Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4Trd.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/CSG/src/G4Trd.cc (Version 11.3.0) and /geometry/solids/CSG/src/G4Trd.cc (Version 10.6.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Implementation for G4Trd class                  26 // Implementation for G4Trd class
 27 //                                                 27 //
 28 // 12.01.95 P.Kent: First version                  28 // 12.01.95 P.Kent: First version
 29 // 28.04.05 V.Grichine: new SurfaceNormal acco <<  29 // 28.04.05 V.Grichine: new SurfaceNormal according to J.Apostolakis proposal 
 30 // 25.05.17 E.Tcherniaev: complete revision, s     30 // 25.05.17 E.Tcherniaev: complete revision, speed-up
 31 // -------------------------------------------     31 // --------------------------------------------------------------------
 32                                                    32 
 33 #include "G4Trd.hh"                                33 #include "G4Trd.hh"
 34                                                    34 
 35 #if !defined(G4GEOM_USE_UTRD)                      35 #if !defined(G4GEOM_USE_UTRD)
 36                                                    36 
 37 #include "G4GeomTools.hh"                          37 #include "G4GeomTools.hh"
 38                                                    38 
 39 #include "G4VoxelLimits.hh"                        39 #include "G4VoxelLimits.hh"
 40 #include "G4AffineTransform.hh"                    40 #include "G4AffineTransform.hh"
 41 #include "G4BoundingEnvelope.hh"                   41 #include "G4BoundingEnvelope.hh"
 42 #include "G4QuickRand.hh"                      <<  42 #include "Randomize.hh"
 43                                                    43 
 44 #include "G4VPVParameterisation.hh"                44 #include "G4VPVParameterisation.hh"
 45                                                    45 
 46 #include "G4VGraphicsScene.hh"                     46 #include "G4VGraphicsScene.hh"
 47                                                    47 
 48 using namespace CLHEP;                             48 using namespace CLHEP;
 49                                                    49 
 50 //////////////////////////////////////////////     50 //////////////////////////////////////////////////////////////////////////
 51 //                                                 51 //
 52 // Constructor - set & check half widths           52 // Constructor - set & check half widths
 53                                                    53 
 54 G4Trd::G4Trd(const G4String& pName,                54 G4Trd::G4Trd(const G4String& pName,
 55                    G4double pdx1, G4double pdx     55                    G4double pdx1, G4double pdx2,
 56                    G4double pdy1, G4double pdy     56                    G4double pdy1, G4double pdy2,
 57                    G4double pdz)                   57                    G4double pdz)
 58   : G4CSGSolid(pName), halfCarTolerance(0.5*kC     58   : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance),
 59     fDx1(pdx1), fDx2(pdx2), fDy1(pdy1), fDy2(p     59     fDx1(pdx1), fDx2(pdx2), fDy1(pdy1), fDy2(pdy2), fDz(pdz)
 60 {                                                  60 {
 61   CheckParameters();                               61   CheckParameters();
 62   MakePlanes();                                    62   MakePlanes();
 63 }                                                  63 }
 64                                                    64 
 65 //////////////////////////////////////////////     65 //////////////////////////////////////////////////////////////////////////
 66 //                                                 66 //
 67 // Fake default constructor - sets only member     67 // Fake default constructor - sets only member data and allocates memory
 68 //                            for usage restri     68 //                            for usage restricted to object persistency
 69 //                                                 69 //
 70 G4Trd::G4Trd( __void__& a )                        70 G4Trd::G4Trd( __void__& a )
 71   : G4CSGSolid(a), halfCarTolerance(0.5*kCarTo     71   : G4CSGSolid(a), halfCarTolerance(0.5*kCarTolerance),
 72     fDx1(1.), fDx2(1.), fDy1(1.), fDy2(1.), fD     72     fDx1(1.), fDx2(1.), fDy1(1.), fDy2(1.), fDz(1.)
 73 {                                                  73 {
 74   MakePlanes();                                    74   MakePlanes();
 75 }                                                  75 }
 76                                                    76 
 77 //////////////////////////////////////////////     77 //////////////////////////////////////////////////////////////////////////
 78 //                                                 78 //
 79 // Destructor                                      79 // Destructor
 80                                                    80 
 81 G4Trd::~G4Trd() = default;                     <<  81 G4Trd::~G4Trd()
                                                   >>  82 {
                                                   >>  83 }
 82                                                    84 
 83 //////////////////////////////////////////////     85 //////////////////////////////////////////////////////////////////////////
 84 //                                                 86 //
 85 // Copy constructor                                87 // Copy constructor
 86                                                    88 
 87 G4Trd::G4Trd(const G4Trd& rhs)                     89 G4Trd::G4Trd(const G4Trd& rhs)
 88   : G4CSGSolid(rhs), halfCarTolerance(rhs.half     90   : G4CSGSolid(rhs), halfCarTolerance(rhs.halfCarTolerance),
 89     fDx1(rhs.fDx1), fDx2(rhs.fDx2),                91     fDx1(rhs.fDx1), fDx2(rhs.fDx2),
 90     fDy1(rhs.fDy1), fDy2(rhs.fDy2), fDz(rhs.fD <<  92     fDy1(rhs.fDy1), fDy2(rhs.fDy2), fDz(rhs.fDz)
 91     fHx(rhs.fHx), fHy(rhs.fHy)                 << 
 92 {                                                  93 {
 93   for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs     94   for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs.fPlanes[i]; }
 94 }                                                  95 }
 95                                                    96 
 96 //////////////////////////////////////////////     97 //////////////////////////////////////////////////////////////////////////
 97 //                                                 98 //
 98 // Assignment operator                             99 // Assignment operator
 99                                                   100 
100 G4Trd& G4Trd::operator = (const G4Trd& rhs)       101 G4Trd& G4Trd::operator = (const G4Trd& rhs)
101 {                                                 102 {
102    // Check assignment to self                    103    // Check assignment to self
103    //                                             104    //
104    if (this == &rhs)  { return *this; }           105    if (this == &rhs)  { return *this; }
105                                                   106 
106    // Copy base class data                        107    // Copy base class data
107    //                                             108    //
108    G4CSGSolid::operator=(rhs);                    109    G4CSGSolid::operator=(rhs);
109                                                   110 
110    // Copy data                                   111    // Copy data
111    //                                             112    //
112    halfCarTolerance = rhs.halfCarTolerance;       113    halfCarTolerance = rhs.halfCarTolerance;
113    fDx1 = rhs.fDx1; fDx2 = rhs.fDx2;              114    fDx1 = rhs.fDx1; fDx2 = rhs.fDx2;
114    fDy1 = rhs.fDy1; fDy2 = rhs.fDy2;              115    fDy1 = rhs.fDy1; fDy2 = rhs.fDy2;
115    fDz = rhs.fDz;                                 116    fDz = rhs.fDz;
116    fHx = rhs.fHx; fHy = rhs.fHy;               << 
117    for (G4int i=0; i<4; ++i) { fPlanes[i] = rh    117    for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs.fPlanes[i]; }
118                                                   118 
119    return *this;                                  119    return *this;
120 }                                                 120 }
121                                                   121 
