPhi += twopi ; // 0 <= pPhi < 2pi 503 pPhi += twopi ; // 0 <= pPhi < 2pi 457 } 504 } 458 if ( (pPhi >= fSPhi - halfAngToleran 505 if ( (pPhi >= fSPhi - halfAngTolerance) 459 && (pPhi <= fSPhi + fDPhi + halfAn 506 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 460 { 507 { 461 in = kSurface; 508 in = kSurface; 462 } 509 } 463 } 510 } 464 else // fSPhi < 0 511 else // fSPhi < 0 465 { 512 { 466 if ( (pPhi <= fSPhi + twopi - halfAn 513 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 467 && (pPhi >= fSPhi + fDPhi + halfA 514 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} 468 else 515 else 469 { 516 { 470 in = kSurface ; 517 in = kSurface ; 471 } 518 } 472 } << 519 } 473 } 520 } 474 } 521 } 475 } 522 } 476 return in; 523 return in; 477 } 524 } 478 525 479 ////////////////////////////////////////////// 526 /////////////////////////////////////////////////////////////////////////// 480 // 527 // 481 // Return unit normal of surface closest to p 528 // Return unit normal of surface closest to p 482 // - note if point on z axis, ignore phi divid 529 // - note if point on z axis, ignore phi divided sides 483 // - unsafe if point close to z axis a rmin=0 530 // - unsafe if point close to z axis a rmin=0 - no explicit checks 484 531 485 G4ThreeVector G4Tubs::SurfaceNormal( const G4T 532 G4ThreeVector G4Tubs::SurfaceNormal( const G4ThreeVector& p ) const 486 { 533 { 487 G4int noSurfaces = 0; 534 G4int noSurfaces = 0; 488 G4double rho, pPhi; 535 G4double rho, pPhi; 489 G4double distZ, distRMin, distRMax; 536 G4double distZ, distRMin, distRMax; 490 G4double distSPhi = kInfinity, distEPhi = kI 537 G4double distSPhi = kInfinity, distEPhi = kInfinity; 491 538 492 G4ThreeVector norm, sumnorm(0.,0.,0.); 539 G4ThreeVector norm, sumnorm(0.,0.,0.); 493 G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0); 540 G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0); 494 G4ThreeVector nR, nPs, nPe; 541 G4ThreeVector nR, nPs, nPe; 495 542 496 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()); 543 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()); 497 544 498 distRMin = std::fabs(rho - fRMin); 545 distRMin = std::fabs(rho - fRMin); 499 distRMax = std::fabs(rho - fRMax); 546 distRMax = std::fabs(rho - fRMax); 500 distZ = std::fabs(std::fabs(p.z()) - fDz) 547 distZ = std::fabs(std::fabs(p.z()) - fDz); 501 548 502 if (!fPhiFullTube) // Protected against ( << 549 if (!fPhiFullTube) // Protected against (0,0,z) 503 { 550 { 504 if ( rho > halfCarTolerance ) 551 if ( rho > halfCarTolerance ) 505 { 552 { 506 pPhi = std::atan2(p.y(),p.x()); 553 pPhi = std::atan2(p.y(),p.x()); >> 554 >> 555 if(pPhi < fSPhi- halfCarTolerance) { pPhi += twopi; } >> 556 else if(pPhi > fSPhi+fDPhi+ halfCarTolerance) { pPhi -= twopi; } 507 557 508 if (pPhi < fSPhi-halfCarTolerance) << 558 distSPhi = std::fabs(pPhi - fSPhi); 509 else if (pPhi > fSPhi+fDPhi+halfCarToler << 559 distEPhi = std::fabs(pPhi - fSPhi - fDPhi); 510 << 511 distSPhi = std::fabs( pPhi - fSPhi ); << 512 distEPhi = std::fabs( pPhi - fSPhi - fDP << 513 } 560 } 514 else if ( fRMin == 0.0 ) << 561 else if( !fRMin ) 515 { 562 { 516 distSPhi = 0.; << 563 distSPhi = 0.; 517 distEPhi = 0.; << 564 distEPhi = 0.; 518 } 565 } 519 nPs = G4ThreeVector( sinSPhi, -cosSPhi, 0 << 566 nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0); 520 nPe = G4ThreeVector( -sinEPhi, cosEPhi, 0 << 567 nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0); 521 } 568 } 522 if ( rho > halfCarTolerance ) { nR = G4Three 569 if ( rho > halfCarTolerance ) { nR = G4ThreeVector(p.x()/rho,p.y()/rho,0); } 523 570 524 if( distRMax <= halfCarTolerance ) 571 if( distRMax <= halfCarTolerance ) 525 { 572 { 526 ++noSurfaces; << 573 noSurfaces ++; 527 sumnorm += nR; 574 sumnorm += nR; 528 } 575 } 529 if( (fRMin != 0.0) && (distRMin <= halfCarTo << 576 if( fRMin && (distRMin <= halfCarTolerance) ) 530 { 577 { 531 ++noSurfaces; << 578 noSurfaces ++; 532 sumnorm -= nR; 579 sumnorm -= nR; 533 } 580 } 534 if( fDPhi < twopi ) << 581 if( fDPhi < twopi ) 535 { 582 { 536 if (distSPhi <= halfAngTolerance) << 583 if (distSPhi <= halfAngTolerance) 537 { 584 { 538 ++noSurfaces; << 585 noSurfaces ++; 539 sumnorm += nPs; 586 sumnorm += nPs; 540 } 587 } 541 if (distEPhi <= halfAngTolerance) << 588 if (distEPhi <= halfAngTolerance) 542 { 589 { 543 ++noSurfaces; << 590 noSurfaces ++; 544 sumnorm += nPe; 591 sumnorm += nPe; 545 } 592 } 546 } 593 } 547 if (distZ <= halfCarTolerance) << 594 if (distZ <= halfCarTolerance) 548 { 595 { 549 ++noSurfaces; << 596 noSurfaces ++; 550 if ( p.z() >= 0.) { sumnorm += nZ; } 597 if ( p.z() >= 0.) { sumnorm += nZ; } 551 else { sumnorm -= nZ; } 598 else { sumnorm -= nZ; } 552 } 599 } 553 if ( noSurfaces == 0 ) 600 if ( noSurfaces == 0 ) 554 { 601 { 555 #ifdef G4CSGDEBUG 602 #ifdef G4CSGDEBUG 556 G4Exception("G4Tubs::SurfaceNormal(p)", "G 603 G4Exception("G4Tubs::SurfaceNormal(p)", "GeomSolids1002", 557 JustWarning, "Point p is not o 604 JustWarning, "Point p is not on surface !?" ); 558 G4long oldprc = G4cout.precision(20); << 605 G4int oldprc = G4cout.precision(20); 559 G4cout<< "G4Tubs::SN ( "<<p.x()<<", "<<p.y 606 G4cout<< "G4Tubs::SN ( "<<p.x()<<", "<<p.y()<<", "<<p.z()<<" ); " 560 << G4endl << G4endl; 607 << G4endl << G4endl; 561 G4cout.precision(oldprc) ; 608 G4cout.precision(oldprc) ; 562 #endif << 609 #endif 563 norm = ApproxSurfaceNormal(p); 610 norm = ApproxSurfaceNormal(p); 564 } 611 } 565 else if ( noSurfaces == 1 ) { norm = sumnor 612 else if ( noSurfaces == 1 ) { norm = sumnorm; } 566 else { norm = sumnor 613 else { norm = sumnorm.unit(); } 567 614 568 return norm; 615 return norm; 569 } 616 } 570 617 571 ////////////////////////////////////////////// 618 ///////////////////////////////////////////////////////////////////////////// 572 // 619 // 573 // Algorithm for SurfaceNormal() following the 620 // Algorithm for SurfaceNormal() following the original specification 574 // for points not on the surface 621 // for points not on the surface 575 622 576 G4ThreeVector G4Tubs::ApproxSurfaceNormal( con 623 G4ThreeVector G4Tubs::ApproxSurfaceNormal( const G4ThreeVector& p ) const 577 { 624 { 578 ENorm side ; 625 ENorm side ; 579 G4ThreeVector norm ; 626 G4ThreeVector norm ; 580 G4double rho, phi ; 627 G4double rho, phi ; 581 G4double distZ, distRMin, distRMax, distSPhi 628 G4double distZ, distRMin, distRMax, distSPhi, distEPhi, distMin ; 582 629 583 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 630 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 584 631 585 distRMin = std::fabs(rho - fRMin) ; 632 distRMin = std::fabs(rho - fRMin) ; 586 distRMax = std::fabs(rho - fRMax) ; 633 distRMax = std::fabs(rho - fRMax) ; 587 distZ = std::fabs(std::fabs(p.z()) - fDz) 634 distZ = std::fabs(std::fabs(p.z()) - fDz) ; 588 635 589 if (distRMin < distRMax) // First minimum 636 if (distRMin < distRMax) // First minimum 590 { 637 { 591 if ( distZ < distRMin ) 638 if ( distZ < distRMin ) 592 { 639 { 593 distMin = distZ ; 640 distMin = distZ ; 594 side = kNZ ; 641 side = kNZ ; 595 } 642 } 596 else 643 else 597 { 644 { 598 distMin = distRMin ; 645 distMin = distRMin ; 599 side = kNRMin ; 646 side = kNRMin ; 600 } 647 } 601 } 648 } 602 else 649 else 603 { 650 { 604 if ( distZ < distRMax ) 651 if ( distZ < distRMax ) 605 { 652 { 606 distMin = distZ ; 653 distMin = distZ ; 607 side = kNZ ; 654 side = kNZ ; 608 } 655 } 609 else 656 else 610 { 657 { 611 distMin = distRMax ; 658 distMin = distRMax ; 612 side = kNRMax ; 659 side = kNRMax ; 613 } 660 } 614 } << 661 } 615 if (!fPhiFullTube && (rho != 0.0) ) // Pro << 662 if (!fPhiFullTube && rho ) // Protected against (0,0,z) 616 { 663 { 617 phi = std::atan2(p.y(),p.x()) ; 664 phi = std::atan2(p.y(),p.x()) ; 618 665 619 if ( phi < 0 ) { phi += twopi; } 666 if ( phi < 0 ) { phi += twopi; } 620 667 621 if ( fSPhi < 0 ) 668 if ( fSPhi < 0 ) 622 { 669 { 623 distSPhi = std::fabs(phi - (fSPhi + twop 670 distSPhi = std::fabs(phi - (fSPhi + twopi))*rho ; 624 } 671 } 625 else 672 else 626 { 673 { 627 distSPhi = std::fabs(phi - fSPhi)*rho ; 674 distSPhi = std::fabs(phi - fSPhi)*rho ; 628 } 675 } 629 distEPhi = std::fabs(phi - fSPhi - fDPhi)* 676 distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ; 630 << 677 631 if (distSPhi < distEPhi) // Find new minim 678 if (distSPhi < distEPhi) // Find new minimum 632 { 679 { 633 if ( distSPhi < distMin ) 680 if ( distSPhi < distMin ) 634 { 681 { 635 side = kNSPhi ; 682 side = kNSPhi ; 636 } 683 } 637 } 684 } 638 else 685 else 639 { 686 { 640 if ( distEPhi < distMin ) 687 if ( distEPhi < distMin ) 641 { 688 { 642 side = kNEPhi ; 689 side = kNEPhi ; 643 } 690 } 644 } 691 } 645 } << 692 } 646 switch ( side ) 693 switch ( side ) 647 { 694 { 648 case kNRMin : // Inner radius 695 case kNRMin : // Inner radius 649 { << 696 { 650 norm = G4ThreeVector(-p.x()/rho, -p.y()/ 697 norm = G4ThreeVector(-p.x()/rho, -p.y()/rho, 0) ; 651 break ; 698 break ; 652 } 699 } 653 case kNRMax : // Outer radius 700 case kNRMax : // Outer radius 654 { << 701 { 655 norm = G4ThreeVector(p.x()/rho, p.y()/rh 702 norm = G4ThreeVector(p.x()/rho, p.y()/rho, 0) ; 656 break ; 703 break ; 657 } 704 } 658 case kNZ : // + or - dz 705 case kNZ : // + or - dz 659 { << 706 { 660 if ( p.z() > 0 ) { norm = G4ThreeVector 707 if ( p.z() > 0 ) { norm = G4ThreeVector(0,0,1) ; } 661 else { norm = G4ThreeVector 708 else { norm = G4ThreeVector(0,0,-1); } 662 break ; 709 break ; 663 } 710 } 664 case kNSPhi: 711 case kNSPhi: 665 { 712 { 666 norm = G4ThreeVector(sinSPhi, -cosSPhi, << 713 norm = G4ThreeVector(std::sin(fSPhi), -std::cos(fSPhi), 0) ; 667 break ; 714 break ; 668 } 715 } 669 case kNEPhi: 716 case kNEPhi: 670 { 717 { 671 norm = G4ThreeVector(-sinEPhi, cosEPhi, << 718 norm = G4ThreeVector(-std::sin(fSPhi+fDPhi), std::cos(fSPhi+fDPhi), 0) ; 672 break; 719 break; 673 } 720 } 674 default: // Should never reach this c 721 default: // Should never reach this case ... 675 { 722 { 676 DumpInfo(); 723 DumpInfo(); 677 G4Exception("G4Tubs::ApproxSurfaceNormal 724 G4Exception("G4Tubs::ApproxSurfaceNormal()", 678 "GeomSolids1002", JustWarnin 725 "GeomSolids1002", JustWarning, 679 "Undefined side for valid su 726 "Undefined side for valid surface normal to solid."); 680 break ; 727 break ; 681 } << 728 } 682 } << 729 } 683 return norm; 730 return norm; 684 } 731 } 685 732 686 ////////////////////////////////////////////// 733 //////////////////////////////////////////////////////////////////// 687 // 734 // 688 // 735 // 689 // Calculate distance to shape from outside, a 736 // Calculate distance to shape from outside, along normalised vector 690 // - return kInfinity if no intersection, or i 737 // - return kInfinity if no intersection, or intersection distance <= tolerance 691 // 738 // 692 // - Compute the intersection with the z plane << 739 // - Compute the intersection with the z planes 693 // - if at valid r, phi, return 740 // - if at valid r, phi, return 694 // 741 // 695 // -> If point is outer outer radius, compute 742 // -> If point is outer outer radius, compute intersection with rmax 696 // - if at valid phi,z return 743 // - if at valid phi,z return 697 // 744 // 698 // -> Compute intersection with inner radius, 745 // -> Compute intersection with inner radius, taking largest +ve root 699 // - if valid (in z,phi), save intersct 746 // - if valid (in z,phi), save intersction 700 // 747 // 701 // -> If phi segmented, compute intersectio 748 // -> If phi segmented, compute intersections with phi half planes 702 // - return smallest of valid phi inter 749 // - return smallest of valid phi intersections and 703 // inner radius intersection 750 // inner radius intersection 704 // 751 // 705 // NOTE: 752 // NOTE: 706 // - 'if valid' implies tolerant checking of i 753 // - 'if valid' implies tolerant checking of intersection points 707 754 708 G4double G4Tubs::DistanceToIn( const G4ThreeVe 755 G4double G4Tubs::DistanceToIn( const G4ThreeVector& p, 709 const G4ThreeVe 756 const G4ThreeVector& v ) const 710 { 757 { 711 G4double snxt = kInfinity ; // snxt = d 758 G4double snxt = kInfinity ; // snxt = default return value 712 G4double tolORMin2, tolIRMax2 ; // 'generou 759 G4double tolORMin2, tolIRMax2 ; // 'generous' radii squared 713 G4double tolORMax2, tolIRMin2, tolODz, tolID 760 G4double tolORMax2, tolIRMin2, tolODz, tolIDz ; 714 const G4double dRmax = 100.*fRMax; 761 const G4double dRmax = 100.*fRMax; 715 762 716 // Intersection point variables 763 // Intersection point variables 717 // 764 // 718 G4double Dist, sd, xi, yi, zi, rho2, inum, i 765 G4double Dist, sd, xi, yi, zi, rho2, inum, iden, cosPsi, Comp ; 719 G4double t1, t2, t3, b, c, d ; // Quadra << 766 G4double t1, t2, t3, b, c, d ; // Quadratic solver variables 720 << 767 721 // Calculate tolerant rmin and rmax 768 // Calculate tolerant rmin and rmax 722 769 723 if (fRMin > kRadTolerance) 770 if (fRMin > kRadTolerance) 724 { 771 { 725 tolORMin2 = (fRMin - halfRadTolerance)*(fR 772 tolORMin2 = (fRMin - halfRadTolerance)*(fRMin - halfRadTolerance) ; 726 tolIRMin2 = (fRMin + halfRadTolerance)*(fR 773 tolIRMin2 = (fRMin + halfRadTolerance)*(fRMin + halfRadTolerance) ; 727 } 774 } 728 else 775 else 729 { 776 { 730 tolORMin2 = 0.0 ; 777 tolORMin2 = 0.0 ; 731 tolIRMin2 = 0.0 ; 778 tolIRMin2 = 0.0 ; 732 } 779 } 733 tolORMax2 = (fRMax + halfRadTolerance)*(fRMa 780 tolORMax2 = (fRMax + halfRadTolerance)*(fRMax + halfRadTolerance) ; 734 tolIRMax2 = (fRMax - halfRadTolerance)*(fRMa 781 tolIRMax2 = (fRMax - halfRadTolerance)*(fRMax - halfRadTolerance) ; 735 782 736 // Intersection with Z surfaces 783 // Intersection with Z surfaces 737 784 738 tolIDz = fDz - halfCarTolerance ; 785 tolIDz = fDz - halfCarTolerance ; 739 tolODz = fDz + halfCarTolerance ; 786 tolODz = fDz + halfCarTolerance ; 740 787 741 if (std::fabs(p.z()) >= tolIDz) 788 if (std::fabs(p.z()) >= tolIDz) 742 { 789 { 743 if ( p.z()*v.z() < 0 ) // at +Z going i 790 if ( p.z()*v.z() < 0 ) // at +Z going in -Z or visa versa 744 { 791 { 745 sd = (std::fabs(p.z()) - fDz)/std::fabs( 792 sd = (std::fabs(p.z()) - fDz)/std::fabs(v.z()) ; // Z intersect distance 746 793 747 if(sd < 0.0) { sd = 0.0; } 794 if(sd < 0.0) { sd = 0.0; } 748 795 749 xi = p.x() + sd*v.x() ; 796 xi = p.x() + sd*v.x() ; // Intersection coords 750 yi = p.y() + sd*v.y() ; 797 yi = p.y() + sd*v.y() ; 751 rho2 = xi*xi + yi*yi ; 798 rho2 = xi*xi + yi*yi ; 752 799 753 // Check validity of intersection 800 // Check validity of intersection 754 801 755 if ((tolIRMin2 <= rho2) && (rho2 <= tolI 802 if ((tolIRMin2 <= rho2) && (rho2 <= tolIRMax2)) 756 { 803 { 757 if (!fPhiFullTube && (rho2 != 0.0)) << 804 if (!fPhiFullTube && rho2) 758 { 805 { 759 // Psi = angle made with central (av 806 // Psi = angle made with central (average) phi of shape 760 // 807 // 761 inum = xi*cosCPhi + yi*sinCPhi ; 808 inum = xi*cosCPhi + yi*sinCPhi ; 762 iden = std::sqrt(rho2) ; 809 iden = std::sqrt(rho2) ; 763 cosPsi = inum/iden ; 810 cosPsi = inum/iden ; 764 if (cosPsi >= cosHDPhiIT) { return 811 if (cosPsi >= cosHDPhiIT) { return sd ; } 765 } 812 } 766 else 813 else 767 { 814 { 768 return sd ; 815 return sd ; 769 } 816 } 770 } 817 } 771 } 818 } 772 else 819 else 773 { 820 { 774 if ( snxt<halfCarTolerance ) { snxt=0; 821 if ( snxt<halfCarTolerance ) { snxt=0; } 775 return snxt ; // On/outside extent, and 822 return snxt ; // On/outside extent, and heading away 776 // -> cannot intersect 823 // -> cannot intersect 777 } 824 } 778 } 825 } 779 826 780 // -> Can not intersect z surfaces 827 // -> Can not intersect z surfaces 781 // 828 // 782 // Intersection with rmax (possible return) 829 // Intersection with rmax (possible return) and rmin (must also check phi) 783 // 830 // 784 // Intersection