Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // >> 24 // $Id: G4Trd.cc,v 1.19 2004/01/26 09:03:20 gcosmo Exp $ >> 25 // GEANT4 tag $Name: geant4-06-00-patch-01 $ >> 26 // >> 27 // 26 // Implementation for G4Trd class 28 // Implementation for G4Trd class 27 // 29 // 28 // 12.01.95 P.Kent: First version << 30 // History: 29 // 28.04.05 V.Grichine: new SurfaceNormal acco << 31 // ~1996, V.Grichine, 1st implementation based on old code of P.Kent 30 // 25.05.17 E.Tcherniaev: complete revision, s << 32 // 07.05.00, V.Grichine, in d = DistanceToIn(p,v), if d<0.5*kCarTolerance, d=0 31 // ------------------------------------------- 33 // -------------------------------------------------------------------- 32 34 33 #include "G4Trd.hh" 35 #include "G4Trd.hh" 34 36 35 #if !defined(G4GEOM_USE_UTRD) << 37 #include "G4VPVParameterisation.hh" 36 << 37 #include "G4GeomTools.hh" << 38 << 39 #include "G4VoxelLimits.hh" 38 #include "G4VoxelLimits.hh" 40 #include "G4AffineTransform.hh" 39 #include "G4AffineTransform.hh" 41 #include "G4BoundingEnvelope.hh" << 42 #include "G4QuickRand.hh" << 43 << 44 #include "G4VPVParameterisation.hh" << 45 40 46 #include "G4VGraphicsScene.hh" 41 #include "G4VGraphicsScene.hh" >> 42 #include "G4Polyhedron.hh" >> 43 #include "G4NURBS.hh" >> 44 #include "G4NURBSbox.hh" 47 45 48 using namespace CLHEP; << 46 ///////////////////////////////////////////////////////////////////////// 49 << 50 ////////////////////////////////////////////// << 51 // << 52 // Constructor - set & check half widths << 53 << 54 G4Trd::G4Trd(const G4String& pName, << 55 G4double pdx1, G4double pdx << 56 G4double pdy1, G4double pdy << 57 G4double pdz) << 58 : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 59 fDx1(pdx1), fDx2(pdx2), fDy1(pdy1), fDy2(p << 60 { << 61 CheckParameters(); << 62 MakePlanes(); << 63 } << 64 << 65 ////////////////////////////////////////////// << 66 // << 67 // Fake default constructor - sets only member << 68 // for usage restri << 69 // << 70 G4Trd::G4Trd( __void__& a ) << 71 : G4CSGSolid(a), halfCarTolerance(0.5*kCarTo << 72 fDx1(1.), fDx2(1.), fDy1(1.), fDy2(1.), fD << 73 { << 74 MakePlanes(); << 75 } << 76 << 77 ////////////////////////////////////////////// << 78 // 47 // 79 // Destructor << 48 // Constructor - check & set half widths 80 49 81 G4Trd::~G4Trd() = default; << 50 G4Trd::G4Trd( const G4String& pName, 82 << 51 G4double pdx1, G4double pdx2, 83 ////////////////////////////////////////////// << 52 G4double pdy1, G4double pdy2, 84 // << 53 G4double pdz ) 85 // Copy constructor << 54 : G4CSGSolid(pName) 86 << 87 G4Trd::G4Trd(const G4Trd& rhs) << 88 : G4CSGSolid(rhs), halfCarTolerance(rhs.half << 89 fDx1(rhs.fDx1), fDx2(rhs.fDx2), << 90 fDy1(rhs.fDy1), fDy2(rhs.fDy2), fDz(rhs.fD << 91 fHx(rhs.fHx), fHy(rhs.fHy) << 92 { 55 { 93 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs << 56 CheckAndSetAllParameters (pdx1, pdx2, pdy1, pdy2, pdz); 94 } 57 } 95 58 96 ////////////////////////////////////////////// << 59 ///////////////////////////////////////////////////////////////////////// 97 // 60 // 98 // Assignment operator << 61 // Set and check (coplanarity) of trd parameters 99 62 100 G4Trd& G4Trd::operator = (const G4Trd& rhs) << 63 void G4Trd::CheckAndSetAllParameters ( G4double pdx1, G4double pdx2, >> 64 G4double pdy1, G4double pdy2, >> 65 G4double pdz ) 101 { 66 { 102 // Check assignment to self << 67 if ( pdx1>0&&pdx2>0&&pdy1>0&&pdy2>0&&pdz>0 ) 103 // << 68 { 104 if (this == &rhs) { return *this; } << 69 fDx1=pdx1; fDx2=pdx2; 105 << 70 fDy1=pdy1; fDy2=pdy2; 106 // Copy base class data << 71 fDz=pdz; 107 // << 72 } 108 G4CSGSolid::operator=(rhs); << 73 else 109 << 74 { 110 // Copy data << 75 if ( pdx1>=0 && pdx2>=0 && pdy1>=0 && pdy2>=0 && pdz>=0 ) 111 // << 76 { 112 halfCarTolerance = rhs.halfCarTolerance; << 77 // G4double Minimum_length= (1+per_thousand) * kCarTolerance/2.; 113 fDx1 = rhs.fDx1; fDx2 = rhs.fDx2; << 78 // FIX-ME : temporary solution for ZERO or very-small parameters 114 fDy1 = rhs.fDy1; fDy2 = rhs.fDy2; << 79 // 115 fDz = rhs.fDz; << 80 G4double Minimum_length= kCarTolerance/2.; 116 fHx = rhs.fHx; fHy = rhs.fHy; << 81 fDx1=std::max(pdx1,Minimum_length); 117 for (G4int i=0; i<4; ++i) { fPlanes[i] = rh << 82 fDx2=std::max(pdx2,Minimum_length); 118 << 83 fDy1=std::max(pdy1,Minimum_length); 119 return *this; << 84 fDy2=std::max(pdy2,Minimum_length); 120 } << 85 fDz=std::max(pdz,Minimum_length); 121 << 86 } 122 ////////////////////////////////////////////// << 87 else 123 // << 88 { 124 // Set all parameters, as for constructor - se << 89 G4cerr << "ERROR - G4Trd()::CheckAndSetAllParameters(): " << GetName() 125 << 90 << G4endl 126 void G4Trd::SetAllParameters(G4double pdx1, G4 << 91 << " Invalid dimensions, some are < 0 !" << G4endl 127 G4double pdy1, G4 << 92 << " X - " << pdx1 << ", " << pdx2 << G4endl 128 { << 93 << " Y - " << pdy1 << ", " << pdy2 << G4endl 129 // Reset data of the base class << 94 << " Z - " << pdz << G4endl; 130 fCubicVolume = 0.; << 95 G4Exception("G4Trd::CheckAndSetAllParameters()", 131 fSurfaceArea = 0.; << 96 "InvalidSetup", FatalException, 132 fRebuildPolyhedron = true; << 97 "Invalid parameters."); 133 << 98 } 134 // Set parameters << 135 fDx1 = pdx1; fDx2 = pdx2; << 136 fDy1 = pdy1; fDy2 = pdy2; << 137 fDz = pdz; << 138 << 139 CheckParameters(); << 140 MakePlanes(); << 141 } << 142 << 143 ////////////////////////////////////////////// << 144 // << 145 // Check dimensions << 146 << 147 void G4Trd::CheckParameters() << 148 { << 149 G4double dmin = 2*kCarTolerance; << 150 if ((fDx1 < 0 || fDx2 < 0 || fDy1 < 0 || fDy << 151 (fDx1 < dmin && fDx2 < dmin) || << 152 (fDy1 < dmin && fDy2 < dmin)) << 153 { << 154 std::ostringstream message; << 155 message << "Invalid (too small or negative << 156 << GetName() << 157 << "\n X - " << fDx1 << ", " << f << 158 << "\n Y - " << fDy1 << ", " << f << 159 << "\n Z - " << fDz; << 160 G4Exception("G4Trd::CheckParameters()", "G << 161 FatalException, message); << 162 } 99 } 163 } 100 } 164 101 165 ////////////////////////////////////////////// 102 ////////////////////////////////////////////////////////////////////////// 166 // 103 // 167 // Set side planes << 104 // Destructor 168 105 169 void G4Trd::MakePlanes() << 106 G4Trd::~G4Trd() 170 { 107 { 171 G4double dx = fDx1 - fDx2; << 172 G4double dy = fDy1 - fDy2; << 173 G4double dz = 2*fDz; << 174 fHx = std::sqrt(dy*dy + dz*dz); << 175 fHy = std::sqrt(dx*dx + dz*dz); << 176 << 177 // Set X planes at -Y & +Y << 178 // << 179 fPlanes[0].a = 0.; << 180 fPlanes[0].b = -dz/fHx; << 181 fPlanes[0].c = dy/fHx; << 182 fPlanes[0].d = fPlanes[0].b*fDy1 + fPlanes[0 << 183 << 184 fPlanes[1].a = fPlanes[0].a; << 185 fPlanes[1].b = -fPlanes[0].b; << 186 fPlanes[1].c = fPlanes[0].c; << 187 fPlanes[1].d = fPlanes[0].d; << 188 << 189 // Set Y