Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4Tubs implementation << 27 // 26 // 28 // 1994-95 P.Kent: first implementation << 27 // $Id: G4Tubs.cc 88946 2015-03-16 16:14:24Z gcosmo $ 29 // 08.08.00 V.Grichine: more stable roots of 2 << 28 // >> 29 // >> 30 // class G4Tubs >> 31 // >> 32 // History: >> 33 // >> 34 // 05.04.12 M.Kelsey: Use sqrt(r) in GetPointOnSurface() for uniform points >> 35 // 02.08.07 T.Nikitina: bug fixed in DistanceToOut(p,v,..) for negative value under sqrt >> 36 // for the case: p on the surface and v is tangent to the surface >> 37 // 11.05.07 T.Nikitina: bug fixed in DistanceToOut(p,v,..) for phi < 2pi >> 38 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal >> 39 // 16.03.05 V.Grichine: SurfaceNormal(p) with edges/corners for boolean >> 40 // 20.07.01 V.Grichine: bug fixed in Inside(p) >> 41 // 20.02.01 V.Grichine: bug fixed in Inside(p) and CalculateExtent was >> 42 // simplified base on G4Box::CalculateExtent 30 // 07.12.00 V.Grichine: phi-section algorithm 43 // 07.12.00 V.Grichine: phi-section algorithm was changed in Inside(p) 31 // 03.05.05 V.Grichine: SurfaceNormal(p) accor << 44 // 28.11.00 V.Grichine: bug fixed in Inside(p) 32 // 24.08.16 E.Tcherniaev: reimplemented Calcul << 45 // 31.10.00 V.Grichine: assign srd, sphi in Distance ToOut(p,v,...) 33 // ------------------------------------------- << 46 // 08.08.00 V.Grichine: more stable roots of 2-equation in DistanceToOut(p,v,..) >> 47 // 02.08.00 V.Grichine: point is outside check in Distance ToOut(p) >> 48 // 17.05.00 V.Grichine: bugs (#76,#91) fixed in Distance ToOut(p,v,...) >> 49 // 31.03.00 V.Grichine: bug fixed in Inside(p) >> 50 // 19.11.99 V.Grichine: side = kNull in DistanceToOut(p,v,...) >> 51 // 13.10.99 V.Grichine: bugs fixed in DistanceToIn(p,v) >> 52 // 28.05.99 V.Grichine: bugs fixed in DistanceToOut(p,v,...) >> 53 // 25.05.99 V.Grichine: bugs fixed in DistanceToIn(p,v) >> 54 // 23.03.99 V.Grichine: bug fixed in DistanceToIn(p,v) >> 55 // 09.10.98 V.Grichine: modifications in DistanceToOut(p,v,...) >> 56 // 18.06.98 V.Grichine: n-normalisation in DistanceToOut(p,v) >> 57 // >> 58 // 1994-95 P.Kent: implementation >> 59 // >> 60 ///////////////////////////////////////////////////////////////////////// 34 61 35 #include "G4Tubs.hh" 62 #include "G4Tubs.hh" 36 63 37 #if !defined(G4GEOM_USE_UTUBS) 64 #if !defined(G4GEOM_USE_UTUBS) 38 65 39 #include "G4GeomTools.hh" << 40 #include "G4VoxelLimits.hh" 66 #include "G4VoxelLimits.hh" 41 #include "G4AffineTransform.hh" 67 #include "G4AffineTransform.hh" 42 #include "G4GeometryTolerance.hh" 68 #include "G4GeometryTolerance.hh" 43 #include "G4BoundingEnvelope.hh" << 44 69 45 #include "G4VPVParameterisation.hh" 70 #include "G4VPVParameterisation.hh" 46 #include "G4QuickRand.hh" << 71 >> 72 #include "Randomize.hh" >> 73 >> 74 #include "meshdefs.hh" 47 75 48 #include "G4VGraphicsScene.hh" 76 #include "G4VGraphicsScene.hh" 49 #include "G4Polyhedron.hh" << 50 77 51 using namespace CLHEP; 78 using namespace CLHEP; 52 79 53 ////////////////////////////////////////////// 80 ///////////////////////////////////////////////////////////////////////// 54 // 81 // 55 // Constructor - check parameters, convert ang 82 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI 56 // - note if pdphi>2PI then reset 83 // - note if pdphi>2PI then reset to 2PI 57 84 58 G4Tubs::G4Tubs( const G4String& pName, << 85 G4Tubs::G4Tubs( const G4String &pName, 59 G4double pRMin, G4double 86 G4double pRMin, G4double pRMax, 60 G4double pDz, 87 G4double pDz, 61 G4double pSPhi, G4double 88 G4double pSPhi, G4double pDPhi ) 62 : G4CSGSolid(pName), fRMin(pRMin), fRMax(pR << 89 : G4CSGSolid(pName), fRMin(pRMin), fRMax(pRMax), fDz(pDz), fSPhi(0), fDPhi(0) 63 fSPhi(0), fDPhi(0), << 64 fInvRmax( pRMax > 0.0 ? 1.0/pRMax : 0.0 ) << 65 fInvRmin( pRMin > 0.0 ? 1.0/pRMin : 0.0 ) << 66 { 90 { >> 91 67 kRadTolerance = G4GeometryTolerance::GetInst 92 kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 68 kAngTolerance = G4GeometryTolerance::GetInst 93 kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance(); 69 94 70 halfCarTolerance=kCarTolerance*0.5; 95 halfCarTolerance=kCarTolerance*0.5; 71 halfRadTolerance=kRadTolerance*0.5; 96 halfRadTolerance=kRadTolerance*0.5; 72 halfAngTolerance=kAngTolerance*0.5; 97 halfAngTolerance=kAngTolerance*0.5; 73 98 74 if (pDz<=0) // Check z-len 99 if (pDz<=0) // Check z-len 75 { 100 { 76 std::ostringstream message; 101 std::ostringstream message; 77 message << "Negative Z half-length (" << p 102 message << "Negative Z half-length (" << pDz << ") in solid: " << GetName(); 78 G4Exception("G4Tubs::G4Tubs()", "GeomSolid 103 G4Exception("G4Tubs::G4Tubs()", "GeomSolids0002", FatalException, message); 79 } 104 } 80 if ( (pRMin >= pRMax) || (pRMin < 0) ) // Ch 105 if ( (pRMin >= pRMax) || (pRMin < 0) ) // Check radii 81 { 106 { 82 std::ostringstream message; 107 std::ostringstream message; 83 message << "Invalid values for radii in so 108 message << "Invalid values for radii in solid: " << GetName() 84 << G4endl 109 << G4endl 85 << " pRMin = " << pRMin << 110 << " pRMin = " << pRMin << ", pRMax = " << pRMax; 86 G4Exception("G4Tubs::G4Tubs()", "GeomSolid 111 G4Exception("G4Tubs::G4Tubs()", "GeomSolids0002", FatalException, message); 87 } 112 } 88 113 89 // Check angles 114 // Check angles 90 // 115 // 91 CheckPhiAngles(pSPhi, pDPhi); 116 CheckPhiAngles(pSPhi, pDPhi); 92 } 117 } 93 118 94 ////////////////////////////////////////////// 119 /////////////////////////////////////////////////////////////////////// 95 // 120 // 96 // Fake default constructor - sets only member 121 // Fake default constructor - sets only member data and allocates memory 97 // for usage restri 122 // for usage restricted to object persistency. 98 // 123 // 99 G4Tubs::G4Tubs( __void__& a ) 124 G4Tubs::G4Tubs( __void__& a ) 100 : G4CSGSolid(a) << 125 : G4CSGSolid(a), kRadTolerance(0.), kAngTolerance(0.), >> 126 fRMin(0.), fRMax(0.), fDz(0.), fSPhi(0.), fDPhi(0.), >> 127 sinCPhi(0.), cosCPhi(0.), cosHDPhiOT(0.), cosHDPhiIT(0.), >> 128 sinSPhi(0.), cosSPhi(0.), sinEPhi(0.), cosEPhi(0.), >> 129 fPhiFullTube(false), halfCarTolerance(0.), halfRadTolerance(0.), >> 130 halfAngTolerance(0.) 101 { 131 { 102 } 132 } 103 133 104 ////////////////////////////////////////////// 134 ////////////////////////////////////////////////////////////////////////// 105 // 135 // 106 // Destructor 136 // Destructor 107 137 108 G4Tubs::~G4Tubs() = default; << 138 G4Tubs::~G4Tubs() >> 139 { >> 140 } 109 141 110 ////////////////////////////////////////////// 142 ////////////////////////////////////////////////////////////////////////// 111 // 143 // 112 // Copy constructor 144 // Copy constructor 113 145 114 G4Tubs::G4Tubs(const G4Tubs&) = default; << 146 G4Tubs::G4Tubs(const G4Tubs& rhs) >> 147 : G4CSGSolid(rhs), >> 148 kRadTolerance(rhs.kRadTolerance), kAngTolerance(rhs.kAngTolerance), >> 149 fRMin(rhs.fRMin), fRMax(rhs.fRMax), fDz(rhs.fDz), >> 150 fSPhi(rhs.fSPhi), fDPhi(rhs.fDPhi), >> 151 sinCPhi(rhs.sinCPhi), cosCPhi(rhs.cosCPhi), >> 152 cosHDPhiOT(rhs.cosHDPhiOT), cosHDPhiIT(rhs.cosHDPhiIT), >> 153 sinSPhi(rhs.sinSPhi), cosSPhi(rhs.cosSPhi), >> 154 sinEPhi(rhs.sinEPhi), cosEPhi(rhs.cosEPhi), fPhiFullTube(rhs.fPhiFullTube), >> 155 halfCarTolerance(rhs.halfCarTolerance), >> 156 halfRadTolerance(rhs.halfRadTolerance), >> 157 halfAngTolerance(rhs.halfAngTolerance) >> 158 { >> 159 } 115 160 116 ////////////////////////////////////////////// 161 ////////////////////////////////////////////////////////////////////////// 117 // 162 // 118 // Assignment operator 163 // Assignment operator 119 164 120 G4Tubs& G4Tubs::operator = (const G4Tubs& rhs) << 165 G4Tubs& G4Tubs::operator = (const G4Tubs& rhs) 121 { 166 { 122 // Check assignment to self 167 // Check assignment to self 123 // 168 // 124 if (this == &rhs) { return *this; } 169 if (this == &rhs) { return *this; } 125 170 126 // Copy base class data 171 // Copy base class data 127 // 172 // 128 G4CSGSolid::operator=(rhs); 173 G4CSGSolid::operator=(rhs); 129 174 130 // Copy data 175 // Copy data 131 // 176 // 132 kRadTolerance = rhs.kRadTolerance; kAngTole 177 kRadTolerance = rhs.kRadTolerance; kAngTolerance = rhs.kAngTolerance; 133 fRMin = rhs.fRMin; fRMax = rhs.fRMax; fDz = 178 fRMin = rhs.fRMin; fRMax = rhs.fRMax; fDz = rhs.fDz; 134 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; 179 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; 135 sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPh << 180 sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPhi; 136 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = r 181 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = rhs.cosHDPhiIT; 137 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPh 182 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPhi; 138 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPh 183 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPhi; 139 fPhiFullTube = rhs.fPhiFullTube; 184 fPhiFullTube = rhs.fPhiFullTube; 140 fInvRmax = rhs.fInvRmax; << 141 fInvRmin = rhs.fInvRmin; << 142 halfCarTolerance = rhs.halfCarTolerance; 185 halfCarTolerance = rhs.halfCarTolerance; 143 halfRadTolerance = rhs.halfRadTolerance; 186 halfRadTolerance = rhs.halfRadTolerance; 144 halfAngTolerance = rhs.halfAngTolerance; 187 halfAngTolerance = rhs.halfAngTolerance; 145 188 146 return *this; 189 return *this; 147 } 190 } 148 191 149 ////////////////////////////////////////////// 192 ///////////////////////////////////////////////////////////////////////// 150 // 193 // 151 // Dispatch to parameterisation for replicatio 194 // Dispatch to parameterisation for replication mechanism dimension 152 // computation & modification. 195 // computation & modification. 153 196 154 void G4Tubs::ComputeDimensions( G4VPVPar 197 void G4Tubs::ComputeDimensions( G4VPVParameterisation* p, 155 const G4int n, 198 const G4int n, 156 const G4VPhysi 199 const G4VPhysicalVolume* pRep ) 157 { 200 { 158 p->ComputeDimensions(*this,n,pRep) ; 201 p->ComputeDimensions(*this,n,pRep) ; 159 } 202 } 160 203 161 ////////////////////////////////////////////// << 204 //////////////////////////////////////////////////////////////////////// 162 // << 163 // Get bounding box << 164 << 165 void G4Tubs::BoundingLimits(G4ThreeVector& pMi << 166 { << 167 G4double rmin = GetInnerRadius(); << 168 G4double rmax = GetOuterRadius(); << 169 G4double dz = GetZHalfLength(); << 170 << 171 // Find bounding box << 172 // << 173 if (GetDeltaPhiAngle() < twopi) << 174 { << 175 G4TwoVector vmin,vmax; << 176 G4GeomTools::DiskExtent(rmin,rmax, << 177 GetSinStartPhi(),G << 178 GetSinEndPhi(),Get << 179 vmin,vmax); << 180 pMin.set(vmin.x(),vmin.y(),-dz); << 181 pMax.set(vmax.x(),vmax.y(), dz); << 182 } << 183 else << 184 { << 185 pMin.set(-rmax,-rmax,-dz); << 186 pMax.set( rmax, rmax, dz); << 187 } << 188 << 189 // Check correctness of the bounding box << 190 // << 191 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 192 { << 193 std::ostringstream message; << 194 message << "Bad bounding box (min >= max) << 195 << GetName() << " !" << 196 << "\npMin = " << pMin << 197 << "\npMax = " << pMax; << 198 G4Exception("G4Tubs::BoundingLimits()", "G << 199 JustWarning, message); << 200 DumpInfo(); << 201 } << 202 } << 203 << 204 ////////////////////////////////////////////// << 205 // 205 // 206 // Calculate extent under transform and specif 206 // Calculate extent under transform and specified limit 207 207 208 G4bool G4Tubs::CalculateExtent( const EAxis 208 G4bool G4Tubs::CalculateExtent( const EAxis pAxis, 209 const G4VoxelL 209 const G4VoxelLimits& pVoxelLimit, 210 const G4Affine 210 const G4AffineTransform& pTransform, 211 G4double << 