122 //////////////////////////////////////////////    122 //////////////////////////////////////////////////////////////////////////
123 //                                                123 //
124 // Set all parameters, as for constructor - se    124 // Set all parameters, as for constructor - set and check half-widths
125                                                   125 
126 void G4Trd::SetAllParameters(G4double pdx1, G4    126 void G4Trd::SetAllParameters(G4double pdx1, G4double pdx2,
127                              G4double pdy1, G4    127                              G4double pdy1, G4double pdy2, G4double pdz)
128 {                                                 128 {
129   // Reset data of the base class                 129   // Reset data of the base class
130   fCubicVolume = 0.;                              130   fCubicVolume = 0.;
131   fSurfaceArea = 0.;                              131   fSurfaceArea = 0.;
132   fRebuildPolyhedron = true;                      132   fRebuildPolyhedron = true;
133                                                   133 
134   // Set parameters                               134   // Set parameters
135   fDx1 = pdx1; fDx2 = pdx2;                       135   fDx1 = pdx1; fDx2 = pdx2;
136   fDy1 = pdy1; fDy2 = pdy2;                       136   fDy1 = pdy1; fDy2 = pdy2;
137   fDz  = pdz;                                     137   fDz  = pdz;
138                                                   138 
139   CheckParameters();                              139   CheckParameters();
140   MakePlanes();                                   140   MakePlanes();
141 }                                                 141 }
142                                                   142 
143 //////////////////////////////////////////////    143 //////////////////////////////////////////////////////////////////////////
144 //                                                144 //
145 // Check dimensions                               145 // Check dimensions
146                                                   146 
147 void G4Trd::CheckParameters()                     147 void G4Trd::CheckParameters()
148 {                                                 148 {
149   G4double dmin = 2*kCarTolerance;                149   G4double dmin = 2*kCarTolerance;
150   if ((fDx1 < 0 || fDx2 < 0 || fDy1 < 0 || fDy    150   if ((fDx1 < 0 || fDx2 < 0 || fDy1 < 0 || fDy2 < 0 || fDz < dmin) ||
151       (fDx1 < dmin && fDx2 < dmin) ||             151       (fDx1 < dmin && fDx2 < dmin) ||
152       (fDy1 < dmin && fDy2 < dmin))               152       (fDy1 < dmin && fDy2 < dmin))
153   {                                               153   {
154     std::ostringstream message;                   154     std::ostringstream message;
155     message << "Invalid (too small or negative    155     message << "Invalid (too small or negative) dimensions for Solid: "
156             << GetName()                          156             << GetName()
157             << "\n  X - " << fDx1 << ", " << f    157             << "\n  X - " << fDx1 << ", " << fDx2
158             << "\n  Y - " << fDy1 << ", " << f    158             << "\n  Y - " << fDy1 << ", " << fDy2
159             << "\n  Z - " << fDz;                 159             << "\n  Z - " << fDz;
160     G4Exception("G4Trd::CheckParameters()", "G    160     G4Exception("G4Trd::CheckParameters()", "GeomSolids0002",
161                 FatalException, message);         161                 FatalException, message);
162   }                                               162   }
163 }                                                 163 }
164                                                   164 
165 //////////////////////////////////////////////    165 //////////////////////////////////////////////////////////////////////////
166 //                                                166 //
167 // Set side planes                                167 // Set side planes
168                                                   168 
169 void G4Trd::MakePlanes()                          169 void G4Trd::MakePlanes()
170 {                                                 170 {
171   G4double dx = fDx1 - fDx2;                      171   G4double dx = fDx1 - fDx2;
172   G4double dy = fDy1 - fDy2;                      172   G4double dy = fDy1 - fDy2;
173   G4double dz = 2*fDz;                            173   G4double dz = 2*fDz;
174   fHx = std::sqrt(dy*dy + dz*dz);              << 174   G4double magx = std::sqrt(dx*dx + dz*dz);
175   fHy = std::sqrt(dx*dx + dz*dz);              << 175   G4double magy = std::sqrt(dy*dy + dz*dz);
176                                                   176 
177   // Set X planes at -Y & +Y                   << 177   // Set -Y & +Y planes
178   //                                              178   //
179   fPlanes[0].a =  0.;                             179   fPlanes[0].a =  0.;
180   fPlanes[0].b = -dz/fHx;                      << 180   fPlanes[0].b = -dz/magy;
181   fPlanes[0].c =  dy/fHx;                      << 181   fPlanes[0].c =  dy/magy;
182   fPlanes[0].d = fPlanes[0].b*fDy1 + fPlanes[0    182   fPlanes[0].d = fPlanes[0].b*fDy1 + fPlanes[0].c*fDz;
183                                                   183 
184   fPlanes[1].a =  fPlanes[0].a;                   184   fPlanes[1].a =  fPlanes[0].a;
185   fPlanes[1].b = -fPlanes[0].b;                   185   fPlanes[1].b = -fPlanes[0].b;
186   fPlanes[1].c =  fPlanes[0].c;                   186   fPlanes[1].c =  fPlanes[0].c;
187   fPlanes[1].d =  fPlanes[0].d;                   187   fPlanes[1].d =  fPlanes[0].d;
188                                                   188 
189   // Set Y planes at -X & +X                   << 189   // Set -X & +X planes
190   //                                              190   //
191   fPlanes[2].a = -dz/fHy;                      << 191   fPlanes[2].a = -dz/magx;
192   fPlanes[2].b =  0.;                             192   fPlanes[2].b =  0.;
193   fPlanes[2].c =  dx/fHy;                      << 193   fPlanes[2].c =  dx/magx;
194   fPlanes[2].d = fPlanes[2].a*fDx1 + fPlanes[2    194   fPlanes[2].d = fPlanes[2].a*fDx1 + fPlanes[2].c*fDz;
195                                                   195 
196   fPlanes[3].a = -fPlanes[2].a;                   196   fPlanes[3].a = -fPlanes[2].a;
197   fPlanes[3].b =  fPlanes[2].b;                   197   fPlanes[3].b =  fPlanes[2].b;
198   fPlanes[3].c =  fPlanes[2].c;                   198   fPlanes[3].c =  fPlanes[2].c;
199   fPlanes[3].d =  fPlanes[2].d;                   199   fPlanes[3].d =  fPlanes[2].d;
200 }                                                 200 }
201                                                   201 
202 //////////////////////////////////////////////    202 //////////////////////////////////////////////////////////////////////////
203 //                                                203 //
204 // Get volume                                     204 // Get volume
205                                                   205 
206 G4double G4Trd::GetCubicVolume()                  206 G4double G4Trd::GetCubicVolume()
207 {                                                 207 {
208   if (fCubicVolume == 0.)                         208   if (fCubicVolume == 0.)
209   {                                               209   {
210     fCubicVolume = 2*fDz*( (fDx1+fDx2)*(fDy1+f    210     fCubicVolume = 2*fDz*( (fDx1+fDx2)*(fDy1+fDy2) +
211                            (fDx2-fDx1)*(fDy2-f    211                            (fDx2-fDx1)*(fDy2-fDy1)/3 );
212   }                                               212   }
213   return fCubicVolume;                            213   return fCubicVolume;
214 }                                                 214 }
215                                                   215 
216 //////////////////////////////////////////////    216 //////////////////////////////////////////////////////////////////////////
217 //                                                217 //
218 // Get surface area                               218 // Get surface area
219                                                   219 
220 G4double G4Trd::GetSurfaceArea()                  220 G4double G4Trd::GetSurfaceArea()
221 {                                                 221 {
222   if (fSurfaceArea == 0.)                         222   if (fSurfaceArea == 0.)