planes at -X & +X << 190 // << 191 fPlanes[2].a = -dz/fHy; << 192 fPlanes[2].b = 0.; << 193 fPlanes[2].c = dx/fHy; << 194 fPlanes[2].d = fPlanes[2].a*fDx1 + fPlanes[2 << 195 << 196 fPlanes[3].a = -fPlanes[2].a; << 197 fPlanes[3].b = fPlanes[2].b; << 198 fPlanes[3].c = fPlanes[2].c; << 199 fPlanes[3].d = fPlanes[2].d; << 200 } 108 } 201 109 202 ////////////////////////////////////////////// << 110 //////////////////////////////////////////////////////////////////////////// 203 // 111 // 204 // Get volume << 205 << 206 G4double G4Trd::GetCubicVolume() << 207 { << 208 if (fCubicVolume == 0.) << 209 { << 210 fCubicVolume = 2*fDz*( (fDx1+fDx2)*(fDy1+f << 211 (fDx2-fDx1)*(fDy2-f << 212 } << 213 return fCubicVolume; << 214 } << 215 << 216 ////////////////////////////////////////////// << 217 // 112 // 218 // Get surface area << 219 113 220 G4double G4Trd::GetSurfaceArea() << 114 void G4Trd::SetAllParameters ( G4double pdx1, G4double pdx2, G4double pdy1, >> 115 G4double pdy2, G4double pdz ) 221 { 116 { 222 if (fSurfaceArea == 0.) << 117 CheckAndSetAllParameters (pdx1, pdx2, pdy1, pdy2, pdz); 223 { << 224 fSurfaceArea = << 225 4*(fDx1*fDy1 + fDx2*fDy2) + 2*(fDx1+fDx2 << 226 } << 227 return fSurfaceArea; << 228 } 118 } 229 119 230 ////////////////////////////////////////////// << 120 >> 121 ///////////////////////////////////////////////////////////////////////// 231 // 122 // 232 // Dispatch to parameterisation for replicatio 123 // Dispatch to parameterisation for replication mechanism dimension 233 // computation & modification << 124 // computation & modification. 234 125 235 void G4Trd::ComputeDimensions( G4VPVPara 126 void G4Trd::ComputeDimensions( G4VPVParameterisation* p, 236 const G4int n, 127 const G4int n, 237 const G4VPhysic 128 const G4VPhysicalVolume* pRep ) 238 { 129 { 239 p->ComputeDimensions(*this,n,pRep); 130 p->ComputeDimensions(*this,n,pRep); 240 } 131 } 241 132 242 ////////////////////////////////////////////// << 243 // << 244 // Get bounding box << 245 << 246 void G4Trd::BoundingLimits(G4ThreeVector& pMin << 247 { << 248 G4double dx1 = GetXHalfLength1(); << 249 G4double dx2 = GetXHalfLength2(); << 250 G4double dy1 = GetYHalfLength1(); << 251 G4double dy2 = GetYHalfLength2(); << 252 G4double dz = GetZHalfLength(); << 253 << 254 G4double xmax = std::max(dx1,dx2); << 255 G4double ymax = std::max(dy1,dy2); << 256 pMin.set(-xmax,-ymax,-dz); << 257 pMax.set( xmax, ymax, dz); << 258 << 259 // Check correctness of the bounding box << 260 // << 261 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 262 { << 263 std::ostringstream message; << 264 message << "Bad bounding box (min >= max) << 265 << GetName() << " !" << 266 << "\npMin = " << pMin << 267 << "\npMax = " << pMax; << 268 G4Exception("G4Trd::BoundingLimits()", "Ge << 269 DumpInfo(); << 270 } << 271 } << 272 133 273 ////////////////////////////////////////////// << 134 /////////////////////////////////////////////////////////////////////////// 274 // 135 // 275 // Calculate extent under transform and specif 136 // Calculate extent under transform and specified limit 276 137 277 G4bool G4Trd::CalculateExtent( const EAxis pAx 138 G4bool G4Trd::CalculateExtent( const EAxis pAxis, 278 const G4VoxelLi 139 const G4VoxelLimits& pVoxelLimit, 279 const G4AffineT 140 const G4AffineTransform& pTransform, 280 G4double& 141 G4double& pMin, G4double& pMax ) const 281 { 142 { 282 G4ThreeVector bmin, bmax; << 143 if (!pTransform.IsRotated()) 283 G4bool exist; << 284 << 285 // Check bounding box (bbox) << 286 // << 287 BoundingLimits(bmin,bmax); << 288 G4BoundingEnvelope bbox(bmin,bmax); << 289 #ifdef G4BBOX_EXTENT << 290 return bbox.CalculateExtent(pAxis,pVoxelLimi << 291 #endif << 292 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 293 { 144 { 294 return exist = pMin < pMax; << 145 // Special case handling for unrotated solids >> 146 // Compute x/y/z mins and maxs respecting limits, with early returns >> 147 // if outside limits. Then switch() on pAxis >> 148 >> 149 G4double xoffset,xMin,xMax; >> 150 G4double yoffset,yMin,yMax; >> 151 G4double zoffset,zMin,zMax; >> 152 >> 153 zoffset=pTransform.NetTranslation().z(); >> 154 zMin=zoffset-fDz; >> 155 zMax=zoffset+fDz; >> 156 if (pVoxelLimit.IsZLimited()) >> 157 { >> 158 if ( (zMin>pVoxelLimit.GetMaxZExtent()+kCarTolerance) >> 159 || (zMax<pVoxelLimit.GetMinZExtent()-kCarTolerance) ) >> 160 { >> 161 return false; >> 162 } >> 163 else >> 164 { >> 165 if (zMin<pVoxelLimit.GetMinZExtent()) >> 166 { >> 167 zMin=pVoxelLimit.GetMinZExtent(); >> 168 } >> 169 if (zMax>pVoxelLimit.GetMaxZExtent()) >> 170 { >> 171 zMax=pVoxelLimit.GetMaxZExtent(); >> 172 } >> 173 } >> 174 } >> 175 xoffset=pTransform.NetTranslation().x(); >> 176 if (fDx2 >= fDx1) >> 177 { >> 178 xMax = xoffset+(fDx1+fDx2)/2+(zMax-zoffset)*(fDx2-fDx1)/(2*fDz) ; >> 179 xMin = 2*xoffset - xMax ; >> 180 } >> 181 else >> 182 { >> 183 xMax = xoffset+(fDx1+fDx2)/2+(zMin-zoffset)*(fDx2-fDx1)/(2*fDz) ; >> 184 xMin = 2*xoffset - xMax ; >> 185 } >> 186 if (pVoxelLimit.IsXLimited()) >> 187 { >> 188 if ( (xMin>pVoxelLimit.GetMaxXExtent()+kCarTolerance) >> 189 || (xMax<pVoxelLimit.GetMinXExtent()-kCarTolerance) ) >> 190 { >> 191 return false; >> 192 } >> 193 else >> 194 { >> 195 if (xMin<pVoxelLimit.GetMinXExtent()) >> 196 { >> 197 xMin=pVoxelLimit.GetMinXExtent(); >> 198 } >> 199 if (xMax>pVoxelLimit.GetMaxXExtent()) >> 200 { >> 201 xMax=pVoxelLimit.GetMaxXExtent(); >> 202 } >> 203 } >> 204 } >> 205 yoffset= pTransform.NetTranslation().y() ; >> 206 if(fDy2 >= fDy1) >> 207 { >> 208 yMax = yoffset+(fDy2+fDy1)/2+(zMax-zoffset)*(fDy2-fDy1)/(2*fDz) ; >> 209 yMin = 2*yoffset - yMax ; >> 210 } >> 211 else >> 212 { >> 213 yMax = yoffset+(fDy2+fDy1)/2+(zMin-zoffset)*(fDy2-fDy1)/(2*fDz) ; >> 214 yMin = 2*yoffset - yMax ; >> 215 } >> 216 if (pVoxelLimit.IsYLimited()) >> 217 { >> 218 if ( (yMin>pVoxelLimit.GetMaxYExtent()+kCarTolerance) >> 219 || (yMax<pVoxelLimit.GetMinYExtent()-kCarTolerance) ) >> 220 { >> 221 return false; >> 222 } >> 223 else >> 224 { >> 225 if (yMin<pVoxelLimit.GetMinYExtent()) >> 226 { >> 227 yMin=pVoxelLimit.GetMinYExtent(); >> 228 } >> 229 if (yMax>pVoxelLimit.GetMaxYExtent()) >> 230 { >> 231 yMax=pVoxelLimit.GetMaxYExtent(); >> 232 } >> 233 } >> 234 } >> 235 >> 236 switch (pAxis) >> 237 { >> 238 case kXAxis: >> 239 pMin=xMin; >> 240 pMax=xMax; >> 241 break; >> 242 case kYAxis: >> 243 pMin=yMin; >> 244 pMax=yMax; >> 245 break; >> 246 case kZAxis: >> 247 pMin=zMin; >> 248 pMax=zMax; >> 249 break; >> 250 default: >> 251 break; >> 252 } >> 253 >> 254 // Add 2*Tolerance to avoid precision troubles ? >> 255 // >> 256 pMin-=kCarTolerance; >> 257 pMax+=kCarTolerance; >> 258 >> 259 return true; 295 } 260 } >> 261 else >> 262 { >> 263 // General rotated case - create and clip mesh to boundaries 296 264 297 // Set bounding envelope (benv) and calculat << 265 G4bool existsAfterClip=false; 298 // << 266 G4ThreeVectorList *vertices; 299 G4double dx1 = GetXHalfLength1(); << 267 300 G4double dx2 = GetXHalfLength2(); << 268 pMin=+kInfinity; 301 G4double dy1 = GetYHalfLength1(); << 269 pMax=-kInfinity; 302 G4double dy2 = GetYHalfLength2(); << 270 303 G4double dz = GetZHalfLength(); << 271 // Calculate rotated vertex coordinates 304 << 272 // 305 G4ThreeVectorList baseA(4), baseB(4); << 273 vertices=CreateRotatedVertices(pTransform); 306 baseA[0].set(-dx1,-dy1,-dz); << 274 ClipCrossSection(vertices,0,pVoxelLimit,pAxis,pMin,pMax); 307 baseA[1].set( dx1,-dy1,-dz); << 275 ClipCrossSection(vertices,4,pVoxelLimit,pAxis,pMin,pMax); 308 baseA[2].set( dx1, dy1,-dz); << 276 ClipBetweenSections(vertices,0,pVoxelLimit,pAxis,pMin,pMax); 309 baseA[3].set(-dx1, dy1,-dz); << 277 310 baseB[0].set(-dx2,-dy2, dz); << 278 if (pMin!