211 G4double& pMin, 212 G4double 212 G4double& pMax ) const 213 { 213 { 214 G4ThreeVector bmin, bmax; << 215 G4bool exist; << 216 << 217 // Get bounding box << 218 BoundingLimits(bmin,bmax); << 219 214 220 // Check bounding box << 215 if ( (!pTransform.IsRotated()) && (fDPhi == twopi) && (fRMin == 0) ) 221 G4BoundingEnvelope bbox(bmin,bmax); << 222 #ifdef G4BBOX_EXTENT << 223 return bbox.CalculateExtent(pAxis,pVoxelLimi << 224 #endif << 225 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 226 { 216 { 227 return exist = pMin < pMax; << 217 // Special case handling for unrotated solid tubes 228 } << 218 // Compute x/y/z mins and maxs fro bounding box respecting limits, >> 219 // with early returns if outside limits. Then switch() on pAxis, >> 220 // and compute exact x and y limit for x/y case >> 221 >> 222 G4double xoffset, xMin, xMax; >> 223 G4double yoffset, yMin, yMax; >> 224 G4double zoffset, zMin, zMax; >> 225 >> 226 G4double diff1, diff2, maxDiff, newMin, newMax; >> 227 G4double xoff1, xoff2, yoff1, yoff2, delta; >> 228 >> 229 xoffset = pTransform.NetTranslation().x(); >> 230 xMin = xoffset - fRMax; >> 231 xMax = xoffset + fRMax; 229 232 230 // Get parameters of the solid << 233 if (pVoxelLimit.IsXLimited()) 231 G4double rmin = GetInnerRadius(); << 234 { 232 G4double rmax = GetOuterRadius(); << 235 if ( (xMin > pVoxelLimit.GetMaxXExtent()) 233 G4double dz = GetZHalfLength(); << 236 || (xMax < pVoxelLimit.GetMinXExtent()) ) 234 G4double dphi = GetDeltaPhiAngle(); << 237 { >> 238 return false; >> 239 } >> 240 else >> 241 { >> 242 if (xMin < pVoxelLimit.GetMinXExtent()) >> 243 { >> 244 xMin = pVoxelLimit.GetMinXExtent(); >> 245 } >> 246 if (xMax > pVoxelLimit.GetMaxXExtent()) >> 247 { >> 248 xMax = pVoxelLimit.GetMaxXExtent(); >> 249 } >> 250 } >> 251 } >> 252 yoffset = pTransform.NetTranslation().y(); >> 253 yMin = yoffset - fRMax; >> 254 yMax = yoffset + fRMax; 235 255 236 // Find bounding envelope and calculate exte << 256 if ( pVoxelLimit.IsYLimited() ) 237 // << 257 { 238 const G4int NSTEPS = 24; // numbe << 258 if ( (yMin > pVoxelLimit.GetMaxYExtent()) 239 G4double astep = twopi/NSTEPS; // max a << 259 || (yMax < pVoxelLimit.GetMinYExtent()) ) 240 G4int ksteps = (dphi <= astep) ? 1 : (G4i << 260 { 241 G4double ang = dphi/ksteps; << 261 return false; 242 << 262 } 243 G4double sinHalf = std::sin(0.5*ang); << 263 else 244 G4double cosHalf = std::cos(0.5*ang); << 264 { 245 G4double sinStep = 2.*sinHalf*cosHalf; << 265 if (yMin < pVoxelLimit.GetMinYExtent()) 246 G4double cosStep = 1. - 2.*sinHalf*sinHalf; << 266 { 247 G4double rext = rmax/cosHalf; << 267 yMin = pVoxelLimit.GetMinYExtent(); 248 << 268 } 249 // bounding envelope for full cylinder consi << 269 if (yMax > pVoxelLimit.GetMaxYExtent()) 250 // in other cases it is a sequence of quadri << 270 { 251 if (rmin == 0 && dphi == twopi) << 271 yMax=pVoxelLimit.GetMaxYExtent(); 252 { << 272 } 253 G4double sinCur = sinHalf; << 273 } 254 G4double cosCur = cosHalf; << 274 } 255 << 275 zoffset = pTransform.NetTranslation().z(); 256 G4ThreeVectorList baseA(NSTEPS),baseB(NSTE << 276 zMin = zoffset - fDz; 257 for (G4int k=0; k<NSTEPS; ++k) << 277 zMax = zoffset + fDz; 258 { << 278 259 baseA[k].set(rext*cosCur,rext*sinCur,-dz << 279 if ( pVoxelLimit.IsZLimited() ) 260 baseB[k].set(rext*cosCur,rext*sinCur, dz << 280 { 261 << 281 if ( (zMin > pVoxelLimit.GetMaxZExtent()) 262 G4double sinTmp = sinCur; << 282 || (zMax < pVoxelLimit.GetMinZExtent()) ) 263 sinCur = sinCur*cosStep + cosCur*sinStep << 283 { 264 cosCur = cosCur*cosStep - sinTmp*sinStep << 284 return false; 265 } << 285 } 266 std::vector<const G4ThreeVectorList *> pol << 286 else 267 polygons[0] = &baseA; << 287 { 268 polygons[1] = &baseB; << 288 if (zMin < pVoxelLimit.GetMinZExtent()) 269 G4BoundingEnvelope benv(bmin,bmax,polygons << 289 { 270 exist = benv.CalculateExtent(pAxis,pVoxelL << 290 zMin = pVoxelLimit.GetMinZExtent(); >> 291 } >> 292 if (zMax > pVoxelLimit.GetMaxZExtent()) >> 293 { >> 294 zMax = pVoxelLimit.GetMaxZExtent(); >> 295 } >> 296 } >> 297 } >> 298 switch ( pAxis ) // Known to cut cylinder >> 299 { >> 300 case kXAxis : >> 301 { >> 302 yoff1 = yoffset - yMin; >> 303 yoff2 = yMax - yoffset; >> 304 >> 305 if ( (yoff1 >= 0) && (yoff2 >= 0) ) // Y limits cross max/min x >> 306 { // => no change >> 307 pMin = xMin; >> 308 pMax = xMax; >> 309 } >> 310 else >> 311 { >> 312 // Y limits don't cross max/min x => compute max delta x, >> 313 // hence new mins/maxs >> 314 >> 315 delta = fRMax*fRMax - yoff1*yoff1; >> 316 diff1 = (delta>0.) ? std::sqrt(delta) : 0.; >> 317 delta = fRMax*fRMax - yoff2*yoff2; >> 318 diff2 = (delta>0.) ? std::sqrt(delta) : 0.; >> 319 maxDiff = (diff1 > diff2) ? diff1:diff2; >> 320 newMin = xoffset - maxDiff; >> 321 newMax = xoffset + maxDiff; >> 322 pMin = (newMin < xMin) ? xMin : newMin; >> 323 pMax = (newMax > xMax) ? xMax : newMax; >> 324 } >> 325 break; >> 326 } >> 327 case kYAxis : >> 328 { >> 329 xoff1 = xoffset - xMin; >> 330 xoff2 = xMax - xoffset; >> 331 >> 332 if ( (xoff1 >= 0) && (xoff2 >= 0) ) // X limits cross max/min y >> 333 { // => no change >> 334 pMin = yMin; >> 335 pMax = yMax; >> 336 } >> 337 else >> 338 { >> 339 // X limits don't cross max/min y => compute max delta y, >> 340 // hence new mins/maxs >> 341 >> 342 delta = fRMax*fRMax - xoff1*xoff1; >> 343 diff1 = (delta>0.) ? std::sqrt(delta) : 0.; >> 344 delta = fRMax*fRMax - xoff2*xoff2; >> 345 diff2 = (delta>0.) ? std::sqrt(delta) : 0.; >> 346 maxDiff = (diff1 > diff2) ? diff1 : diff2; >> 347 newMin = yoffset - maxDiff; >> 348 newMax = yoffset + maxDiff; >> 349 pMin = (newMin < yMin) ? yMin : newMin; >> 350 pMax = (newMax > yMax) ? yMax : newMax; >> 351 } >> 352 break; >> 353 } >> 354 case kZAxis: >> 355 { >> 356 pMin = zMin; >> 357 pMax = zMax; >> 358 break; >> 359 } >> 360 default: >> 361 break; >> 362 } >> 363 pMin -= kCarTolerance; >> 364 pMax += kCarTolerance; >> 365 return true; 271 } 366 } 272 else << 367 else // Calculate rotated vertex coordinates 273 { 368 { 274 G4double sinStart = GetSinStartPhi(); << 369 G4int i, noEntries, noBetweenSections4; 275 G4double cosStart = GetCosStartPhi(); << 370 G4bool existsAfterClip = false; 276 G4double sinEnd = GetSinEndPhi(); << 371 G4ThreeVectorList* vertices = CreateRotatedVertices(pTransform); 277 G4double cosEnd = GetCosEndPhi(); << 372 278 G4double sinCur = sinStart*cosHalf + cos << 373 pMin = kInfinity; 279 G4double cosCur = cosStart*cosHalf - sin << 374 pMax = -kInfinity; 280 << 375 281 // set quadrilaterals << 376 noEntries = vertices->size(); 282 G4ThreeVectorList pols[NSTEPS+2]; << 377 noBetweenSections4 = noEntries - 4; 283 for (G4int k=0; k<ksteps+2; ++k) pols[k].r << 378 284 pols[0][0].set(rmin*cosStart,rmin*sinStart << 379 for ( i = 0 ; i < noEntries ; i += 4 ) 285 pols[0][1].set(rmin*cosStart,rmin*sinStart << 380 { 286 pols[0][2].set(rmax*cosStart,rmax*sinStart << 381 ClipCrossSection(vertices, i, pVoxelLimit, pAxis, pMin, pMax); 287 pols[0][3].set(rmax*cosStart,rmax*sinStart << 382 } 288 for (G4int k=1; k<ksteps+1; ++k) << 383 for ( i = 0 ; i < noBetweenSections4 ; i += 4 ) 289 { << 384 { 290 pols[k][0].set(rmin*cosCur,rmin*sinCur, << 385 ClipBetweenSections(vertices, i, pVoxelLimit, pAxis, pMin, pMax); 291 pols[k][1].set(rmin*cosCur,rmin*sinCur,- << 386 } 292 pols[k][2].set(rext*cosCur,rext*sinCur,- << 387 if ( (pMin != kInfinity) || (pMax != -kInfinity) ) 293 pols[k][3].set(rext*cosCur,rext*sinCur, << 388 { 294 << 389 existsAfterClip = true; 295 G4double sinTmp = sinCur; << 390 pMin -= kCarTolerance; // Add 2*tolerance to avoid precision troubles 296 sinCur = sinCur*cosStep + cosCur*sinStep << 391 pMax += kCarTolerance; 297 cosCur = cosCur*cosStep - sinTmp*sinStep << 392 } 298 } << 393 else 299 pols[ksteps+1][0].set(rmin*cosEnd,rmin*sin << 394 { 300 pols[ksteps+1][1].set(rmin*cosEnd,rmin*sin << 395 // Check for case where completely enveloping clipping volume 301 pols[ksteps+1][2].set(rmax*cosEnd,rmax*sin << 396 // If point inside then we are confident that the solid completely 302 pols[ksteps+1][3].set(rmax*cosEnd,rmax*sin << 397 // envelopes the clipping volume. Hence set min/max extents according 303 << 398 // to clipping volume extents along the specified axis. 304 // set envelope and calculate extent << 399 305 std::vector<const G4ThreeVectorList *> pol << 400 G4ThreeVector clipCentre( 306 polygons.resize(ksteps+2); << 401 (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5, 307 for (G4int k=0; k<ksteps+2; ++k) polygons[ << 402 (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5, 308 G4BoundingEnvelope benv(bmin,bmax,polygons << 403 (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5 ); 309 exist = benv.CalculateExtent(pAxis,pVoxelL << 404 >> 405 if ( Inside(pTransform.Inverse().TransformPoint(clipCentre)) != kOutside ) >> 406 { >> 407 existsAfterClip = true; >> 408 pMin = pVoxelLimit.GetMinExtent(pAxis); >> 409 pMax = pVoxelLimit.GetMaxExtent(pAxis); >> 410 } >> 411 } >> 412 delete vertices; >> 413 return existsAfterClip; 310 } 414 } 311 return exist; << 312 } 415 } 313 416 >> 417 314 ////////////////////////////////////////////// 418 /////////////////////////////////////////////////////////////////////////// 315 // 419 // 316 // Return whether point inside/outside/on surf 420 // Return whether point inside/outside/on surface 317 421 318 EInside G4Tubs::Inside( const G4ThreeVector& p 422 EInside G4Tubs::Inside( const G4ThreeVector& p ) const 319 { 423 { 320 G4double r2,pPhi,tolRMin,tolRMax; 424 G4double r2,pPhi,tolRMin,tolRMax; 321 EInside in = kOutside ; 425 EInside in = kOutside ; 322 426 323 if (std::fabs(p.z()) <= fDz - halfCarToleran 427 if (std::fabs(p.z()) <= fDz - halfCarTolerance) 324 { 428 { 325 r2 = p.x()*p.x() + p.y()*p.y() ; 429 r2 = p.x()*p.x() + p.y()*p.y() ; 326 430 327 if (fRMin != 0.0) { tolRMin = fRMin + half << 431 if (fRMin) { tolRMin = fRMin + halfRadTolerance ; } 328 else { tolRMin = 0 ; } 432 else { tolRMin = 0 ; } 329 433 330 tolRMax = fRMax - halfRadTolerance ; 434 tolRMax = fRMax - halfRadTolerance ; 331 << 435 332 if ((r2 >= tolRMin*tolRMin) && (r2 <= tolR 436 if ((r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax)) 333 { 437 { 334 if ( fPhiFullTube ) 438 if ( fPhiFullTube ) 335 { 439 { 336 in = kInside ; 440 in = kInside ; 337 } 441 } 338 else 442 else 339 { 443 { 340 // Try inner tolerant phi boundaries ( 444 // Try inner tolerant phi boundaries (=>inside) 341 // if not inside, try outer tolerant p 445 // if not inside, try outer tolerant phi boundaries 342 446 343 if ( (tolRMin==0) && (std::fabs(p.x()) 447 if ( (tolRMin==0) && (std::fabs(p.x())<=halfCarTolerance) 344 && (std::fabs(p.y()) 448 && (std::fabs(p.y())<=halfCarTolerance) ) 345 { 449 { 346 in=kSurface; 450 in=kSurface; 347 } 451 } 348 else 452 else 349 { 453 { 350 pPhi = std::atan2(p.y(),p.x()) ; 454 pPhi = std::atan2(p.y(),p.x()) ; 351 if ( pPhi < -halfAngTolerance ) { p 455 if ( pPhi < -halfAngTolerance ) { pPhi += twopi; } // 0<=pPhi<2pi 352 456 353 if ( fSPhi >= 0 ) 457 if ( fSPhi >= 0 ) 354 { 458 { 355 if ( (std::fabs(pPhi) < halfAngTol 459 if ( (std::fabs(pPhi) < halfAngTolerance) 356 && (std::fabs(fSPhi + fDPhi - tw 460 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 357 { << 461 { 358 pPhi += twopi ; // 0 <= pPhi < 2 462 pPhi += twopi ; // 0 <= pPhi < 2pi 359 } 463 } 360 if ( (pPhi >= fSPhi + halfAngToler 464 if ( (pPhi >= fSPhi + halfAngTolerance) 361 && (pPhi <= fSPhi + fDPhi - half 465 && (pPhi <= fSPhi + fDPhi - halfAngTolerance) ) 362 { 466 { 363 in = kInside ; 467 in = kInside ; 364 } 468 } 365 else if ( (pPhi >= fSPhi - halfAng 469 else if ( (pPhi >= fSPhi - halfAngTolerance) 366 && (pPhi <= fSPhi + fDPhi + 470 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 367 { 