223   {                                               223   {
224     fSurfaceArea =                                224     fSurfaceArea =
225       4*(fDx1*fDy1 + fDx2*fDy2) + 2*(fDx1+fDx2 << 225       4*(fDx1*fDy1+fDx2*fDy2) +
                                                   >> 226       2*(fDy1+fDy2)*std::hypot(fDx1-fDx2,2*fDz) +
                                                   >> 227       2*(fDx1+fDx2)*std::hypot(fDy1-fDy2,2*fDz);
226   }                                               228   }
227   return fSurfaceArea;                            229   return fSurfaceArea;
228 }                                                 230 }
229                                                   231 
230 //////////////////////////////////////////////    232 //////////////////////////////////////////////////////////////////////////
231 //                                                233 //
232 // Dispatch to parameterisation for replicatio    234 // Dispatch to parameterisation for replication mechanism dimension
233 // computation & modification                     235 // computation & modification
234                                                   236 
235 void G4Trd::ComputeDimensions(       G4VPVPara    237 void G4Trd::ComputeDimensions(       G4VPVParameterisation* p,
236                                const G4int n,     238                                const G4int n,
237                                const G4VPhysic    239                                const G4VPhysicalVolume* pRep )
238 {                                                 240 {
239   p->ComputeDimensions(*this,n,pRep);             241   p->ComputeDimensions(*this,n,pRep);
240 }                                                 242 }
241                                                   243 
242 //////////////////////////////////////////////    244 //////////////////////////////////////////////////////////////////////////
243 //                                                245 //
244 // Get bounding box                               246 // Get bounding box
245                                                   247 
246 void G4Trd::BoundingLimits(G4ThreeVector& pMin    248 void G4Trd::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const
247 {                                                 249 {
248   G4double dx1 = GetXHalfLength1();               250   G4double dx1 = GetXHalfLength1();
249   G4double dx2 = GetXHalfLength2();               251   G4double dx2 = GetXHalfLength2();
250   G4double dy1 = GetYHalfLength1();               252   G4double dy1 = GetYHalfLength1();
251   G4double dy2 = GetYHalfLength2();               253   G4double dy2 = GetYHalfLength2();
252   G4double dz  = GetZHalfLength();                254   G4double dz  = GetZHalfLength();
253                                                   255 
254   G4double xmax = std::max(dx1,dx2);              256   G4double xmax = std::max(dx1,dx2);
255   G4double ymax = std::max(dy1,dy2);              257   G4double ymax = std::max(dy1,dy2);
256   pMin.set(-xmax,-ymax,-dz);                      258   pMin.set(-xmax,-ymax,-dz);
257   pMax.set( xmax, ymax, dz);                      259   pMax.set( xmax, ymax, dz);
258                                                   260 
259   // Check correctness of the bounding box        261   // Check correctness of the bounding box
260   //                                              262   //
261   if (pMin.x() >= pMax.x() || pMin.y() >= pMax    263   if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
262   {                                               264   {
263     std::ostringstream message;                   265     std::ostringstream message;
264     message << "Bad bounding box (min >= max)     266     message << "Bad bounding box (min >= max) for solid: "
265             << GetName() << " !"                  267             << GetName() << " !"
266             << "\npMin = " << pMin                268             << "\npMin = " << pMin
267             << "\npMax = " << pMax;               269             << "\npMax = " << pMax;
268     G4Exception("G4Trd::BoundingLimits()", "Ge    270     G4Exception("G4Trd::BoundingLimits()", "GeomMgt0001", JustWarning, message);
269     DumpInfo();                                   271     DumpInfo();
270   }                                               272   }
271 }                                                 273 }
272                                                   274 
273 //////////////////////////////////////////////    275 //////////////////////////////////////////////////////////////////////////
274 //                                                276 //
275 // Calculate extent under transform and specif    277 // Calculate extent under transform and specified limit
276                                                   278 
277 G4bool G4Trd::CalculateExtent( const EAxis pAx    279 G4bool G4Trd::CalculateExtent( const EAxis pAxis,
278                                const G4VoxelLi    280                                const G4VoxelLimits& pVoxelLimit,
279                                const G4AffineT    281                                const G4AffineTransform& pTransform,
280                                      G4double&    282                                      G4double& pMin, G4double& pMax ) const
281 {                                                 283 {
282   G4ThreeVector bmin, bmax;                       284   G4ThreeVector bmin, bmax;
283   G4bool exist;                                   285   G4bool exist;
284                                                   286 
285   // Check bounding box (bbox)                    287   // Check bounding box (bbox)
286   //                                              288   //
287   BoundingLimits(bmin,bmax);                      289   BoundingLimits(bmin,bmax);
288   G4BoundingEnvelope bbox(bmin,bmax);             290   G4BoundingEnvelope bbox(bmin,bmax);
289 #ifdef G4BBOX_EXTENT                              291 #ifdef G4BBOX_EXTENT
290   return bbox.CalculateExtent(pAxis,pVoxelLimi    292   return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
291 #endif                                            293 #endif
292   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox    294   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax))
293   {                                               295   {
294     return exist = pMin < pMax;                << 296     return exist = (pMin < pMax) ? true : false;
295   }                                               297   }
296                                                   298 
297   // Set bounding envelope (benv) and calculat    299   // Set bounding envelope (benv) and calculate extent
298   //                                              300   //
299   G4double dx1 = GetXHalfLength1();               301   G4double dx1 = GetXHalfLength1();
300   G4double dx2 = GetXHalfLength2();               302   G4double dx2 = GetXHalfLength2();
301   G4double dy1 = GetYHalfLength1();               303   G4double dy1 = GetYHalfLength1();
302   G4double dy2 = GetYHalfLength2();               304   G4double dy2 = GetYHalfLength2();
303   G4double dz  = GetZHalfLength();                305   G4double dz  = GetZHalfLength();
304                                                   306 
305   G4ThreeVectorList baseA(4), baseB(4);           307   G4ThreeVectorList baseA(4), baseB(4);
306   baseA[0].set(-dx1,-dy1,-dz);                    308   baseA[0].set(-dx1,-dy1,-dz);
307   baseA[1].set( dx1,-dy1,-dz);                    309   baseA[1].set( dx1,-dy1,-dz);
308   baseA[2].set( dx1, dy1,-dz);                    310   baseA[2].set( dx1, dy1,-dz);
309   baseA[3].set(-dx1, dy1,-dz);                    311   baseA[3].set(-dx1, dy1,-dz);
310   baseB[0].set(-dx2,-dy2, dz);                    312   baseB[0].set(-dx2,-dy2, dz);
311   baseB[1].set( dx2,-dy2, dz);                    313   baseB[1].set( dx2,-dy2, dz);
312   baseB[2].set( dx2, dy2, dz);                    314   baseB[2].set( dx2, dy2, dz);
313   baseB[3].set(-dx2, dy2, dz);                    315   baseB[3].set(-dx2, dy2, dz);
314                                                   316 
315   std::vector<const G4ThreeVectorList *> polyg    317   std::vector<const G4ThreeVectorList *> polygons(2);
316   polygons[0] = &baseA;                           318   polygons[0] = &baseA;
317   polygons[1] = &baseB;                           319   polygons[1] = &baseB;