=kInfinity||pMax!=-kInfinity) 311 baseB[1].set( dx2,-dy2, dz); << 279 { 312 baseB[2].set( dx2, dy2, dz); << 280 existsAfterClip=true; 313 baseB[3].set(-dx2, dy2, dz); << 281 314 << 282 // Add 2*tolerance to avoid precision troubles 315 std::vector<const G4ThreeVectorList *> polyg << 283 // 316 polygons[0] = &baseA; << 284 pMin-=kCarTolerance; 317 polygons[1] = &baseB; << 285 pMax+=kCarTolerance; 318 << 286 319 G4BoundingEnvelope benv(bmin,bmax,polygons); << 287 } 320 exist = benv.CalculateExtent(pAxis,pVoxelLim << 288 else 321 return exist; << 289 { >> 290 // Check for case where completely enveloping clipping volume >> 291 // If point inside then we are confident that the solid completely >> 292 // envelopes the clipping volume. Hence set min/max extents according >> 293 // to clipping volume extents along the specified axis. >> 294 >> 295 G4ThreeVector clipCentre( >> 296 (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5, >> 297 (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5, >> 298 (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5); >> 299 >> 300 if (Inside(pTransform.Inverse().TransformPoint(clipCentre))!=kOutside) >> 301 { >> 302 existsAfterClip=true; >> 303 pMin=pVoxelLimit.GetMinExtent(pAxis); >> 304 pMax=pVoxelLimit.GetMaxExtent(pAxis); >> 305 } >> 306 } >> 307 delete vertices; >> 308 return existsAfterClip; >> 309 } 322 } 310 } 323 311 324 ////////////////////////////////////////////// << 312 /////////////////////////////////////////////////////////////////// 325 // 313 // 326 // Return whether point inside/outside/on surf 314 // Return whether point inside/outside/on surface, using tolerance 327 315 328 EInside G4Trd::Inside( const G4ThreeVector& p 316 EInside G4Trd::Inside( const G4ThreeVector& p ) const 329 { << 317 { 330 G4double dx = fPlanes[3].a*std::abs(p.x())+f << 318 EInside in=kOutside; 331 G4double dy = fPlanes[1].b*std::abs(p.y())+f << 319 G4double x,y,zbase1,zbase2; 332 G4double dxy = std::max(dx,dy); << 320 >> 321 if (fabs(p.z())<=fDz-kCarTolerance/2) >> 322 { >> 323 zbase1=p.z()+fDz; // Dist from -ve z plane >> 324 zbase2=fDz-p.z(); // Dist from +ve z plane 333 325 334 G4double dz = std::abs(p.z())-fDz; << 326 // Check whether inside x tolerance 335 G4double dist = std::max(dz,dxy); << 327 // >> 328 x=0.5*(fDx2*zbase1+fDx1*zbase2)/fDz - kCarTolerance/2; >> 329 if (fabs(p.x())<=x) >> 330 { >> 331 y=0.5*((fDy2*zbase1+fDy1*zbase2))/fDz - kCarTolerance/2; >> 332 if (fabs(p.y())<=y) >> 333 { >> 334 in=kInside; >> 335 } >> 336 else if (fabs(p.y())<=y+kCarTolerance) >> 337 { >> 338 in=kSurface; >> 339 } >> 340 } >> 341 else if (fabs(p.x())<=x+kCarTolerance) >> 342 { >> 343 // y = y half width of shape at z of point + tolerant boundary >> 344 // >> 345 y=0.5*((fDy2*zbase1+fDy1*zbase2))/fDz + kCarTolerance/2; >> 346 if (fabs(p.y())<=y) >> 347 { >> 348 in=kSurface; >> 349 } >> 350 } >> 351 } >> 352 else if (fabs(p.z())<=fDz+kCarTolerance/2) >> 353 { >> 354 // Only need to check outer tolerant boundaries >> 355 // >> 356 zbase1=p.z()+fDz; // Dist from -ve z plane >> 357 zbase2=fDz-p.z(); // Dist from +ve z plane 336 358 337 return (dist > halfCarTolerance) ? kOutside << 359 // x = x half width of shape at z of point plus tolerance 338 ((dist > -halfCarTolerance) ? kSurface : k << 360 // >> 361 x=0.5*(fDx2*zbase1+fDx1*zbase2)/fDz + kCarTolerance/2; >> 362 if (fabs(p.x())<=x) >> 363 { >> 364 // y = y half width of shape at z of point >> 365 // >> 366 y=0.5*((fDy2*zbase1+fDy1*zbase2))/fDz + kCarTolerance/2; >> 367 if (fabs(p.y())<=y) in=kSurface; >> 368 } >> 369 } >> 370 return in; 339 } 371 } 340 372 341 ////////////////////////////////////////////// 373 ////////////////////////////////////////////////////////////////////////// 342 // 374 // 343 // Determine side where point is, and return c << 375 // Calculate side nearest to p, and return normal >> 376 // If two sides are equidistant, normal of first side (x/y/z) >> 377 // encountered returned 344 378 345 G4ThreeVector G4Trd::SurfaceNormal( const G4Th 379 G4ThreeVector G4Trd::SurfaceNormal( const G4ThreeVector& p ) const 346 { 380 { 347 G4int nsurf = 0; // number of surfaces where << 381 G4ThreeVector norm; >> 382 G4double z,tanx,secx,newpx,widx; >> 383 G4double tany,secy,newpy,widy; >> 384 G4double distx,disty,distz,fcos; >> 385 >> 386 z=2.0*fDz; >> 387 >> 388 tanx=(fDx2-fDx1)/z; >> 389 secx=sqrt(1.0+tanx*tanx); >> 390 newpx=fabs(p.x())-p.z()*tanx; >> 391 widx=fDx2-fDz*tanx; >> 392 >> 393 tany=(fDy2-fDy1)/z; >> 394 secy=sqrt(1.0+tany*tany); >> 395 newpy=fabs(p.y())-p.z()*tany; >> 396 widy=fDy2-fDz*tany; >> 397 >> 398 distx=fabs(newpx-widx)/secx; // perpendicular distance to x side >> 399 disty=fabs(newpy-widy)/secy; // to y side >> 400 distz=fabs(fabs(p.z())-fDz); // to z side 348 401 349 // Check Z faces << 402 // find closest side 350 // 403 // 351 G4double nz = 0; << 404 if (distx<=disty) 352 G4double dz = std::abs(p.z()) - fDz; << 405 { 353 if (std::abs(dz) <= halfCarTolerance) << 406 if (distx<=distz) 354 { << 407 { 355 nz = (p.z() < 0) ? -1 : 1; << 408 // Closest to X 356 ++nsurf; << 409 // >> 410 fcos=1.0/secx; >> 411 // normal=(+/-cos(ang),0,-sin(ang)) >> 412 if (p.x()>=0) >> 413 norm=G4ThreeVector(fcos,0,-tanx*fcos); >> 414 else >> 415 norm=G4ThreeVector(-fcos,0,-tanx*fcos); >> 416 } >> 417 else >> 418 { >> 419 // Closest to Z >> 420 // >> 421 if (p.z()>=0) >> 422 norm=G4ThreeVector(0,0,1); >> 423 else >> 424 norm=G4ThreeVector(0,0,-1); >> 425 } >> 426 } >> 427 else >> 428 { >> 429 if (disty<=distz) >> 430 { >> 431 // Closest to Y >> 432 // >> 433 fcos=1.0/secy; >> 434 if (p.y()>=0) >> 435 norm=G4ThreeVector(0,fcos,-tany*fcos); >> 436 else >> 437 norm=G4ThreeVector(0,-fcos,-tany*fcos); >> 438 } >> 439 else >> 440 { >> 441 // Closest to Z >> 442 // >> 443 if (p.z()>=0) >> 444 norm=G4ThreeVector(0,0,1); >> 445 else >> 446 norm=G4ThreeVector(0,0,-1); >> 447 } 357 } 448 } >> 449 return norm; >> 450 } 358 451 359 // Check