471 { 368 in = kSurface ; 472 in = kSurface ; 369 } 473 } 370 } 474 } 371 else // fSPhi < 0 475 else // fSPhi < 0 372 { 476 { 373 if ( (pPhi <= fSPhi + twopi - half 477 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 374 && (pPhi >= fSPhi + fDPhi + hal 478 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} //kOutside 375 else if ( (pPhi <= fSPhi + twopi + 479 else if ( (pPhi <= fSPhi + twopi + halfAngTolerance) 376 && (pPhi >= fSPhi + fDPhi 480 && (pPhi >= fSPhi + fDPhi - halfAngTolerance) ) 377 { 481 { 378 in = kSurface ; 482 in = kSurface ; 379 } 483 } 380 else 484 else 381 { 485 { 382 in = kInside ; 486 in = kInside ; 383 } 487 } 384 } 488 } 385 } << 489 } 386 } 490 } 387 } 491 } 388 else // Try generous boundaries 492 else // Try generous boundaries 389 { 493 { 390 tolRMin = fRMin - halfRadTolerance ; 494 tolRMin = fRMin - halfRadTolerance ; 391 tolRMax = fRMax + halfRadTolerance ; 495 tolRMax = fRMax + halfRadTolerance ; 392 496 393 if ( tolRMin < 0 ) { tolRMin = 0; } 497 if ( tolRMin < 0 ) { tolRMin = 0; } 394 498 395 if ( (r2 >= tolRMin*tolRMin) && (r2 <= t 499 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) ) 396 { 500 { 397 if (fPhiFullTube || (r2 <=halfRadToler 501 if (fPhiFullTube || (r2 <=halfRadTolerance*halfRadTolerance) ) 398 { // Continuous 502 { // Continuous in phi or on z-axis 399 in = kSurface ; 503 in = kSurface ; 400 } 504 } 401 else // Try outer tolerant phi boundar 505 else // Try outer tolerant phi boundaries only 402 { 506 { 403 pPhi = std::atan2(p.y(),p.x()) ; 507 pPhi = std::atan2(p.y(),p.x()) ; 404 508 405 if ( pPhi < -halfAngTolerance) { pP 509 if ( pPhi < -halfAngTolerance) { pPhi += twopi; } // 0<=pPhi<2pi 406 if ( fSPhi >= 0 ) 510 if ( fSPhi >= 0 ) 407 { 511 { 408 if ( (std::fabs(pPhi) < halfAngTol 512 if ( (std::fabs(pPhi) < halfAngTolerance) 409 && (std::fabs(fSPhi + fDPhi - tw 513 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 410 { << 514 { 411 pPhi += twopi ; // 0 <= pPhi < 2 515 pPhi += twopi ; // 0 <= pPhi < 2pi 412 } 516 } 413 if ( (pPhi >= fSPhi - halfAngToler 517 if ( (pPhi >= fSPhi - halfAngTolerance) 414 && (pPhi <= fSPhi + fDPhi + half 518 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 415 { 519 { 416 in = kSurface ; 520 in = kSurface ; 417 } 521 } 418 } 522 } 419 else // fSPhi < 0 523 else // fSPhi < 0 420 { 524 { 421 if ( (pPhi <= fSPhi + twopi - half 525 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 422 && (pPhi >= fSPhi + fDPhi + half 526 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} // kOutside 423 else 527 else 424 { 528 { 425 in = kSurface ; 529 in = kSurface ; 426 } 530 } 427 } 531 } 428 } 532 } 429 } 533 } 430 } 534 } 431 } 535 } 432 else if (std::fabs(p.z()) <= fDz + halfCarTo 536 else if (std::fabs(p.z()) <= fDz + halfCarTolerance) 433 { / 537 { // Check within tolerant r limits 434 r2 = p.x()*p.x() + p.y()*p.y() ; 538 r2 = p.x()*p.x() + p.y()*p.y() ; 435 tolRMin = fRMin - halfRadTolerance ; 539 tolRMin = fRMin - halfRadTolerance ; 436 tolRMax = fRMax + halfRadTolerance ; 540 tolRMax = fRMax + halfRadTolerance ; 437 541 438 if ( tolRMin < 0 ) { tolRMin = 0; } 542 if ( tolRMin < 0 ) { tolRMin = 0; } 439 543 440 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tol 544 if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) ) 441 { 545 { 442 if (fPhiFullTube || (r2 <=halfRadToleran 546 if (fPhiFullTube || (r2 <=halfRadTolerance*halfRadTolerance)) 443 { // Continuous i 547 { // Continuous in phi or on z-axis 444 in = kSurface ; 548 in = kSurface ; 445 } 549 } 446 else // Try outer tolerant phi boundarie 550 else // Try outer tolerant phi boundaries 447 { 551 { 448 pPhi = std::atan2(p.y(),p.x()) ; 552 pPhi = std::atan2(p.y(),p.x()) ; 449 553 450 if ( pPhi < -halfAngTolerance ) { pPh 554 if ( pPhi < -halfAngTolerance ) { pPhi += twopi; } // 0<=pPhi<2pi 451 if ( fSPhi >= 0 ) 555 if ( fSPhi >= 0 ) 452 { 556 { 453 if ( (std::fabs(pPhi) < halfAngToler 557 if ( (std::fabs(pPhi) < halfAngTolerance) 454 && (std::fabs(fSPhi + fDPhi - twop 558 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 455 { << 559 { 456 pPhi += twopi ; // 0 <= pPhi < 2pi 560 pPhi += twopi ; // 0 <= pPhi < 2pi 457 } 561 } 458 if ( (pPhi >= fSPhi - halfAngToleran 562 if ( (pPhi >= fSPhi - halfAngTolerance) 459 && (pPhi <= fSPhi + fDPhi + halfAn 563 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 460 { 564 { 461 in = kSurface; 565 in = kSurface; 462 } 566 } 463 } 567 } 464 else // fSPhi < 0 568 else // fSPhi < 0 465 { 569 { 466 if ( (pPhi <= fSPhi + twopi - halfAn 570 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 467 && (pPhi >= fSPhi + fDPhi + halfA 571 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} 468 else 572 else 469 { 573 { 470 in = kSurface ; 574 in = kSurface ; 471 } 575 } 472 } << 576 } 473 } 577 } 474 } 578 } 475 } 579 } 476 return in; 580 return in; 477 } 581 } 478 582 479 ////////////////////////////////////////////// 583 /////////////////////////////////////////////////////////////////////////// 480 // 584 // 481 // Return unit normal of surface closest to p 585 // Return unit normal of surface closest to p 482 // - note if point on z axis, ignore phi divid 586 // - note if point on z axis, ignore phi divided sides 483 // - unsafe if point close to z axis a rmin=0 587 // - unsafe if point close to z axis a rmin=0 - no explicit checks 484 588 485 G4ThreeVector G4Tubs::SurfaceNormal( const G4T 589 G4ThreeVector G4Tubs::SurfaceNormal( const G4ThreeVector& p ) const 486 { 590 { 487 G4int noSurfaces = 0; 591 G4int noSurfaces = 0; 488 G4double rho, pPhi; 592 G4double rho, pPhi; 489 G4double distZ, distRMin, distRMax; 593 G4double distZ, distRMin, distRMax; 490 G4double distSPhi = kInfinity, distEPhi = kI 594 G4double distSPhi = kInfinity, distEPhi = kInfinity; 491 595 492 G4ThreeVector norm, sumnorm(0.,0.,0.); 596 G4ThreeVector norm, sumnorm(0.,0.,0.); 493 G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0); 597 G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0); 494 G4ThreeVector nR, nPs, nPe; 598 G4ThreeVector nR, nPs, nPe; 495 599 496 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()); 600 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()); 497 601 498 distRMin = std::fabs(rho - fRMin); 602 distRMin = std::fabs(rho - fRMin); 499 distRMax = std::fabs(rho - fRMax); 603 distRMax = std::fabs(rho - fRMax); 500 distZ = std::fabs(std::fabs(p.z()) - fDz) 604 distZ = std::fabs(std::fabs(p.z()) - fDz); 501 605 502 if (!fPhiFullTube) // Protected against ( << 606 if (!fPhiFullTube) // Protected against (0,0,z) 503 { 607 { 504 if ( rho > halfCarTolerance ) 608 if ( rho > halfCarTolerance ) 505 { 609 { 506 pPhi = std::atan2(p.y(),p.x()); 610 pPhi = std::atan2(p.y(),p.x()); >> 611 >> 612 if(pPhi < fSPhi- halfCarTolerance) { pPhi += twopi; } >> 613 else if(pPhi > fSPhi+fDPhi+ halfCarTolerance) { pPhi -= twopi; } 507 614 508 if (pPhi < fSPhi-halfCarTolerance) << 615 distSPhi = std::fabs(pPhi - fSPhi); 509 else if (pPhi > fSPhi+fDPhi+halfCarToler << 616 distEPhi = std::fabs(pPhi - fSPhi - fDPhi); 510 << 511 distSPhi = std::fabs( pPhi - fSPhi ); << 512 distEPhi = std::fabs( pPhi - fSPhi - fDP << 513 } 617 } 514 else if ( fRMin == 0.0 ) << 618 else if( !fRMin ) 515 { 619 { 516 distSPhi = 0.; << 620 distSPhi = 0.; 517 distEPhi = 0.; << 621 distEPhi = 0.; 518 } 622 } 519 nPs = G4ThreeVector( sinSPhi, -cosSPhi, 0 << 623 nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0); 520 nPe = G4ThreeVector( -sinEPhi, cosEPhi, 0 << 624 nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0); 521 } 625 } 522 if ( rho > halfCarTolerance ) { nR = G4Three 626 if ( rho > halfCarTolerance ) { nR = G4ThreeVector(p.x()/rho,p.y()/rho,0); } 523 627 524 if( distRMax <= halfCarTolerance ) 628 if( distRMax <= halfCarTolerance ) 525 { 629 { 526 ++noSurfaces; << 630 noSurfaces ++; 527 sumnorm += nR; 631 sumnorm += nR; 528 } 632 } 529 if( (fRMin != 0.0) && (distRMin <= halfCarTo << 633 if( fRMin && (distRMin <= halfCarTolerance) ) 530 { 634 { 531 ++noSurfaces; << 635 noSurfaces ++; 532 sumnorm -= nR; 636 sumnorm -= nR; 533 } 637 } 534 if( fDPhi < twopi ) << 638 if( fDPhi < twopi ) 535 { 639 { 536 if (distSPhi <= halfAngTolerance) << 640 if (distSPhi <= halfAngTolerance) 537 { 641 { 538 ++noSurfaces; << 642 noSurfaces ++; 539 sumnorm += nPs; 643 sumnorm += nPs; 540 } 644 } 541 if (distEPhi <= halfAngTolerance) << 645 if (distEPhi <= halfAngTolerance) 542 { 646 { 543 ++noSurfaces; << 647 noSurfaces ++; 544 sumnorm += nPe; 648 sumnorm += nPe; 545 } 649 } 546 } 650 } 547 if (distZ <= halfCarTolerance) << 651 if (distZ <= halfCarTolerance) 548 { 652 { 549 ++noSurfaces; << 653 noSurfaces ++; 550 if ( p.z() >= 0.) { sumnorm += nZ; } 654 if ( p.z() >= 0.) { sumnorm += nZ; } 551 else { sumnorm -= nZ; } 655 else { sumnorm -= nZ; } 552 } 656 } 553 if ( noSurfaces == 0 ) 657 if ( noSurfaces == 0 ) 554 { 658 { 555 #ifdef G4CSGDEBUG 659 #ifdef G4CSGDEBUG 556 G4Exception("G4Tubs::SurfaceNormal(p)", "G 660 G4Exception("G4Tubs::SurfaceNormal(p)", "GeomSolids1002", 557 JustWarning, "Point p is not o 661 JustWarning, "Point p is not on surface !?" ); 558 G4long oldprc = G4cout.precision(20); << 662 G4int oldprc = G4cout.precision(20); 559 G4cout<< "G4Tubs::SN ( "<<p.x()<<", "<<p.y 663 G4cout<< "G4Tubs::SN ( "<<p.x()<<", "<<p.y()<<", "<<p.z()<<" ); " 560 << G4endl << G4endl; 664 << G4endl << G4endl; 561 G4cout.precision(oldprc) ; 665 G4cout.precision(oldprc) ; 562 #endif << 666 #endif 563 norm = ApproxSurfaceNormal(p); 667 norm = ApproxSurfaceNormal(p); 564 } 668 } 565 else if ( noSurfaces == 1 ) { norm = sumnor 669 else if ( noSurfaces == 1 ) { norm = sumnorm; } 566 else { norm = sumnor 670 else { norm = sumnorm.unit(); } 567 671 568 return norm; 672 return norm; 569 } 673 } 570 674 571 ////////////////////////////////////////////// 675 ///////////////////////////////////////////////////////////////////////////// 572 // 676 // 573 // Algorithm for SurfaceNormal() following the 677 // Algorithm for SurfaceNormal() following the original specification 574 // for points not on the surface 678 // for points not on the surface 575 679 576 G4ThreeVector G4Tubs::ApproxSurfaceNormal( con 680 G4ThreeVector G4Tubs::ApproxSurfaceNormal( const G4ThreeVector& p ) const 577 { 681 { 578 ENorm side ; 682 ENorm side ; 579 G4ThreeVector norm ; 683 G4ThreeVector norm ; 580 G4double rho, phi ; 684 G4double rho, phi ; 581 G4double distZ, distRMin, distRMax, distSPhi 685 G4double distZ, distRMin, distRMax, distSPhi, distEPhi, distMin ; 582 686 583 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 687 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 584 688 585 distRMin = std::fabs(rho - fRMin) ; 689 distRMin = std::fabs(rho - fRMin) ; 586 distRMax = std::fabs(rho - fRMax) ; 690 distRMax = std::fabs(rho - fRMax) ; 587 distZ = std::fabs(std::fabs(p.z()) - fDz) 691 distZ = std::fabs(std::fabs(p.z()) - fDz) ; 588 692 589 if (distRMin < distRMax) // First minimum 693 if (distRMin < distRMax) // First minimum 590 { 694 { 591 if ( distZ < distRMin ) 695 if ( distZ < distRMin ) 592 { 696 { 593 distMin = distZ ; 697 distMin = distZ ; 594 side = kNZ ; 698 side = kNZ ; 595 } 699 } 596 else 700 else 597 { 701 { 598 distMin = distRMin ; 702 distMin = distRMin ; 599 side = kNRMin ; 703 side = kNRMin ; 600 } 704 } 601 } 705 } 602 else 706 else 603 { 707 { 604 if ( distZ < distRMax ) 708 if ( distZ < distRMax ) 605 { 709 { 606 distMin = distZ ; 710 distMin = distZ ; 607 side = kNZ ; 711 side = kNZ ; 608 } 712 } 609 else 713 else 610 { 714 { 611 distMin = distRMax ; 715 distMin = distRMax ; 612 side = kNRMax ; 716 side = kNRMax ; 613 } 717 } 614 } << 718 } 615 if (!fPhiFullTube && (rho != 0.0) ) // Pro << 719 if (!fPhiFullTube && rho ) // Protected