point (xi,yi,zi) on line x=p 831 // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc. 785 // 832 // 786 // Intersects with x^2+y^2=R^2 833 // Intersects with x^2+y^2=R^2 787 // 834 // 788 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v. 835 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0 789 // t1 t2 836 // t1 t2 t3 790 837 791 t1 = 1.0 - v.z()*v.z() ; 838 t1 = 1.0 - v.z()*v.z() ; 792 t2 = p.x()*v.x() + p.y()*v.y() ; 839 t2 = p.x()*v.x() + p.y()*v.y() ; 793 t3 = p.x()*p.x() + p.y()*p.y() ; 840 t3 = p.x()*p.x() + p.y()*p.y() ; 794 841 795 if ( t1 > 0 ) // Check not || to z ax 842 if ( t1 > 0 ) // Check not || to z axis 796 { 843 { 797 b = t2/t1 ; 844 b = t2/t1 ; 798 c = t3 - fRMax*fRMax ; 845 c = t3 - fRMax*fRMax ; 799 if ((t3 >= tolORMax2) && (t2<0)) // This 846 if ((t3 >= tolORMax2) && (t2<0)) // This also handles the tangent case 800 { 847 { 801 // Try outer cylinder intersection 848 // Try outer cylinder intersection 802 // c=(t3-fRMax*fRMax)/t1; 849 // c=(t3-fRMax*fRMax)/t1; 803 850 804 c /= t1 ; 851 c /= t1 ; 805 d = b*b - c ; 852 d = b*b - c ; 806 853 807 if (d >= 0) // If real root 854 if (d >= 0) // If real root 808 { 855 { 809 sd = c/(-b+std::sqrt(d)); 856 sd = c/(-b+std::sqrt(d)); 810 if (sd >= 0) // If 'forwards' 857 if (sd >= 0) // If 'forwards' 811 { 858 { 812 if ( sd>dRmax ) // Avoid rounding er 859 if ( sd>dRmax ) // Avoid rounding errors due to precision issues on 813 { // 64 bits systems. 860 { // 64 bits systems. Split long distances and recompute 814 G4double fTerm = sd-std::fmod(sd,d 861 G4double fTerm = sd-std::fmod(sd,dRmax); 815 sd = fTerm + DistanceToIn(p+fTerm* 862 sd = fTerm + DistanceToIn(p+fTerm*v,v); 816 } << 863 } 817 // Check z intersection 864 // Check z intersection 818 // 865 // 819 zi = p.z() + sd*v.z() ; 866 zi = p.z() + sd*v.z() ; 820 if (std::fabs(zi)<=tolODz) 867 if (std::fabs(zi)<=tolODz) 821 { 868 { 822 // Z ok. Check phi intersection if 869 // Z ok. Check phi intersection if reqd 823 // 870 // 824 if (fPhiFullTube) 871 if (fPhiFullTube) 825 { 872 { 826 return sd ; 873 return sd ; 827 } 874 } 828 else 875 else 829 { 876 { 830 xi = p.x() + sd*v.x() ; 877 xi = p.x() + sd*v.x() ; 831 yi = p.y() + sd*v.y() ; 878 yi = p.y() + sd*v.y() ; 832 cosPsi = (xi*cosCPhi + yi*sinCPh 879 cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMax ; 833 if (cosPsi >= cosHDPhiIT) { ret 880 if (cosPsi >= cosHDPhiIT) { return sd ; } 834 } 881 } 835 } // end if std::fabs(zi) 882 } // end if std::fabs(zi) 836 } // end if (sd>=0) 883 } // end if (sd>=0) 837 } // end if (d>=0) 884 } // end if (d>=0) 838 } // end if (r>=fRMax) 885 } // end if (r>=fRMax) 839 else << 886 else 840 { 887 { 841 // Inside outer radius : 888 // Inside outer radius : 842 // check not inside, and heading through 889 // check not inside, and heading through tubs (-> 0 to in) 843 890 844 if ((t3 > tolIRMin2) && (t2 < 0) && (std 891 if ((t3 > tolIRMin2) && (t2 < 0) && (std::fabs(p.z()) <= tolIDz)) 845 { 892 { 846 // Inside both radii, delta r -ve, ins 893 // Inside both radii, delta r -ve, inside z extent 847 894 848 if (!fPhiFullTube) 895 if (!fPhiFullTube) 849 { 896 { 850 inum = p.x()*cosCPhi + p.y()*sinCP 897 inum = p.x()*cosCPhi + p.y()*sinCPhi ; 851 iden = std::sqrt(t3) ; 898 iden = std::sqrt(t3) ; 852 cosPsi = inum/iden ; 899 cosPsi = inum/iden ; 853 if (cosPsi >= cosHDPhiIT) 900 if (cosPsi >= cosHDPhiIT) 854 { 901 { 855 // In the old version, the small n 902 // In the old version, the small negative tangent for the point 856 // on surface was not taken in acc 903 // on surface was not taken in account, and returning 0.0 ... 857 // New version: check the tangent << 904 // New version: check the tangent for the point on surface and 858 // if no intersection, return kInf 905 // if no intersection, return kInfinity, if intersection instead 859 // return sd. 906 // return sd. 860 // 907 // 861 c = t3-fRMax*fRMax; << 908 c = t3-fRMax*fRMax; 862 if ( c<=0.0 ) 909 if ( c<=0.0 ) 863 { 910 { 864 return 0.0; 911 return 0.0; 865 } 912 } 866 else 913 else 867 { 914 { 868 c = c/t1 ; 915 c = c/t1 ; 869 d = b*b-c; 916 d = b*b-c; 870 if ( d>=0.0 ) 917 if ( d>=0.0 ) 871 { 918 { 872 snxt = c/(-b+std::sqrt(d)); // 919 snxt = c/(-b+std::sqrt(d)); // using safe solution 873 // << 920 // for quadratic equation 874 if ( snxt < halfCarTolerance ) 921 if ( snxt < halfCarTolerance ) { snxt=0; } 875 return snxt ; 922 return snxt ; 876 } << 923 } 877 else 924 else 878 { 925 { 879 return kInfinity; 926 return kInfinity; 880 } 927 } 881 } 928 } 882 } << 929 } 883 } 930 } 884 else 931 else 885 { << 932 { 886 // In the old version, the small neg 933 // In the old version, the small negative tangent for the point 887 // on surface was not taken in accou 934 // on surface was not taken in account, and returning 0.0 ... 888 // New version: check the tangent fo << 935 // New version: check the tangent for the point on surface and 889 // if no intersection, return kInfin 936 // if no intersection, return kInfinity, if intersection instead 890 // return sd. 937 // return sd. 891 // 938 // 892 c = t3 - fRMax*fRMax; << 939 c = t3 - fRMax*fRMax; 893 if ( c<=0.0 ) 940 if ( c<=0.0 ) 894 { 941 { 895 return 0.0; 942 return 0.0; 896 } 943 } 897 else 944 else 898 { 945 { 899 c = c/t1 ; 946 c = c/t1 ; 900 d = b*b-c; 947 d = b*b-c; 901 if ( d>=0.0 ) 948 if ( d>=0.0 ) 902 { 949 { 903 snxt= c/(-b+std::sqrt(d)); // us 950 snxt= c/(-b+std::sqrt(d)); // using safe solution 904 // fo << 951 // for quadratic equation 905 if ( snxt < halfCarTolerance ) { 952 if ( snxt < halfCarTolerance ) { snxt=0; } 906 return snxt ; 953 return snxt ; 907 } << 954 } 908 else 955 else 909 { 956 { 910 return kInfinity; 957 return kInfinity; 911 } 958 } 912 } 959 } 913 } // end if (!fPhiFullTube) 960 } // end if (!fPhiFullTube) 914 } // end if (t3>tolIRMin2) 961 } // end if (t3>tolIRMin2) 915 } // end if (Inside Outer Radius) << 962 } // end if (Inside Outer Radius) 916 if ( fRMin != 0.0 ) // Try inner cylind << 963 if ( fRMin ) // Try inner cylinder intersection 917 { 964 { 918 c = (t3 - fRMin*fRMin)/t1 ; 965 c = (t3 - fRMin*fRMin)/t1 ; 919 d = b*b - c ; 966 d = b*b - c ; 920 if ( d >= 0.0 ) // If real root 967 if ( d >= 0.0 ) // If real root 921 { 968 { 922 // Always want 2nd root - we are outsi 969 // Always want 2nd root - we are outside and know rmax Hit was bad 923 // - If on surface of rmin also need f 970 // - If on surface of rmin also need farthest root 924 971 925 sd =( b > 0. )? c/(-b - std::sqrt(d)) 972 sd =( b > 0. )? c/(-b - std::sqrt(d)) : (-b + std::sqrt(d)); 926 if (sd >= -halfCarTolerance) // check 973 if (sd >= -halfCarTolerance) // check forwards 927 { 974 { 928 // Check z intersection 975 // Check z intersection 929 // 976 // 930 if(sd < 0.0) { sd = 0.0; } 977 if(sd < 0.0) { sd = 0.0; } 931 if ( sd>dRmax ) // Avoid rounding er 978 if ( sd>dRmax ) // Avoid rounding errors due to precision issues seen 932 { // 64 bits systems. 