Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4Trap.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/CSG/src/G4Trap.cc (Version 11.3.0) and /geometry/solids/CSG/src/G4Trap.cc (Version 9.3.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // $Id: G4Trap.cc,v 1.45.4.1 2010/09/08 14:52:47 gcosmo Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-03-patch-02 $
                                                   >>  29 //
                                                   >>  30 // class G4Trap
                                                   >>  31 //
 26 // Implementation for G4Trap class                 32 // Implementation for G4Trap class
 27 //                                                 33 //
 28 // 21.03.95 P.Kent: Modified for `tolerant' ge <<  34 // History:
                                                   >>  35 //
                                                   >>  36 // 28.04.05 V.Grichine: new SurfaceNormal according to J. Apostolakis proposal 
                                                   >>  37 // 26.04.05 V.Grichine: new SurfaceNormal is default 
                                                   >>  38 // 19.04.05 V.Grichine: bug fixed in G4Trap("name",G4ThreeVector[8] vp)
                                                   >>  39 // 12.12.04 V.Grichine: SurfaceNormal with edges/vertices 
                                                   >>  40 // 15.11.04 V.Grichine: bug fixed in G4Trap("name",G4ThreeVector[8] vp)
                                                   >>  41 // 13.12.99 V.Grichine: bug fixed in DistanceToIn(p,v)
                                                   >>  42 // 19.11.99 V.Grichine: kUndef was added to Eside enum
                                                   >>  43 // 04.06.99 S.Giani: Fixed CalculateExtent in rotated case. 
                                                   >>  44 // 08.12.97 J.Allison: Added "nominal" constructor and method SetAllParameters.
                                                   >>  45 // 01.11.96 V.Grichine: Costructor for Right Angular Wedge from STEP, G4Trd/Para
 29 // 09.09.96 V.Grichine: Final modifications be     46 // 09.09.96 V.Grichine: Final modifications before to commit
 30 // 08.12.97 J.Allison: Added "nominal" constru <<  47 // 21.03.95 P.Kent: Modified for `tolerant' geometry
 31 // 28.04.05 V.Grichine: new SurfaceNormal acco <<  48 //
 32 // 18.04.17 E.Tcherniaev: complete revision, s <<  49 //////////////////////////////////////////////////////////////////////////////////// 
 33 // ------------------------------------------- << 
 34                                                    50 
 35 #include "G4Trap.hh"                               51 #include "G4Trap.hh"
 36                                                << 
 37 #if !defined(G4GEOM_USE_UTRAP)                 << 
 38                                                << 
 39 #include "globals.hh"                              52 #include "globals.hh"
 40 #include "G4GeomTools.hh"                      << 
 41                                                    53 
 42 #include "G4VoxelLimits.hh"                        54 #include "G4VoxelLimits.hh"
 43 #include "G4AffineTransform.hh"                    55 #include "G4AffineTransform.hh"
 44 #include "G4BoundingEnvelope.hh"               << 
 45                                                    56 
 46 #include "G4VPVParameterisation.hh"                57 #include "G4VPVParameterisation.hh"
 47                                                    58 
 48 #include "G4QuickRand.hh"                      <<  59 #include "Randomize.hh"
 49                                                    60 
 50 #include "G4VGraphicsScene.hh"                     61 #include "G4VGraphicsScene.hh"
 51 #include "G4Polyhedron.hh"                         62 #include "G4Polyhedron.hh"
                                                   >>  63 #include "G4NURBS.hh"
                                                   >>  64 #include "G4NURBSbox.hh"
 52                                                    65 
 53 using namespace CLHEP;                             66 using namespace CLHEP;
 54                                                    67 
                                                   >>  68 ////////////////////////////////////////////////////////////////////////
                                                   >>  69 //
                                                   >>  70 // Accuracy of coplanarity
                                                   >>  71 
                                                   >>  72 const G4double kCoplanar_Tolerance = 1E-4 ;
                                                   >>  73 
 55 //////////////////////////////////////////////     74 //////////////////////////////////////////////////////////////////////////
 56 //                                                 75 //
 57 // Constructor - check and set half-widths as  <<  76 // Private enum: Not for external use 
                                                   >>  77     
                                                   >>  78 enum Eside {kUndef,ks0,ks1,ks2,ks3,kPZ,kMZ};
                                                   >>  79 
                                                   >>  80 //////////////////////////////////////////////////////////////////////////
                                                   >>  81 //
                                                   >>  82 // Constructor - check and set half-widths as well as angles: 
 58 // final check of coplanarity                      83 // final check of coplanarity
 59                                                    84 
 60 G4Trap::G4Trap( const G4String& pName,             85 G4Trap::G4Trap( const G4String& pName,
 61                       G4double pDz,                86                       G4double pDz,
 62                       G4double pTheta, G4doubl     87                       G4double pTheta, G4double pPhi,
 63                       G4double pDy1, G4double      88                       G4double pDy1, G4double pDx1, G4double pDx2,
 64                       G4double pAlp1,              89                       G4double pAlp1,
 65                       G4double pDy2, G4double      90                       G4double pDy2, G4double pDx3, G4double pDx4,