against (0,0,z) 616 { 720 { 617 phi = std::atan2(p.y(),p.x()) ; 721 phi = std::atan2(p.y(),p.x()) ; 618 722 619 if ( phi < 0 ) { phi += twopi; } 723 if ( phi < 0 ) { phi += twopi; } 620 724 621 if ( fSPhi < 0 ) 725 if ( fSPhi < 0 ) 622 { 726 { 623 distSPhi = std::fabs(phi - (fSPhi + twop 727 distSPhi = std::fabs(phi - (fSPhi + twopi))*rho ; 624 } 728 } 625 else 729 else 626 { 730 { 627 distSPhi = std::fabs(phi - fSPhi)*rho ; 731 distSPhi = std::fabs(phi - fSPhi)*rho ; 628 } 732 } 629 distEPhi = std::fabs(phi - fSPhi - fDPhi)* 733 distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ; 630 << 734 631 if (distSPhi < distEPhi) // Find new minim 735 if (distSPhi < distEPhi) // Find new minimum 632 { 736 { 633 if ( distSPhi < distMin ) 737 if ( distSPhi < distMin ) 634 { 738 { 635 side = kNSPhi ; 739 side = kNSPhi ; 636 } 740 } 637 } 741 } 638 else 742 else 639 { 743 { 640 if ( distEPhi < distMin ) 744 if ( distEPhi < distMin ) 641 { 745 { 642 side = kNEPhi ; 746 side = kNEPhi ; 643 } 747 } 644 } 748 } 645 } << 749 } 646 switch ( side ) 750 switch ( side ) 647 { 751 { 648 case kNRMin : // Inner radius 752 case kNRMin : // Inner radius 649 { << 753 { 650 norm = G4ThreeVector(-p.x()/rho, -p.y()/ 754 norm = G4ThreeVector(-p.x()/rho, -p.y()/rho, 0) ; 651 break ; 755 break ; 652 } 756 } 653 case kNRMax : // Outer radius 757 case kNRMax : // Outer radius 654 { << 758 { 655 norm = G4ThreeVector(p.x()/rho, p.y()/rh 759 norm = G4ThreeVector(p.x()/rho, p.y()/rho, 0) ; 656 break ; 760 break ; 657 } 761 } 658 case kNZ : // + or - dz 762 case kNZ : // + or - dz 659 { << 763 { 660 if ( p.z() > 0 ) { norm = G4ThreeVector 764 if ( p.z() > 0 ) { norm = G4ThreeVector(0,0,1) ; } 661 else { norm = G4ThreeVector 765 else { norm = G4ThreeVector(0,0,-1); } 662 break ; 766 break ; 663 } 767 } 664 case kNSPhi: 768 case kNSPhi: 665 { 769 { 666 norm = G4ThreeVector(sinSPhi, -cosSPhi, << 770 norm = G4ThreeVector(std::sin(fSPhi), -std::cos(fSPhi), 0) ; 667 break ; 771 break ; 668 } 772 } 669 case kNEPhi: 773 case kNEPhi: 670 { 774 { 671 norm = G4ThreeVector(-sinEPhi, cosEPhi, << 775 norm = G4ThreeVector(-std::sin(fSPhi+fDPhi), std::cos(fSPhi+fDPhi), 0) ; 672 break; 776 break; 673 } 777 } 674 default: // Should never reach this c 778 default: // Should never reach this case ... 675 { 779 { 676 DumpInfo(); 780 DumpInfo(); 677 G4Exception("G4Tubs::ApproxSurfaceNormal 781 G4Exception("G4Tubs::ApproxSurfaceNormal()", 678 "GeomSolids1002", JustWarnin 782 "GeomSolids1002", JustWarning, 679 "Undefined side for valid su 783 "Undefined side for valid surface normal to solid."); 680 break ; 784 break ; 681 } << 785 } 682 } << 786 } 683 return norm; 787 return norm; 684 } 788 } 685 789 686 ////////////////////////////////////////////// 790 //////////////////////////////////////////////////////////////////// 687 // 791 // 688 // 792 // 689 // Calculate distance to shape from outside, a 793 // Calculate distance to shape from outside, along normalised vector 690 // - return kInfinity if no intersection, or i 794 // - return kInfinity if no intersection, or intersection distance <= tolerance 691 // 795 // 692 // - Compute the intersection with the z plane << 796 // - Compute the intersection with the z planes 693 // - if at valid r, phi, return 797 // - if at valid r, phi, return 694 // 798 // 695 // -> If point is outer outer radius, compute 799 // -> If point is outer outer radius, compute intersection with rmax 696 // - if at valid phi,z return 800 // - if at valid phi,z return 697 // 801 // 698 // -> Compute intersection with inner radius, 802 // -> Compute intersection with inner radius, taking largest +ve root 699 // - if valid (in z,phi), save intersct 803 // - if valid (in z,phi), save intersction 700 // 804 // 701 // -> If phi segmented, compute intersectio 805 // -> If phi segmented, compute intersections with phi half planes 702 // - return smallest of valid phi inter 806 // - return smallest of valid phi intersections and 703 // inner radius intersection 807 // inner radius intersection 704 // 808 // 705 // NOTE: 809 // NOTE: 706 // - 'if valid' implies tolerant checking of i 810 // - 'if valid' implies tolerant checking of intersection points 707 811 708 G4double G4Tubs::DistanceToIn( const G4ThreeVe 812 G4double G4Tubs::DistanceToIn( const G4ThreeVector& p, 709 const G4ThreeVe 813 const G4ThreeVector& v ) const 710 { 814 { 711 G4double snxt = kInfinity ; // snxt = d 815 G4double snxt = kInfinity ; // snxt = default return value 712 G4double tolORMin2, tolIRMax2 ; // 'generou 816 G4double tolORMin2, tolIRMax2 ; // 'generous' radii squared 713 G4double tolORMax2, tolIRMin2, tolODz, tolID 817 G4double tolORMax2, tolIRMin2, tolODz, tolIDz ; 714 const G4double dRmax = 100.*fRMax; 818 const G4double dRmax = 100.*fRMax; 715 819 716 // Intersection point variables 820 // Intersection point variables 717 // 821 // 718 G4double Dist, sd, xi, yi, zi, rho2, inum, i 822 G4double Dist, sd, xi, yi, zi, rho2, inum, iden, cosPsi, Comp ; 719 G4double t1, t2, t3, b, c, d ; // Quadra << 823 G4double t1, t2, t3, b, c, d ; // Quadratic solver variables 720 << 824 721 // Calculate tolerant rmin and rmax 825 // Calculate tolerant rmin and rmax 722 826 723 if (fRMin > kRadTolerance) 827 if (fRMin > kRadTolerance) 724 { 828 { 725 tolORMin2 = (fRMin - halfRadTolerance)*(fR 829 tolORMin2 = (fRMin - halfRadTolerance)*(fRMin - halfRadTolerance) ; 726 tolIRMin2 = (fRMin + halfRadTolerance)*(fR 830 tolIRMin2 = (fRMin + halfRadTolerance)*(fRMin + halfRadTolerance) ; 727 } 831 } 728 else 832 else 729 { 833 { 730 tolORMin2 = 0.0 ; 834 tolORMin2 = 0.0 ; 731 tolIRMin2 = 0.0 ; 835 tolIRMin2 = 0.0 ; 732 } 836 } 733 tolORMax2 = (fRMax + halfRadTolerance)*(fRMa 837 tolORMax2 = (fRMax + halfRadTolerance)*(fRMax + halfRadTolerance) ; 734 tolIRMax2 = (fRMax - halfRadTolerance)*(fRMa 838 tolIRMax2 = (fRMax - halfRadTolerance)*(fRMax - halfRadTolerance) ; 735 839 736 // Intersection with Z surfaces 840 // Intersection with Z surfaces 737 841 738 tolIDz = fDz - halfCarTolerance ; 842 tolIDz = fDz - halfCarTolerance ; 739 tolODz = fDz + halfCarTolerance ; 843 tolODz = fDz + halfCarTolerance ; 740 844 741 if (std::fabs(p.z()) >= tolIDz) 845 if (std::fabs(p.z()) >= tolIDz) 742 { 846 { 743 if ( p.z()*v.z() < 0 ) // at +Z going i 847 if ( p.z()*v.z() < 0 ) // at +Z going in -Z or visa versa 744 { 848 { 745 sd = (std::fabs(p.z()) - fDz)/std::fabs( 849 sd = (std::fabs(p.z()) - fDz)/std::fabs(v.z()) ; // Z intersect distance 746 850 747 if(sd < 0.0) { sd = 0.0; } 851 if(sd < 0.0) { sd = 0.0; } 748 852 749 xi = p.x() + sd*v.x() ; 853 xi = p.x() + sd*v.x() ; // Intersection coords 750 yi = p.y() + sd*v.y() ; 854 yi = p.y() + sd*v.y() ; 751 rho2 = xi*xi + yi*yi ; 855 rho2 = xi*xi + yi*yi ; 752 856 753 // Check validity of intersection 857 // Check validity of intersection 754 858 755 if ((tolIRMin2 <= rho2) && (rho2 <= tolI 859 if ((tolIRMin2 <= rho2) && (rho2 <= tolIRMax2)) 756 { 860 { 757 if (!fPhiFullTube && (rho2 != 0.0)) << 861 if (!fPhiFullTube && rho2) 758 { 862 { 759 // Psi = angle made with central (av 863 // Psi = angle made with central (average) phi of shape 760 // 864 // 761 inum = xi*cosCPhi + yi*sinCPhi ; 865 inum = xi*cosCPhi + yi*sinCPhi ; 762 iden = std::sqrt(rho2) ; 866 iden = std::sqrt(rho2) ; 763 cosPsi = inum/iden ; 867 cosPsi = inum/iden ; 764 if (cosPsi >= cosHDPhiIT) { return 868 if (cosPsi >= cosHDPhiIT) { return sd ; } 765 } 869 } 766 else 870 else 767 { 871 { 768 return sd ; 872 return sd ; 769 } 873 } 770 } 874 } 771 } 875 } 772 else 876 else 773 { 877 { 774 if ( snxt<halfCarTolerance ) { snxt=0; 878 if ( snxt<halfCarTolerance ) { snxt=0; } 775 return snxt ; // On/outside extent, and 879 return snxt ; // On/outside extent, and heading away 776 // -> cannot intersect 880 // -> cannot intersect 777 } 881 } 778 } 882 } 779 883 780 // -> Can not intersect z surfaces 884 // -> Can not intersect z surfaces 781 // 885 // 782 // Intersection with rmax (possible return) 886 // Intersection with rmax (possible return) and rmin (must also check phi) 783 // 887 // 784 // Intersection point (xi,yi,zi) on line x=p 888 // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc. 785 // 889 // 786 // Intersects with x^2+y^2=R^2 890 // Intersects with x^2+y^2=R^2 787 // 891 // 788 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v. 892 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0 789 // t1 t2 893 // t1 t2 t3 790 894 791 t1 = 1.0 - v.z()*v.z() ; 895 t1 = 1.0 - v.z()*v.z() ; 792 t2 = p.x()*v.x() + p.y()*v.y() ; 896 t2 = p.x()*v.x() + p.y()*v.y() ; 793 t3 = p.x()*p.x() + p.y()*p.y() ; 897 t3 = p.x()*p.x() + p.y()*p.y() ; 794 898 795 if ( t1 > 0 ) // Check not || to z ax 899 if ( t1 > 0 ) // Check not || to z axis 796 { 900 { 797 b = t2/t1 ; 901 b = t2/t1 ; 798 c = t3 - fRMax*fRMax ; 902 c = t3 - fRMax*fRMax ; 799 if ((t3 >= tolORMax2) && (t2<0)) // This 903 if ((t3 >= tolORMax2) && (t2<0)) // This also handles the tangent case 800 { 904 { 801 // Try outer cylinder intersection 905 // Try outer cylinder intersection 802 // c=(t3-fRMax*fRMax)/t1; 906 // c=(t3-fRMax*fRMax)/t1; 803 907 804 c /= t1 ; 908 c /= t1 ; 805 d = b*b - c ; 909 d = b*b - c ; 806 910 807 if (d >= 0) // If real root 911 if (d >= 0) // If real root 808 { 912 { 809 sd = c/(-b+std::sqrt(d)); 913 sd = c/(-b+std::sqrt(d)); 810 if (sd >= 0) // If 'forwards' 914 if (sd >= 0) // If 'forwards' 811 { 915 { 812 if ( sd>dRmax ) // Avoid rounding er 916 if ( sd>dRmax ) // Avoid rounding errors due to precision issues on 813 { // 64 bits systems. 917 { // 64 bits systems. Split long distances and recompute 814 G4double fTerm = sd-std::fmod(sd,d 918 G4double fTerm = sd-std::fmod(sd,dRmax); 815 sd = fTerm + DistanceToIn(p+fTerm* 919 sd = fTerm + DistanceToIn(p+fTerm*v,v); 816 } << 920 } 817 // Check z intersection 921 // Check z intersection 818 // 922 // 819 zi = p.z() + sd*v.z() ; 923 zi = p.z() + sd*v.z() ; 820 if (std::fabs(zi)<=tolODz) 924 if (std::fabs(zi)<=tolODz) 821 { 925 { 822 // Z ok. Check phi intersection if 926 // Z ok. Check phi intersection if reqd 823 // 927 // 824 if (fPhiFullTube) 928 if (fPhiFullTube) 825 { 929 { 826 return sd ; 930 return sd ; 827 } 931 } 828 else 932 else 829 { 933 { 830 xi = p.x() + sd*v.x() ; 934 xi = p.x() + sd*v.x() ; 831 yi = p.y() + sd*v.y() ; 935 yi = p.y() + sd*v.y() ; 832 cosPsi = (xi*cosCPhi + yi*sinCPh 936 cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMax ; 833 if (cosPsi >= cosHDPhiIT) { ret 937 if (cosPsi >= cosHDPhiIT) { return sd ; } 834 } 938 } 835 } // end if std::fabs(zi) 939 } // end if std::fabs(zi) 836 } // end if (sd>=0) 940 } // end if (sd>=0) 837 } // end if (d>=0) 941 } // end if (d>=0) 838 } // end if (r>=fRMax) 942 } // end if (r>=fRMax) 839 else << 943 else 840 { 944 { 841 // Inside outer radius : 945 // Inside outer radius : 842 // check not inside, and heading through 946 // check not inside, and heading through tubs (-> 0 to in) 843 947 844 if ((t3 > tolIRMin2) && (t2 < 0) && (std 948 if ((t3 > tolIRMin2) && (t2 < 0) && (std::fabs(p.z()) <= tolIDz)) 845 { 949 { 846 // Inside both radii, delta r -ve, ins 950 // Inside both radii, delta r -ve, inside z extent 847 951 848 if (!fPhiFullTube) 952 if (!fPhiFullTube) 849 { 953 { 850 inum = p.x()*cosCPhi + p.y()*sinCP 954 inum = p.x()*cosCPhi + p.y()*sinCPhi ; 851 iden = std::sqrt(t3) ; 955 iden = std::sqrt(t3) ; 852 cosPsi = inum/iden ; 956 cosPsi = inum/iden ; 853 if (cosPsi >= cosHDPhiIT) 957 if (cosPsi >= cosHDPhiIT) 854 { 958 { 855 // In the old version, the small n 959 // In the old version, the small negative tangent for the point 856 // on surface was not taken in acc 960 // on surface was not taken in account, and returning 0.0 ... 