318                                                   320 
319   G4BoundingEnvelope benv(bmin,bmax,polygons);    321   G4BoundingEnvelope benv(bmin,bmax,polygons);
320   exist = benv.CalculateExtent(pAxis,pVoxelLim    322   exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
321   return exist;                                   323   return exist;
322 }                                                 324 }
323                                                   325 
324 //////////////////////////////////////////////    326 //////////////////////////////////////////////////////////////////////////
325 //                                                327 //
326 // Return whether point inside/outside/on surf    328 // Return whether point inside/outside/on surface, using tolerance
327                                                   329 
328 EInside G4Trd::Inside( const G4ThreeVector& p     330 EInside G4Trd::Inside( const G4ThreeVector& p ) const
329 {                                              << 331 {  
330   G4double dx = fPlanes[3].a*std::abs(p.x())+f    332   G4double dx = fPlanes[3].a*std::abs(p.x())+fPlanes[3].c*p.z()+fPlanes[3].d;
331   G4double dy = fPlanes[1].b*std::abs(p.y())+f    333   G4double dy = fPlanes[1].b*std::abs(p.y())+fPlanes[1].c*p.z()+fPlanes[1].d;
332   G4double dxy = std::max(dx,dy);                 334   G4double dxy = std::max(dx,dy);
333                                                   335 
334   G4double dz = std::abs(p.z())-fDz;              336   G4double dz = std::abs(p.z())-fDz;
335   G4double dist = std::max(dz,dxy);               337   G4double dist = std::max(dz,dxy);
336                                                   338 
337   return (dist > halfCarTolerance) ? kOutside  << 339   if (dist > halfCarTolerance) return kOutside;
338     ((dist > -halfCarTolerance) ? kSurface : k << 340   return (dist > -halfCarTolerance) ? kSurface : kInside;
339 }                                                 341 }
340                                                   342 
341 //////////////////////////////////////////////    343 //////////////////////////////////////////////////////////////////////////
342 //                                                344 //
343 // Determine side where point is, and return c    345 // Determine side where point is, and return corresponding normal
344                                                   346 
345 G4ThreeVector G4Trd::SurfaceNormal( const G4Th    347 G4ThreeVector G4Trd::SurfaceNormal( const G4ThreeVector& p ) const
346 {                                                 348 {
347   G4int nsurf = 0; // number of surfaces where    349   G4int nsurf = 0; // number of surfaces where p is placed
348                                                   350 
349   // Check Z faces                                351   // Check Z faces
350   //                                              352   //
351   G4double nz = 0;                                353   G4double nz = 0;
352   G4double dz = std::abs(p.z()) - fDz;            354   G4double dz = std::abs(p.z()) - fDz;
353   if (std::abs(dz) <= halfCarTolerance)           355   if (std::abs(dz) <= halfCarTolerance)
354   {                                               356   {
355     nz = (p.z() < 0) ? -1 : 1;                    357     nz = (p.z() < 0) ? -1 : 1;
356     ++nsurf;                                      358     ++nsurf;
357   }                                               359   }
358                                                   360 
359   // Check Y faces                                361   // Check Y faces
360   //                                              362   //
361   G4double ny = 0;                                363   G4double ny = 0;
362   G4double dy1 = fPlanes[0].b*p.y();              364   G4double dy1 = fPlanes[0].b*p.y();
363   G4double dy2 = fPlanes[0].c*p.z() + fPlanes[    365   G4double dy2 = fPlanes[0].c*p.z() + fPlanes[0].d;
364   if (std::abs(dy2 + dy1) <= halfCarTolerance)    366   if (std::abs(dy2 + dy1) <= halfCarTolerance)
365   {                                               367   {
366     ny += fPlanes[0].b;                           368     ny += fPlanes[0].b;
367     nz += fPlanes[0].c;                           369     nz += fPlanes[0].c;
368     ++nsurf;                                      370     ++nsurf;
369   }                                               371   }
370   if (std::abs(dy2 - dy1) <= halfCarTolerance)    372   if (std::abs(dy2 - dy1) <= halfCarTolerance)
371   {                                               373   {
372     ny += fPlanes[1].b;                           374     ny += fPlanes[1].b;
373     nz += fPlanes[1].c;                           375     nz += fPlanes[1].c;
374     ++nsurf;                                      376     ++nsurf;
375   }                                               377   }
376                                                   378 
377   // Check X faces                                379   // Check X faces
378   //                                              380   //
379   G4double nx = 0;                                381   G4double nx = 0;
380   G4double dx1 = fPlanes[2].a*p.x();              382   G4double dx1 = fPlanes[2].a*p.x();
381   G4double dx2 = fPlanes[2].c*p.z() + fPlanes[    383   G4double dx2 = fPlanes[2].c*p.z() + fPlanes[2].d;
382   if (std::abs(dx2 + dx1) <= halfCarTolerance)    384   if (std::abs(dx2 + dx1) <= halfCarTolerance)
383   {                                               385   {
384     nx += fPlanes[2].a;                           386     nx += fPlanes[2].a;
385     nz += fPlanes[2].c;                           387     nz += fPlanes[2].c;
386     ++nsurf;                                      388     ++nsurf;
387   }                                               389   }
388   if (std::abs(dx2 - dx1) <= halfCarTolerance)    390   if (std::abs(dx2 - dx1) <= halfCarTolerance)
389   {                                               391   {
390     nx += fPlanes[3].a;                           392     nx += fPlanes[3].a;
391     nz += fPlanes[3].c;                           393     nz += fPlanes[3].c;
392     ++nsurf;                                      394     ++nsurf;
393   }                                               395   }
394                                                   396 
395   // Return normal                                397   // Return normal
396   //                                              398   //
397   if (nsurf == 1)      return {nx,ny,nz};      << 399   if (nsurf == 1)      return G4ThreeVector(nx,ny,nz);
398   else if (nsurf != 0) return G4ThreeVector(nx    400   else if (nsurf != 0) return G4ThreeVector(nx,ny,nz).unit(); // edge or corner
399   else                                            401   else
400   {                                               402   {
401     // Point is not on the surface                403     // Point is not on the surface
402     //                                            404     //
403 #ifdef G4CSGDEBUG                                 405 #ifdef G4CSGDEBUG
404     std::ostringstream message;                   406     std::ostringstream message;
405     G4long oldprc = message.precision(16);     << 407     G4int oldprc = message.precision(16);
406     message << "Point p is not on surface (!?)    408     message << "Point p is not on surface (!?) of solid: "
407             << GetName() << G4endl;               409             << GetName() << G4endl;
408     message << "Position:\n";                     410     message << "Position:\n";
409     message << "   p.x() = " << p.x()/mm << "     411     message << "   p.x() = " << p.x()/mm << " mm\n";
410     message << "   p.y() = " << p.y()/mm << "     412     message << "   p.y() = " << p.y()/mm << " mm\n";
411     message << "   p.z() = " << p.z()/mm << "     413     message << "   p.z() = " << p.z()/mm << " mm";
412     G4cout.precision(oldprc) ;                    414     G4cout.precision(oldprc) ;
413     G4Exception("G4Trd::SurfaceNormal(p)", "Ge    415     G4Exception("G4Trd::SurfaceNormal(p)", "GeomSolids1002",
414                 JustWarning, message );           416                 JustWarning, message );
415     DumpInfo();                                   417     DumpInfo();
416 #endif                                            418 #endif
417     return ApproxSurfaceNormal(p);                419     return ApproxSurfaceNormal(p);
418   }                                               420   }