979 { // 64 bits systems. Split long distances and recompute 933 G4double fTerm = sd-std::fmod(sd,d 980 G4double fTerm = sd-std::fmod(sd,dRmax); 934 sd = fTerm + DistanceToIn(p+fTerm* 981 sd = fTerm + DistanceToIn(p+fTerm*v,v); 935 } << 982 } 936 zi = p.z() + sd*v.z() ; 983 zi = p.z() + sd*v.z() ; 937 if (std::fabs(zi) <= tolODz) 984 if (std::fabs(zi) <= tolODz) 938 { 985 { 939 // Z ok. Check phi 986 // Z ok. Check phi 940 // 987 // 941 if ( fPhiFullTube ) 988 if ( fPhiFullTube ) 942 { 989 { 943 return sd ; << 990 return sd ; 944 } 991 } 945 else 992 else 946 { 993 { 947 xi = p.x() + sd*v.x() ; 994 xi = p.x() + sd*v.x() ; 948 yi = p.y() + sd*v.y() ; 995 yi = p.y() + sd*v.y() ; 949 cosPsi = (xi*cosCPhi + yi*sinCPh << 996 cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMin ; 950 if (cosPsi >= cosHDPhiIT) 997 if (cosPsi >= cosHDPhiIT) 951 { 998 { 952 // Good inner radius isect 999 // Good inner radius isect 953 // - but earlier phi isect sti 1000 // - but earlier phi isect still possible 954 1001 955 snxt = sd ; 1002 snxt = sd ; 956 } 1003 } 957 } 1004 } 958 } // end if std::fabs(zi) 1005 } // end if std::fabs(zi) 959 } // end if (sd>=0) 1006 } // end if (sd>=0) 960 } // end if (d>=0) 1007 } // end if (d>=0) 961 } // end if (fRMin) 1008 } // end if (fRMin) 962 } 1009 } 963 1010 964 // Phi segment intersection 1011 // Phi segment intersection 965 // 1012 // 966 // o Tolerant of points inside phi planes by 1013 // o Tolerant of points inside phi planes by up to kCarTolerance*0.5 967 // 1014 // 968 // o NOTE: Large duplication of code between 1015 // o NOTE: Large duplication of code between sphi & ephi checks 969 // -> only diffs: sphi -> ephi, Comp 1016 // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane 970 // intersection check <=0 -> >=0 1017 // intersection check <=0 -> >=0 971 // -> use some form of loop Construc 1018 // -> use some form of loop Construct ? 972 // 1019 // 973 if ( !fPhiFullTube ) 1020 if ( !fPhiFullTube ) 974 { 1021 { 975 // First phi surface (Starting phi) 1022 // First phi surface (Starting phi) 976 // 1023 // 977 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 1024 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 978 << 1025 979 if ( Comp < 0 ) // Component in outwards 1026 if ( Comp < 0 ) // Component in outwards normal dirn 980 { 1027 { 981 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 1028 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 982 1029 983 if ( Dist < halfCarTolerance ) 1030 if ( Dist < halfCarTolerance ) 984 { 1031 { 985 sd = Dist/Comp ; 1032 sd = Dist/Comp ; 986 1033 987 if (sd < snxt) 1034 if (sd < snxt) 988 { 1035 { 989 if ( sd < 0 ) { sd = 0.0; } 1036 if ( sd < 0 ) { sd = 0.0; } 990 zi = p.z() + sd*v.z() ; 1037 zi = p.z() + sd*v.z() ; 991 if ( std::fabs(zi) <= tolODz ) 1038 if ( std::fabs(zi) <= tolODz ) 992 { 1039 { 993 xi = p.x() + sd*v.x() ; 1040 xi = p.x() + sd*v.x() ; 994 yi = p.y() + sd*v.y() ; 1041 yi = p.y() + sd*v.y() ; 995 rho2 = xi*xi + yi*yi ; 1042 rho2 = xi*xi + yi*yi ; 996 1043 997 if ( ( (rho2 >= tolIRMin2) && (rho 1044 if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) ) 998 || ( (rho2 > tolORMin2) && (rho 1045 || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2) 999 && ( v.y()*cosSPhi - v.x()*sin 1046 && ( v.y()*cosSPhi - v.x()*sinSPhi > 0 ) 1000 && ( v.x()*cosSPhi + v.y()*si 1047 && ( v.x()*cosSPhi + v.y()*sinSPhi >= 0 ) ) 1001 || ( (rho2 > tolIRMax2) && (rho 1048 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2) 1002 && (v.y()*cosSPhi - v.x()*sin 1049 && (v.y()*cosSPhi - v.x()*sinSPhi > 0) 1003 && (v.x()*cosSPhi + v.y()*sin 1050 && (v.x()*cosSPhi + v.y()*sinSPhi < 0) ) ) 1004 { 1051 { 1005 // z and r intersections good 1052 // z and r intersections good 1006 // - check intersecting with co 1053 // - check intersecting with correct half-plane 1007 // 1054 // 1008 if ((yi*cosCPhi-xi*sinCPhi) <= 1055 if ((yi*cosCPhi-xi*sinCPhi) <= halfCarTolerance) { snxt = sd; } 1009 } 1056 } 1010 } 1057 } 1011 } 1058 } 1012 } << 1059 } 1013 } 1060 } 1014 << 1061 1015 // Second phi surface (Ending phi) 1062 // Second phi surface (Ending phi) 1016 1063 1017 Comp = -(v.x()*sinEPhi - v.y()*cosEPhi 1064 Comp = -(v.x()*sinEPhi - v.y()*cosEPhi) ; 1018 << 1065 1019 if (Comp < 0 ) // Component in outwards 1066 if (Comp < 0 ) // Component in outwards normal dirn 1020 { 1067 { 1021 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) 1068 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ; 1022 1069 1023 if ( Dist < halfCarTolerance ) 1070 if ( Dist < halfCarTolerance ) 1024 { 1071 { 1025 sd = Dist/Comp ; 1072 sd = Dist/Comp ; 1026 1073 1027 if (sd < snxt) 1074 if (sd < snxt) 1028 { 1075 { 1029 if ( sd < 0 ) { sd = 0; } 1076 if ( sd < 0 ) { sd = 0; } 1030 zi = p.z() + sd*v.z() ; 1077 zi = p.z() + sd*v.z() ; 1031 if ( std::fabs(zi) <= tolODz ) 1078 if ( std::fabs(zi) <= tolODz ) 1032 { 1079 { 1033 xi = p.x() + sd*v.x() ; 1080 xi = p.x() + sd*v.x() ; 1034 yi = p.y() + sd*v.y() ; 1081 yi = p.y() + sd*v.y() ; 1035 rho2 = xi*xi + yi*yi ; 1082 rho2 = xi*xi + yi*yi ; 1036 if ( ( (rho2 >= tolIRMin2) && (rh 1083 if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) ) 1037 || ( (rho2 > tolORMin2) && ( 1084 || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2) 1038 && (v.x()*sinEPhi - v.y()*c 1085 && (v.x()*sinEPhi - v.y()*cosEPhi > 0) 1039 && (v.x()*cosEPhi + v.y()*s 1086 && (v.x()*cosEPhi + v.y()*sinEPhi >= 0) ) 1040 || ( (rho2 > tolIRMax2) && (r 1087 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2) 1041 && (v.x()*sinEPhi - v.y()*c 1088 && (v.x()*sinEPhi - v.y()*cosEPhi > 0) 1042 && (v.x()*cosEPhi + v.y()*s 1089 && (v.x()*cosEPhi + v.y()*sinEPhi < 0) ) ) 1043 { 1090 { 1044 // z and r intersections good 1091 // z and r intersections good 1045 // - check intersecting with co 1092 // - check intersecting with correct half-plane 1046 // 1093 // 1047 if ( (yi*cosCPhi-xi*sinCPhi) >= 1094 if ( (yi*cosCPhi-xi*sinCPhi) >= 0 ) { snxt = sd; } 1048 } //?? >= 1095 } //?? >=-halfCarTolerance 1049 } 1096 } 1050 } 1097 } 1051 } 1098 } 1052 } // Comp < 0 1099 } // Comp < 0 1053 } // !fPhiFullTube << 1100 } // !fPhiFullTube 1054 if ( snxt<halfCarTolerance ) { snxt=0; } 1101 if ( snxt<halfCarTolerance ) { snxt=0; } 1055 return snxt ; 1102 return snxt ; 1056 } 1103 } 1057 << 1104 1058 ///////////////////////////////////////////// 1105 ////////////////////////////////////////////////////////////////// 1059 // 1106 // 1060 // Calculate distance to shape from outside, 1107 // Calculate distance to shape from outside, along normalised vector 1061 // - return kInfinity if no intersection, or 1108 // - return kInfinity if no intersection, or intersection distance <= tolerance 1062 // 1109 // 1063 // - Compute the intersection with the z plan << 1110 // - Compute the intersection with the z planes 1064 // - if at valid r, phi, return 1111 // - if at valid r, phi, return 1065 // 1112 // 1066 // -> If point is outer outer radius, compute 1113 // -> If point is outer outer radius, compute intersection with rmax 1067 // - if at valid phi,z return 1114 // - if at valid phi,z return 1068 // 1115 // 1069 // -> Compute intersection with inner radius, 1116 // -> Compute intersection with inner radius, taking largest +ve root 1070 // - if valid (in z,phi), save intersc 1117 // - if valid (in z,phi), save intersction 1071 // 1118 // 1072 // -> If phi segmented, compute intersecti 1119 // -> If phi segmented, compute intersections with phi half planes 1073 // - return smallest of valid phi inte 1120 // - return smallest of valid phi intersections and 1074 // inner radius intersection 1121 // inner radius intersection 1075 // 1122 // 1076 // NOTE: 1123 // NOTE: 1077 // - Precalculations for phi trigonometry are 1124 // - Precalculations for phi trigonometry are Done `just in time' 1078 // - `if valid' implies tolerant checking of 1125 // - `if valid' implies tolerant checking of intersection points 1079 // Calculate distance (<= actual) to closes 1126 // Calculate distance (<= actual) to closest surface of shape from outside 1080 // - Calculate distance to z, radial planes 1127 // - Calculate distance to z, radial planes 1081 // - Only to phi planes if outside phi extent 1128 // - Only to phi planes if outside phi extent 1082 // - Return 0 if point inside 1129 // - Return 0 if point inside 1083 1130 1084 G4double G4Tubs::DistanceToIn( const G4ThreeV 1131 G4double G4Tubs::DistanceToIn( const G4ThreeVector& p ) const 1085 { 1132 { 1086 G4double safe=0.0, rho, safe1, safe2, safe3 1133 G4double safe=0.0, rho, safe1, safe2, safe3 ; 1087 G4double safePhi, cosPsi ; 1134 G4double safePhi, cosPsi ; 1088 1135 1089 rho = std::sqrt(p.x()*p.x() + p.y()*p.y() 1136 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 1090 safe1 = fRMin - rho ; 1137 safe1 = fRMin - rho ; 