857 // New version: check the tangent << 961 // New version: check the tangent for the point on surface and 858 // if no intersection, return kInf 962 // if no intersection, return kInfinity, if intersection instead 859 // return sd. 963 // return sd. 860 // 964 // 861 c = t3-fRMax*fRMax; << 965 c = t3-fRMax*fRMax; 862 if ( c<=0.0 ) 966 if ( c<=0.0 ) 863 { 967 { 864 return 0.0; 968 return 0.0; 865 } 969 } 866 else 970 else 867 { 971 { 868 c = c/t1 ; 972 c = c/t1 ; 869 d = b*b-c; 973 d = b*b-c; 870 if ( d>=0.0 ) 974 if ( d>=0.0 ) 871 { 975 { 872 snxt = c/(-b+std::sqrt(d)); // 976 snxt = c/(-b+std::sqrt(d)); // using safe solution 873 // << 977 // for quadratic equation 874 if ( snxt < halfCarTolerance ) 978 if ( snxt < halfCarTolerance ) { snxt=0; } 875 return snxt ; 979 return snxt ; 876 } << 980 } 877 else 981 else 878 { 982 { 879 return kInfinity; 983 return kInfinity; 880 } 984 } 881 } 985 } 882 } << 986 } 883 } 987 } 884 else 988 else 885 { << 989 { 886 // In the old version, the small neg 990 // In the old version, the small negative tangent for the point 887 // on surface was not taken in accou 991 // on surface was not taken in account, and returning 0.0 ... 888 // New version: check the tangent fo << 992 // New version: check the tangent for the point on surface and 889 // if no intersection, return kInfin 993 // if no intersection, return kInfinity, if intersection instead 890 // return sd. 994 // return sd. 891 // 995 // 892 c = t3 - fRMax*fRMax; << 996 c = t3 - fRMax*fRMax; 893 if ( c<=0.0 ) 997 if ( c<=0.0 ) 894 { 998 { 895 return 0.0; 999 return 0.0; 896 } 1000 } 897 else 1001 else 898 { 1002 { 899 c = c/t1 ; 1003 c = c/t1 ; 900 d = b*b-c; 1004 d = b*b-c; 901 if ( d>=0.0 ) 1005 if ( d>=0.0 ) 902 { 1006 { 903 snxt= c/(-b+std::sqrt(d)); // us 1007 snxt= c/(-b+std::sqrt(d)); // using safe solution 904 // fo << 1008 // for quadratic equation 905 if ( snxt < halfCarTolerance ) { 1009 if ( snxt < halfCarTolerance ) { snxt=0; } 906 return snxt ; 1010 return snxt ; 907 } << 1011 } 908 else 1012 else 909 { 1013 { 910 return kInfinity; 1014 return kInfinity; 911 } 1015 } 912 } 1016 } 913 } // end if (!fPhiFullTube) 1017 } // end if (!fPhiFullTube) 914 } // end if (t3>tolIRMin2) 1018 } // end if (t3>tolIRMin2) 915 } // end if (Inside Outer Radius) << 1019 } // end if (Inside Outer Radius) 916 if ( fRMin != 0.0 ) // Try inner cylind << 1020 if ( fRMin ) // Try inner cylinder intersection 917 { 1021 { 918 c = (t3 - fRMin*fRMin)/t1 ; 1022 c = (t3 - fRMin*fRMin)/t1 ; 919 d = b*b - c ; 1023 d = b*b - c ; 920 if ( d >= 0.0 ) // If real root 1024 if ( d >= 0.0 ) // If real root 921 { 1025 { 922 // Always want 2nd root - we are outsi 1026 // Always want 2nd root - we are outside and know rmax Hit was bad 923 // - If on surface of rmin also need f 1027 // - If on surface of rmin also need farthest root 924 1028 925 sd =( b > 0. )? c/(-b - std::sqrt(d)) 1029 sd =( b > 0. )? c/(-b - std::sqrt(d)) : (-b + std::sqrt(d)); 926 if (sd >= -halfCarTolerance) // check 1030 if (sd >= -halfCarTolerance) // check forwards 927 { 1031 { 928 // Check z intersection 1032 // Check z intersection 929 // 1033 // 930 if(sd < 0.0) { sd = 0.0; } 1034 if(sd < 0.0) { sd = 0.0; } 931 if ( sd>dRmax ) // Avoid rounding er 1035 if ( sd>dRmax ) // Avoid rounding errors due to precision issues seen 932 { // 64 bits systems. 1036 { // 64 bits systems. Split long distances and recompute 933 G4double fTerm = sd-std::fmod(sd,d 1037 G4double fTerm = sd-std::fmod(sd,dRmax); 934 sd = fTerm + DistanceToIn(p+fTerm* 1038 sd = fTerm + DistanceToIn(p+fTerm*v,v); 935 } << 1039 } 936 zi = p.z() + sd*v.z() ; 1040 zi = p.z() + sd*v.z() ; 937 if (std::fabs(zi) <= tolODz) 1041 if (std::fabs(zi) <= tolODz) 938 { 1042 { 939 // Z ok. Check phi 1043 // Z ok. Check phi 940 // 1044 // 941 if ( fPhiFullTube ) 1045 if ( fPhiFullTube ) 942 { 1046 { 943 return sd ; << 1047 return sd ; 944 } 1048 } 945 else 1049 else 946 { 1050 { 947 xi = p.x() + sd*v.x() ; 1051 xi = p.x() + sd*v.x() ; 948 yi = p.y() + sd*v.y() ; 1052 yi = p.y() + sd*v.y() ; 949 cosPsi = (xi*cosCPhi + yi*sinCPh << 1053 cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMin ; 950 if (cosPsi >= cosHDPhiIT) 1054 if (cosPsi >= cosHDPhiIT) 951 { 1055 { 952 // Good inner radius isect 1056 // Good inner radius isect 953 // - but earlier phi isect sti 1057 // - but earlier phi isect still possible 954 1058 955 snxt = sd ; 1059 snxt = sd ; 956 } 1060 } 957 } 1061 } 958 } // end if std::fabs(zi) 1062 } // end if std::fabs(zi) 959 } // end if (sd>=0) 1063 } // end if (sd>=0) 960 } // end if (d>=0) 1064 } // end if (d>=0) 961 } // end if (fRMin) 1065 } // end if (fRMin) 962 } 1066 } 963 1067 964 // Phi segment intersection 1068 // Phi segment intersection 965 // 1069 // 966 // o Tolerant of points inside phi planes by 1070 // o Tolerant of points inside phi planes by up to kCarTolerance*0.5 967 // 1071 // 968 // o NOTE: Large duplication of code between 1072 // o NOTE: Large duplication of code between sphi & ephi checks 969 // -> only diffs: sphi -> ephi, Comp 1073 // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane 970 // intersection check <=0 -> >=0 1074 // intersection check <=0 -> >=0 971 // -> use some form of loop Construc 1075 // -> use some form of loop Construct ? 972 // 1076 // 973 if ( !fPhiFullTube ) 1077 if ( !fPhiFullTube ) 974 { 1078 { 975 // First phi surface (Starting phi) 1079 // First phi surface (Starting phi) 976 // 1080 // 977 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 1081 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 978 << 1082 979 if ( Comp < 0 ) // Component in outwards 1083 if ( Comp < 0 ) // Component in outwards normal dirn 980 { 1084 { 981 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 1085 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 982 1086 983 if ( Dist < halfCarTolerance ) 1087 if ( Dist < halfCarTolerance ) 984 { 1088 { 985 sd = Dist/Comp ; 1089 sd = Dist/Comp ; 986 1090 987 if (sd < snxt) 1091 if (sd < snxt) 988 { 1092 { 989 if ( sd < 0 ) { sd = 0.0; } 1093 if ( sd < 0 ) { sd = 0.0; } 990 zi = p.z() + sd*v.z() ; 1094 zi = p.z() + sd*v.z() ; 991 if ( std::fabs(zi) <= tolODz ) 1095 if ( std::fabs(zi) <= tolODz ) 992 { 1096 { 993 xi = p.x() + sd*v.x() ; 1097 xi = p.x() + sd*v.x() ; 994 yi = p.y() + sd*v.y() ; 1098 yi = p.y() + sd*v.y() ; 995 rho2 = xi*xi + yi*yi ; 1099 rho2 = xi*xi + yi*yi ; 996 1100 997 if ( ( (rho2 >= tolIRMin2) && (rho 1101 if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) ) 998 || ( (rho2 > tolORMin2) && (rho 1102 || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2) 999 && ( v.y()*cosSPhi - v.x()*sin 1103 && ( v.y()*cosSPhi - v.x()*sinSPhi > 0 ) 1000 && ( v.x()*cosSPhi + v.y()*si 1104 && ( v.x()*cosSPhi + v.y()*sinSPhi >= 0 ) ) 1001 || ( (rho2 > tolIRMax2) && (rho 1105 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2) 1002 && (v.y()*cosSPhi - v.x()*sin 1106 && (v.y()*cosSPhi - v.x()*sinSPhi > 0) 1003 && (v.x()*cosSPhi + v.y()*sin 1107 && (v.x()*cosSPhi + v.y()*sinSPhi < 0) ) ) 1004 { 1108 { 1005 // z and r intersections good 1109 // z and r intersections good 1006 // - check intersecting with co 1110 // - check intersecting with correct half-plane 1007 // 1111 // 1008 if ((yi*cosCPhi-xi*sinCPhi) <= 1112 if ((yi*cosCPhi-xi*sinCPhi) <= halfCarTolerance) { snxt = sd; } 1009 } 1113 } 1010 } 1114 } 1011 } 1115 } 1012 } << 1116 } 1013 } 1117 } 1014 << 1118 1015 // Second phi surface (Ending phi) 1119 // Second phi surface (Ending phi) 1016 1120 1017 Comp = -(v.x()*sinEPhi - v.y()*cosEPhi 1121 Comp = -(v.x()*sinEPhi - v.y()*cosEPhi) ; 1018 << 1122 1019 if (Comp < 0 ) // Component in outwards 1123 if (Comp < 0 ) // Component in outwards normal dirn 1020 { 1124 { 1021 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) 1125 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ; 1022 1126 1023 if ( Dist < halfCarTolerance ) 1127 if ( Dist < halfCarTolerance ) 1024 { 1128 { 1025 sd = Dist/Comp ; 1129 sd = Dist/Comp ; 1026 1130 1027 if (sd < snxt) 1131 if (sd < snxt) 1028 { 1132 { 1029 if ( sd < 0 ) { sd = 0; } 1133 if ( sd < 0 ) { sd = 0; } 1030 zi = p.z() + sd*v.z() ; 1134 zi = p.z() + sd*v.z() ; 1031 if ( std::fabs(zi) <= tolODz ) 1135 if ( std::fabs(zi) <= tolODz ) 1032 { 1136 { 1033 xi = p.x() + sd*v.x() ; 1137 xi = p.x() + sd*v.x() ; 1034 yi = p.y() + sd*v.y() ; 1138 yi = p.y() + sd*v.y() ; 1035 rho2 = xi*xi + yi*yi ; 1139 rho2 = xi*xi + yi*yi ; 1036 if ( ( (rho2 >= tolIRMin2) && (rh 1140 if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) ) 1037 || ( (rho2 > tolORMin2) && ( 1141 || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2) 1038 && (v.x()*sinEPhi - v.y()*c 1142 && (v.x()*sinEPhi - v.y()*cosEPhi > 0) 1039 && (v.x()*cosEPhi + v.y()*s 1143 && (v.x()*cosEPhi + v.y()*sinEPhi >= 0) ) 1040 || ( (rho2 > tolIRMax2) && (r 1144 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2) 1041 && (v.x()*sinEPhi - v.y()*c 1145 && (v.x()*sinEPhi - v.y()*cosEPhi > 0) 1042 && (v.x()*cosEPhi + v.y()*s 1146 && (v.x()*cosEPhi + v.y()*sinEPhi < 0) ) ) 1043 { 1147 { 1044 // z and r intersections good 1148 // z and r intersections good 1045 // - check intersecting with co 1149 // - check intersecting with correct half-plane 1046 // 1150 // 1047 if ( (yi*cosCPhi-xi*sinCPhi) >= 1151 if ( (yi*cosCPhi-xi*sinCPhi) >= 0 ) { snxt = sd; } 1048 } //?? >= 1152 } //?? >=-halfCarTolerance 1049 } 1153 } 1050 } 1154 } 1051 } 1155 } 1052 } // Comp < 0 1156 } // Comp < 0 1053 } // !fPhiFullTube << 1157 } // !fPhiFullTube 1054 if ( snxt<halfCarTolerance ) { snxt=0; } 1158 if ( snxt<halfCarTolerance ) { snxt=0; } 1055 return snxt ; 1159 return snxt ; 1056 } 1160 } 1057 << 1161 1058 ///////////////////////////////////////////// 1162 ////////////////////////////////////////////////////////////////// 1059 // 1163 // 1060 // Calculate distance to shape from outside, 1164 // Calculate distance to shape from outside, along normalised vector 1061 // - return kInfinity if no intersection, or 1165 // - return kInfinity if no intersection, or intersection distance <= tolerance 1062 // 1166 // 1063 // - Compute the intersection with the z plan << 1167 // - Compute the intersection with the z planes 1064 // - if at valid r, phi, return 1168 // - if at valid r, phi, return 1065 // 1169 // 1066 // -> If point is outer outer radius, compute 1170 // -> If point is outer outer radius, compute intersection with rmax 1067 // - if at valid phi,z return 1171 // - if at valid phi,z return 1068 // 1172 // 1069 // -> Compute intersection with inner radius, 1173 // -> Compute intersection with inner radius, taking largest +ve root 1070 // - if valid (in z,phi), save intersc 1174 // - if valid (in z,phi), save intersction 1071 // 1175 // 1072 // -> If phi segmented, compute intersecti 1176 // -> If phi segmented, compute intersections with phi half planes 1073 // - return smallest of valid phi inte 1177 // - return smallest of valid phi intersections and 1074 // inner radius intersection 1178 // inner radius intersection 1075 // 1179 // 1076 // NOTE: 1180 // NOTE: 1077 // - Precalculations for phi trigonometry are 1181 // - Precalculations for phi trigonometry are Done `just in time' 1078 // - `if valid' implies tolerant checking of 1182 // - `if valid' implies tolerant checking of intersection points 1079 // Calculate distance (<= actual) to closes 1183 // Calculate distance (<= actual) to closest surface of shape from outside 1080 // - Calculate distance to z, radial planes 1184 // - Calculate distance to z, radial planes 1081 // - Only to phi planes if outside phi extent 1185 // - Only to phi planes if outside phi extent 1082 // - Return 0 if point inside 1186 // - Return 0 if point inside 1083 1187 1084 G4double G4Tubs::DistanceToIn( const G4ThreeV 1188 G4double