419 }                                                 421 }
420                                                   422 
421 //////////////////////////////////////////////    423 //////////////////////////////////////////////////////////////////////////
422 //                                                424 //
423 // Algorithm for SurfaceNormal() following the    425 // Algorithm for SurfaceNormal() following the original specification
424 // for points not on the surface                  426 // for points not on the surface
425                                                   427 
426 G4ThreeVector G4Trd::ApproxSurfaceNormal( cons    428 G4ThreeVector G4Trd::ApproxSurfaceNormal( const G4ThreeVector& p ) const
427 {                                                 429 {
428   G4double dist = -DBL_MAX;                       430   G4double dist = -DBL_MAX;
429   G4int iside = 0;                                431   G4int iside = 0;
430   for (G4int i=0; i<4; ++i)                       432   for (G4int i=0; i<4; ++i)
431   {                                               433   {
432     G4double d = fPlanes[i].a*p.x() +             434     G4double d = fPlanes[i].a*p.x() +
433                  fPlanes[i].b*p.y() +             435                  fPlanes[i].b*p.y() +
434                  fPlanes[i].c*p.z() + fPlanes[    436                  fPlanes[i].c*p.z() + fPlanes[i].d;
435     if (d > dist) { dist = d; iside = i; }        437     if (d > dist) { dist = d; iside = i; }
436   }                                               438   }
437                                                   439 
438   G4double distz = std::abs(p.z()) - fDz;         440   G4double distz = std::abs(p.z()) - fDz;
439   if (dist > distz)                               441   if (dist > distz)
440     return { fPlanes[iside].a, fPlanes[iside]. << 442     return G4ThreeVector(fPlanes[iside].a, fPlanes[iside].b, fPlanes[iside].c);
441   else                                            443   else
442     return { 0, 0, (G4double)((p.z() < 0) ? -1 << 444     return G4ThreeVector(0, 0, (p.z() < 0) ? -1 : 1);
443 }                                                 445 }
444                                                   446 
445 //////////////////////////////////////////////    447 //////////////////////////////////////////////////////////////////////////
446 //                                                448 //
447 // Calculate distance to shape from outside       449 // Calculate distance to shape from outside
448 //  - return kInfinity if no intersection         450 //  - return kInfinity if no intersection
449                                                   451 
450 G4double G4Trd::DistanceToIn(const G4ThreeVect    452 G4double G4Trd::DistanceToIn(const G4ThreeVector& p,
451                              const G4ThreeVect    453                              const G4ThreeVector& v ) const
452 {                                                 454 {
453   // Z intersections                              455   // Z intersections
454   //                                              456   //
455   if ((std::abs(p.z()) - fDz) >= -halfCarToler    457   if ((std::abs(p.z()) - fDz) >= -halfCarTolerance && p.z()*v.z() >= 0)
456     return kInfinity;                             458     return kInfinity;
457   G4double invz = (-v.z() == 0) ? DBL_MAX : -1    459   G4double invz = (-v.z() == 0) ? DBL_MAX : -1./v.z();
458   G4double dz = (invz < 0) ? fDz : -fDz;       << 460   G4double dz = (invz < 0) ? fDz : -fDz; 
459   G4double tzmin = (p.z() + dz)*invz;             461   G4double tzmin = (p.z() + dz)*invz;
460   G4double tzmax = (p.z() - dz)*invz;             462   G4double tzmax = (p.z() - dz)*invz;
461                                                   463 
462   // Y intersections                              464   // Y intersections
463   //                                              465   //
464   G4double tmin0 = tzmin, tmax0 = tzmax;          466   G4double tmin0 = tzmin, tmax0 = tzmax;
465   G4double ya = fPlanes[0].b*v.y(), yb = fPlan    467   G4double ya = fPlanes[0].b*v.y(), yb = fPlanes[0].c*v.z();
466   G4double yc = fPlanes[0].b*p.y(), yd = fPlan    468   G4double yc = fPlanes[0].b*p.y(), yd = fPlanes[0].c*p.z()+fPlanes[0].d;
467   G4double cos0 = yb + ya;                        469   G4double cos0 = yb + ya;
468   G4double dis0 = yd + yc;                        470   G4double dis0 = yd + yc;
469   if (dis0 >= -halfCarTolerance)                  471   if (dis0 >= -halfCarTolerance)
470   {                                               472   {
471     if (cos0 >= 0) return kInfinity;              473     if (cos0 >= 0) return kInfinity;
472     G4double tmp  = -dis0/cos0;                   474     G4double tmp  = -dis0/cos0;
473     if (tmin0 < tmp) tmin0 = tmp;                 475     if (tmin0 < tmp) tmin0 = tmp;
474   }                                               476   }
475   else if (cos0 > 0)                              477   else if (cos0 > 0)
476   {                                               478   {
477     G4double tmp  = -dis0/cos0;                   479     G4double tmp  = -dis0/cos0;
478     if (tmax0 > tmp) tmax0 = tmp;                 480     if (tmax0 > tmp) tmax0 = tmp;
479   }                                               481   }
480                                                   482 
481   G4double tmin1 = tmin0, tmax1 = tmax0;          483   G4double tmin1 = tmin0, tmax1 = tmax0;
482   G4double cos1 = yb - ya;                        484   G4double cos1 = yb - ya;
483   G4double dis1 = yd - yc;                        485   G4double dis1 = yd - yc;
484   if (dis1 >= -halfCarTolerance)                  486   if (dis1 >= -halfCarTolerance)
485   {                                               487   {
486     if (cos1 >= 0) return kInfinity;              488     if (cos1 >= 0) return kInfinity;
487     G4double tmp  = -dis1/cos1;                   489     G4double tmp  = -dis1/cos1;
488     if (tmin1 < tmp) tmin1 = tmp;                 490     if (tmin1 < tmp) tmin1 = tmp;
489   }                                               491   }
490   else if (cos1 > 0)                              492   else if (cos1 > 0)
491   {                                               493   {
492     G4double tmp  = -dis1/cos1;                   494     G4double tmp  = -dis1/cos1;
493     if (tmax1 > tmp) tmax1 = tmp;                 495     if (tmax1 > tmp) tmax1 = tmp;
494   }                                               496   }
495                                                   497 
496   // X intersections                              498   // X intersections
497   //                                              499   //
498   G4double tmin2 = tmin1, tmax2 = tmax1;          500   G4double tmin2 = tmin1, tmax2 = tmax1;
499   G4double xa = fPlanes[2].a*v.x(), xb = fPlan    501   G4double xa = fPlanes[2].a*v.x(), xb = fPlanes[2].c*v.z();
500   G4double xc = fPlanes[2].a*p.x(), xd = fPlan    502   G4double xc = fPlanes[2].a*p.x(), xd = fPlanes[2].c*p.z()+fPlanes[2].d;
501   G4double cos2 = xb + xa;                        503   G4double cos2 = xb + xa;
502   G4double dis2 = xd + xc;                        504   G4double dis2 = xd + xc;
503   if (dis2 >= -halfCarTolerance)                  505   if (dis2 >= -halfCarTolerance)
504   {                                               506   {
505     if (cos2 >= 0) return kInfinity;              507     if (cos2 >= 0) return kInfinity;
506     G4double tmp  = -dis2/cos2;                   508     G4double tmp  = -dis2/cos2;
507     if (tmin2 < tmp) tmin2 = tmp;                 509     if (tmin2 < tmp) tmin2 = tmp;
508   }                                               510   }
509   else if (cos2 > 0)                              511   else if (cos2 > 0)
510   {                                               512   {
511     G4double tmp  = -dis2/cos2;                   513     G4double tmp  = -dis2/cos2;
512     if (tmax2 > tmp) tmax2 = tmp;                 514     if (tmax2 > tmp) tmax2 = tmp;
513   }                                               515   }
514                                                   516 
515   G4double tmin3 = tmin2, tmax3 = tmax2;          517   G4double tmin3 = tmin2, tmax3 = tmax2;
516   G4double cos3 = xb - xa;                        518   G4double cos3 = xb - xa;
517   G4double dis3 = xd - xc;                        519   G4double dis3 = xd - xc;
518   if (dis3 >= -halfCarTolerance)                  520   if (dis3 >= -halfCarTolerance)