 66                       G4double pAlp2 )         <<  91                       G4double pAlp2)
 67   : G4CSGSolid(pName), halfCarTolerance(0.5*kC <<  92   : G4CSGSolid(pName)
 68 {                                                  93 {
 69   fDz = pDz;                                   <<  94   if ( pDz <= 0 || pDy1 <= 0 || pDx1 <= 0 ||
 70   fTthetaCphi = std::tan(pTheta)*std::cos(pPhi <<  95        pDx2 <= 0 || pDy2 <= 0 || pDx3 <= 0 || pDx4 <= 0 )
 71   fTthetaSphi = std::tan(pTheta)*std::sin(pPhi <<  96   {
 72                                                <<  97     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl
 73   fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalp <<  98            << "        Invalid dimensions !" << G4endl
 74   fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalp <<  99            << "          X - "
                                                   >> 100            << pDx1 << ", " << pDx2 << ", " << pDx3 << ", " << pDx4 << G4endl
                                                   >> 101            << "          Y - " << pDy1 << ", " << pDy2 << G4endl
                                                   >> 102            << "          Z - " << pDz << G4endl;
                                                   >> 103     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 104                 "Invalid length G4Trap parameters.");
                                                   >> 105   }
                                                   >> 106 
                                                   >> 107   fDz=pDz;
                                                   >> 108   fTthetaCphi=std::tan(pTheta)*std::cos(pPhi);
                                                   >> 109   fTthetaSphi=std::tan(pTheta)*std::sin(pPhi);
                                                   >> 110       
                                                   >> 111   fDy1=pDy1;
                                                   >> 112   fDx1=pDx1;
                                                   >> 113   fDx2=pDx2;
                                                   >> 114   fTalpha1=std::tan(pAlp1);
                                                   >> 115      
                                                   >> 116   fDy2=pDy2;
                                                   >> 117   fDx3=pDx3;
                                                   >> 118   fDx4=pDx4;
                                                   >> 119   fTalpha2=std::tan(pAlp2);
 75                                                   120 
 76   CheckParameters();                           << 
 77   MakePlanes();                                   121   MakePlanes();
 78 }                                                 122 }
 79                                                   123 
 80 ////////////////////////////////////////////// << 124 ////////////////////////////////////////////////////////////////////////////
 81 //                                                125 //
 82 // Constructor - Design of trapezoid based on  << 126 // Constructor - Design of trapezoid based on 8 G4ThreeVector parameters, 
 83 // which are its vertices. Checking of planari << 127 // which are its vertices. Checking of planarity with preparation of 
 84 // fPlanes[] and than calculation of other mem    128 // fPlanes[] and than calculation of other members
 85                                                   129 
 86 G4Trap::G4Trap( const G4String& pName,            130 G4Trap::G4Trap( const G4String& pName,
 87                 const G4ThreeVector pt[8] )       131                 const G4ThreeVector pt[8] )
 88   : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 132   : G4CSGSolid(pName)
 89 {                                                 133 {
                                                   >> 134   G4bool good;
                                                   >> 135 
 90   // Start with check of centering - the cente    136   // Start with check of centering - the center of gravity trap line
 91   // should cross the origin of frame             137   // should cross the origin of frame
 92   //                                           << 
 93   if (  pt[0].z() >= 0                         << 
 94         || pt[0].z() != pt[1].z()              << 
 95         || pt[0].z() != pt[2].z()              << 
 96         || pt[0].z() != pt[3].z()              << 
 97                                                   138 
 98         || pt[4].z() <= 0                      << 139   if (!(   pt[0].z() < 0 
 99         || pt[4].z() != pt[5].z()              << 140         && pt[0].z() == pt[1].z() && pt[0].z() == pt[2].z()
100         || pt[4].z() != pt[6].z()              << 141         && pt[0].z() == pt[3].z()
101         || pt[4].z() != pt[7].z()              << 142         && pt[4].z() > 0 
                                                   >> 143         && pt[4].z() == pt[5].z() && pt[4].z() == pt[6].z()
                                                   >> 144         && pt[4].z() == pt[7].z()
                                                   >> 145         && std::fabs( pt[0].z() + pt[4].z() ) < kCarTolerance
                                                   >> 146         && pt[0].y() == pt[1].y() && pt[2].y() == pt[3].y()
                                                   >> 147         && pt[4].y() == pt[5].y() && pt[6].y() == pt[7].y()
                                                   >> 148         && std::fabs( pt[0].y() + pt[2].y() + pt[4].y() + pt[6].y() ) < kCarTolerance 
                                                   >> 149         && std::fabs( pt[0].x() + pt[1].x() + pt[4].x() + pt[5].x() + 
                                                   >> 150            pt[2].x() + pt[3].x() + pt[6].x() + pt[7].x() ) < kCarTolerance ) )
                                                   >> 151   {
                                                   >> 152     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 153     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 154                   "Invalid vertice coordinates.");
                                                   >> 155   }
                                                   >> 156     