G4Tubs::DistanceToIn( const G4ThreeVector& p ) const 1085 { 1189 { 1086 G4double safe=0.0, rho, safe1, safe2, safe3 1190 G4double safe=0.0, rho, safe1, safe2, safe3 ; 1087 G4double safePhi, cosPsi ; 1191 G4double safePhi, cosPsi ; 1088 1192 1089 rho = std::sqrt(p.x()*p.x() + p.y()*p.y() 1193 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 1090 safe1 = fRMin - rho ; 1194 safe1 = fRMin - rho ; 1091 safe2 = rho - fRMax ; 1195 safe2 = rho - fRMax ; 1092 safe3 = std::fabs(p.z()) - fDz ; 1196 safe3 = std::fabs(p.z()) - fDz ; 1093 1197 1094 if ( safe1 > safe2 ) { safe = safe1; } 1198 if ( safe1 > safe2 ) { safe = safe1; } 1095 else { safe = safe2; } 1199 else { safe = safe2; } 1096 if ( safe3 > safe ) { safe = safe3; } 1200 if ( safe3 > safe ) { safe = safe3; } 1097 1201 1098 if ( (!fPhiFullTube) && ((rho) != 0.0) ) << 1202 if ( (!fPhiFullTube) && (rho) ) 1099 { 1203 { 1100 // Psi=angle from central phi to point 1204 // Psi=angle from central phi to point 1101 // 1205 // 1102 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/ 1206 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/rho ; 1103 << 1207 1104 if ( cosPsi < cosHDPhi ) << 1208 if ( cosPsi < std::cos(fDPhi*0.5) ) 1105 { 1209 { 1106 // Point lies outside phi range 1210 // Point lies outside phi range 1107 1211 1108 if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= 1212 if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= 0 ) 1109 { 1213 { 1110 safePhi = std::fabs(p.x()*sinSPhi - p 1214 safePhi = std::fabs(p.x()*sinSPhi - p.y()*cosSPhi) ; 1111 } 1215 } 1112 else 1216 else 1113 { 1217 { 1114 safePhi = std::fabs(p.x()*sinEPhi - p 1218 safePhi = std::fabs(p.x()*sinEPhi - p.y()*cosEPhi) ; 1115 } 1219 } 1116 if ( safePhi > safe ) { safe = safePhi 1220 if ( safePhi > safe ) { safe = safePhi; } 1117 } 1221 } 1118 } 1222 } 1119 if ( safe < 0 ) { safe = 0; } 1223 if ( safe < 0 ) { safe = 0; } 1120 return safe ; 1224 return safe ; 1121 } 1225 } 1122 1226 1123 ///////////////////////////////////////////// 1227 ////////////////////////////////////////////////////////////////////////////// 1124 // 1228 // 1125 // Calculate distance to surface of shape fro 1229 // Calculate distance to surface of shape from `inside', allowing for tolerance 1126 // - Only Calc rmax intersection if no valid 1230 // - Only Calc rmax intersection if no valid rmin intersection 1127 1231 1128 G4double G4Tubs::DistanceToOut( const G4Three 1232 G4double G4Tubs::DistanceToOut( const G4ThreeVector& p, 1129 const G4Three 1233 const G4ThreeVector& v, 1130 const G4bool 1234 const G4bool calcNorm, 1131 G4bool* << 1235 G4bool *validNorm, 1132 G4Three << 1236 G4ThreeVector *n ) const 1133 { << 1237 { 1134 ESide side=kNull , sider=kNull, sidephi=kNu 1238 ESide side=kNull , sider=kNull, sidephi=kNull ; 1135 G4double snxt, srd=kInfinity, sphi=kInfinit 1239 G4double snxt, srd=kInfinity, sphi=kInfinity, pdist ; 1136 G4double deltaR, t1, t2, t3, b, c, d2, roMi 1240 G4double deltaR, t1, t2, t3, b, c, d2, roMin2 ; 1137 1241 1138 // Vars for phi intersection: 1242 // Vars for phi intersection: 1139 1243 1140 G4double pDistS, compS, pDistE, compE, sphi 1244 G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, vphi, roi2 ; 1141 << 1245 1142 // Z plane intersection 1246 // Z plane intersection 1143 1247 1144 if (v.z() > 0 ) 1248 if (v.z() > 0 ) 1145 { 1249 { 1146 pdist = fDz - p.z() ; 1250 pdist = fDz - p.z() ; 1147 if ( pdist > halfCarTolerance ) 1251 if ( pdist > halfCarTolerance ) 1148 { 1252 { 1149 snxt = pdist/v.z() ; 1253 snxt = pdist/v.z() ; 1150 side = kPZ ; 1254 side = kPZ ; 1151 } 1255 } 1152 else 1256 else 1153 { 1257 { 1154 if (calcNorm) 1258 if (calcNorm) 1155 { 1259 { 1156 *n = G4ThreeVector(0,0,1) ; 1260 *n = G4ThreeVector(0,0,1) ; 1157 *validNorm = true ; 1261 *validNorm = true ; 1158 } 1262 } 1159 return snxt = 0 ; 1263 return snxt = 0 ; 1160 } 1264 } 1161 } 1265 } 1162 else if ( v.z() < 0 ) 1266 else if ( v.z() < 0 ) 1163 { 1267 { 1164 pdist = fDz + p.z() ; 1268 pdist = fDz + p.z() ; 1165 1269 1166 if ( pdist > halfCarTolerance ) 1270 if ( pdist > halfCarTolerance ) 1167 { 1271 { 1168 snxt = -pdist/v.z() ; 1272 snxt = -pdist/v.z() ; 1169 side = kMZ ; 1273 side = kMZ ; 1170 } 1274 } 1171 else 1275 else 1172 { 1276 { 1173 if (calcNorm) 1277 if (calcNorm) 1174 { 1278 { 1175 *n = G4ThreeVector(0,0,-1) ; 1279 *n = G4ThreeVector(0,0,-1) ; 1176 *validNorm = true ; 1280 *validNorm = true ; 1177 } 1281 } 1178 return snxt = 0.0 ; 1282 return snxt = 0.0 ; 1179 } 1283 } 1180 } 1284 } 1181 else 1285 else 1182 { 1286 { 1183 snxt = kInfinity ; // Travel perpendic 1287 snxt = kInfinity ; // Travel perpendicular to z axis 1184 side = kNull; 1288 side = kNull; 1185 } 1289 } 1186 1290 1187 // Radial Intersections 1291 // Radial Intersections 1188 // 1292 // 1189 // Find intersection with cylinders at rmax 1293 // Find intersection with cylinders at rmax/rmin 1190 // Intersection point (xi,yi,zi) on line x= 1294 // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc. 1191 // 1295 // 1192 // Intersects with x^2+y^2=R^2 1296 // Intersects with x^2+y^2=R^2 1193 // 1297 // 1194 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v 1298 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0 1195 // 1299 // 1196 // t1 t2 1300 // t1 t2 t3 1197 1301 1198 t1 = 1.0 - v.z()*v.z() ; // since v 1302 t1 = 1.0 - v.z()*v.z() ; // since v normalised 1199 t2 = p.x()*v.x() + p.y()*v.y() ; 1303 t2 = p.x()*v.x() + p.y()*v.y() ; 1200 t3 = p.x()*p.x() + p.y()*p.y() ; 1304 t3 = p.x()*p.x() + p.y()*p.y() ; 1201 1305 1202 if ( snxt > 10*(fDz+fRMax) ) { roi2 = 2*fR 1306 if ( snxt > 10*(fDz+fRMax) ) { roi2 = 2*fRMax*fRMax; } 1203 else { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t 1307 else { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t3; } // radius^2 on +-fDz 1204 1308 1205 if ( t1 > 0 ) // Check not parallel 1309 if ( t1 > 0 ) // Check not parallel 1206 { 1310 { 1207 // Calculate srd, r exit distance 1311 // Calculate srd, r exit distance 1208 << 1312 1209 if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax 1313 if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax + kRadTolerance)) ) 1210 { 1314 { 1211 // Delta r not negative => leaving via 1315 // Delta r not negative => leaving via rmax 1212 1316 1213 deltaR = t3 - fRMax*fRMax ; 1317 deltaR = t3 - fRMax*fRMax ; 1214 1318 1215 // NOTE: Should use rho-fRMax<-kRadTole 1319 // NOTE: Should use rho-fRMax<-kRadTolerance*0.5 1216 // - avoid sqrt for efficiency 1320 // - avoid sqrt for efficiency 1217 1321 1218 if ( deltaR < -kRadTolerance*fRMax ) 1322 if ( deltaR < -kRadTolerance*fRMax ) 1219 { 1323 { 1220 b = t2/t1 ; 1324 b = t2/t1 ; 1221 c = deltaR/t1 ; 1325 c = deltaR/t1 ; 1222 d2 = b*b-c; 1326 d2 = b*b-c; 1223 if( d2 >= 0 ) { srd = c/( -b - std::s 1327 if( d2 >= 0 ) { srd = c/( -b - std::sqrt(d2)); } 1224 else { srd = 0.; } 1328 else { srd = 0.; } 1225 sider = kRMax ; 1329 sider = kRMax ; 1226 } 1330 } 1227 else 1331 else 1228 { 1332 { 1229 // On tolerant boundary & heading out 1333 // On tolerant boundary & heading outwards (or perpendicular to) 1230 // outer radial surface -> leaving im 1334 // outer radial surface -> leaving immediately 1231 1335 1232 if ( calcNorm ) << 1336 if ( calcNorm ) 1233 { 1337 { 1234 G4double invRho = FastInverseRxy( p << 1338 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1235 *n = G4ThreeVector(p.x()*in << 1236 *validNorm = true ; 1339 *validNorm = true ; 1237 } 1340 } 1238 return snxt = 0 ; // Leaving by rmax 1341 return snxt = 0 ; // Leaving by rmax immediately 1239 } 1342 } 1240 } << 1343 } 1241 else if ( t2 < 0. ) // i.e. t2 < 0; Poss 1344 else if ( t2 < 0. ) // i.e. t2 < 0; Possible rmin intersection 1242 { 1345 { 1243 roMin2 = t3 - t2*t2/t1 ; // min ro2 of << 1346 roMin2 = t3 - t2*t2/t1 ; // min ro2 of the plane of movement 1244 1347 1245 if ( (fRMin != 0.0) && (roMin2 < fRMin* << 1348 if ( fRMin && (roMin2 < fRMin*(fRMin - kRadTolerance)) ) 1246 { 1349 { 1247 deltaR = t3 - fRMin*fRMin ; 1350 deltaR = t3 - fRMin*fRMin ; 1248 b = t2/t1 ; 1351 b = t2/t1 ; 1249 c = deltaR/t1 ; 1352 c = deltaR/t1 ; 1250 d2 = b*b - c ; 1353 d2 = b*b - c ; 1251 1354 1252 if ( d2 >= 0 ) // Leaving via rmin 1355 if ( d2 >= 0 ) // Leaving via rmin 1253 { 1356 { 1254 // NOTE: SHould use rho-rmin>kRadTo 1357 // NOTE: SHould use rho-rmin>kRadTolerance*0.5 1255 // - avoid sqrt for efficiency 1358 // - avoid sqrt for efficiency 1256 1359 1257 if (deltaR > kRadTolerance*fRMin) 1360 if (deltaR > kRadTolerance*fRMin) 1258 { 1361 { 1259 srd = c/(-b+std::sqrt(d2)); << 1362 srd = c/(-b+std::sqrt(d2)); 1260 sider = kRMin ; 1363 sider = kRMin ; 1261 } 1364 } 1262 else 1365 else 1263 { 1366 { 1264 if ( calcNorm ) { << 1367 if ( calcNorm ) { *validNorm = false; } // Concave side 1265 *validNorm = false; << 1266 } // Concave side << 1267 return snxt = 0.0; 1368 return snxt = 0.0; 1268 } 1369 } 1269 } 1370 } 1270 else // No rmin intersect -> must 1371 else // No rmin intersect -> must be rmax intersect 1271 { 1372 { 1272 deltaR = t3 - fRMax*fRMax ; 1373 deltaR = t3 - fRMax*fRMax ; 1273 c = deltaR/t1 ; 1374 c = deltaR/t1 ; 1274 d2 = b*b-c; 1375 d2 = b*b-c; 1275 if( d2 >=0. ) 1376 if( d2 >=0. ) 1276 { 1377 { 1277 srd = -b + std::sqrt(d2) ; 1378 srd = -b + std::sqrt(d2) ; 1278 sider = kRMax ; 1379 sider = kRMax ; 1279 } 1380 } 1280 else // Case: On the border+t2<kRad 1381 else // Case: On the border+t2<kRadTolerance 1281 // (v is perpendicular t 1382 // (v is perpendicular to the surface) 1282 { 1383 { 1283 if (calcNorm) 1384 if (calcNorm) 1284 { 1385 { 1285 G4double invRho = FastInverseRx << 1386 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1286 *n = G4ThreeVector(p.x()*invRho << 1287 *validNorm = true ; 1387 *validNorm = true ; 1288 } 1388 } 1289 return snxt = 0.0; 1389 return snxt = 0.0; 1290 } 1390 } 1291 } 1391 } 1292 } 1392 } 1293 else if ( roi2 > fRMax*(fRMax + kRadTol 1393 else if ( roi2 > fRMax*(fRMax + kRadTolerance) ) 1294 // No rmin intersect -> must be rm 1394 // No rmin intersect -> must be rmax intersect 1295 { 1395 { 1296 deltaR = t3 - fRMax*fRMax ; 1396 deltaR = t3 - fRMax*fRMax ; 1297 b = t2/t1 ; 1397 b = t2/t1 ; 1298 c = deltaR/t1; 1398 c = deltaR/t1; 1299 d2 = b*b-c; 1399 d2 = b*b-c; 1300 if( d2 >= 0 ) 1400 if( d2 >= 0 ) 1301 { 1401 { 1302 srd = -b + std::sqrt(d2) ; 1402 srd = -b + std::sqrt(d2) ; 1303 sider = kRMax ; 1403 sider = kRMax ; 1304 } 1404 } 1305 else // Case: On the border+t2<kRadTo 1405 else // Case: On the border+t2<kRadTolerance 1306 // (v is perpendicular to 1406 // (v is perpendicular to the surface) 1307 { 1407 { 1308 if (calcNorm) 1408 if (calcNorm) 1309 { 1409 { 1310 G4double invRho = FastInverseRxy( << 1410 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1311 *n = G4ThreeVector(p.x()*invRho,p << 1312 *validNorm = true ; 1411 *validNorm = true ; 1313 } 1412 } 1314 return snxt = 0.0; 1413 return snxt = 0.0; 1315 } 1414 } 1316 } 1415 } 1317 } 1416 } 1318 << 1417 1319 // Phi Intersection 1418 // Phi Intersection 1320 1419 1321 if ( !fPhiFullTube ) 1420 if ( !fPhiFullTube ) 1322 { 1421 { 1323 // add angle calculation with correctio << 1422 // add angle calculation with correction 1324 // of the difference in domain of atan2 1423 // of the difference in domain of atan2 and Sphi 1325 // 1424 // 1326 vphi = std::atan2(v.y(),v.x()) ; 1425 vphi = std::atan2(v.y(),v.x()) ; 1327 << 1426 1328 if ( vphi < fSPhi - halfAngTolerance ) 1427 if ( vphi < fSPhi - halfAngTolerance ) { vphi += twopi; } 1329 else if ( vphi > fSPhi + fDPhi + halfAn 1428 else if ( vphi > fSPhi + fDPhi + halfAngTolerance ) { vphi -= twopi; } 1330 1429 1331 1430 1332 if ( (p.x() != 0.0) || (p.y() != 0.0) ) << 1431 if ( p.x() || p.y() ) // Check if on z axis (rho not needed later) 1333 { 1432 { 1334 // pDist -ve when inside 1433 // pDist -ve when inside 1335 1434 1336 pDistS = p.x()*sinSPhi - p.y()*cosSPh 1435 pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; 1337 pDistE = -p.x()*sinEPhi + p.y()*cosEP 1436 pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ; 1338 1437 1339 // Comp -ve when in direction of outw 1438 // Comp -ve when in direction of outwards normal 1340 1439 1341 compS = -sinSPhi*v.x() + cosSPhi*v.y( << 1440 compS = -sinSPhi*v.x() + cosSPhi*v.y() ; 1342 compE = sinEPhi*v.x() - cosEPhi*v.y( << 1441 compE = sinEPhi*v.x() - cosEPhi*v.y() ; 1343 << 1442 1344 sidephi = kNull; 1443 sidephi = kNull; 1345 << 1444 1346 if( ( (fDPhi <= pi) && ( (pDistS <= h 1445 if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance) 1347 && (pDistE <= h 1446 && (pDistE <= halfCarTolerance) ) ) 1348 || ( (fDPhi > pi) && ((pDistS <= h << 1447 || ( (fDPhi > pi) && !