519   {                                               521   {
520     if (cos3 >= 0) return kInfinity;              522     if (cos3 >= 0) return kInfinity;
521     G4double tmp  = -dis3/cos3;                   523     G4double tmp  = -dis3/cos3;
522     if (tmin3 < tmp) tmin3 = tmp;                 524     if (tmin3 < tmp) tmin3 = tmp;
523   }                                               525   }
524   else if (cos3 > 0)                              526   else if (cos3 > 0)
525   {                                               527   {
526     G4double tmp  = -dis3/cos3;                   528     G4double tmp  = -dis3/cos3;
527     if (tmax3 > tmp) tmax3 = tmp;                 529     if (tmax3 > tmp) tmax3 = tmp;
528   }                                               530   }
529                                                   531 
530   // Find distance                                532   // Find distance
531   //                                              533   //
532   G4double tmin = tmin3, tmax = tmax3;            534   G4double tmin = tmin3, tmax = tmax3;
533   if (tmax <= tmin + halfCarTolerance) return     535   if (tmax <= tmin + halfCarTolerance) return kInfinity; // touch or no hit
534   return (tmin < halfCarTolerance ) ? 0. : tmi    536   return (tmin < halfCarTolerance ) ? 0. : tmin;
535 }                                                 537 }
536                                                   538 
537 //////////////////////////////////////////////    539 //////////////////////////////////////////////////////////////////////////
538 //                                                540 //
539 // Calculate exact shortest distance to any bo    541 // Calculate exact shortest distance to any boundary from outside
540 // This is the best fast estimation of the sho    542 // This is the best fast estimation of the shortest distance to trap
541 // - returns 0 if point is inside                 543 // - returns 0 if point is inside
542                                                   544 
543 G4double G4Trd::DistanceToIn( const G4ThreeVec    545 G4double G4Trd::DistanceToIn( const G4ThreeVector& p ) const
544 {                                                 546 {
545   G4double dx = fPlanes[3].a*std::abs(p.x())+f    547   G4double dx = fPlanes[3].a*std::abs(p.x())+fPlanes[3].c*p.z()+fPlanes[3].d;
546   G4double dy = fPlanes[1].b*std::abs(p.y())+f    548   G4double dy = fPlanes[1].b*std::abs(p.y())+fPlanes[1].c*p.z()+fPlanes[1].d;
547   G4double dxy = std::max(dx,dy);                 549   G4double dxy = std::max(dx,dy);
548                                                   550 
549   G4double dz = std::abs(p.z())-fDz;              551   G4double dz = std::abs(p.z())-fDz;
550   G4double dist = std::max(dz,dxy);               552   G4double dist = std::max(dz,dxy);
551                                                   553 
552   return (dist > 0) ? dist : 0.;                  554   return (dist > 0) ? dist : 0.;
553 }                                                 555 }
554                                                   556 
555 //////////////////////////////////////////////    557 //////////////////////////////////////////////////////////////////////////
556 //                                                558 //
557 // Calculate distance to surface of shape from    559 // Calculate distance to surface of shape from inside and
558 // find normal at exit point, if required         560 // find normal at exit point, if required
559 // - when leaving the surface, return 0           561 // - when leaving the surface, return 0
560                                                   562 
561 G4double G4Trd::DistanceToOut(const G4ThreeVec    563 G4double G4Trd::DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v,
562                               const G4bool cal    564                               const G4bool calcNorm,
563                                     G4bool* va    565                                     G4bool* validNorm, G4ThreeVector* n) const
564 {                                                 566 {
565   // Z intersections                              567   // Z intersections
566   //                                              568   //
567   if ((std::abs(p.z()) - fDz) >= -halfCarToler    569   if ((std::abs(p.z()) - fDz) >= -halfCarTolerance && p.z()*v.z() > 0)
568   {                                               570   {
569     if (calcNorm)                                 571     if (calcNorm)
570     {                                             572     {
571       *validNorm = true;                          573       *validNorm = true;
572       n->set(0, 0, (p.z() < 0) ? -1 : 1);         574       n->set(0, 0, (p.z() < 0) ? -1 : 1);
573     }                                             575     }
574     return 0;                                     576     return 0;
575   }                                               577   }
576   G4double vz = v.z();                            578   G4double vz = v.z();
577   G4double tmax = (vz == 0) ? DBL_MAX : (std::    579   G4double tmax = (vz == 0) ? DBL_MAX : (std::copysign(fDz,vz) - p.z())/vz;
578   G4int iside = (vz < 0) ? -4 : -2; // little     580   G4int iside = (vz < 0) ? -4 : -2; // little trick: (-4+3)=-1, (-2+3)=+1
579                                                   581 
580   // Y intersections                              582   // Y intersections
581   //                                              583   //
582   G4int i = 0;                                    584   G4int i = 0;
583   for ( ; i<2; ++i)                               585   for ( ; i<2; ++i)
584   {                                               586   {
585     G4double cosa = fPlanes[i].b*v.y() + fPlan    587     G4double cosa = fPlanes[i].b*v.y() + fPlanes[i].c*v.z();
586     if (cosa > 0)                                 588     if (cosa > 0)
587     {                                             589     {
588       G4double dist = fPlanes[i].b*p.y()+fPlan    590       G4double dist = fPlanes[i].b*p.y()+fPlanes[i].c*p.z()+fPlanes[i].d;
589       if (dist >= -halfCarTolerance)              591       if (dist >= -halfCarTolerance)
590       {                                           592       {
591         if (calcNorm)                             593         if (calcNorm)
592         {                                         594         {
593           *validNorm = true;                      595           *validNorm = true;
594           n->set(0, fPlanes[i].b, fPlanes[i].c    596           n->set(0, fPlanes[i].b, fPlanes[i].c);
595         }                                         597         }
596         return 0;                                 598         return 0;
597       }                                           599       }
598       G4double tmp = -dist/cosa;                  600       G4double tmp = -dist/cosa;
599       if (tmax > tmp) { tmax = tmp; iside = i;    601       if (tmax > tmp) { tmax = tmp; iside = i; }
600     }                                             602     }
601   }                                               603   }
602                                                   604 
603   // X intersections                              605   // X intersections
604   //                                              606   //
605   for ( ; i<4; ++i)                               607   for ( ; i<4; ++i)
606   {                                               608   {
607     G4double cosa = fPlanes[i].a*v.x()+fPlanes    609     G4double cosa = fPlanes[i].a*v.x()+fPlanes[i].c*v.z();
608     if (cosa > 0)                                 610     if (cosa > 0)
609     {                                             611     {
610       G4double dist = fPlanes[i].a*p.x()+fPlan    612       G4double dist = fPlanes[i].a*p.x()+fPlanes[i].c*p.z()+fPlanes[i].d;
611       if (dist >= -halfCarTolerance)              613       if (dist >= -halfCarTolerance)
612       {                                           614       {
613         if (calcNorm)                             615         if (calcNorm)
614         {                                         616         {
615            *validNorm = true;                     617            *validNorm = true;
616            n->set(fPlanes[i].a, fPlanes[i].b,     618            n->set(fPlanes[i].a, fPlanes[i].b, fPlanes[i].c);
617         }                                         619         }
618         return 0;                                 620         return 0;