Y faces << 452 //////////////////////////////////////////////////////////////////////////// 360 // << 453 // 361 G4double ny = 0; << 454 // Calculate distance to shape from outside 362 G4double dy1 = fPlanes[0].b*p.y(); << 455 // - return kInfinity if no intersection 363 G4double dy2 = fPlanes[0].c*p.z() + fPlanes[ << 456 // 364 if (std::abs(dy2 + dy1) <= halfCarTolerance) << 457 // ALGORITHM: >> 458 // For each component, calculate pair of minimum and maximum intersection >> 459 // values for which the particle is in the extent of the shape >> 460 // - The smallest (MAX minimum) allowed distance of the pairs is intersect >> 461 // - Z plane intersectin uses tolerance >> 462 // - XZ YZ planes use logic & *SLIGHTLY INCORRECT* tolerance >> 463 // (this saves at least 1 sqrt, 1 multiply and 1 divide... in applicable >> 464 // cases) >> 465 // - Note: XZ and YZ planes each divide space into four regions, >> 466 // characterised by ss1 ss2 >> 467 // NOTE: >> 468 // >> 469 // `Inside' safe - meaningful answers given if point is inside the exact >> 470 // shape. >> 471 >> 472 G4double G4Trd::DistanceToIn( const G4ThreeVector& p, >> 473 const G4ThreeVector& v ) const >> 474 { >> 475 G4double snxt = kInfinity ; // snxt = default return value >> 476 G4double smin,smax; >> 477 G4double s1,s2,tanxz,tanyz,ds1,ds2; >> 478 G4double ss1,ss2,sn1=0.,sn2=0.,Dist; >> 479 >> 480 if ( v.z() ) // Calculate valid z intersect range 365 { 481 { 366 ny += fPlanes[0].b; << 482 if ( v.z() > 0 ) // Calculate smax: must be +ve or no intersection. 367 nz += fPlanes[0].c; << 483 { 368 ++nsurf; << 484 Dist = fDz - p.z() ; // to plane at +dz >> 485 >> 486 if (Dist >= 0.5*kCarTolerance) >> 487 { >> 488 smax = Dist/v.z() ; >> 489 smin = -(fDz + p.z())/v.z() ; >> 490 } >> 491 else return snxt ; >> 492 } >> 493 else // v.z <0 >> 494 { >> 495 Dist=fDz+p.z(); // plane at -dz >> 496 >> 497 if ( Dist >= 0.5*kCarTolerance ) >> 498 { >> 499 smax = -Dist/v.z() ; >> 500 smin = (fDz - p.z())/v.z() ; >> 501 } >> 502 else return snxt ; >> 503 } >> 504 if (smin < 0 ) smin = 0 ; 369 } 505 } 370 if (std::abs(dy2 - dy1) <= halfCarTolerance) << 506 else // v.z=0 371 { 507 { 372 ny += fPlanes[1].b; << 508 if (fabs(p.z()) >= fDz ) return snxt ; // Outside & no intersect 373 nz += fPlanes[1].c; << 509 else 374 ++nsurf; << 510 { >> 511 smin = 0 ; // Always inside z range >> 512 smax = kInfinity; >> 513 } 375 } 514 } 376 515 377 // Check X faces << 516 // Calculate x intersection range 378 // 517 // 379 G4double nx = 0; << 518 // Calc half width at p.z, and components towards planes 380 G4double dx1 = fPlanes[2].a*p.x(); << 519 381 G4double dx2 = fPlanes[2].c*p.z() + fPlanes[ << 520 tanxz = (fDx2 - fDx1)*0.5/fDz ; 382 if (std::abs(dx2 + dx1) <= halfCarTolerance) << 521 s1 = 0.5*(fDx1+fDx2) + tanxz*p.z() ; // x half width at p.z >> 522 ds1 = v.x() - tanxz*v.z() ; // Components of v towards faces at +-x >> 523 ds2 = v.x() + tanxz*v.z() ; >> 524 ss1 = s1 - p.x() ; // -delta x to +ve plane >> 525 // -ve when outside >> 526 ss2 = -s1 - p.x() ; // -delta x to -ve plane >> 527 // +ve when outside >> 528 >> 529 if (ss1 < 0 && ss2 <= 0 ) 383 { 530 { 384 nx += fPlanes[2].a; << 531 if (ds1 < 0) // In +ve coord Area 385 nz += fPlanes[2].c; << 532 { 386 ++nsurf; << 533 sn1 = ss1/ds1 ; >> 534 >> 535 if ( ds2 < 0 ) sn2 = ss2/ds2 ; >> 536 else sn2 = kInfinity ; >> 537 } >> 538 else return snxt ; 387 } 539 } 388 if (std::abs(dx2 - dx1) <= halfCarTolerance) << 540 else if ( ss1 >= 0 && ss2 > 0 ) 389 { 541 { 390 nx += fPlanes[3].a; << 542 if ( ds2 > 0 ) // In -ve coord Area 391 nz += fPlanes[3].c; << 543 { 392 ++nsurf; << 544 sn1 = ss2/ds2 ; >> 545 >> 546 if (ds1 > 0) sn2 = ss1/ds1 ; >> 547 else sn2 = kInfinity; >> 548 >> 549 } >> 550 else return snxt ; 393 } 551 } >> 552 else if (ss1 >= 0 && ss2 <= 0 ) >> 553 { >> 554 // Inside Area - calculate leaving distance >> 555 // *Don't* use exact distance to side for tolerance >> 556 // = ss1*cos(ang xz) >> 557 // = ss1/sqrt(1.0+tanxz*tanxz) >> 558 sn1 = 0 ; 394 559 395 // Return normal << 560 if ( ds1 > 0 ) 396 // << 561 { 397 if (nsurf == 1) return {nx,ny,nz}; << 562 if (ss1 > 0.5*kCarTolerance) sn2 = ss1/ds1 ; // Leave +ve side extent 398 else if (nsurf != 0) return G4ThreeVector(nx << 563 else return snxt ; // Leave immediately by +ve 399 else << 564 } >> 565 else sn2 = kInfinity ; >> 566 >> 567 if ( ds2 < 0 ) >> 568 { >> 569 if ( ss2 < -0.5*kCarTolerance ) >> 570 { >> 571 Dist = ss2/ds2 ; // Leave -ve side extent >> 572 if ( Dist < sn2 ) sn2 = Dist ; >> 573 } >> 574 else return snxt ; >> 575 } >> 576 } >> 577 else if (ss1 < 0 && ss2 > 0 ) 400 { 578 { 401 // Point is not on the surface << 579 // Within +/- plane cross-over areas (not on boundaries ss1||ss2==0) 402 // << 580 403 #ifdef G4CSGDEBUG << 581 if ( ds1 >= 0 || ds2 <= 0 ) 404 std::ostringstream message; << 582 { 405 G4long oldprc = message.precision(16); << 583 return snxt ; 406 message << "Point p is not on surface (!?) << 584 } 407 << GetName() << G4endl; << 585 else // Will intersect & stay inside 408 message << "Position:\n"; << 586 { 409 message << " p.x() = " << p.x()/mm << " << 587 sn1 = ss1/ds1 ; 410 message << " p.y() = " << p.y()/mm << " << 588 Dist = ss2/ds2 ; 411 message << " p.z() = " << p.z()/mm << " << 589 if (Dist > sn1 ) sn1 = Dist ; 412 G4cout.precision(oldprc) ; << 590 sn2 = kInfinity ; 413 G4Exception("G4Trd::SurfaceNormal(p)", "Ge << 591 } 414 JustWarning, message ); << 415 DumpInfo(); << 416 #endif << 417 return ApproxSurfaceNormal(p); << 418 } 592 } 419 } << 420 593 421 ////////////////////////////////////////////// << 594 // Reduce allowed range of distances as appropriate 422 // << 423 // Algorithm for SurfaceNormal() following the << 424 // for points not on the surface << 425 595 426 G4ThreeVector G4Trd::ApproxSurfaceNormal( cons << 596 if ( sn1 > smin ) smin = sn1 ; 427 { << 597 if ( sn2 < smax ) smax = sn2 ; 428 G4double dist = -DBL_MAX; << 429 G4int iside = 0; << 430 for (G4int i=0; i<4; ++i) << 431 { << 432 G4double d = fPlanes[i].a*p.x() + << 433 fPlanes[i].b*p.y() + << 434 fPlanes[i].c*p.z() + fPlanes[ << 435 if (d > dist) { dist = d; iside = i; } << 436 } << 437 598 438 G4double distz = std::abs(p.z()) - fDz; << 599 // Check for incompatible ranges (eg z intersects between 50 ->100 and x 439 if (dist > distz) << 600 // only 10-40 -> no intersection) 440 return { fPlanes[iside].a, fPlanes[iside]. << 441 else << 442 return { 0, 0, (G4double)((p.z() < 0) ? -1 << 443 } << 444 601 445 ////////////////////////////////////////////// << 602 if ( smax < smin ) return snxt ; 446 // << 447 // Calculate distance to shape from outside << 448 // - return kInfinity if no intersection << 449 603 450 G4double G4Trd::DistanceToIn(const G4ThreeVect << 604 // Calculate valid y intersection range 451 const G4ThreeVect << 605 // (repeat of x