                                                   >> 157   // Bottom side with normal approx. -Y
                                                   >> 158     
                                                   >> 159   good = MakePlane(pt[0],pt[4],pt[5],pt[1],fPlanes[0]);
102                                                   160 
103         || std::fabs( pt[0].z() + pt[4].z() )  << 161   if (!good)
                                                   >> 162   {
                                                   >> 163     DumpInfo();
                                                   >> 164     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 165                 "Face at ~-Y not planar.");
                                                   >> 166   }
104                                                   167 
105         || pt[0].y() != pt[1].y()              << 168   // Top side with normal approx. +Y
106         || pt[2].y() != pt[3].y()              << 169     
107         || pt[4].y() != pt[5].y()              << 170   good = MakePlane(pt[2],pt[3],pt[7],pt[6],fPlanes[1]);
108         || pt[6].y() != pt[7].y()              << 
109                                                   171 
110         || std::fabs(pt[0].y()+pt[2].y()+pt[4] << 172   if (!good)
111         || std::fabs(pt[0].x()+pt[1].x()+pt[4] << 
112                      pt[2].x()+pt[3].x()+pt[6] << 
113   {                                               173   {
114     std::ostringstream message;                << 174     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
115     message << "Invalid vertice coordinates fo << 175     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
116     G4Exception("G4Trap::G4Trap()", "GeomSolid << 176                 "Face at ~+Y not planar.");
117                 FatalException, message);      << 
118   }                                               177   }
119                                                   178 
120   // Set parameters                            << 179   // Front side with normal approx. -X
121   //                                           << 180     
122   fDz = (pt[7]).z();                           << 181   good = MakePlane(pt[0],pt[2],pt[6],pt[4],fPlanes[2]);
                                                   >> 182 
                                                   >> 183   if (!good)
                                                   >> 184   {
                                                   >> 185     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 186     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 187                 "Face at ~-X not planar.");
                                                   >> 188   }
123                                                   189 
                                                   >> 190   // Back side iwth normal approx. +X
                                                   >> 191     
                                                   >> 192   good = MakePlane(pt[1],pt[5],pt[7],pt[3],fPlanes[3]);
                                                   >> 193   if (!good)
                                                   >> 194   {
                                                   >> 195     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 196     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 197                 "Face at ~+X not planar.");
                                                   >> 198   }
                                                   >> 199   fDz = (pt[7]).z() ;
                                                   >> 200       
124   fDy1     = ((pt[2]).y()-(pt[1]).y())*0.5;       201   fDy1     = ((pt[2]).y()-(pt[1]).y())*0.5;
125   fDx1     = ((pt[1]).x()-(pt[0]).x())*0.5;       202   fDx1     = ((pt[1]).x()-(pt[0]).x())*0.5;
126   fDx2     = ((pt[3]).x()-(pt[2]).x())*0.5;       203   fDx2     = ((pt[3]).x()-(pt[2]).x())*0.5;
127   fTalpha1 = ((pt[2]).x()+(pt[3]).x()-(pt[1]).    204   fTalpha1 = ((pt[2]).x()+(pt[3]).x()-(pt[1]).x()-(pt[0]).x())*0.25/fDy1;
128                                                   205 
129   fDy2     = ((pt[6]).y()-(pt[5]).y())*0.5;       206   fDy2     = ((pt[6]).y()-(pt[5]).y())*0.5;
130   fDx3     = ((pt[5]).x()-(pt[4]).x())*0.5;       207   fDx3     = ((pt[5]).x()-(pt[4]).x())*0.5;
131   fDx4     = ((pt[7]).x()-(pt[6]).x())*0.5;       208   fDx4     = ((pt[7]).x()-(pt[6]).x())*0.5;
132   fTalpha2 = ((pt[6]).x()+(pt[7]).x()-(pt[5]).    209   fTalpha2 = ((pt[6]).x()+(pt[7]).x()-(pt[5]).x()-(pt[4]).x())*0.25/fDy2;
133                                                   210 
134   fTthetaCphi = ((pt[4]).x()+fDy2*fTalpha2+fDx    211   fTthetaCphi = ((pt[4]).x()+fDy2*fTalpha2+fDx3)/fDz;
135   fTthetaSphi = ((pt[4]).y()+fDy2)/fDz;           212   fTthetaSphi = ((pt[4]).y()+fDy2)/fDz;
136                                                << 
137   CheckParameters();                           << 
138   MakePlanes(pt);                              << 
139 }                                                 213 }
140                                                   214 
141 ////////////////////////////////////////////// << 215 //////////////////////////////////////////////////////////////////////////////
142 //                                                216 //
143 // Constructor for Right Angular Wedge from ST    217 // Constructor for Right Angular Wedge from STEP
144                                                   218 
145 G4Trap::G4Trap( const G4String& pName,            219 G4Trap::G4Trap( const G4String& pName,
146                       G4double pZ,                220                       G4double pZ,
147                       G4double pY,                221                       G4double pY,
148                       G4double pX, G4double pL    222                       G4double pX, G4double pLTX )
149   : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 223   : G4CSGSolid(pName)
150 {                                                 224 {
151   fDz  = 0.5*pZ; fTthetaCphi = 0; fTthetaSphi  << 225   G4bool good;
152   fDy1 = 0.5*pY; fDx1 = 0.5*pX; fDx2 = 0.5*pLT << 
153   fDy2 = fDy1;   fDx3 = fDx1;   fDx4 = fDx2;   << 
154                                                   226 