619       }                                           621       }
620       G4double tmp = -dist/cosa;                  622       G4double tmp = -dist/cosa;
621       if (tmax > tmp) { tmax = tmp; iside = i;    623       if (tmax > tmp) { tmax = tmp; iside = i; }
622     }                                             624     }
623   }                                               625   }
624                                                   626 
625   // Set normal, if required, and return dista    627   // Set normal, if required, and return distance
626   //                                              628   //
627   if (calcNorm)                                << 629   if (calcNorm) 
628   {                                               630   {
629     *validNorm = true;                            631     *validNorm = true;
630     if (iside < 0)                                632     if (iside < 0)
631       n->set(0, 0, iside + 3); // (-4+3)=-1, (    633       n->set(0, 0, iside + 3); // (-4+3)=-1, (-2+3)=+1
632     else                                          634     else
633       n->set(fPlanes[iside].a, fPlanes[iside].    635       n->set(fPlanes[iside].a, fPlanes[iside].b, fPlanes[iside].c);
634   }                                               636   }
635   return tmax;                                    637   return tmax;
636 }                                                 638 }
637                                                   639 
638 //////////////////////////////////////////////    640 //////////////////////////////////////////////////////////////////////////
639 //                                                641 //
640 // Calculate exact shortest distance to any bo    642 // Calculate exact shortest distance to any boundary from inside
641 // - returns 0 if point is outside                643 // - returns 0 if point is outside
642                                                   644 
643 G4double G4Trd::DistanceToOut( const G4ThreeVe    645 G4double G4Trd::DistanceToOut( const G4ThreeVector& p ) const
644 {                                                 646 {
645 #ifdef G4CSGDEBUG                                 647 #ifdef G4CSGDEBUG
646   if( Inside(p) == kOutside )                     648   if( Inside(p) == kOutside )
647   {                                               649   {
648     std::ostringstream message;                   650     std::ostringstream message;
649     G4long oldprc = message.precision(16);     << 651     G4int oldprc = message.precision(16);
650     message << "Point p is outside (!?) of sol    652     message << "Point p is outside (!?) of solid: " << GetName() << G4endl;
651     message << "Position:\n";                     653     message << "Position:\n";
652     message << "   p.x() = " << p.x()/mm << "     654     message << "   p.x() = " << p.x()/mm << " mm\n";
653     message << "   p.y() = " << p.y()/mm << "     655     message << "   p.y() = " << p.y()/mm << " mm\n";
654     message << "   p.z() = " << p.z()/mm << "     656     message << "   p.z() = " << p.z()/mm << " mm";
655     G4cout.precision(oldprc);                  << 657     G4cout.precision(oldprc) ;
656     G4Exception("G4Trd::DistanceToOut(p)", "Ge    658     G4Exception("G4Trd::DistanceToOut(p)", "GeomSolids1002",
657                 JustWarning, message );           659                 JustWarning, message );
658     DumpInfo();                                   660     DumpInfo();
659   }                                               661   }
660 #endif                                            662 #endif
661   G4double dx = fPlanes[3].a*std::abs(p.x())+f    663   G4double dx = fPlanes[3].a*std::abs(p.x())+fPlanes[3].c*p.z()+fPlanes[3].d;
662   G4double dy = fPlanes[1].b*std::abs(p.y())+f    664   G4double dy = fPlanes[1].b*std::abs(p.y())+fPlanes[1].c*p.z()+fPlanes[1].d;
663   G4double dxy = std::max(dx,dy);                 665   G4double dxy = std::max(dx,dy);
664                                                   666 
665   G4double dz = std::abs(p.z())-fDz;              667   G4double dz = std::abs(p.z())-fDz;
666   G4double dist = std::max(dz,dxy);               668   G4double dist = std::max(dz,dxy);
667                                                << 669   
668   return (dist < 0) ? -dist : 0.;                 670   return (dist < 0) ? -dist : 0.;
669 }                                                 671 }
670                                                   672 
671 //////////////////////////////////////////////    673 //////////////////////////////////////////////////////////////////////////
672 //                                                674 //
673 // GetEntityType                                  675 // GetEntityType
674                                                   676 
675 G4GeometryType G4Trd::GetEntityType() const       677 G4GeometryType G4Trd::GetEntityType() const
676 {                                                 678 {
677   return {"G4Trd"};                            << 679   return G4String("G4Trd");
678 }                                              << 
679                                                << 
680 ////////////////////////////////////////////// << 
681 //                                             << 
682 // IsFaceted                                   << 
683                                                << 
684 G4bool G4Trd::IsFaceted() const                << 
685 {                                              << 
686   return true;                                 << 
687 }                                                 680 }
688                                                   681 
689 //////////////////////////////////////////////    682 //////////////////////////////////////////////////////////////////////////
690 //                                                683 //
691 // Make a clone of the object                     684 // Make a clone of the object
692 //                                                685 //
693 G4VSolid* G4Trd::Clone() const                    686 G4VSolid* G4Trd::Clone() const
694 {                                                 687 {
695   return new G4Trd(*this);                        688   return new G4Trd(*this);
696 }                                                 689 }
697                                                   690 
698 //////////////////////////////////////////////    691 //////////////////////////////////////////////////////////////////////////
699 //                                                692 //
700 // Stream object contents to an output stream     693 // Stream object contents to an output stream
701                                                   694 
702 std::ostream& G4Trd::StreamInfo( std::ostream&    695 std::ostream& G4Trd::StreamInfo( std::ostream& os ) const
703 {                                                 696 {
704   G4long oldprc = os.precision(16);            << 697   G4int oldprc = os.precision(16);
705   os << "-------------------------------------    698   os << "-----------------------------------------------------------\n"
706      << "    *** Dump for solid - " << GetName    699      << "    *** Dump for solid - " << GetName() << " ***\n"
707      << "    =================================    700      << "    ===================================================\n"
708      << " Solid type: G4Trd\n"                    701      << " Solid type: G4Trd\n"
709      << " Parameters: \n"                         702      << " Parameters: \n"
710      << "    half length X, surface -dZ: " <<     703      << "    half length X, surface -dZ: " << fDx1/mm << " mm \n"
711      << "    half length X, surface +dZ: " <<     704      << "    half length X, surface +dZ: " << fDx2/mm << " mm \n"
712      << "    half length Y, surface -dZ: " <<     705      << "    half length Y, surface -dZ: " << fDy1/mm << " mm \n"
713      << "    half length Y, surface +dZ: " <<     706      << "    half length Y, surface +dZ: " << fDy2/mm << " mm \n"
714      << "    half length Z             : " <<     707      << "    half length Z             : " <<  fDz/mm << " mm \n"
715      << "-------------------------------------    708      << "-----------------------------------------------------------\n";
716   os.precision(oldprc);                           709   os.precision(oldprc);
717                                                   710 
718   return os;                                      711   return os;