intersection code) 452 { << 453 // Z intersections << 454 // << 455 if ((std::abs(p.z()) - fDz) >= -halfCarToler << 456 return kInfinity; << 457 G4double invz = (-v.z() == 0) ? DBL_MAX : -1 << 458 G4double dz = (invz < 0) ? fDz : -fDz; << 459 G4double tzmin = (p.z() + dz)*invz; << 460 G4double tzmax = (p.z() - dz)*invz; << 461 606 462 // Y intersections << 607 tanyz = (fDy2-fDy1)*0.5/fDz ; 463 // << 608 s2 = 0.5*(fDy1+fDy2) + tanyz*p.z() ; // y half width at p.z 464 G4double tmin0 = tzmin, tmax0 = tzmax; << 609 ds1 = v.y() - tanyz*v.z() ; // Components of v towards faces at +-y 465 G4double ya = fPlanes[0].b*v.y(), yb = fPlan << 610 ds2 = v.y() + tanyz*v.z() ; 466 G4double yc = fPlanes[0].b*p.y(), yd = fPlan << 611 ss1 = s2 - p.y() ; // -delta y to +ve plane 467 G4double cos0 = yb + ya; << 612 ss2 = -s2 - p.y() ; // -delta y to -ve plane 468 G4double dis0 = yd + yc; << 613 469 if (dis0 >= -halfCarTolerance) << 614 if ( ss1 < 0 && ss2 <= 0 ) 470 { << 471 if (cos0 >= 0) return kInfinity; << 472 G4double tmp = -dis0/cos0; << 473 if (tmin0 < tmp) tmin0 = tmp; << 474 } << 475 else if (cos0 > 0) << 476 { 615 { 477 G4double tmp = -dis0/cos0; << 616 if (ds1 < 0 ) // In +ve coord Area 478 if (tmax0 > tmp) tmax0 = tmp; << 617 { >> 618 sn1 = ss1/ds1 ; >> 619 if ( ds2 < 0 ) sn2 = ss2/ds2 ; >> 620 else sn2 = kInfinity ; >> 621 } >> 622 else return snxt ; 479 } 623 } 480 << 624 else if ( ss1 >= 0 && ss2 > 0 ) 481 G4double tmin1 = tmin0, tmax1 = tmax0; << 482 G4double cos1 = yb - ya; << 483 G4double dis1 = yd - yc; << 484 if (dis1 >= -halfCarTolerance) << 485 { 625 { 486 if (cos1 >= 0) return kInfinity; << 626 if ( ds2 > 0 ) // In -ve coord Area 487 G4double tmp = -dis1/cos1; << 627 { 488 if (tmin1 < tmp) tmin1 = tmp; << 628 sn1 = ss2/ds2 ; >> 629 if ( ds1 > 0 ) sn2 = ss1/ds1 ; >> 630 else sn2 = kInfinity ; >> 631 } >> 632 else return snxt ; 489 } 633 } 490 else if (cos1 > 0) << 634 else if (ss1 >= 0 && ss2 <= 0 ) 491 { 635 { 492 G4double tmp = -dis1/cos1; << 636 // Inside Area - calculate leaving distance 493 if (tmax1 > tmp) tmax1 = tmp; << 637 // *Don't* use exact distance to side for tolerance 494 } << 638 // = ss1*cos(ang yz) >> 639 // = ss1/sqrt(1.0+tanyz*tanyz) >> 640 sn1 = 0 ; 495 641 496 // X intersections << 642 if ( ds1 > 0 ) 497 // << 643 { 498 G4double tmin2 = tmin1, tmax2 = tmax1; << 644 if (ss1 > 0.5*kCarTolerance) sn2 = ss1/ds1 ; // Leave +ve side extent 499 G4double xa = fPlanes[2].a*v.x(), xb = fPlan << 645 else return snxt ; // Leave immediately by +ve 500 G4double xc = fPlanes[2].a*p.x(), xd = fPlan << 646 } 501 G4double cos2 = xb + xa; << 647 else sn2 = kInfinity ; 502 G4double dis2 = xd + xc; << 648 503 if (dis2 >= -halfCarTolerance) << 649 if ( ds2 < 0 ) 504 { << 650 { 505 if (cos2 >= 0) return kInfinity; << 651 if ( ss2 < -0.5*kCarTolerance ) 506 G4double tmp = -dis2/cos2; << 652 { 507 if (tmin2 < tmp) tmin2 = tmp; << 653 Dist = ss2/ds2 ; // Leave -ve side extent >> 654 if (Dist < sn2) sn2=Dist; >> 655 } >> 656 else return snxt ; >> 657 } 508 } 658 } 509 else if (cos2 > 0) << 659 else if (ss1 < 0 && ss2 > 0 ) 510 { 660 { 511 G4double tmp = -dis2/cos2; << 661 // Within +/- plane cross-over areas (not on boundaries ss1||ss2==0) 512 if (tmax2 > tmp) tmax2 = tmp; << 513 } << 514 662 515 G4double tmin3 = tmin2, tmax3 = tmax2; << 663 if (ds1 >= 0 || ds2 <= 0 ) 516 G4double cos3 = xb - xa; << 664 { 517 G4double dis3 = xd - xc; << 665 return snxt ; 518 if (dis3 >= -halfCarTolerance) << 666 } 519 { << 667 else // Will intersect & stay inside 520 if (cos3 >= 0) return kInfinity; << 668 { 521 G4double tmp = -dis3/cos3; << 669 sn1 = ss1/ds1 ; 522 if (tmin3 < tmp) tmin3 = tmp; << 670 Dist = ss2/ds2 ; 523 } << 671 if (Dist > sn1 ) sn1 = Dist ; 524 else if (cos3 > 0) << 672 sn2 = kInfinity ; 525 { << 673 } 526 G4double tmp = -dis3/cos3; << 527 if (tmax3 > tmp) tmax3 = tmp; << 528 } 674 } >> 675 >> 676 // Reduce allowed range of distances as appropriate 529 677 530 // Find distance << 678 if ( sn1 > smin) smin = sn1 ; 531 // << 679 if ( sn2 < smax) smax = sn2 ; 532 G4double tmin = tmin3, tmax = tmax3; << 680 533 if (tmax <= tmin + halfCarTolerance) return << 681 // Check for incompatible ranges (eg x intersects between 50 ->100 and y 534 return (tmin < halfCarTolerance ) ? 0. : tmi << 682 // only 10-40 -> no intersection). Set snxt if ok >> 683 >> 684 if ( smax > smin ) snxt = smin ; >> 685 if (snxt < 0.5*kCarTolerance ) snxt = 0.0 ; >> 686 >> 687 return snxt ; 535 } 688 } 536 689 537 ////////////////////////////////////////////// << 690 ///////////////////////////////////////////////////////////////////////// 538 // 691 // 539 // Calculate exact shortest distance to any bo << 692 // Approximate distance to shape 540 // This is the best fast estimation of the sho << 693 // Calculate perpendicular distances to z/x/y surfaces, return largest 541 // - returns 0 if point is inside << 694 // which is the most fast estimation of shortest distance to Trd >> 695 // - Safe underestimate >> 696 // - If point within exact shape, return 0 542 697 543 G4double G4Trd::DistanceToIn( const G4ThreeVec 698 G4double G4Trd::DistanceToIn( const G4ThreeVector& p ) const 544 { 699 { 545 G4double dx = fPlanes[3].a*std::abs(p.x())+f << 700 G4double safe=0.0; 546 G4double dy = fPlanes[1].b*std::abs(p.y())+f << 701 G4double tanxz,distx,safx; 547 G4double dxy = std::max(dx,dy); << 702 G4double tanyz,disty,safy; >> 703 G4double zbase; >> 704 >> 705 safe=fabs(p.z())-fDz; >> 706 if (safe<0) safe=0; // Also used to ensure x/y distances >> 707 // POSITIVE 548 708 549 G4double dz = std::abs(p.z())-fDz; << 709 zbase=fDz+p.z(); 550 G4double dist = std::max(dz,dxy); << 551 710 552 return (dist > 0) ? dist : 0.; << 711 // Find distance along x direction to closest x plane >> 712 // >> 713 tanxz=(fDx2-fDx1)*0.5/fDz; >> 714 // widx=fDx1+tanxz*(fDz+p.z()); // x width at p.z >> 715 // distx=fabs(p.x())-widx; // distance to plane >> 716 distx=fabs(p.x())-(fDx1+tanxz*zbase); >> 717 if (distx>safe) >> 718 { >> 719 safx=distx/sqrt(1.0+tanxz*tanxz); // vector Dist=Dist*cos(ang) >> 720 if (safx>safe) safe=safx; >> 721 } >> 722 >> 723 // Find distance along y direction to slanted wall >> 724 tanyz=(fDy2-fDy1)*0.5/fDz; >> 725 // widy=fDy1+tanyz*(fDz+p.z()); // y width at p.z >> 726 // disty=fabs(p.y())-widy; // distance to plane >> 727 disty=fabs(p.y())-(fDy1+tanyz*zbase); >> 728 if (disty>safe) >> 729 { >> 730 safy=disty/sqrt(1.0+tanyz*tanyz); // distance along vector >> 731 if (safy>safe) safe=safy; >> 732 } >> 733 return safe; 553 } 734 } 554 735 555 ////////////////////////////////////////////// << 736 //////////////////////////////////////////////////////////////////////// 556 // 737 // 557 // Calculate distance to surface of shape from << 738 // Calcluate distance to surface of shape from inside 558 // find normal at exit point, if