1091 safe2 = rho - fRMax ; 1138 safe2 = rho - fRMax ; 1092 safe3 = std::fabs(p.z()) - fDz ; 1139 safe3 = std::fabs(p.z()) - fDz ; 1093 1140 1094 if ( safe1 > safe2 ) { safe = safe1; } 1141 if ( safe1 > safe2 ) { safe = safe1; } 1095 else { safe = safe2; } 1142 else { safe = safe2; } 1096 if ( safe3 > safe ) { safe = safe3; } 1143 if ( safe3 > safe ) { safe = safe3; } 1097 1144 1098 if ( (!fPhiFullTube) && ((rho) != 0.0) ) << 1145 if ( (!fPhiFullTube) && (rho) ) 1099 { 1146 { 1100 // Psi=angle from central phi to point 1147 // Psi=angle from central phi to point 1101 // 1148 // 1102 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/ 1149 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/rho ; 1103 << 1150 1104 if ( cosPsi < cosHDPhi ) << 1151 if ( cosPsi < std::cos(fDPhi*0.5) ) 1105 { 1152 { 1106 // Point lies outside phi range 1153 // Point lies outside phi range 1107 1154 1108 if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= 1155 if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= 0 ) 1109 { 1156 { 1110 safePhi = std::fabs(p.x()*sinSPhi - p 1157 safePhi = std::fabs(p.x()*sinSPhi - p.y()*cosSPhi) ; 1111 } 1158 } 1112 else 1159 else 1113 { 1160 { 1114 safePhi = std::fabs(p.x()*sinEPhi - p 1161 safePhi = std::fabs(p.x()*sinEPhi - p.y()*cosEPhi) ; 1115 } 1162 } 1116 if ( safePhi > safe ) { safe = safePhi 1163 if ( safePhi > safe ) { safe = safePhi; } 1117 } 1164 } 1118 } 1165 } 1119 if ( safe < 0 ) { safe = 0; } 1166 if ( safe < 0 ) { safe = 0; } 1120 return safe ; 1167 return safe ; 1121 } 1168 } 1122 1169 1123 ///////////////////////////////////////////// 1170 ////////////////////////////////////////////////////////////////////////////// 1124 // 1171 // 1125 // Calculate distance to surface of shape fro 1172 // Calculate distance to surface of shape from `inside', allowing for tolerance 1126 // - Only Calc rmax intersection if no valid 1173 // - Only Calc rmax intersection if no valid rmin intersection 1127 1174 1128 G4double G4Tubs::DistanceToOut( const G4Three 1175 G4double G4Tubs::DistanceToOut( const G4ThreeVector& p, 1129 const G4Three 1176 const G4ThreeVector& v, 1130 const G4bool 1177 const G4bool calcNorm, 1131 G4bool* << 1178 G4bool *validNorm, 1132 G4Three << 1179 G4ThreeVector *n ) const 1133 { << 1180 { 1134 ESide side=kNull , sider=kNull, sidephi=kNu 1181 ESide side=kNull , sider=kNull, sidephi=kNull ; 1135 G4double snxt, srd=kInfinity, sphi=kInfinit 1182 G4double snxt, srd=kInfinity, sphi=kInfinity, pdist ; 1136 G4double deltaR, t1, t2, t3, b, c, d2, roMi 1183 G4double deltaR, t1, t2, t3, b, c, d2, roMin2 ; 1137 1184 1138 // Vars for phi intersection: 1185 // Vars for phi intersection: 1139 1186 1140 G4double pDistS, compS, pDistE, compE, sphi 1187 G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, vphi, roi2 ; 1141 << 1188 1142 // Z plane intersection 1189 // Z plane intersection 1143 1190 1144 if (v.z() > 0 ) 1191 if (v.z() > 0 ) 1145 { 1192 { 1146 pdist = fDz - p.z() ; 1193 pdist = fDz - p.z() ; 1147 if ( pdist > halfCarTolerance ) 1194 if ( pdist > halfCarTolerance ) 1148 { 1195 { 1149 snxt = pdist/v.z() ; 1196 snxt = pdist/v.z() ; 1150 side = kPZ ; 1197 side = kPZ ; 1151 } 1198 } 1152 else 1199 else 1153 { 1200 { 1154 if (calcNorm) 1201 if (calcNorm) 1155 { 1202 { 1156 *n = G4ThreeVector(0,0,1) ; 1203 *n = G4ThreeVector(0,0,1) ; 1157 *validNorm = true ; 1204 *validNorm = true ; 1158 } 1205 } 1159 return snxt = 0 ; 1206 return snxt = 0 ; 1160 } 1207 } 1161 } 1208 } 1162 else if ( v.z() < 0 ) 1209 else if ( v.z() < 0 ) 1163 { 1210 { 1164 pdist = fDz + p.z() ; 1211 pdist = fDz + p.z() ; 1165 1212 1166 if ( pdist > halfCarTolerance ) 1213 if ( pdist > halfCarTolerance ) 1167 { 1214 { 1168 snxt = -pdist/v.z() ; 1215 snxt = -pdist/v.z() ; 1169 side = kMZ ; 1216 side = kMZ ; 1170 } 1217 } 1171 else 1218 else 1172 { 1219 { 1173 if (calcNorm) 1220 if (calcNorm) 1174 { 1221 { 1175 *n = G4ThreeVector(0,0,-1) ; 1222 *n = G4ThreeVector(0,0,-1) ; 1176 *validNorm = true ; 1223 *validNorm = true ; 1177 } 1224 } 1178 return snxt = 0.0 ; 1225 return snxt = 0.0 ; 1179 } 1226 } 1180 } 1227 } 1181 else 1228 else 1182 { 1229 { 1183 snxt = kInfinity ; // Travel perpendic 1230 snxt = kInfinity ; // Travel perpendicular to z axis 1184 side = kNull; 1231 side = kNull; 1185 } 1232 } 1186 1233 1187 // Radial Intersections 1234 // Radial Intersections 1188 // 1235 // 1189 // Find intersection with cylinders at rmax 1236 // Find intersection with cylinders at rmax/rmin 1190 // Intersection point (xi,yi,zi) on line x= 1237 // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc. 1191 // 1238 // 1192 // Intersects with x^2+y^2=R^2 1239 // Intersects with x^2+y^2=R^2 1193 // 1240 // 1194 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v 1241 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0 1195 // 1242 // 1196 // t1 t2 1243 // t1 t2 t3 1197 1244 1198 t1 = 1.0 - v.z()*v.z() ; // since v 1245 t1 = 1.0 - v.z()*v.z() ; // since v normalised 1199 t2 = p.x()*v.x() + p.y()*v.y() ; 1246 t2 = p.x()*v.x() + p.y()*v.y() ; 1200 t3 = p.x()*p.x() + p.y()*p.y() ; 1247 t3 = p.x()*p.x() + p.y()*p.y() ; 1201 1248 1202 if ( snxt > 10*(fDz+fRMax) ) { roi2 = 2*fR 1249 if ( snxt > 10*(fDz+fRMax) ) { roi2 = 2*fRMax*fRMax; } 1203 else { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t 1250 else { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t3; } // radius^2 on +-fDz 1204 1251 1205 if ( t1 > 0 ) // Check not parallel 1252 if ( t1 > 0 ) // Check not parallel 1206 { 1253 { 1207 // Calculate srd, r exit distance 1254 // Calculate srd, r exit distance 1208 << 1255 1209 if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax 1256 if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax + kRadTolerance)) ) 1210 { 1257 { 1211 // Delta r not negative => leaving via 1258 // Delta r not negative => leaving via rmax 1212 1259 1213 deltaR = t3 - fRMax*fRMax ; 1260 deltaR = t3 - fRMax*fRMax ; 1214 1261 1215 // NOTE: Should use rho-fRMax<-kRadTole 1262 // NOTE: Should use rho-fRMax<-kRadTolerance*0.5 1216 // - avoid sqrt for efficiency 1263 // - avoid sqrt for efficiency 1217 1264 1218 if ( deltaR < -kRadTolerance*fRMax ) 1265 if ( deltaR < -kRadTolerance*fRMax ) 1219 { 1266 { 1220 b = t2/t1 ; 1267 b = t2/t1 ; 1221 c = deltaR/t1 ; 1268 c = deltaR/t1 ; 1222 d2 = b*b-c; 1269 d2 = b*b-c; 1223 if( d2 >= 0 ) { srd = c/( -b - std::s 1270 if( d2 >= 0 ) { srd = c/( -b - std::sqrt(d2)); } 1224 else { srd = 0.; } 1271 else { srd = 0.; } 1225 sider = kRMax ; 1272 sider = kRMax ; 1226 } 1273 } 1227 else 1274 else 1228 { 1275 { 1229 // On tolerant boundary & heading out 1276 // On tolerant boundary & heading outwards (or perpendicular to) 1230 // outer radial surface -> leaving im 1277 // outer radial surface -> leaving immediately 1231 1278 1232 if ( calcNorm ) << 1279 if ( calcNorm ) 1233 { 1280 { 1234 G4double invRho = FastInverseRxy( p << 1281 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1235 *n = G4ThreeVector(p.x()*in << 1236 *validNorm = true ; 1282 *validNorm = true ; 1237 } 1283 } 1238 return snxt = 0 ; // Leaving by rmax 1284 return snxt = 0 ; // Leaving by rmax immediately 1239 } 1285 } 1240 } << 1286 } 1241 else if ( t2 < 0. ) // i.e. t2 < 0; Poss 1287 else if ( t2 < 0. ) // i.e. t2 < 0; Possible rmin intersection 1242 { 1288 { 1243 roMin2 = t3 - t2*t2/t1 ; // min ro2 of << 1289 roMin2 = t3 - t2*t2/t1 ; // min ro2 of the plane of movement 1244 1290 1245 if ( (fRMin != 0.0) && (roMin2 < fRMin* << 1291 if ( fRMin && (roMin2 < fRMin*(fRMin - kRadTolerance)) ) 1246 { 1292 { 1247 deltaR = t3 - fRMin*fRMin ; 1293 deltaR = t3 - fRMin*fRMin ; 1248 b = t2/t1 ; 1294 b = t2/t1 ; 1249 c = deltaR/t1 ; 1295 c = deltaR/t1 ; 1250 d2 = b*b - c ; 1296 d2 = b*b - c ; 1251 1297 1252 if ( d2 >= 0 ) // Leaving via rmin 1298 if ( d2 >= 0 ) // Leaving via rmin 1253 { 1299 { 1254 // NOTE: SHould use rho-rmin>kRadTo 