155   CheckParameters();                           << 227   if ( pZ<=0 || pY<=0 || pX<=0 || pLTX<=0 || pLTX>pX )
156   MakePlanes();                                << 228   {
                                                   >> 229     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 230     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 231                 "Invalid length G4Trap parameters.");
                                                   >> 232   }
                                                   >> 233 
                                                   >> 234   fDz = 0.5*pZ ;
                                                   >> 235   fTthetaCphi = 0 ;
                                                   >> 236   fTthetaSphi = 0 ;
                                                   >> 237 
                                                   >> 238   fDy1 = 0.5*pY;
                                                   >> 239   fDx1 = 0.5*pX ;
                                                   >> 240   fDx2 = 0.5*pLTX;
                                                   >> 241   fTalpha1 =  0.5*(pLTX - pX)/pY;
                                                   >> 242 
                                                   >> 243   fDy2 = fDy1 ;
                                                   >> 244   fDx3 = fDx1;
                                                   >> 245   fDx4 = fDx2 ;
                                                   >> 246   fTalpha2 = fTalpha1 ;
                                                   >> 247 
                                                   >> 248   G4ThreeVector pt[8] ;
                                                   >> 249 
                                                   >> 250   pt[0]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1-fDx1,
                                                   >> 251                       -fDz*fTthetaSphi-fDy1,-fDz);
                                                   >> 252   pt[1]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1+fDx1,
                                                   >> 253                       -fDz*fTthetaSphi-fDy1,-fDz);
                                                   >> 254   pt[2]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1-fDx2,
                                                   >> 255                       -fDz*fTthetaSphi+fDy1,-fDz);
                                                   >> 256   pt[3]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1+fDx2,
                                                   >> 257                       -fDz*fTthetaSphi+fDy1,-fDz);
                                                   >> 258   pt[4]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2-fDx3,
                                                   >> 259                       +fDz*fTthetaSphi-fDy2,+fDz);
                                                   >> 260   pt[5]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2+fDx3,
                                                   >> 261                       +fDz*fTthetaSphi-fDy2,+fDz);
                                                   >> 262   pt[6]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2-fDx4,
                                                   >> 263                       +fDz*fTthetaSphi+fDy2,+fDz);
                                                   >> 264   pt[7]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2+fDx4,
                                                   >> 265                       +fDz*fTthetaSphi+fDy2,+fDz);
                                                   >> 266 
                                                   >> 267   // Bottom side with normal approx. -Y
                                                   >> 268   //
                                                   >> 269   good=MakePlane(pt[0],pt[4],pt[5],pt[1],fPlanes[0]);
                                                   >> 270   if (!good)
                                                   >> 271   {
                                                   >> 272     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 273     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 274                 "Face at ~-Y not planar.");
                                                   >> 275   }
                                                   >> 276 
                                                   >> 277   // Top side with normal approx. +Y
                                                   >> 278   //
                                                   >> 279   good=MakePlane(pt[2],pt[3],pt[7],pt[6],fPlanes[1]);
                                                   >> 280   if (!good)
                                                   >> 281   {
                                                   >> 282     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 283     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 284                 "Face at ~+Y not planar.");
                                                   >> 285   }
                                                   >> 286 
                                                   >> 287   // Front side with normal approx. -X
                                                   >> 288   //
                                                   >> 289   good=MakePlane(pt[0],pt[2],pt[6],pt[4],fPlanes[2]);
                                                   >> 290   if (!good)
                                                   >> 291   {
                                                   >> 292     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 293     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 294                 "Face at ~-X not planar.");
                                                   >> 295   }
                                                   >> 296 
                                                   >> 297   // Back side iwth normal approx. +X
                                                   >> 298   //
                                                   >> 299   good=MakePlane(pt[1],pt[5],pt[7],pt[3],fPlanes[3]);
                                                   >> 300   if (!good)
                                                   >> 301   {