required << 739 // Calculate distance to x/y/z planes - smallest is exiting distance 559 // - when leaving the surface, return 0 << 740 // - z planes have std. check for tolerance 560 << 741 // - xz yz planes have check based on distance || to x or y axis 561 G4double G4Trd::DistanceToOut(const G4ThreeVec << 742 // (not corrected for slope of planes) 562 const G4bool cal << 743 // ?BUG? If v.z==0 are there cases when snside not set???? 563 G4bool* va << 744 >> 745 G4double G4Trd::DistanceToOut( const G4ThreeVector& p, >> 746 const G4ThreeVector& v, >> 747 const G4bool calcNorm, >> 748 G4bool *validNorm, >> 749 G4ThreeVector *n ) const 564 { 750 { 565 // Z intersections << 751 ESide side = kUndefined, snside = kUndefined; 566 // << 752 G4double snxt,pdist; 567 if ((std::abs(p.z()) - fDz) >= -halfCarToler << 753 G4double central,ss1,ss2,ds1,ds2,sn=0.,sn2=0.; >> 754 G4double tanxz=0.,cosxz=0.,tanyz=0.,cosyz=0.; >> 755 >> 756 if (calcNorm) *validNorm=true; // All normals are valid >> 757 >> 758 // Calculate z plane intersection >> 759 if (v.z()>0) >> 760 { >> 761 pdist=fDz-p.z(); >> 762 if (pdist>kCarTolerance/2) >> 763 { >> 764 snxt=pdist/v.z(); >> 765 side=kPZ; >> 766 } >> 767 else >> 768 { >> 769 if (calcNorm) >> 770 { >> 771 *n=G4ThreeVector(0,0,1); >> 772 } >> 773 return snxt=0; >> 774 } >> 775 } >> 776 else if (v.z()<0) 568 { 777 { 569 if (calcNorm) << 778 pdist=fDz+p.z(); >> 779 if (pdist>kCarTolerance/2) 570 { 780 { 571 *validNorm = true; << 781 snxt=-pdist/v.z(); 572 n->set(0, 0, (p.z() < 0) ? -1 : 1); << 782 side=kMZ; >> 783 } >> 784 else >> 785 { >> 786 if (calcNorm) >> 787 { >> 788 *n=G4ThreeVector(0,0,-1); >> 789 } >> 790 return snxt=0; 573 } 791 } 574 return 0; << 575 } 792 } 576 G4double vz = v.z(); << 793 else 577 G4double tmax = (vz == 0) ? DBL_MAX : (std:: << 794 { 578 G4int iside = (vz < 0) ? -4 : -2; // little << 795 snxt=kInfinity; >> 796 } 579 797 580 // Y intersections << 581 // 798 // 582 G4int i = 0; << 799 // Calculate x intersection 583 for ( ; i<2; ++i) << 800 // 584 { << 801 tanxz=(fDx2-fDx1)*0.5/fDz; 585 G4double cosa = fPlanes[i].b*v.y() + fPlan << 802 central=0.5*(fDx1+fDx2); 586 if (cosa > 0) << 803 >> 804 // +ve plane (1) >> 805 // >> 806 ss1=central+tanxz*p.z()-p.x(); // distance || x axis to plane >> 807 // (+ve if point inside) >> 808 ds1=v.x()-tanxz*v.z(); // component towards plane at +x >> 809 // (-ve if +ve -> -ve direction) >> 810 // -ve plane (2) >> 811 // >> 812 ss2=-tanxz*p.z()-p.x()-central; //distance || x axis to plane >> 813 // (-ve if point inside) >> 814 ds2=tanxz*v.z()+v.x(); // component towards plane at -x >> 815 >> 816 if (ss1>0&&ss2<0) >> 817 { >> 818 // Normal case - entirely inside region >> 819 if (ds1<=0&&ds2<0) >> 820 { >> 821 if (ss2<-kCarTolerance/2) >> 822 { >> 823 sn=ss2/ds2; // Leave by -ve side >> 824 snside=kMX; >> 825 } >> 826 else >> 827 { >> 828 sn=0; // Leave immediately by -ve side >> 829 snside=kMX; >> 830 } >> 831 } >> 832 else if (ds1>0&&ds2>=0) >> 833 { >> 834 if (ss1>kCarTolerance/2) >> 835 { >> 836 sn=ss1/ds1; // Leave by +ve side >> 837 snside=kPX; >> 838 } >> 839 else >> 840 { >> 841 sn=0; // Leave immediately by +ve side >> 842 snside=kPX; >> 843 } >> 844 } >> 845 else if (ds1>0&&ds2<0) 587 { 846 { 588 G4double dist = fPlanes[i].b*p.y()+fPlan << 847 if (ss1>kCarTolerance/2) 589 if (dist >= -halfCarTolerance) << 590 { 848 { 591 if (calcNorm) << 849 // sn=ss1/ds1; // Leave by +ve side >> 850 if (ss2<-kCarTolerance/2) 592 { 851 { 593 *validNorm = true; << 852 sn=ss1/ds1; // Leave by +ve side 594 n->set(0, fPlanes[i].b, fPlanes[i].c << 853 sn2=ss2/ds2; >> 854 if (sn2<sn) >> 855 { >> 856 sn=sn2; >> 857 snside=kMX; >> 858 } >> 859 else >> 860 { >> 861 snside=kPX; >> 862 } 595 } 863 } 596 return 0; << 864 else >> 865 { >> 866 sn=0; // Leave immediately by -ve >> 867 snside=kMX; >> 868 } 597 } 869 } 598 G4double tmp = -dist/cosa; << 870 else 599 if (tmax > tmp) { tmax = tmp; iside = i; << 871 { >> 872 sn=0; // Leave immediately by +ve side >> 873 snside=kPX; >> 874 } >> 875 } >> 876 else >> 877 { >> 878 // Must be || to both >> 879 // >> 880 sn=kInfinity; // Don't leave by either side 600 } 881 } 601 } 882 } >> 883 else if (ss1<=0&&ss2<0) >> 884 { >> 885 // Outside, in +ve Area >> 886 >> 887 if (ds1>0) >> 888 { >> 889 sn=0; // Away from shape >> 890 // Left by +ve side >> 891 snside=kPX; >> 892 } >> 893 else >> 894 { >> 895 if (ds2<0) >> 896 { >> 897 // Ignore +ve plane and use -ve plane intersect >> 898 // >> 899 sn=ss2/ds2; // Leave by -ve side >> 900 snside=kMX; >> 901 } >> 902 else >> 903 { >> 904 // Must be || to both -> exit determined by other axes >> 905 // >> 906 sn=kInfinity; // Don't leave by either side >> 907 } >> 908 } >> 909 } >> 910 else if (ss1>0&&ss2>=0) >> 911 { >> 912 // Outside, in -ve Area 602 913 603 // X intersections << 914 if (ds2<0) 604 // << 915 { 605 for ( ; i<4; ++i) << 916 sn=0; // away from shape >> 917 // Left by -ve side >> 918 snside=kMX; >> 919 } >> 920 else >> 921 { >> 922 if (ds1>0) >> 923 { >> 924 // Ignore +ve plane and use -ve plane intersect >> 925 // >> 926 sn=ss1/ds1; // Leave by +ve side >> 927 snside=kPX; >> 928 } >> 929 else >> 930 { >> 931 // Must be || to both -> exit determined by other axes >> 932 // >> 933 sn=kInfinity; // Don't leave by either side >> 934 } >> 935 } >> 936 } >> 937 >> 938 // Update minimum exit distance >> 939 >> 940 if (sn<snxt) >> 941 { >> 942 snxt=sn; >> 943 side=snside; >> 944 } >> 945 if (snxt>0) 606 { 946 { 607 G4double cosa = fPlanes[i].a*v.x()+fPlanes << 947 // Calculate y intersection 608 if (cosa > 0) << 948 >> 949 tanyz=(fDy2-fDy1)*0.5/fDz; >> 950 central=0.5*(fDy1+fDy2); >> 951 >> 952 // +ve plane (1) >> 953 // >> 954 ss1=central+tanyz*p.z()-p.y(); // distance || y axis to plane >> 955 // (+ve if point inside) >> 956 ds1=v.y()-tanyz*v.z(); // component towards +ve plane >> 957 // (-ve if +ve -> -ve direction) >> 958 // -ve plane (2) >> 959 // >> 960 ss2=-tanyz*p.z()-p.y()-central; // distance || y axis to plane >> 961 // (-ve if point inside) >> 962 ds2=tanyz*v.z()+v.y(); // component towards -ve plane >> 963 >> 964 if (ss1>0&&ss2<0) 609 { 965 { 610 G4double dist = fPlanes[i].a*p.x()+fPlan << 966 // Normal case - entirely inside region 611 if (dist >= -halfCarTolerance) << 967 >> 968 if (ds1<=0&&ds2<0) >> 969 { >> 970 if (ss2<-kCarTolerance/2) >> 971 { >> 972 sn=ss2/ds2; // Leave by -ve side >> 973 snside=kMY; >> 974 } >> 975 else >> 976 { >> 977 sn=0; // Leave immediately by -ve side >> 978 snside=kMY; >> 979 } >> 980 } >> 981 else if (ds1>0&&ds2>=0) >> 982 { >> 983 if (ss1>kCarTolerance/2) >> 984 { >> 985 sn=ss1/ds1; // Leave by +ve side >> 986 snside=kPY; >> 987 } >> 988 else >> 989 { >> 990 sn=0; // Leave immediately by +ve side >> 991 snside=kPY; >> 992 } >> 993 } >> 994 else if (ds1>0&&ds2<0) 612 { 995 { 613 if (calcNorm) << 