1300 // NOTE: SHould use rho-rmin>kRadTolerance*0.5 1255 // - avoid sqrt for efficiency 1301 // - avoid sqrt for efficiency 1256 1302 1257 if (deltaR > kRadTolerance*fRMin) 1303 if (deltaR > kRadTolerance*fRMin) 1258 { 1304 { 1259 srd = c/(-b+std::sqrt(d2)); << 1305 srd = c/(-b+std::sqrt(d2)); 1260 sider = kRMin ; 1306 sider = kRMin ; 1261 } 1307 } 1262 else 1308 else 1263 { 1309 { 1264 if ( calcNorm ) { << 1310 if ( calcNorm ) { *validNorm = false; } // Concave side 1265 *validNorm = false; << 1266 } // Concave side << 1267 return snxt = 0.0; 1311 return snxt = 0.0; 1268 } 1312 } 1269 } 1313 } 1270 else // No rmin intersect -> must 1314 else // No rmin intersect -> must be rmax intersect 1271 { 1315 { 1272 deltaR = t3 - fRMax*fRMax ; 1316 deltaR = t3 - fRMax*fRMax ; 1273 c = deltaR/t1 ; 1317 c = deltaR/t1 ; 1274 d2 = b*b-c; 1318 d2 = b*b-c; 1275 if( d2 >=0. ) 1319 if( d2 >=0. ) 1276 { 1320 { 1277 srd = -b + std::sqrt(d2) ; 1321 srd = -b + std::sqrt(d2) ; 1278 sider = kRMax ; 1322 sider = kRMax ; 1279 } 1323 } 1280 else // Case: On the border+t2<kRad 1324 else // Case: On the border+t2<kRadTolerance 1281 // (v is perpendicular t 1325 // (v is perpendicular to the surface) 1282 { 1326 { 1283 if (calcNorm) 1327 if (calcNorm) 1284 { 1328 { 1285 G4double invRho = FastInverseRx << 1329 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1286 *n = G4ThreeVector(p.x()*invRho << 1287 *validNorm = true ; 1330 *validNorm = true ; 1288 } 1331 } 1289 return snxt = 0.0; 1332 return snxt = 0.0; 1290 } 1333 } 1291 } 1334 } 1292 } 1335 } 1293 else if ( roi2 > fRMax*(fRMax + kRadTol 1336 else if ( roi2 > fRMax*(fRMax + kRadTolerance) ) 1294 // No rmin intersect -> must be rm 1337 // No rmin intersect -> must be rmax intersect 1295 { 1338 { 1296 deltaR = t3 - fRMax*fRMax ; 1339 deltaR = t3 - fRMax*fRMax ; 1297 b = t2/t1 ; 1340 b = t2/t1 ; 1298 c = deltaR/t1; 1341 c = deltaR/t1; 1299 d2 = b*b-c; 1342 d2 = b*b-c; 1300 if( d2 >= 0 ) 1343 if( d2 >= 0 ) 1301 { 1344 { 1302 srd = -b + std::sqrt(d2) ; 1345 srd = -b + std::sqrt(d2) ; 1303 sider = kRMax ; 1346 sider = kRMax ; 1304 } 1347 } 1305 else // Case: On the border+t2<kRadTo 1348 else // Case: On the border+t2<kRadTolerance 1306 // (v is perpendicular to 1349 // (v is perpendicular to the surface) 1307 { 1350 { 1308 if (calcNorm) 1351 if (calcNorm) 1309 { 1352 { 1310 G4double invRho = FastInverseRxy( << 1353 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1311 *n = G4ThreeVector(p.x()*invRho,p << 1312 *validNorm = true ; 1354 *validNorm = true ; 1313 } 1355 } 1314 return snxt = 0.0; 1356 return snxt = 0.0; 1315 } 1357 } 1316 } 1358 } 1317 } 1359 } 1318 << 1360 1319 // Phi Intersection 1361 // Phi Intersection 1320 1362 1321 if ( !fPhiFullTube ) 1363 if ( !fPhiFullTube ) 1322 { 1364 { 1323 // add angle calculation with correctio << 1365 // add angle calculation with correction 1324 // of the difference in domain of atan2 1366 // of the difference in domain of atan2 and Sphi 1325 // 1367 // 1326 vphi = std::atan2(v.y(),v.x()) ; 1368 vphi = std::atan2(v.y(),v.x()) ; 1327 << 1369 1328 if ( vphi < fSPhi - halfAngTolerance ) 1370 if ( vphi < fSPhi - halfAngTolerance ) { vphi += twopi; } 1329 else if ( vphi > fSPhi + fDPhi + halfAn 1371 else if ( vphi > fSPhi + fDPhi + halfAngTolerance ) { vphi -= twopi; } 1330 1372 1331 1373 1332 if ( (p.x() != 0.0) || (p.y() != 0.0) ) << 1374 if ( p.x() || p.y() ) // Check if on z axis (rho not needed later) 1333 { 1375 { 1334 // pDist -ve when inside 1376 // pDist -ve when inside 1335 1377 1336 pDistS = p.x()*sinSPhi - p.y()*cosSPh 1378 pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; 1337 pDistE = -p.x()*sinEPhi + p.y()*cosEP 1379 pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ; 1338 1380 1339 // Comp -ve when in direction of outw 1381 // Comp -ve when in direction of outwards normal 1340 1382 1341 compS = -sinSPhi*v.x() + cosSPhi*v.y( << 1383 compS = -sinSPhi*v.x() + cosSPhi*v.y() ; 1342 compE = sinEPhi*v.x() - cosEPhi*v.y( << 1384 compE = sinEPhi*v.x() - cosEPhi*v.y() ; 1343 << 1385 1344 sidephi = kNull; 1386 sidephi = kNull; 1345 << 1387 1346 if( ( (fDPhi <= pi) && ( (pDistS <= h 1388 if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance) 1347 && (pDistE <= h 1389 && (pDistE <= halfCarTolerance) ) ) 1348 || ( (fDPhi > pi) && ((pDistS <= h << 1390 || ( (fDPhi > pi) && !((pDistS > halfCarTolerance) 1349 || (pDistE <= << 1391 && (pDistE > halfCarTolerance) ) ) ) 1350 { 1392 { 1351 // Inside both phi *full* planes 1393 // Inside both phi *full* planes 1352 << 1394 1353 if ( compS < 0 ) 1395 if ( compS < 0 ) 1354 { 1396 { 1355 sphi = pDistS/compS ; 1397 sphi = pDistS/compS ; 1356 << 1398 1357 if (sphi >= -halfCarTolerance) 1399 if (sphi >= -halfCarTolerance) 1358 { 1400 { 1359 xi = p.x() + sphi*v.x() ; 1401 xi = p.x() + sphi*v.x() ; 1360 yi = p.y() + sphi*v.y() ; 1402 yi = p.y() + sphi*v.y() ; 1361 << 1403 1362 // Check intersecting with corr 1404 // Check intersecting with correct half-plane 1363 // (if not -> no intersect) 1405 // (if not -> no intersect) 1364 // 1406 // 1365 if((std::fabs(xi)<=kCarToleranc 1407 if((std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance)) 1366 { 1408 { 1367 sidephi = kSPhi; 1409 sidephi = kSPhi; 1368 if (((fSPhi-halfAngTolerance) 1410 if (((fSPhi-halfAngTolerance)<=vphi) 1369 &&((fSPhi+fDPhi+halfAngTol 1411 &&((fSPhi+fDPhi+halfAngTolerance)>=vphi)) 1370 { 1412 { 1371 sphi = kInfinity; 1413 sphi = kInfinity; 1372 } 1414 } 1373 } 1415 } 1374 else if ( yi*cosCPhi-xi*sinCPhi 1416 else if ( yi*cosCPhi-xi*sinCPhi >=0 ) 1375 { 1417 { 1376 sphi = kInfinity ; 1418 sphi = kInfinity ; 1377 } 1419 } 1378 else 1420 else 1379 { 1421 { 1380 sidephi = kSPhi ; 1422 sidephi = kSPhi ; 1381 if ( pDistS > -halfCarToleran 1423 if ( pDistS > -halfCarTolerance ) 1382 { 1424 { 1383 sphi = 0.0 ; // Leave by sp 1425 sphi = 0.0 ; // Leave by sphi immediately 1384 } << 1426 } 1385 } << 1427 } 1386 } 1428 } 1387 else 1429 else 1388 { 1430 { 1389 sphi = kInfinity ; 1431 sphi = kInfinity ; 1390 } 1432 } 1391 } 1433 } 1392 else 1434 else 1393 { 1435 { 1394 sphi = kInfinity ; 1436 sphi = kInfinity ; 1395 } 1437 } 1396 1438 1397 if ( compE < 0 ) 1439 if ( compE < 0 ) 1398 { 1440 { 1399 sphi2 = pDistE/compE ; 1441 sphi2 = pDistE/compE ; 1400 << 1442 1401 // Only check further if < starti 1443 // Only check further if < starting phi intersection 1402 // 1444 // 1403 if ( (sphi2 > -halfCarTolerance) 1445 if ( (sphi2 > -halfCarTolerance) && (sphi2 < sphi) ) 1404 { 1446 { 1405 xi = p.x() + sphi2*v.x() ; 1447 xi = p.x() + sphi2*v.x() ; 1406 yi = p.y() + sphi2*v.y() ; 1448 yi = p.y() + sphi2*v.y() ; 1407 << 1449 1408 if((std::fabs(xi)<=kCarToleranc 1450 if((std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance)) 1409 { 1451 { 1410 // Leaving via ending phi 1452 // Leaving via ending phi 1411 // 1453 // 1412 if( (fSPhi-halfAngTolerance > << 1454 if( !