                                                   >> 302     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 303     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 304                 "Face at ~+X not planar.");
                                                   >> 305   }
157 }                                                 306 }
158                                                   307 
159 ////////////////////////////////////////////// << 308 ///////////////////////////////////////////////////////////////////////////////
160 //                                                309 //
161 // Constructor for G4Trd                          310 // Constructor for G4Trd
162                                                   311 
163 G4Trap::G4Trap( const G4String& pName,            312 G4Trap::G4Trap( const G4String& pName,
164                       G4double pDx1,  G4double    313                       G4double pDx1,  G4double pDx2,
165                       G4double pDy1,  G4double    314                       G4double pDy1,  G4double pDy2,
166                       G4double pDz )              315                       G4double pDz )
167   : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 316   : G4CSGSolid(pName)
168 {                                                 317 {
169   fDz  = pDz;  fTthetaCphi = 0; fTthetaSphi =  << 318   G4bool good;
170   fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx1; fTalp << 
171   fDy2 = pDy2; fDx3 = pDx2; fDx4 = pDx2; fTalp << 
172                                                   319 
173   CheckParameters();                           << 320   if ( pDz<=0 || pDy1<=0 || pDx1<=0 || pDx2<=0 || pDy2<=0 )
174   MakePlanes();                                << 321   {
                                                   >> 322     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 323     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 324                 "Invalid length G4Trap parameters.");
                                                   >> 325   }
                                                   >> 326 
                                                   >> 327   fDz = pDz;
                                                   >> 328   fTthetaCphi = 0 ;
                                                   >> 329   fTthetaSphi = 0 ;
                                                   >> 330       
                                                   >> 331   fDy1 = pDy1 ;
                                                   >> 332   fDx1 = pDx1 ;
                                                   >> 333   fDx2 = pDx1 ;
                                                   >> 334   fTalpha1 = 0 ;
                                                   >> 335      
                                                   >> 336   fDy2 = pDy2 ;
                                                   >> 337   fDx3 = pDx2 ;
                                                   >> 338   fDx4 = pDx2 ;
                                                   >> 339   fTalpha2 = 0 ;
                                                   >> 340 
                                                   >> 341   G4ThreeVector pt[8] ;
                                                   >> 342      
                                                   >> 343   pt[0]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1-fDx1,
                                                   >> 344                       -fDz*fTthetaSphi-fDy1,-fDz);
                                                   >> 345   pt[1]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1+fDx1,
                                                   >> 346                       -fDz*fTthetaSphi-fDy1,-fDz);
                                                   >> 347   pt[2]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1-fDx2,
                                                   >> 348                       -fDz*fTthetaSphi+fDy1,-fDz);
                                                   >> 349   pt[3]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1+fDx2,
                                                   >> 350                       -fDz*fTthetaSphi+fDy1,-fDz);
                                                   >> 351   pt[4]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2-fDx3,
                                                   >> 352                       +fDz*fTthetaSphi-fDy2,+fDz);
                                                   >> 353   pt[5]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2+fDx3,
                                                   >> 354                       +fDz*fTthetaSphi-fDy2,+fDz);
                                                   >> 355   pt[6]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2-fDx4,
                                                   >> 356                       +fDz*fTthetaSphi+fDy2,+fDz);
                                                   >> 357   pt[7]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2+fDx4,
                                                   >> 358                       +fDz*fTthetaSphi+fDy2,+fDz);
                                                   >> 359 
                                                   >> 360   // Bottom side with normal approx. -Y
                                                   >> 361   //
                                                   >> 362   good=MakePlane(pt[0],pt[4],pt[5],pt[1],fPlanes[0]);
                                                   >> 363   if (!good)
                                                   >> 364   {
                                                   >> 365     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 366     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 367                 "Face at ~-Y not planar.");
                                                   >> 368   }
                                                   >> 369 
                                                   >> 370   // Top side with normal approx. +Y
                                                   >> 371   //
                                                   >> 372   good=MakePlane(pt[2],pt[3],pt[7],pt[6],fPlanes[1]);
                                                   >> 373   if (!good)