996 if (ss1>kCarTolerance/2) 614 { 997 { 615 *validNorm = true; << 998 // sn=ss1/ds1; // Leave by +ve side 616 n->set(fPlanes[i].a, fPlanes[i].b, << 999 if (ss2<-kCarTolerance/2) >> 1000 { >> 1001 sn=ss1/ds1; // Leave by +ve side >> 1002 sn2=ss2/ds2; >> 1003 if (sn2<sn) >> 1004 { >> 1005 sn=sn2; >> 1006 snside=kMY; >> 1007 } >> 1008 else >> 1009 { >> 1010 snside=kPY; >> 1011 } >> 1012 } >> 1013 else >> 1014 { >> 1015 sn=0; // Leave immediately by -ve >> 1016 snside=kMY; >> 1017 } 617 } 1018 } 618 return 0; << 1019 else >> 1020 { >> 1021 sn=0; // Leave immediately by +ve side >> 1022 snside=kPY; >> 1023 } >> 1024 } >> 1025 else >> 1026 { >> 1027 // Must be || to both >> 1028 // >> 1029 sn=kInfinity; // Don't leave by either side 619 } 1030 } 620 G4double tmp = -dist/cosa; << 1031 } 621 if (tmax > tmp) { tmax = tmp; iside = i; << 1032 else if (ss1<=0&&ss2<0) >> 1033 { >> 1034 // Outside, in +ve Area >> 1035 >> 1036 if (ds1>0) >> 1037 { >> 1038 sn=0; // Away from shape >> 1039 // Left by +ve side >> 1040 snside=kPY; >> 1041 } >> 1042 else >> 1043 { >> 1044 if (ds2<0) >> 1045 { >> 1046 // Ignore +ve plane and use -ve plane intersect >> 1047 // >> 1048 sn=ss2/ds2; // Leave by -ve side >> 1049 snside=kMY; >> 1050 } >> 1051 else >> 1052 { >> 1053 // Must be || to both -> exit determined by other axes >> 1054 // >> 1055 sn=kInfinity; // Don't leave by either side >> 1056 } >> 1057 } >> 1058 } >> 1059 else if (ss1>0&&ss2>=0) >> 1060 { >> 1061 // Outside, in -ve Area >> 1062 if (ds2<0) >> 1063 { >> 1064 sn=0; // away from shape >> 1065 // Left by -ve side >> 1066 snside=kMY; >> 1067 } >> 1068 else >> 1069 { >> 1070 if (ds1>0) >> 1071 { >> 1072 // Ignore +ve plane and use -ve plane intersect >> 1073 // >> 1074 sn=ss1/ds1; // Leave by +ve side >> 1075 snside=kPY; >> 1076 } >> 1077 else >> 1078 { >> 1079 // Must be || to both -> exit determined by other axes >> 1080 // >> 1081 sn=kInfinity; // Don't leave by either side >> 1082 } >> 1083 } >> 1084 } >> 1085 >> 1086 // Update minimum exit distance >> 1087 >> 1088 if (sn<snxt) >> 1089 { >> 1090 snxt=sn; >> 1091 side=snside; 622 } 1092 } 623 } 1093 } 624 1094 625 // Set normal, if required, and return dista << 626 // << 627 if (calcNorm) 1095 if (calcNorm) 628 { 1096 { 629 *validNorm = true; << 1097 switch (side) 630 if (iside < 0) << 1098 { 631 n->set(0, 0, iside + 3); // (-4+3)=-1, ( << 1099 case kPX: 632 else << 1100 cosxz=1.0/sqrt(1.0+tanxz*tanxz); 633 n->set(fPlanes[iside].a, fPlanes[iside]. << 1101 *n=G4ThreeVector(cosxz,0,-tanxz*cosxz); >> 1102 break; >> 1103 case kMX: >> 1104 cosxz=-1.0/sqrt(1.0+tanxz*tanxz); >> 1105 *n=G4ThreeVector(cosxz,0,tanxz*cosxz); >> 1106 break; >> 1107 case kPY: >> 1108 cosyz=1.0/sqrt(1.0+tanyz*tanyz); >> 1109 *n=G4ThreeVector(0,cosyz,-tanyz*cosyz); >> 1110 break; >> 1111 case kMY: >> 1112 cosyz=-1.0/sqrt(1.0+tanyz*tanyz); >> 1113 *n=G4ThreeVector(0,cosyz,tanyz*cosyz); >> 1114 break; >> 1115 case kPZ: >> 1116 *n=G4ThreeVector(0,0,1); >> 1117 break; >> 1118 case kMZ: >> 1119 *n=G4ThreeVector(0,0,-1); >> 1120 break; >> 1121 default: >> 1122 DumpInfo(); >> 1123 G4Exception("G4Trd::DistanceToOut(p,v,..)","Notification",JustWarning, >> 1124 "Undefined side for valid surface normal to solid."); >> 1125 break; >> 1126 } 634 } 1127 } 635 return tmax; << 1128 return snxt; 636 } 1129 } 637 1130 638 ////////////////////////////////////////////// << 1131 /////////////////////////////////////////////////////////////////////////// 639 // 1132 // 640 // Calculate exact shortest distance to any bo 1133 // Calculate exact shortest distance to any boundary from inside 641 // - returns 0 if point is outside << 1134 // - Returns 0 is point outside 642 1135 643 G4double G4Trd::DistanceToOut( const G4ThreeVe 1136 G4double G4Trd::DistanceToOut( const G4ThreeVector& p ) const 644 { 1137 { >> 1138 G4double safe=0.0; >> 1139 G4double tanxz,xdist,saf1; >> 1140 G4double tanyz,ydist,saf2; >> 1141 G4double zbase; >> 1142 645 #ifdef G4CSGDEBUG 1143 #ifdef G4CSGDEBUG 646 if( Inside(p) == kOutside ) 1144 if( Inside(p) == kOutside ) 647 { 1145 { 648 std::ostringstream message; << 1146 G4cout.precision(16) ; 649 G4long oldprc = message.precision(16); << 1147 G4cout << G4endl ; 650 message << "Point p is outside (!?) of sol << 1148 DumpInfo(); 651 message << "Position:\n"; << 1149 G4cout << "Position:" << G4endl << G4endl ; 652 message << " p.x() = " << p.x()/mm << " << 1150 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 653 message << " p.y() = " << p.y()/mm << " << 1151 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 654 message << " p.z() = " << p.z()/mm << " << 1152 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 655 G4cout.precision(oldprc); << 1153 G4Exception("G4Trd::DistanceToOut(p)", "Notification", JustWarning, 656 G4Exception("G4Trd::DistanceToOut(p)", "Ge << 1154 "Point p is outside !?" ); 657 JustWarning, message ); << 658 DumpInfo(); << 659 } 1155 } 660 #endif 1156 #endif 661 G4double dx = fPlanes[3].a*std::abs(p.x())+f << 662 G4double dy = fPlanes[1].b*std::abs(p.y())+f << 663 G4double dxy = std::max(dx,dy); << 664 1157 665 G4double dz = std::abs(p.z())-fDz; << 1158 safe=fDz-fabs(p.z()); // z perpendicular Dist 666 G4double dist = std::max(dz,dxy); << 667 1159 668 return (dist < 0) ? -dist : 0.; << 1160 zbase=fDz+p.z(); 669 } << 670 1161 671 ////////////////////////////////////////////// << 1162 // xdist = distance perpendicular to z axis to closest x plane from p 672 // << 1163 // = (x half width of shape at p.z) - fabs(p.x) 673 // GetEntityType << 1164 // >> 1165 tanxz=(fDx2-fDx1)*0.5/fDz; >> 1166 xdist=fDx1+tanxz*zbase-fabs(p.x()); >> 1167 saf1=xdist/sqrt(1.0+tanxz*tanxz); // x*cos(ang_xz) = >> 1168 // shortest (perpendicular) >> 1169 // distance to plane >> 1170 tanyz=(fDy2-fDy1)*0.5/fDz; >> 1171 ydist=fDy1+tanyz*zbase-fabs(p.y()); >> 1172 saf2=ydist/sqrt(1.0+tanyz*tanyz); 674 1173 675 G4GeometryType G4Trd::GetEntityType() const << 1174 // Return minimum x/y/z distance 676 { << 1175 // 677 return {"G4Trd"}; << 1176 if (safe>saf1) safe=saf1; >> 1177 if (safe>saf2) safe=saf2; >> 1178 >> 1179 if (safe<0) safe=0; >> 1180 return safe; 678 } 1181 } 679 1182 680 ////////////////////////////////////////////// << 1183 //////////////////////////////////////////////////////////////////////////// 681 // 1184 // 682 // IsFaceted << 1185 // Create a List containing the transformed vertices 683 << 1186 // Ordering [0-3] -fDz cross section 684 G4bool G4Trd::IsFaceted() const << 1187 // [4-7] +fDz cross section such that [0] is below [4], 685 { << 1188 // [1] below [5] etc. 686 return true; << 1189 // Note: >> 1190 // Caller has deletion resposibility >> 1191 >> 1192 G4ThreeVectorList* >> 1193 G4Trd::CreateRotatedVertices( const G4AffineTransform& pTransform ) const >> 1194 { >> 1195 G4ThreeVectorList *vertices; >> 1196 