((fSPhi-halfAngTolerance <= vphi) 1413 ||(fSPhi+fDPhi+halfAngTo << 1455 &&(fSPhi+fDPhi+halfAngTolerance >= vphi)) ) 1414 { 1456 { 1415 sidephi = kEPhi ; 1457 sidephi = kEPhi ; 1416 if ( pDistE <= -halfCarTole 1458 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; } 1417 else 1459 else { sphi = 0.0 ; } 1418 } 1460 } 1419 } << 1461 } 1420 else // Check intersecting w << 1462 else // Check intersecting with correct half-plane 1421 1463 1422 if ( (yi*cosCPhi-xi*sinCPhi) >= 1464 if ( (yi*cosCPhi-xi*sinCPhi) >= 0) 1423 { 1465 { 1424 // Leaving via ending phi 1466 // Leaving via ending phi 1425 // 1467 // 1426 sidephi = kEPhi ; 1468 sidephi = kEPhi ; 1427 if ( pDistE <= -halfCarTolera 1469 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; } 1428 else 1470 else { sphi = 0.0 ; } 1429 } 1471 } 1430 } 1472 } 1431 } 1473 } 1432 } 1474 } 1433 else 1475 else 1434 { 1476 { 1435 sphi = kInfinity ; 1477 sphi = kInfinity ; 1436 } 1478 } 1437 } 1479 } 1438 else 1480 else 1439 { 1481 { 1440 // On z axis + travel not || to z axi 1482 // On z axis + travel not || to z axis -> if phi of vector direction 1441 // within phi of shape, Step limited 1483 // within phi of shape, Step limited by rmax, else Step =0 1442 << 1484 1443 if ( (fSPhi - halfAngTolerance <= vph 1485 if ( (fSPhi - halfAngTolerance <= vphi) 1444 && (vphi <= fSPhi + fDPhi + halfAn 1486 && (vphi <= fSPhi + fDPhi + halfAngTolerance ) ) 1445 { 1487 { 1446 sphi = kInfinity ; 1488 sphi = kInfinity ; 1447 } 1489 } 1448 else 1490 else 1449 { 1491 { 1450 sidephi = kSPhi ; // arbitrary << 1492 sidephi = kSPhi ; // arbitrary 1451 sphi = 0.0 ; 1493 sphi = 0.0 ; 1452 } 1494 } 1453 } 1495 } 1454 if (sphi < snxt) // Order intersecttio 1496 if (sphi < snxt) // Order intersecttions 1455 { 1497 { 1456 snxt = sphi ; 1498 snxt = sphi ; 1457 side = sidephi ; 1499 side = sidephi ; 1458 } 1500 } 1459 } 1501 } 1460 if (srd < snxt) // Order intersections 1502 if (srd < snxt) // Order intersections 1461 { 1503 { 1462 snxt = srd ; 1504 snxt = srd ; 1463 side = sider ; 1505 side = sider ; 1464 } 1506 } 1465 } 1507 } 1466 if (calcNorm) 1508 if (calcNorm) 1467 { 1509 { 1468 switch(side) 1510 switch(side) 1469 { 1511 { 1470 case kRMax: 1512 case kRMax: 1471 // Note: returned vector not normalis 1513 // Note: returned vector not normalised 1472 // (divide by fRMax for unit vector) 1514 // (divide by fRMax for unit vector) 1473 // 1515 // 1474 xi = p.x() + snxt*v.x() ; 1516 xi = p.x() + snxt*v.x() ; 1475 yi = p.y() + snxt*v.y() ; 1517 yi = p.y() + snxt*v.y() ; 1476 *n = G4ThreeVector(xi/fRMax,yi/fRMax, 1518 *n = G4ThreeVector(xi/fRMax,yi/fRMax,0) ; 1477 *validNorm = true ; 1519 *validNorm = true ; 1478 break ; 1520 break ; 1479 1521 1480 case kRMin: 1522 case kRMin: 1481 *validNorm = false ; // Rmin is inco 1523 *validNorm = false ; // Rmin is inconvex 1482 break ; 1524 break ; 1483 1525 1484 case kSPhi: 1526 case kSPhi: 1485 if ( fDPhi <= pi ) 1527 if ( fDPhi <= pi ) 1486 { 1528 { 1487 *n = G4ThreeVector(sinSPhi, 1529 *n = G4ThreeVector(sinSPhi,-cosSPhi,0) ; 1488 *validNorm = true ; 1530 *validNorm = true ; 1489 } 1531 } 1490 else 1532 else 1491 { 1533 { 1492 *validNorm = false ; 1534 *validNorm = false ; 1493 } 1535 } 1494 break ; 1536 break ; 1495 1537 1496 case kEPhi: 1538 case kEPhi: 1497 if (fDPhi <= pi) 1539 if (fDPhi <= pi) 1498 { 1540 { 1499 *n = G4ThreeVector(-sinEPhi,cosEPhi 1541 *n = G4ThreeVector(-sinEPhi,cosEPhi,0) ; 1500 *validNorm = true ; 1542 *validNorm = true ; 1501 } 1543 } 1502 else 1544 else 1503 { 1545 { 1504 *validNorm = false ; 1546 *validNorm = false ; 1505 } 1547 } 1506 break ; 1548 break ; 1507 1549 1508 case kPZ: 1550 case kPZ: 1509 *n = G4ThreeVector(0,0,1) ; 1551 *n = G4ThreeVector(0,0,1) ; 1510 *validNorm = true ; 1552 *validNorm = true ; 1511 break ; 1553 break ; 1512 1554 1513 case kMZ: 1555 case kMZ: 1514 *n = G4ThreeVector(0,0,-1) ; 1556 *n = G4ThreeVector(0,0,-1) ; 1515 *validNorm = true ; 1557 *validNorm = true ; 1516 break ; 1558 break ; 1517 1559 1518 default: 1560 default: 1519 G4cout << G4endl ; 1561 G4cout << G4endl ; 1520 DumpInfo(); 1562 DumpInfo(); 1521 std::ostringstream message; 1563 std::ostringstream message; 1522 G4long oldprc = message.precision(16) << 1564 G4int oldprc = message.precision(16); 1523 message << "Undefined side for valid 1565 message << "Undefined side for valid surface normal to solid." 1524 << G4endl 1566 << G4endl 1525 << "Position:" << G4endl << 1567 << "Position:" << G4endl << G4endl 1526 << "p.x() = " << p.x()/mm < 1568 << "p.x() = " << p.x()/mm << " mm" << G4endl 1527 << "p.y() = " << p.y()/mm < 1569 << "p.y() = " << p.y()/mm << " mm" << G4endl 1528 << "p.z() = " << p.z()/mm < 1570 << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl 1529 << "Direction:" << G4endl << 1571 << "Direction:" << G4endl << G4endl 1530 << "v.x() = " << v.x() << G 1572 << "v.x() = " << v.x() << G4endl 1531 << "v.y() = " << v.y() << G 1573 << "v.y() = " << v.y() << G4endl 1532 << "v.z() = " << v.z() << G 1574 << "v.z() = " << v.z() << G4endl << G4endl 1533 << "Proposed distance :" << G 1575 << "Proposed distance :" << G4endl << G4endl 1534 << "snxt = " << snxt/mm << 1576 << "snxt = " << snxt/mm << " mm" << G4endl ; 1535 message.precision(oldprc) ; 1577 message.precision(oldprc) ; 1536 G4Exception("G4Tubs::DistanceToOut(p, 1578 G4Exception("G4Tubs::DistanceToOut(p,v,..)", "GeomSolids1002", 1537 JustWarning, message); 1579 JustWarning, message); 1538 break ; 1580 break ; 1539 } 1581 } 1540 } 1582 } 1541 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1583 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1542 1584 1543 return snxt ; 1585 return snxt ; 1544 } 1586 } 1545 1587 1546 ///////////////////////////////////////////// 1588 ////////////////////////////////////////////////////////////////////////// 1547 // 1589 // 1548 // Calculate distance (<=actual) to closest s 1590 // Calculate distance (<=actual) to closest surface of shape from inside 1549 1591 1550 G4double G4Tubs::DistanceToOut( const G4Three 1592 G4double G4Tubs::DistanceToOut( const G4ThreeVector& p ) const 1551 { 1593 { 1552 G4double safe=0.0, rho, safeR1, safeR2, saf 1594 G4double safe=0.0, rho, safeR1, safeR2, safeZ, safePhi ; 1553 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) 1595 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 1554 1596 1555 #ifdef G4CSGDEBUG 1597 #ifdef G4CSGDEBUG 1556 if( Inside(p) == kOutside ) 1598 if( Inside(p) == kOutside ) 1557 { 1599 { 1558 G4long oldprc = G4cout.precision(16) ; << 1600 G4int oldprc = G4cout.precision(16) ; 1559 G4cout << G4endl ; 1601 G4cout << G4endl ; 1560 DumpInfo(); 1602 DumpInfo(); 1561 G4cout << "Position:" << G4endl << G4end 1603 G4cout << "Position:" << G4endl << G4endl ; 1562 G4cout << "p.x() = " << p.x()/mm << " m 1604 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 1563 G4cout << "p.y() = " << p.y()/mm << " m 1605 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 1564 G4cout << "p.z() = " << p.z()/mm << " m 1606 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 1565 G4cout.precision(oldprc) ; 1607 G4cout.precision(oldprc) ; 1566 G4Exception("G4Tubs::DistanceToOut(p)", " 1608 G4Exception("G4Tubs::DistanceToOut(p)", "GeomSolids1002", 1567 JustWarning, "Point p is outs 1609 JustWarning, "Point p is outside !?"); 1568 } 1610 } 1569 #endif 1611 #endif 1570 1612 1571 if ( fRMin != 0.0 ) << 1613 if ( fRMin ) 1572 { 1614 { 1573 safeR1 = rho - fRMin ; 1615 safeR1 = rho - fRMin ; 1574 safeR2 = fRMax - rho ; 1616 safeR2 = fRMax - rho ; 1575 << 1617 1576 if ( safeR1 < safeR2 ) { safe = safeR1 ; 1618 if ( safeR1 < safeR2 ) { safe = safeR1 ; } 1577 else { safe = safeR2 ; 1619 else { safe = safeR2 ; } 1578 } 1620 } 1579 else 1621 else 1580 { 1622 { 1581 safe = fRMax - rho ; 1623 safe = fRMax - rho ; 1582 } 1624 } 1583 safeZ = fDz - std::fabs(p.z()) ; 1625 safeZ = fDz - std::fabs(p.z()) ; 1584 1626 1585 if ( safeZ < safe ) { safe = safeZ ; } 1627 if ( safeZ < safe ) { safe = safeZ ; } 1586 1628 1587 // Check if phi divided, Calc distances clo 1629 // Check if phi divided, Calc distances closest phi plane 1588 // 1630 // 1589 if ( !fPhiFullTube ) 1631 if ( !fPhiFullTube ) 1590 { 1632 { 1591 if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 ) 1633 if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 ) 1592 { 1634 { 1593 safePhi = -(p.x()*sinSPhi - p.y()*cosSP 1635 safePhi = -(p.x()*sinSPhi - p.y()*cosSPhi) ; 1594 } 1636 } 1595 else 1637 else 1596 { 1638 { 1597 safePhi = (p.x()*sinEPhi - p.y()*cosEPh 1639 safePhi = (p.x()*sinEPhi - p.y()*cosEPhi) ; 1598 } 1640 } 1599 if (safePhi < safe) { safe = safePhi ; } 1641 if (safePhi < safe) { safe = safePhi ; } 1600 } 1642 } 1601 if ( safe < 0 ) { safe = 0 ; } 1643 if ( safe < 0 ) { safe = 0 ; } 1602 1644 1603 return safe ; << 1645 return safe ; 1604 } 1646 } 1605 1647 1606 ///////////////////////////////////////////// 1648 ////////////////////////////////////////////////////////////////////////// 1607 // 1649 // 1608 // Stream object contents to an output stream 1650 // Stream object contents to an output stream 1609 1651 1610 G4GeometryType G4Tubs::GetEntityType() const 1652 G4GeometryType G4Tubs::GetEntityType() const 1611 { 1653 { 1612 return {"G4Tubs"}; << 1654 return G4String("G4Tubs"); 1613 } 1655 } 1614 1656 1615 ///////////////////////////////////////////// 1657 ////////////////////////////////////////////////////////////////////////// 1616 // 1658 // 1617 // Make a clone of the object 1659 // Make a clone of the object 1618 // 1660 // 1619 G4VSolid* G4Tubs::Clone() const 1661 G4VSolid* G4Tubs::Clone() const 1620 { 1662 { 1621 return new G4Tubs(*this); 1663 return new G4Tubs(*this); 1622 } 1664 } 1623 1665 1624 ///////////////////////////////////////////// 1666 ////////////////////////////////////////////////////////////////////////// 1625 // 1667 // 1626 // Stream object contents to an output stream 1668 // Stream object contents to an output stream 1627 1669 1628 std::ostream& G4Tubs::StreamInfo( std::ostrea 1670 std::ostream& G4Tubs::StreamInfo( std::ostream& os ) const 1629 { 1671 { 1630 G4long oldprc = os.precision(16); << 1672 G4int oldprc = os.precision(16); 1631 os << "------------------------------------ 1673 os << "-----------------------------------------------------------\n" 1632 << " *** Dump for solid - " << GetNam 1674 << " *** Dump for solid - " << GetName() << " ***\n" 1633 << " ================================ 1675 << " ===================================================\n" 1634 << " Solid type: G4Tubs\n" 1676 << " Solid type: G4Tubs\n" 1635 << " Parameters: \n" 1677 << " Parameters: \n" 1636 << " inner radius : " << fRMin/mm << 1678 << " inner radius : " << fRMin/mm << " mm \n" 1637 << " outer radius : " << fRMax/mm << 1679 << " outer radius : " << fRMax/mm << " mm \n" 1638 << " half length Z: " << fDz/mm << " 1680 << " half length Z: " << fDz/mm << " mm \n" 1639 << " starting phi : " << fSPhi/degree 1681 << " starting phi : " << fSPhi/degree << " degrees \n" 1640 << " delta phi : " << fDPhi/degree 1682 << " delta phi : " << fDPhi/degree << " degrees \n" 1641 << "------------------------------------ 1683 << "-----------------------------------------------------------\n"; 1642 os.precision(oldprc); 1684 os.precision(oldprc); 1643 1685 1644 return os; 1686 return os; 1645 } 1687 } 1646 1688 1647 ///////////////////////////////////////////// 1689 ///////////////////////////////////////////////////////////////////////// 1648 // 1690 // 1649 // GetPointOnSurface 1691 // GetPointOnSurface 1650 1692 1651 G4ThreeVector G4Tubs::GetPointOnSurface() con 1693 G4ThreeVector G4Tubs::GetPointOnSurface() const 1652 { 1694 { 1653 G4double Rmax = fRMax; << 1695 G4double xRand, yRand, zRand, phi, cosphi, sinphi, chose, 1654 G4double Rmin = fRMin; << 1696 aOne, aTwo, aThr, aFou; 1655 G4double hz = 2.*fDz; // height << 1697 G4double rRand; 1656 G4double lext = fDPhi*Rmax; // length of ex << 1698 1657 G4double lint = fDPhi*Rmin; // length of in << 1699 aOne = 2.*fDz*fDPhi*fRMax; 1658 << 1700 aTwo = 2.*fDz*fDPhi*fRMin; 1659 // Set array of surface areas << 1701 aThr = 0.5*fDPhi*(fRMax*fRMax-fRMin*fRMin); 1660 // << 1702 aFou = 2.*fDz*(fRMax-fRMin); 1661 G4double RRmax = Rmax * Rmax; << 1703 1662 G4double RRmin = Rmin * Rmin; << 1704 phi = G4RandFlat::shoot(fSPhi, fSPhi+fDPhi); 1663 G4double sbase = 0.5*fDPhi*(RRmax - RRmin); << 1705 cosphi = std::cos(phi); 1664 G4double scut = (fDPhi == twopi) ? 0. : hz* << 1706 sinphi = std::sin(phi); 1665 G4double ssurf[6] = { scut, scut, sbase, sb << 1707 1666 ssurf[1] += ssurf[0]; << 1708 rRand = GetRadiusInRing(fRMin,fRMax); 1667 ssurf[2] += ssurf[1]; << 1709 1668 ssurf[3] += ssurf[2]; << 1710 if( (fSPhi == 0) && (fDPhi == twopi) ) { aFou = 0; } 1669 ssurf[4] += ssurf[3]; << 1711 1670 ssurf[5] += ssurf[4]; << 1712 chose = G4RandFlat::shoot(0.,aOne+aTwo+2.*aThr+2.*aFou); 1671 << 1713 1672 // Select surface << 1714 if( (chose >=0) && (chose < aOne) ) 1673 // << 1715 { 1674 G4double select = ssurf[5]*G4QuickRand(); << 1716 xRand = fRMax*cosphi; 1675 G4int k = 5; << 1717 yRand = fRMax*sinphi; 1676 k -= (G4int)(select <= ssurf[4]); << 1718 zRand = G4RandFlat::shoot(-1.*fDz,fDz); 1677 k -= (G4int)(select <= ssurf[3]); << 1719 return G4ThreeVector (xRand, yRand, zRand); 1678 k -= (G4int)(select <= ssurf[2]); << 1720 } 1679 k -= (G4int)(select <= ssurf[1]); << 1721 else if( (chose >= aOne) && (chose < aOne + aTwo) ) 1680 k -= (G4int)(select <= ssurf[0]); << 1722 { 1681 << 1723 xRand = fRMin*cosphi; 1682 // Generate point on selected surface << 1724 yRand = fRMin*sinphi; 1683 // << 1725 zRand = G4RandFlat::shoot(-1.*fDz,fDz); 1684 switch(k) << 1726 return G4ThreeVector (xRand, yRand, zRand); >> 1727 } >> 1728 else if( (chose >= aOne + aTwo) && (chose < aOne + aTwo + aThr) ) >> 1729 { >> 1730 xRand = rRand*cosphi; >> 1731 yRand = rRand*sinphi; >> 1732 zRand = fDz; >> 1733 return G4ThreeVector (xRand, yRand, zRand); >> 1734 } >> 1735 else if( (chose >= aOne + aTwo + aThr) && (chose < aOne + aTwo + 2.*aThr) ) >> 1736 { >> 1737 xRand = rRand*cosphi; >> 1738 yRand = rRand*sinphi; >> 1739 zRand = -1.*fDz; >> 1740 return G4ThreeVector (xRand, yRand, zRand); >> 1741 } >> 1742 else if( (chose >= aOne + aTwo + 2.*aThr) >> 1743 && (chose < aOne + aTwo + 2.*aThr + aFou) ) >> 1744 { >> 1745 xRand = rRand*std::cos(fSPhi); >> 1746 yRand = rRand*std::sin(fSPhi); >> 1747 zRand = G4RandFlat::shoot(-1.*fDz,fDz); >> 1748 return G4ThreeVector (xRand, yRand, zRand); >> 1749 } >> 1750 else 1685 { 1751 { 1686 case 0: // start phi cut << 1752 xRand = rRand*std::cos(fSPhi+fDPhi); 1687 { << 1753 yRand = rRand*std::sin(fSPhi+fDPhi); 1688 G4double r = Rmin + (Rmax - Rmin)*G4Qui << 1754 zRand = G4RandFlat::shoot(-1.*fDz,fDz); 1689 return { r*cosSPhi, r*sinSPhi, hz*G4Qui << 1755 return G4ThreeVector (xRand, yRand, zRand); 1690 } << 1691 case 1: // end phi cut << 1692 { << 1693 G4double r = Rmin + (Rmax - Rmin)*G4Qui << 1694 return { r*cosEPhi, r*sinEPhi, hz*G4Qui << 1695 } << 1696 case 2: // base at -dz << 1697 { << 1698 G4double r = std::sqrt(RRmin + (RRmax - << 1699 G4double phi = fSPhi + fDPhi*G4QuickRan << 1700 return { r*std::cos(phi), r*std::sin(ph << 1701 } << 1702 case 3: // base at +dz << 1703 { << 1704 G4double r = std::sqrt(RRmin + (RRmax - << 1705 G4double phi = fSPhi + fDPhi*G4QuickRan << 1706 return { r*std::cos(phi), r*std::sin(ph << 1707 } << 1708 case 4: // external lateral surface << 1709 { << 1710 G4double phi = fSPhi + fDPhi*G4QuickRan << 1711 G4double z = hz*G4QuickRand() - fDz; << 1712 G4double x = Rmax*std::cos(phi); << 1713 G4double y = Rmax*std::sin(phi); << 1714 return { x,y,z }; << 1715 } << 1716 case 5: // internal lateral surface << 1717 { << 1718 G4double phi = fSPhi + fDPhi*G4QuickRan << 1719 G4double z = hz*G4QuickRand() - fDz; << 1720 G4double x = Rmin*std::cos(phi); << 1721 G4double y = Rmin*std::sin(phi); << 1722 return { x,y,z }; << 1723 } << 1724 } 1756 } 1725 return {0., 0., 0.}; << 1726 } 1757 } 1727 1758 1728 ///////////////////////////////////////////// 1759 /////////////////////////////////////////////////////////////////////////// 1729 // 1760 // 1730 // Methods for visualisation 1761 // Methods for visualisation 1731 1762 1732 void G4Tubs::DescribeYourselfTo ( G4VGraphics << 1763 void G4Tubs::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 1733 { 1764 { 1734 scene.AddSolid (*this) ; 1765 scene.AddSolid (*this) ; 1735 } 1766 } 1736 1767 1737 G4Polyhedron* G4Tubs::CreatePolyhedron () con << 1768 G4Polyhedron* G4Tubs::CreatePolyhedron () const 1738 { 1769 { 1739 return new G4PolyhedronTubs (fRMin, fRMax, 1770 return new G4PolyhedronTubs (fRMin, fRMax, fDz, fSPhi, fDPhi) ; 1740 } 1771 } 1741 << 1742 #endif 1772 #endif 1743 1773