                                                   >> 374   {
                                                   >> 375     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 376     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 377                 "Face at ~+Y not planar.");
                                                   >> 378   }
                                                   >> 379 
                                                   >> 380   // Front side with normal approx. -X
                                                   >> 381   //
                                                   >> 382   good=MakePlane(pt[0],pt[2],pt[6],pt[4],fPlanes[2]);
                                                   >> 383   if (!good)
                                                   >> 384   {
                                                   >> 385     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 386     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 387                 "Face at ~-X not planar.");
                                                   >> 388   }
                                                   >> 389 
                                                   >> 390   // Back side iwth normal approx. +X
                                                   >> 391   //
                                                   >> 392   good=MakePlane(pt[1],pt[5],pt[7],pt[3],fPlanes[3]);
                                                   >> 393   if (!good)
                                                   >> 394   {
                                                   >> 395     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 396     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 397                 "Face at ~+X not planar.");
                                                   >> 398   }
175 }                                                 399 }
176                                                   400 
177 ////////////////////////////////////////////// << 401 ////////////////////////////////////////////////////////////////////////////
178 //                                                402 //
179 // Constructor for G4Para                         403 // Constructor for G4Para
180                                                   404 
181 G4Trap::G4Trap( const G4String& pName,            405 G4Trap::G4Trap( const G4String& pName,
182                       G4double pDx, G4double p    406                       G4double pDx, G4double pDy,
183                       G4double pDz,               407                       G4double pDz,
184                       G4double pAlpha,            408                       G4double pAlpha,
185                       G4double pTheta, G4doubl    409                       G4double pTheta, G4double pPhi )
186   : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 410   : G4CSGSolid(pName)       
187 {                                                 411 {
188   fDz = pDz;                                   << 412   G4bool good;
189   fTthetaCphi = std::tan(pTheta)*std::cos(pPhi << 
190   fTthetaSphi = std::tan(pTheta)*std::sin(pPhi << 
191                                                   413 
192   fDy1 = pDy; fDx1 = pDx; fDx2 = pDx; fTalpha1 << 414   if ( pDz<=0 || pDy<=0 || pDx<=0 )
193   fDy2 = pDy; fDx3 = pDx; fDx4 = pDx; fTalpha2 << 415   {
                                                   >> 416     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 417     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 418                 "Invalid length G4Trap parameters.");
                                                   >> 419   }
                                                   >> 420 
                                                   >> 421   fDz = pDz ;
                                                   >> 422   fTthetaCphi = std::tan(pTheta)*std::cos(pPhi) ;
                                                   >> 423   fTthetaSphi = std::tan(pTheta)*std::sin(pPhi) ;
                                                   >> 424      
                                                   >> 425   fDy1 = pDy ;
                                                   >> 426   fDx1 = pDx ;
                                                   >> 427   fDx2 = pDx ;
                                                   >> 428   fTalpha1 = std::tan(pAlpha) ;
                                                   >> 429     
                                                   >> 430   fDy2 = pDy ;
                                                   >> 431   fDx3 = pDx ;
                                                   >> 432   fDx4 = pDx ;
                                                   >> 433   fTalpha2 = fTalpha1 ;
                                                   >> 434 
                                                   >> 435   G4ThreeVector pt[8] ;
                                                   >> 436      
                                                   >> 437   pt[0]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1-fDx1,
                                                   >> 438                       -fDz*fTthetaSphi-fDy1,-fDz);
                                                   >> 439   pt[1]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1+fDx1,
                                                   >> 440                       -fDz*fTthetaSphi-fDy1,-fDz);
                                                   >> 441   pt[2]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1-fDx2,
                                                   >> 442                       -fDz*fTthetaSphi+fDy1,-fDz);
                                                   >> 443   pt[3]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1+fDx2,
                                                   >> 444                       -fDz*fTthetaSphi+fDy1,-fDz);
                                                   >> 445   pt[4]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2-fDx3,
                                                   >> 446                       +fDz*fTthetaSphi-fDy2,+fDz);
                                                   >> 447   pt[5]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2+fDx3,