vertices=new G4ThreeVectorList(); >> 1197 vertices->reserve(8); >> 1198 if (vertices) >> 1199 { >> 1200 G4ThreeVector vertex0(-fDx1,-fDy1,-fDz); >> 1201 G4ThreeVector vertex1(fDx1,-fDy1,-fDz); >> 1202 G4ThreeVector vertex2(fDx1,fDy1,-fDz); >> 1203 G4ThreeVector vertex3(-fDx1,fDy1,-fDz); >> 1204 G4ThreeVector vertex4(-fDx2,-fDy2,fDz); >> 1205 G4ThreeVector vertex5(fDx2,-fDy2,fDz); >> 1206 G4ThreeVector vertex6(fDx2,fDy2,fDz); >> 1207 G4ThreeVector vertex7(-fDx2,fDy2,fDz); >> 1208 >> 1209 vertices->push_back(pTransform.TransformPoint(vertex0)); >> 1210 vertices->push_back(pTransform.TransformPoint(vertex1)); >> 1211 vertices->push_back(pTransform.TransformPoint(vertex2)); >> 1212 vertices->push_back(pTransform.TransformPoint(vertex3)); >> 1213 vertices->push_back(pTransform.TransformPoint(vertex4)); >> 1214 vertices->push_back(pTransform.TransformPoint(vertex5)); >> 1215 vertices->push_back(pTransform.TransformPoint(vertex6)); >> 1216 vertices->push_back(pTransform.TransformPoint(vertex7)); >> 1217 } >> 1218 else >> 1219 { >> 1220 DumpInfo(); >> 1221 G4Exception("G4Trd::CreateRotatedVertices()", >> 1222 "FatalError", FatalException, >> 1223 "Error in allocation of vertices. Out of memory !"); >> 1224 } >> 1225 return vertices; 687 } 1226 } 688 1227 689 ////////////////////////////////////////////// 1228 ////////////////////////////////////////////////////////////////////////// 690 // 1229 // 691 // Make a clone of the object << 1230 // GetEntityType 692 // << 1231 693 G4VSolid* G4Trd::Clone() const << 1232 G4GeometryType G4Trd::GetEntityType() const 694 { 1233 { 695 return new G4Trd(*this); << 1234 return G4String("G4Trd"); 696 } 1235 } 697 1236 698 ////////////////////////////////////////////// 1237 ////////////////////////////////////////////////////////////////////////// 699 // 1238 // 700 // Stream object contents to an output stream 1239 // Stream object contents to an output stream 701 1240 702 std::ostream& G4Trd::StreamInfo( std::ostream& 1241 std::ostream& G4Trd::StreamInfo( std::ostream& os ) const 703 { 1242 { 704 G4long oldprc = os.precision(16); << 705 os << "------------------------------------- 1243 os << "-----------------------------------------------------------\n" 706 << " *** Dump for solid - " << GetName 1244 << " *** Dump for solid - " << GetName() << " ***\n" 707 << " ================================= 1245 << " ===================================================\n" 708 << " Solid type: G4Trd\n" 1246 << " Solid type: G4Trd\n" 709 << " Parameters: \n" 1247 << " Parameters: \n" 710 << " half length X, surface -dZ: " << 1248 << " half length X, surface -dZ: " << fDx1/mm << " mm \n" 711 << " half length X, surface +dZ: " << 1249 << " half length X, surface +dZ: " << fDx2/mm << " mm \n" 712 << " half length Y, surface -dZ: " << 1250 << " half length Y, surface -dZ: " << fDy1/mm << " mm \n" 713 << " half length Y, surface +dZ: " << 1251 << " half length Y, surface +dZ: " << fDy2/mm << " mm \n" 714 << " half length Z : " << << 1252 << " half length Z : " << fDz/mm << " mm \n" 715 << "------------------------------------- 1253 << "-----------------------------------------------------------\n"; 716 os.precision(oldprc); << 717 1254 718 return os; 1255 return os; 719 } 1256 } 720 1257 721 ////////////////////////////////////////////// << 1258 /////////////////////////////////////////////////////////////////////// 722 // << 723 // Return a point randomly and uniformly selec << 724 << 725 G4ThreeVector G4Trd::GetPointOnSurface() const << 726 { << 727 // Set areas << 728 // << 729 G4double sxz = (fDx1 + fDx2)*fHx; << 730 G4double syz = (fDy1 + fDy2)*fHy; << 731 G4double ssurf[6] = { 4.*fDx1*fDy1, sxz, sxz << 732 ssurf[1] += ssurf[0]; << 733 ssurf[2] += ssurf[1]; << 734 ssurf[3] += ssurf[2]; << 735 ssurf[4] += ssurf[3]; << 736 ssurf[5] += ssurf[4]; << 737 << 738 // Select face << 739 // << 740 G4double select = ssurf[5]*G4QuickRand(); << 741 G4int k = 5; << 742 k -= (G4int)(select <= ssurf[4]); << 743 k -= (G4int)(select <= ssurf[3]); << 744 k -= (G4int)(select <= ssurf[2]); << 745 k -= (G4int)(select <= ssurf[1]); << 746 k -= (G4int)(select <= ssurf[0]); << 747 << 748 // Generate point on selected surface << 749 // << 750 G4double u = G4QuickRand(); << 751 G4double v = G4QuickRand(); << 752 switch(k) << 753 { << 754 case 0: // base at -Z << 755 { << 756 return { (2.*u - 1.)*fDx1, (2.*v - 1.)*f << 757 } << 758 case 1: // X face at -Y << 759 { << 760 if (u + v > 1.) { u = 1. - u; v = 1. - v << 761 G4ThreeVector p0(-fDx1,-fDy1,-fDz); << 762 G4ThreeVector p1( fDx2,-fDy2, fDz); << 763 return (select <= ssurf[0] + fDx1*fHx) ? << 764 (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 765 (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 766 } << 767 case 2: // X face at +Y << 768 { << 769 if (u + v > 1.) { u = 1. - u; v = 1. - v << 770 G4ThreeVector p0( fDx1, fDy1,-fDz); << 771 G4ThreeVector p1(-fDx2, fDy2, fDz); << 772 return (select <= ssurf[1] + fDx1*fHx) ? << 773 (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 774 (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 775 } << 776 case 3: // Y face at -X << 777 { << 778 if (u + v > 1.) { u = 1. - u; v = 1. - v << 779 G4ThreeVector p0(-fDx1, fDy1,-fDz); << 780 G4ThreeVector p1(-fDx2,-fDy2, fDz); << 781 return (select <= ssurf[2] + fDy1*fHy) ? << 782 (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 783 (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 784 } << 785 case 4: // Y face at +X << 786 { << 787 if (u + v > 1.) { u = 1. - u; v = 1. - v << 788 G4ThreeVector p0( fDx1,-fDy1,-fDz); << 789 G4ThreeVector p1( fDx2, fDy2, fDz); << 790 return (select <= ssurf[3] + fDy1*fHy) ? << 791 (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 792 (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 793 } << 794 case 5: // base at +Z << 795 { << 796 return { (2.*u - 1.)*fDx2, (2.*v - 1.)*f << 797 } << 798 } << 799 return {0., 0., 0.}; << 800 } << 801 << 802 ////////////////////////////////////////////// << 803 // 1259 // 804 // Methods for visualisation 1260 // Methods for visualisation 805 1261 806 void G4Trd::DescribeYourselfTo ( G4VGraphicsSc 1262 void G4Trd::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 807 { 1263 { 808 scene.AddSolid (*this); << 1264 scene.AddThis (*this); 809 } 1265 } 810 1266 811 G4Polyhedron* G4Trd::CreatePolyhedron () const 1267 G4Polyhedron* G4Trd::CreatePolyhedron () const 812 { 1268 { 813 return new G4PolyhedronTrd2 (fDx1, fDx2, fDy 1269 return new G4PolyhedronTrd2 (fDx1, fDx2, fDy1, fDy2, fDz); 814 } 1270 } 815 1271 816 #endif << 1272 G4NURBS* G4Trd::CreateNURBS () const >> 1273 { >> 1274 // return new G4NURBSbox (fDx, fDy, fDz); >> 1275 return 0; >> 1276 } >> 1277 >> 1278 // >> 1279 // >> 1280 /////////////////////////////////////////////////////////////////////////// 817 1281