((pDistS > halfCarTolerance) 1349 || (pDistE <= << 1448 && (pDistE > halfCarTolerance) ) ) ) 1350 { 1449 { 1351 // Inside both phi *full* planes 1450 // Inside both phi *full* planes 1352 << 1451 1353 if ( compS < 0 ) 1452 if ( compS < 0 ) 1354 { 1453 { 1355 sphi = pDistS/compS ; 1454 sphi = pDistS/compS ; 1356 << 1455 1357 if (sphi >= -halfCarTolerance) 1456 if (sphi >= -halfCarTolerance) 1358 { 1457 { 1359 xi = p.x() + sphi*v.x() ; 1458 xi = p.x() + sphi*v.x() ; 1360 yi = p.y() + sphi*v.y() ; 1459 yi = p.y() + sphi*v.y() ; 1361 << 1460 1362 // Check intersecting with corr 1461 // Check intersecting with correct half-plane 1363 // (if not -> no intersect) 1462 // (if not -> no intersect) 1364 // 1463 // 1365 if((std::fabs(xi)<=kCarToleranc << 1464 if( (std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance) ) 1366 { 1465 { 1367 sidephi = kSPhi; 1466 sidephi = kSPhi; 1368 if (((fSPhi-halfAngTolerance) 1467 if (((fSPhi-halfAngTolerance)<=vphi) 1369 &&((fSPhi+fDPhi+halfAngTol 1468 &&((fSPhi+fDPhi+halfAngTolerance)>=vphi)) 1370 { 1469 { 1371 sphi = kInfinity; 1470 sphi = kInfinity; 1372 } 1471 } 1373 } 1472 } 1374 else if ( yi*cosCPhi-xi*sinCPhi 1473 else if ( yi*cosCPhi-xi*sinCPhi >=0 ) 1375 { 1474 { 1376 sphi = kInfinity ; 1475 sphi = kInfinity ; 1377 } 1476 } 1378 else 1477 else 1379 { 1478 { 1380 sidephi = kSPhi ; 1479 sidephi = kSPhi ; 1381 if ( pDistS > -halfCarToleran 1480 if ( pDistS > -halfCarTolerance ) 1382 { 1481 { 1383 sphi = 0.0 ; // Leave by sp 1482 sphi = 0.0 ; // Leave by sphi immediately 1384 } << 1483 } 1385 } << 1484 } 1386 } 1485 } 1387 else 1486 else 1388 { 1487 { 1389 sphi = kInfinity ; 1488 sphi = kInfinity ; 1390 } 1489 } 1391 } 1490 } 1392 else 1491 else 1393 { 1492 { 1394 sphi = kInfinity ; 1493 sphi = kInfinity ; 1395 } 1494 } 1396 1495 1397 if ( compE < 0 ) 1496 if ( compE < 0 ) 1398 { 1497 { 1399 sphi2 = pDistE/compE ; 1498 sphi2 = pDistE/compE ; 1400 << 1499 1401 // Only check further if < starti 1500 // Only check further if < starting phi intersection 1402 // 1501 // 1403 if ( (sphi2 > -halfCarTolerance) 1502 if ( (sphi2 > -halfCarTolerance) && (sphi2 < sphi) ) 1404 { 1503 { 1405 xi = p.x() + sphi2*v.x() ; 1504 xi = p.x() + sphi2*v.x() ; 1406 yi = p.y() + sphi2*v.y() ; 1505 yi = p.y() + sphi2*v.y() ; 1407 << 1506 1408 if((std::fabs(xi)<=kCarToleranc << 1507 if ((std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance)) 1409 { 1508 { 1410 // Leaving via ending phi 1509 // Leaving via ending phi 1411 // 1510 // 1412 if( (fSPhi-halfAngTolerance > << 1511 if( !((fSPhi-halfAngTolerance <= vphi) 1413 ||(fSPhi+fDPhi+halfAngTo << 1512 &&(fSPhi+fDPhi+halfAngTolerance >= vphi)) ) 1414 { 1513 { 1415 sidephi = kEPhi ; 1514 sidephi = kEPhi ; 1416 if ( pDistE <= -halfCarTole 1515 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; } 1417 else 1516 else { sphi = 0.0 ; } 1418 } 1517 } 1419 } << 1518 } 1420 else // Check intersecting w << 1519 else // Check intersecting with correct half-plane 1421 1520 1422 if ( (yi*cosCPhi-xi*sinCPhi) >= 1521 if ( (yi*cosCPhi-xi*sinCPhi) >= 0) 1423 { 1522 { 1424 // Leaving via ending phi 1523 // Leaving via ending phi 1425 // 1524 // 1426 sidephi = kEPhi ; 1525 sidephi = kEPhi ; 1427 if ( pDistE <= -halfCarTolera 1526 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; } 1428 else 1527 else { sphi = 0.0 ; } 1429 } 1528 } 1430 } 1529 } 1431 } 1530 } 1432 } 1531 } 1433 else 1532 else 1434 { 1533 { 1435 sphi = kInfinity ; 1534 sphi = kInfinity ; 1436 } 1535 } 1437 } 1536 } 1438 else 1537 else 1439 { 1538 { 1440 // On z axis + travel not || to z axi 1539 // On z axis + travel not || to z axis -> if phi of vector direction 1441 // within phi of shape, Step limited 1540 // within phi of shape, Step limited by rmax, else Step =0 1442 << 1541 1443 if ( (fSPhi - halfAngTolerance <= vph 1542 if ( (fSPhi - halfAngTolerance <= vphi) 1444 && (vphi <= fSPhi + fDPhi + halfAn 1543 && (vphi <= fSPhi + fDPhi + halfAngTolerance ) ) 1445 { 1544 { 1446 sphi = kInfinity ; 1545 sphi = kInfinity ; 1447 } 1546 } 1448 else 1547 else 1449 { 1548 { 1450 sidephi = kSPhi ; // arbitrary << 1549 sidephi = kSPhi ; // arbitrary 1451 sphi = 0.0 ; 1550 sphi = 0.0 ; 1452 } 1551 } 1453 } 1552 } 1454 if (sphi < snxt) // Order intersecttio 1553 if (sphi < snxt) // Order intersecttions 1455 { 1554 { 1456 snxt = sphi ; 1555 snxt = sphi ; 1457 side = sidephi ; 1556 side = sidephi ; 1458 } 1557 } 1459 } 1558 } 1460 if (srd < snxt) // Order intersections 1559 if (srd < snxt) // Order intersections 1461 { 1560 { 1462 snxt = srd ; 1561 snxt = srd ; 1463 side = sider ; 1562 side = sider ; 1464 } 1563 } 1465 } 1564 } 1466 if (calcNorm) 1565 if (calcNorm) 1467 { 1566 { 1468 switch(side) 1567 switch(side) 1469 { 1568 { 1470 case kRMax: 1569 case kRMax: 1471 // Note: returned vector not normalis 1570 // Note: returned vector not normalised 1472 // (divide by fRMax for unit vector) 1571 // (divide by fRMax for unit vector) 1473 // 1572 // 1474 xi = p.x() + snxt*v.x() ; 1573 xi = p.x() + snxt*v.x() ; 1475 yi = p.y() + snxt*v.y() ; 1574 yi = p.y() + snxt*v.y() ; 1476 *n = G4ThreeVector(xi/fRMax,yi/fRMax, 1575 *n = G4ThreeVector(xi/fRMax,yi/fRMax,0) ; 1477 *validNorm = true ; 1576 *validNorm = true ; 1478 break ; 1577 break ; 1479 1578 1480 case kRMin: 1579 case kRMin: 1481 *validNorm = false ; // Rmin is inco 1580 *validNorm = false ; // Rmin is inconvex 1482 break ; 1581 break ; 1483 1582 1484 case kSPhi: 1583 case kSPhi: 1485 if ( fDPhi <= pi ) 1584 if ( fDPhi <= pi ) 1486 { 1585 { 1487 *n = G4ThreeVector(sinSPhi, 1586 *n = G4ThreeVector(sinSPhi,-cosSPhi,0) ; 1488 *validNorm = true ; 1587 *validNorm = true ; 1489 } 1588 } 1490 else 1589 else 1491 { 1590 { 1492 *validNorm = false ; 1591 *validNorm = false ; 1493 } 1592 } 1494 break ; 1593 break ; 1495 1594 1496 case kEPhi: 1595 case kEPhi: 1497 if (fDPhi <= pi) 1596 if (fDPhi <= pi) 1498 { 1597 { 1499 *n = G4ThreeVector(-sinEPhi,cosEPhi 1598 *n = G4ThreeVector(-sinEPhi,cosEPhi,0) ; 1500 *validNorm = true ; 1599 *validNorm = true ; 1501 } 1600 } 1502 else 1601 else 1503 { 1602 { 1504 *validNorm = false ; 1603 *validNorm = false ; 1505 } 1604 } 1506 break ; 1605 break ; 1507 1606 1508 case kPZ: 1607 case kPZ: 1509 *n = G4ThreeVector(0,0,1) ; 1608 *n = G4ThreeVector(0,0,1) ; 1510 *validNorm = true ; 1609 *validNorm = true ; 1511 break ; 1610 break ; 1512 1611 1513 case kMZ: 1612 case kMZ: 1514 *n = G4ThreeVector(0,0,-1) ; 1613 *n = G4ThreeVector(0,0,-1) ; 1515 *validNorm = true ; 1614 *validNorm = true ; 1516 break ; 1615 break ; 1517 1616 1518 default: 1617 default: 1519 G4cout << G4endl ; 1618 G4cout << G4endl ; 1520 DumpInfo(); 1619 DumpInfo(); 1521 std::ostringstream message; 1620 std::ostringstream message; 1522 G4long oldprc = message.precision(16) << 1621 G4int oldprc = message.precision(16); 1523 message << "Undefined side for valid 1622 message << "Undefined side for valid surface normal to solid." 1524 << G4endl 1623 << G4endl 1525 << "Position:" << G4endl << 1624 << "Position:" << G4endl << G4endl 1526 << "p.x() = " << p.x()/mm < 1625 << "p.x() = " << p.x()/mm << " mm" << G4endl 1527 << "p.y() = " << p.y()/mm < 1626 << "p.y() = " << p.y()/mm << " mm" << G4endl 1528 << "p.z() = " << p.z()/mm < 1627 << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl 1529 << "Direction:" << G4endl << 1628 << "Direction:" << G4endl << G4endl 1530 << "v.x() = " << v.x() << G 1629 << "v.x() = " << v.x() << G4endl 1531 << "v.y() = " << v.y() << G 1630 << "v.y() = " << v.y() << G4endl 1532 << "v.z() = " << v.z() << G 1631 << "v.z() = " << v.z() << G4endl << G4endl 1533 << "Proposed distance :" << G 1632 << "Proposed distance :" << G4endl << G4endl 1534 << "snxt = " << snxt/mm << 1633 << "snxt = " << snxt/mm << " mm" << G4endl ; 1535 message.precision(oldprc) ; 1634 message.precision(oldprc) ; 1536 G4Exception("G4Tubs::DistanceToOut(p, 1635 G4Exception("G4Tubs::DistanceToOut(p,v,..)", "GeomSolids1002", 1537 JustWarning, message); 1636 JustWarning, message); 1538 break ; 1637 break ; 1539 } 1638 } 1540 } 1639 } 1541 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1640 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1542 1641 1543 return snxt ; 1642 return snxt ; 1544 } 1643 } 1545 1644 1546 ///////////////////////////////////////////// 1645 ////////////////////////////////////////////////////////////////////////// 1547 // 1646 // 1548 // Calculate distance (<=actual) to closest s 1647 // Calculate distance (<=actual) to closest surface of shape from inside 1549 1648 1550 G4double G4Tubs::DistanceToOut( const G4Three 1649 G4double G4Tubs::DistanceToOut( const G4ThreeVector& p ) const 1551 { 1650 { 1552 G4double safe=0.0, rho, safeR1, safeR2, saf 1651 G4double safe=0.0, rho, safeR1, safeR2, safeZ, safePhi ; 1553 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) 1652 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 1554 1653 1555 #ifdef G4CSGDEBUG 1654 #ifdef G4CSGDEBUG 1556 if( Inside(p) == kOutside ) 1655 if( Inside(p) == kOutside ) 1557 { 1656 { 1558 G4long oldprc = G4cout.precision(16) ; << 1657 G4int oldprc = G4cout.precision(16) ; 1559 G4cout << G4endl ; 1658 G4cout << G4endl ; 1560 DumpInfo(); 1659 DumpInfo(); 1561 G4cout << "Position:" << G4endl << G4end 1660 G4cout << "Position:" << G4endl << G4endl ; 1562 G4cout << "p.x() = " << p.x()/mm << " m 1661 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 1563 G4cout << "p.y() = " << p.y()/mm << " m 1662 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 1564 G4cout << "p.z() = " << p.z()/mm << " m 1663 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 1565 G4cout.precision(oldprc) ; 1664 G4cout.precision(oldprc) ; 1566 G4Exception("G4Tubs::DistanceToOut(p)", " 1665 G4Exception("G4Tubs::DistanceToOut(p)", "GeomSolids1002", 1567 JustWarning, "Point p is outs 1666 JustWarning, "Point p is outside !?"); 1568 } 1667 } 1569 #endif 1668 #endif 1570 1669 1571 if ( fRMin != 0.0 ) << 1670 if ( fRMin ) 1572 { 1671 { 1573 safeR1 = rho - fRMin ; 1672 safeR1 = rho - fRMin ; 1574 safeR2 = fRMax - rho ; 1673 safeR2 = fRMax - rho ; 1575 << 1674 1576 if ( safeR1 < safeR2 ) { safe = safeR1 ; 1675 if ( safeR1 < safeR2 ) { safe = safeR1 ; } 1577 else { safe = safeR2 ; 1676 else { safe = safeR2 ; } 1578 } 1677 } 1579 else 1678 else 1580 { 1679 { 1581 safe = fRMax - rho ; 1680 safe = fRMax - rho ; 1582 } 1681 } 1583 safeZ = fDz - std::fabs(p.z()) ; 1682 safeZ = fDz - std::fabs(p.z()) ; 1584 1683 1585 if ( safeZ < safe ) { safe = safeZ ; } 1684 if ( safeZ < safe ) { safe = safeZ ; } 1586 1685 1587 // Check if phi divided, Calc distances clo 1686 // Check if phi divided, Calc distances closest phi plane 1588 // 1687 // 1589 if ( !fPhiFullTube ) 1688 if ( !fPhiFullTube ) 1590 { 1689 { 1591 if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 ) 1690 if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 ) 1592 { 1691 { 1593 safePhi = -(p.x()*sinSPhi - p.y()*cosSP 1692 safePhi = -(p.x()*sinSPhi - p.y()*cosSPhi) ; 1594 } 1693 } 1595 else 1694 else 1596 { 1695 { 1597 safePhi = (p.x()*sinEPhi - p.y()*cosEPh 1696 safePhi = (p.x()*sinEPhi - p.y()*cosEPhi) ; 1598 } 1697 } 1599 if (safePhi < safe) { safe = safePhi ; } 1698 if (safePhi < safe) { safe = safePhi ; } 1600 } 1699 } 1601 if ( safe < 0 ) { safe = 0 ; } 1700 if ( safe < 0 ) { safe = 0 ; } 1602 1701 1603 return safe ; << 1702 return safe ; >> 1703 } >> 1704 >> 1705 ///////////////////////////////////////////////////////////////////////// >> 1706 // >> 1707 // Create a List containing the transformed vertices >> 1708 // Ordering [0-3] -fDz cross section >> 1709 // [4-7] +fDz cross section such that [0] is below [4], >> 1710 // [1] below [5] etc. >> 1711 // Note: >> 1712 // Caller has deletion resposibility >> 1713 // Potential improvement: For last slice, use actual ending angle >> 1714 // to avoid rounding error problems. >> 1715 >> 1716 G4ThreeVectorList* >> 1717 G4Tubs::CreateRotatedVertices( const G4AffineTransform& pTransform ) const >> 1718 { >> 1719 G4ThreeVectorList* vertices ; >> 1720 G4ThreeVector vertex0, vertex1, vertex2, vertex3 ; >> 1721 G4double meshAngle, meshRMax, crossAngle, >> 1722 cosCrossAngle, sinCrossAngle, sAngle; >> 1723 G4double rMaxX, rMaxY, rMinX, rMinY, meshRMin ; >> 1724 G4int crossSection, noCrossSections; >> 1725 >> 1726 // Compute no of cross-sections necessary to mesh tube >> 1727 // >> 1728 noCrossSections = G4int(fDPhi/kMeshAngleDefault) + 1 ; >> 1729 >> 1730 if ( noCrossSections < kMinMeshSections ) >> 1731 { >> 1732 noCrossSections = kMinMeshSections ; >> 1733 } >> 1734 else if (noCrossSections>kMaxMeshSections) >> 1735 { >> 1736 noCrossSections = kMaxMeshSections ; >> 1737 } >> 1738 // noCrossSections = 4 ; >> 1739 >> 1740 meshAngle = fDPhi/(noCrossSections - 1) ; >> 1741 // meshAngle = fDPhi/(noCrossSections) ; >> 1742 >> 1743 meshRMax = (fRMax+100*kCarTolerance)/std::cos(meshAngle*0.5) ; >> 1744 meshRMin = fRMin - 100*kCarTolerance ; >> 1745 >> 1746 // If complete in phi, set start angle such that mesh will be at fRMax >> 1747 // on the x axis. Will give better extent calculations when not rotated. >> 1748 >> 1749 if (fPhiFullTube && (fSPhi == 0) ) { sAngle = -meshAngle*0.5 ; } >> 1750 else { sAngle = fSPhi ; } >> 1751 >> 1752 vertices = new G4ThreeVectorList(); >> 1753 >> 1754 if ( vertices ) >> 1755 { >> 1756 vertices->reserve(noCrossSections*4); >> 1757 for (crossSection = 0 ; crossSection < noCrossSections ; crossSection++ ) >> 1758 { >> 1759 // Compute coordinates of cross section at section crossSection >> 1760 >> 1761 crossAngle = sAngle + crossSection*meshAngle ; >> 1762 cosCrossAngle = std::cos(crossAngle) ; >> 1763 sinCrossAngle = std::sin(crossAngle) ; >> 1764 >> 1765 rMaxX = meshRMax*cosCrossAngle ; >> 1766 rMaxY = meshRMax*sinCrossAngle ; >> 1767 >> 1768 if(meshRMin <= 0.0) >> 1769 { >> 1770 rMinX = 0.0 ; >> 1771 rMinY = 0.0 ; >> 1772 } >> 1773 else >> 1774 { >> 1775 rMinX = meshRMin*cosCrossAngle ; >> 1776 rMinY = meshRMin*sinCrossAngle ; >> 1777 } >> 1778 vertex0 = G4ThreeVector(rMinX,rMinY,-fDz) ; >> 1779 vertex1 = G4ThreeVector(rMaxX,rMaxY,-fDz) ; >> 1780 vertex2 = G4ThreeVector(rMaxX,rMaxY,+fDz) ; >> 1781 vertex3 = G4ThreeVector(rMinX,rMinY,+fDz) ; >> 1782 >> 1783 vertices->push_back(pTransform.TransformPoint(vertex0)) ; >> 1784 vertices->push_back(pTransform.TransformPoint(vertex1)) ; >> 1785 vertices->push_back(pTransform.TransformPoint(vertex2)) ; >> 1786 vertices->push_back(pTransform.TransformPoint(vertex3)) ; >> 1787 } >> 1788 } >> 1789 else >> 1790 { >> 1791 DumpInfo(); >> 1792 G4Exception("G4Tubs::CreateRotatedVertices()", >> 1793 "GeomSolids0003", FatalException, >> 1794 "Error in allocation of vertices. Out of memory !"); >> 1795 } >> 1796 return vertices ; 1604 } 1797 } 1605 1798 1606 ///////////////////////////////////////////// 1799 ////////////////////////////////////////////////////////////////////////// 1607 // 1800 // 1608 // Stream object contents to an output stream 1801 // Stream object contents to an output stream 1609 1802 1610 G4GeometryType G4Tubs::GetEntityType() const 1803 G4GeometryType G4Tubs::GetEntityType() const 1611 { 1804 { 1612 return {"G4Tubs"}; << 1805 return G4String("G4Tubs"); 1613 } 1806 } 1614 1807 1615 ///////////////////////////////////////////// 1808 ////////////////////////////////////////////////////////////////////////// 1616 // 1809 // 1617 // Make a clone of the object 1810 // Make a clone of the object 1618 // 1811 // 1619 G4VSolid* G4Tubs::Clone() const 1812 G4VSolid* G4Tubs::Clone() const 1620 { 1813 { 1621 return new G4Tubs(*this); 1814 return new G4Tubs(*this); 1622 } 1815 } 1623 1816 1624 ///////////////////////////////////////////// 1817 ////////////////////////////////////////////////////////////////////////// 1625 // 1818 // 1626 // Stream object contents to an output stream 1819 // Stream object contents to an output stream 1627 1820 1628 std::ostream& G4Tubs::StreamInfo( std::ostrea 1821 std::ostream& G4Tubs::StreamInfo( std::ostream& os ) const 1629 { 1822 { 1630 G4long oldprc = os.precision(16); << 1823 G4int oldprc = os.precision(16); 1631 os << "------------------------------------ 1824 os << "-----------------------------------------------------------\n" 1632 << " *** Dump for solid - " << GetNam 1825 << " *** Dump for solid - " << GetName() << " ***\n" 1633 << " ================================ 1826 << " ===================================================\n" 1634 << " Solid type: G4Tubs\n" 1827 << " Solid type: G4Tubs\n" 1635 << " Parameters: \n" 1828 << " Parameters: \n" 1636 << " inner radius : " << fRMin/mm << 1829 << " inner radius : " << fRMin/mm << " mm \n" 1637 << " outer radius : " << fRMax/mm << 1830 << " outer radius : " << fRMax/mm << " mm \n" 1638 << " half length Z: " << fDz/mm << " 1831 << " half length Z: " << fDz/mm << " mm \n" 1639 << " starting phi : " << fSPhi/degree 1832 << " starting phi : " << fSPhi/degree << " degrees \n" 1640 << " delta phi : " << fDPhi/degree 1833 << " delta phi : " << fDPhi/degree << " degrees \n" 1641 << "------------------------------------ 1834 << "-----------------------------------------------------------\n"; 1642 os.precision(oldprc); 1835 os.precision(oldprc); 1643 1836 1644 return os; 1837 return os; 1645 } 1838 } 1646 1839 1647 ///////////////////////////////////////////// 1840 ///////////////////////////////////////////////////////////////////////// 1648 // 1841 // 1649 // GetPointOnSurface 1842 // GetPointOnSurface 1650 1843 1651 G4ThreeVector G4Tubs::GetPointOnSurface() con 1844 G4ThreeVector G4Tubs::GetPointOnSurface() const 1652 { 1845 { 1653 G4double Rmax = fRMax; << 1846 G4double xRand, yRand, zRand, phi, cosphi, sinphi, chose, 1654 G4double Rmin = fRMin; << 1847 aOne, aTwo, aThr, aFou; 1655 G4double hz = 2.*fDz; // height << 1848 G4double rRand; 1656 G4double lext = fDPhi*Rmax; // length of ex << 1849 1657 G4double lint = fDPhi*Rmin; // length of in << 1850 aOne = 2.*fDz*fDPhi*fRMax; 1658 << 1851 aTwo = 2.*fDz*fDPhi*fRMin; 1659 // Set array of surface areas << 1852 aThr = 0.5*fDPhi*(fRMax*fRMax-fRMin*fRMin); 1660 // << 1853 aFou = 2.*fDz*(fRMax-fRMin); 1661 G4double RRmax = Rmax * Rmax; << 1854 1662 G4double RRmin = Rmin * Rmin; << 1855 phi = RandFlat::shoot(fSPhi, fSPhi+fDPhi); 1663 G4double sbase = 0.5*fDPhi*(RRmax - RRmin); << 1856 cosphi = std::cos(phi); 1664 G4double scut = (fDPhi == twopi) ? 0. : hz* << 1857 sinphi = std::sin(phi); 1665 G4double ssurf[6] = { scut, scut, sbase, sb << 1858 1666 ssurf[1] += ssurf[0]; << 1859 rRand = GetRadiusInRing(fRMin,fRMax); 1667 ssurf[2] += ssurf[1]; << 1860 1668 ssurf[3] += ssurf[2]; << 1861 if( (fSPhi == 0) && (fDPhi == twopi) ) { aFou = 0; } 1669 ssurf[4] += ssurf[3]; << 1862 1670 ssurf[5] += ssurf[4]; << 1863 chose = RandFlat::shoot(0.,aOne+aTwo+2.*aThr+2.*aFou); 1671 << 1864 1672 // Select surface << 1865 if( (chose >=0) && (chose < aOne) ) 1673 // << 1866 { 1674 G4double select = ssurf[5]*G4QuickRand(); << 1867 xRand = fRMax*cosphi; 1675 G4int k = 5; << 1868 yRand = fRMax*sinphi; 1676 k -= (G4int)(select <= ssurf[4]); << 1869 zRand = RandFlat::shoot(-1.*fDz,fDz); 1677 k -= (G4int)(select <= ssurf[3]); << 1870 return G4ThreeVector (xRand, yRand, zRand); 1678 k -= (G4int)(select <= ssurf[2]); << 1871 } 1679 k -= (G4int)(select <= ssurf[1]); << 1872 else if( (chose >= aOne) && (chose < aOne + aTwo) ) 1680 k -= (G4int)(select <= ssurf[0]); << 1873 { 1681 << 1874 xRand = fRMin*cosphi; 1682 // Generate point on selected surface << 1875 yRand = fRMin*sinphi; 1683 // << 1876 zRand = RandFlat::shoot(-1.*fDz,fDz); 1684 switch(k) << 1877 return G4ThreeVector (xRand, yRand, zRand); >> 1878 } >> 1879 else if( (chose >= aOne + aTwo) && (chose < aOne + aTwo + aThr) ) >> 1880 { >> 1881 xRand = rRand*cosphi; >> 1882 yRand = rRand*sinphi; >> 1883 zRand = fDz; >> 1884 return G4ThreeVector (xRand, yRand, zRand); >> 1885 } >> 1886 else if( (chose >= aOne + aTwo + aThr) && (chose < aOne + aTwo + 2.*aThr) ) >> 1887 { >> 1888 xRand = rRand*cosphi; >> 1889 yRand = rRand*sinphi; >> 1890 zRand = -1.*fDz; >> 1891 return G4ThreeVector (xRand, yRand, zRand); >> 1892 } >> 1893 else if( (chose >= aOne + aTwo + 2.*aThr) >> 1894 && (chose < aOne + aTwo + 2.*aThr + aFou) ) >> 1895 { >> 1896 xRand = rRand*std::cos(fSPhi); >> 1897 yRand = rRand*std::sin(fSPhi); >> 1898 zRand = RandFlat::shoot(-1.*fDz,fDz); >> 1899 return G4ThreeVector (xRand, yRand, zRand); >> 1900 } >> 1901 else 1685 { 1902 { 1686 case 0: // start phi cut << 1903 xRand = rRand*std::cos(fSPhi+fDPhi); 1687 { << 1904 yRand = rRand*std::sin(fSPhi+fDPhi); 1688 G4double r = Rmin + (Rmax - Rmin)*G4Qui << 1905 zRand = RandFlat::shoot(-1.*fDz,fDz); 1689 return { r*cosSPhi, r*sinSPhi, hz*G4Qui << 1906 return G4ThreeVector (xRand, yRand, zRand); 1690 } << 1691 case 1: // end phi cut << 1692 { << 1693 G4double r = Rmin + (Rmax - Rmin)*G4Qui << 1694 return { r*cosEPhi, r*sinEPhi, hz*G4Qui << 1695 } << 1696 case 2: // base at -dz << 1697 { << 1698 G4double r = std::sqrt(RRmin + (RRmax - << 1699 G4double phi = fSPhi + fDPhi*G4QuickRan << 1700 return { r*std::cos(phi), r*std::sin(ph << 1701 } << 1702 case 3: // base at +dz << 1703 { << 1704 G4double r = std::sqrt(RRmin + (RRmax - << 1705 G4double phi = fSPhi + fDPhi*G4QuickRan << 1706 return { r*std::cos(phi), r*std::sin(ph << 1707 } << 1708 case 4: // external lateral surface << 1709 { << 1710 G4double phi = fSPhi + fDPhi*G4QuickRan << 1711 G4double z = hz*G4QuickRand() - fDz; << 1712 G4double x = Rmax*std::cos(phi); << 1713 G4double y = Rmax*std::sin(phi); << 1714 return { x,y,z }; << 1715 } << 1716 case 5: // internal lateral surface << 1717 { << 1718 G4double phi = fSPhi + fDPhi*G4QuickRan << 1719 G4double z = hz*G4QuickRand() - fDz; << 1720 G4double x = Rmin*std::cos(phi); << 1721 G4double y = Rmin*std::sin(phi); << 1722 return { x,y,z }; << 1723 } << 1724 } 1907 } 1725 return {0., 0., 0.}; << 1726 } 1908 } 1727 1909 1728 ///////////////////////////////////////////// 1910 /////////////////////////////////////////////////////////////////////////// 1729 // 1911 // 1730 // Methods for visualisation 1912 // Methods for visualisation 1731 1913 1732 void G4Tubs::DescribeYourselfTo ( G4VGraphics << 1914 void G4Tubs::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 1733 { 1915 { 1734 scene.AddSolid (*this) ; 1916 scene.AddSolid (*this) ; 1735 } 1917 } 1736 1918 1737 G4Polyhedron* G4Tubs::CreatePolyhedron () con << 1919 G4Polyhedron* G4Tubs::CreatePolyhedron () const 1738 { 1920 { 1739 return new G4PolyhedronTubs (fRMin, fRMax, 1921 return new G4PolyhedronTubs (fRMin, fRMax, fDz, fSPhi, fDPhi) ; 1740 } 1922 } 1741 << 1742 #endif 1923 #endif 1743 1924