                                                   >> 448                       +fDz*fTthetaSphi-fDy2,+fDz);
                                                   >> 449   pt[6]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2-fDx4,
                                                   >> 450                       +fDz*fTthetaSphi+fDy2,+fDz);
                                                   >> 451   pt[7]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2+fDx4,
                                                   >> 452                       +fDz*fTthetaSphi+fDy2,+fDz);
194                                                   453 
195   CheckParameters();                           << 454   // Bottom side with normal approx. -Y
196   MakePlanes();                                << 455   //
                                                   >> 456   good=MakePlane(pt[0],pt[4],pt[5],pt[1],fPlanes[0]);
                                                   >> 457   if (!good)
                                                   >> 458   {
                                                   >> 459     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 460     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 461                 "Face at ~-Y not planar.");
                                                   >> 462   }
                                                   >> 463 
                                                   >> 464   // Top side with normal approx. +Y
                                                   >> 465   //
                                                   >> 466   good=MakePlane(pt[2],pt[3],pt[7],pt[6],fPlanes[1]);
                                                   >> 467   if (!good)
                                                   >> 468   {
                                                   >> 469     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 470     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 471                 "Face at ~+Y not planar.");
                                                   >> 472   }
                                                   >> 473 
                                                   >> 474   // Front side with normal approx. -X
                                                   >> 475   //
                                                   >> 476   good=MakePlane(pt[0],pt[2],pt[6],pt[4],fPlanes[2]);
                                                   >> 477   if (!good)
                                                   >> 478   {
                                                   >> 479     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 480     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 481                 "Face at ~-X not planar.");
                                                   >> 482   }
                                                   >> 483 
                                                   >> 484   // Back side iwth normal approx. +X
                                                   >> 485   //
                                                   >> 486   good=MakePlane(pt[1],pt[5],pt[7],pt[3],fPlanes[3]);
                                                   >> 487   if (!good)
                                                   >> 488   {
                                                   >> 489     G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl;
                                                   >> 490     G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException,
                                                   >> 491                 "Face at ~+X not planar.");
                                                   >> 492   }
197 }                                                 493 }
198                                                   494 
199 ////////////////////////////////////////////// << 495 ///////////////////////////////////////////////////////////////////////////
200 //                                                496 //
201 // Nominal constructor for G4Trap whose parame    497 // Nominal constructor for G4Trap whose parameters are to be set by
202 // a G4VParamaterisation later.  Check and set    498 // a G4VParamaterisation later.  Check and set half-widths as well as
203 // angles: final check of coplanarity             499 // angles: final check of coplanarity
204                                                   500 
205 G4Trap::G4Trap( const G4String& pName )           501 G4Trap::G4Trap( const G4String& pName )
206   : G4CSGSolid (pName), halfCarTolerance(0.5*k << 502   : G4CSGSolid (pName), fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.),
207     fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.), << 
208     fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.)    503     fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.),
209     fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.)    504     fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.)
210 {                                                 505 {
211   MakePlanes();                                   506   MakePlanes();
212 }                                                 507 }
213                                                   508 
214 ////////////////////////////////////////////// << 509 ///////////////////////////////////////////////////////////////////////
215 //                                                510 //
216 // Fake default constructor - sets only member    511 // Fake default constructor - sets only member data and allocates memory
217 //                            for usage restri    512 //                            for usage restricted to object persistency.
218 //                                                513 //
219 G4Trap::G4Trap( __void__& a )                     514 G4Trap::G4Trap( __void__& a )
220   : G4CSGSolid(a), halfCarTolerance(0.5*kCarTo << 515   : G4CSGSolid(a), fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.),
221     fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.), << 
222     fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.)    516     fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.),
223     fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.)    517     fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.)