719 }                                                 712 }
720                                                   713 
721 //////////////////////////////////////////////    714 //////////////////////////////////////////////////////////////////////////
722 //                                                715 //
723 // Return a point randomly and uniformly selec    716 // Return a point randomly and uniformly selected on the solid surface
724                                                   717 
725 G4ThreeVector G4Trd::GetPointOnSurface() const    718 G4ThreeVector G4Trd::GetPointOnSurface() const
726 {                                                 719 {
727   // Set areas                                 << 720   // Set vertices
728   //                                              721   //
729   G4double sxz = (fDx1 + fDx2)*fHx;            << 722   G4ThreeVector pt[8];
730   G4double syz = (fDy1 + fDy2)*fHy;            << 723   pt[0].set(-fDx1,-fDy1,-fDz);
731   G4double ssurf[6] = { 4.*fDx1*fDy1, sxz, sxz << 724   pt[1].set( fDx1,-fDy1,-fDz);
732   ssurf[1] += ssurf[0];                        << 725   pt[2].set(-fDx1, fDy1,-fDz);
733   ssurf[2] += ssurf[1];                        << 726   pt[3].set( fDx1, fDy1,-fDz);
734   ssurf[3] += ssurf[2];                        << 727   pt[4].set(-fDx2,-fDy2, fDz);
735   ssurf[4] += ssurf[3];                        << 728   pt[5].set( fDx2,-fDy2, fDz);
736   ssurf[5] += ssurf[4];                        << 729   pt[6].set(-fDx2, fDy2, fDz);
                                                   >> 730   pt[7].set( fDx2, fDy2, fDz);
                                                   >> 731 
                                                   >> 732   // Set faces  (-Z, -Y, +Y, -X, +X, +Z)
                                                   >> 733   //
                                                   >> 734   G4int iface [6][4] =
                                                   >> 735     { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3}, {4,6,7,5} };
                                                   >> 736 
                                                   >> 737   // Set areas
                                                   >> 738   // 
                                                   >> 739   G4double sxz = (fDy1 + fDy2)*std::hypot(fDx1 - fDx2, 2*fDz);
                                                   >> 740   G4double syz = (fDx1 + fDx2)*std::hypot(fDy1 - fDy2, 2*fDz);
                                                   >> 741   G4double sface[6] = { 4*fDx1*fDy1, syz, syz, sxz, sxz, 4*fDx2*fDy2 };
                                                   >> 742   for (G4int i=1; i<6; ++i) { sface[i] += sface[i-1]; }
737                                                   743 
738   // Select face                                  744   // Select face
739   //                                              745   //
740   G4double select = ssurf[5]*G4QuickRand();    << 746   G4double select = sface[5]*G4UniformRand();
741   G4int k = 5;                                    747   G4int k = 5;
742   k -= (G4int)(select <= ssurf[4]);            << 748   if (select <= sface[4]) k = 4;
743   k -= (G4int)(select <= ssurf[3]);            << 749   if (select <= sface[3]) k = 3;
744   k -= (G4int)(select <= ssurf[2]);            << 750   if (select <= sface[2]) k = 2;
745   k -= (G4int)(select <= ssurf[1]);            << 751   if (select <= sface[1]) k = 1;
746   k -= (G4int)(select <= ssurf[0]);            << 752   if (select <= sface[0]) k = 0;
747                                                << 753 
748   // Generate point on selected surface        << 754   // Select sub-triangle
749   //                                           << 755   //
750   G4double u = G4QuickRand();                  << 756   G4int i0 = iface[k][0];
751   G4double v = G4QuickRand();                  << 757   G4int i1 = iface[k][1];
752   switch(k)                                    << 758   G4int i2 = iface[k][2];
753   {                                            << 759   G4int i3 = iface[k][3];
754     case 0: // base at -Z                      << 760   G4double s1 = G4GeomTools::TriangleAreaNormal(pt[i0],pt[i1],pt[i3]).mag();
755     {                                          << 761   G4double s2 = G4GeomTools::TriangleAreaNormal(pt[i2],pt[i1],pt[i3]).mag();
756       return { (2.*u - 1.)*fDx1, (2.*v - 1.)*f << 762   if ((s1+s2)*G4UniformRand() > s1) i0 = i2;
757     }                                          << 763 
758     case 1: // X face at -Y                    << 764   // Generate point
759     {                                          << 765   //
760       if (u + v > 1.) { u = 1. - u; v = 1. - v << 766   G4double u = G4UniformRand();
761       G4ThreeVector p0(-fDx1,-fDy1,-fDz);      << 767   G4double v = G4UniformRand();
762       G4ThreeVector p1( fDx2,-fDy2, fDz);      << 768   if (u + v > 1.) { u = 1. - u; v = 1. - v; }
763       return (select <= ssurf[0] + fDx1*fHx) ? << 769   return (1.-u-v)*pt[i0] + u*pt[i1] + v*pt[i3];
764         (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 
765         (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 
766     }                                          << 
767     case 2: // X face at +Y                    << 
768     {                                          << 
769       if (u + v > 1.) { u = 1. - u; v = 1. - v << 
770       G4ThreeVector p0( fDx1, fDy1,-fDz);      << 
771       G4ThreeVector p1(-fDx2, fDy2, fDz);      << 
772       return (select <= ssurf[1] + fDx1*fHx) ? << 
773         (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 
774         (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 
775     }                                          << 
776     case 3: // Y face at -X                    << 
777     {                                          << 
778       if (u + v > 1.) { u = 1. - u; v = 1. - v << 
779       G4ThreeVector p0(-fDx1, fDy1,-fDz);      << 
780       G4ThreeVector p1(-fDx2,-fDy2, fDz);      << 
781       return (select <= ssurf[2] + fDy1*fHy) ? << 
782         (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 
783         (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 
784     }                                          << 
785     case 4: // Y face at +X                    << 
786     {                                          << 
787       if (u + v > 1.) { u = 1. - u; v = 1. - v << 
788       G4ThreeVector p0( fDx1,-fDy1,-fDz);      << 
789       G4ThreeVector p1( fDx2, fDy2, fDz);      << 
790       return (select <= ssurf[3] + fDy1*fHy) ? << 
791         (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 
792         (1. - u - v)*p0 + u*p1 + v*G4ThreeVect << 
793     }                                          << 
794     case 5: // base at +Z                      << 
795     {                                          << 
796       return { (2.*u - 1.)*fDx2, (2.*v - 1.)*f << 
797     }                                          << 
798   }                                            << 
799   return {0., 0., 0.};                         << 
800 }                                                 770 }
801                                                   771 
802 //////////////////////////////////////////////    772 //////////////////////////////////////////////////////////////////////////
803 //                                                773 //
804 // Methods for visualisation                      774 // Methods for visualisation
805                                                   775 
806 void G4Trd::DescribeYourselfTo ( G4VGraphicsSc    776 void G4Trd::DescribeYourselfTo ( G4VGraphicsScene& scene ) const
807 {                                                 777 {
808   scene.AddSolid (*this);                         778   scene.AddSolid (*this);
809 }                                                 779 }
810                                                   780 
811 G4Polyhedron* G4Trd::CreatePolyhedron () const    781 G4Polyhedron* G4Trd::CreatePolyhedron () const
812 {                                                 782 {
813   return new G4PolyhedronTrd2 (fDx1, fDx2, fDy    783   return new G4PolyhedronTrd2 (fDx1, fDx2, fDy1, fDy2, fDz);
814 }                                                 784 }
815                                                   785 
816 #endif                                            786 #endif
817                                                   787