224 {                                                 518 {
225   MakePlanes();                                   519   MakePlanes();
226 }                                                 520 }
227                                                   521 
228 ////////////////////////////////////////////// << 522 ////////////////////////////////////////////////////////////////////////
229 //                                                523 //
230 // Destructor                                     524 // Destructor
231                                                   525 
232 G4Trap::~G4Trap() = default;                   << 526 G4Trap::~G4Trap()
233                                                << 
234 ////////////////////////////////////////////// << 
235 //                                             << 
236 // Copy constructor                            << 
237                                                << 
238 G4Trap::G4Trap(const G4Trap& rhs)              << 
239   : G4CSGSolid(rhs), halfCarTolerance(rhs.half << 
240     fDz(rhs.fDz), fTthetaCphi(rhs.fTthetaCphi) << 
241     fDy1(rhs.fDy1), fDx1(rhs.fDx1), fDx2(rhs.f << 
242     fDy2(rhs.fDy2), fDx3(rhs.fDx3), fDx4(rhs.f << 
243 {                                              << 
244   for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs << 
245   for (G4int i=0; i<6; ++i) { fAreas[i] = rhs. << 
246   fTrapType = rhs.fTrapType;                   << 
247 }                                              << 
248                                                << 
249 ////////////////////////////////////////////// << 
250 //                                             << 
251 // Assignment operator                         << 
252                                                << 
253 G4Trap& G4Trap::operator = (const G4Trap& rhs) << 
254 {                                                 527 {
255   // Check assignment to self                  << 
256   //                                           << 
257   if (this == &rhs)  { return *this; }         << 
258                                                << 
259   // Copy base class data                      << 
260   //                                           << 
261   G4CSGSolid::operator=(rhs);                  << 
262                                                << 
263   // Copy data                                 << 
264   //                                           << 
265   halfCarTolerance = rhs.halfCarTolerance;     << 
266   fDz = rhs.fDz; fTthetaCphi = rhs.fTthetaCphi << 
267   fDy1 = rhs.fDy1; fDx1 = rhs.fDx1; fDx2 = rhs << 
268   fDy2 = rhs.fDy2; fDx3 = rhs.fDx3; fDx4 = rhs << 
269   for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs << 
270   for (G4int i=0; i<6; ++i) { fAreas[i] = rhs. << 
271   fTrapType = rhs.fTrapType;                   << 
272   return *this;                                << 
273 }                                                 528 }
274                                                   529 
275 ////////////////////////////////////////////// << 530 ///////////////////////////////////////////////////////////////////////
276 //                                                531 //
277 // Set all parameters, as for constructor - ch    532 // Set all parameters, as for constructor - check and set half-widths
278 // as well as angles: final check of coplanari    533 // as well as angles: final check of coplanarity
279                                                   534 
280 void G4Trap::SetAllParameters ( G4double pDz,     535 void G4Trap::SetAllParameters ( G4double pDz,
281                                 G4double pThet    536                                 G4double pTheta,
282                                 G4double pPhi,    537                                 G4double pPhi,
283                                 G4double pDy1,    538                                 G4double pDy1,
284                                 G4double pDx1,    539                                 G4double pDx1,
285                                 G4double pDx2,    540                                 G4double pDx2,
286                                 G4double pAlp1    541                                 G4double pAlp1,
287                                 G4double pDy2,    542                                 G4double pDy2,
288                                 G4double pDx3,    543                                 G4double pDx3,
289                                 G4double pDx4,    544                                 G4double pDx4,
290                                 G4double pAlp2    545                                 G4double pAlp2 )
291 {                                                 546 {
292   // Reset data of the base class              << 547   if ( pDz<=0 || pDy1<=0 || pDx1<=0 || pDx2<=0 || pDy2<=0 || pDx3<=0 || pDx4<=0 )
293   fCubicVolume = 0;                            << 548   {
294   fSurfaceArea = 0;                            << 549     G4cerr << "ERROR - G4Trap()::SetAllParameters(): " << GetName() << G4endl
295   fRebuildPolyhedron = true;                   << 550            << "        Invalid dimensions !" << G4endl
296                                                << 551            << "          X - "
297   // Set parameters                            << 552            << pDx1 << ", " << pDx2 << ", " << pDx3 << ", " << pDx4 << G4endl
298   fDz = pDz;                                   << 553            << "          Y - " << pDy1 << ", " << pDy2 << G4endl
299   fTthetaCphi = std::tan(pTheta)*std::cos(pPhi << 554            << "          Z - " << pDz << G4endl;
300   fTthetaSphi = std::tan(pTheta)*std::sin(pPhi << 555     G4Exception("G4Trap::SetAllParameters()", "InvalidSetup",
301                                                << 556                 FatalException, "Invalid Length Parameters.");
302   fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalp << 557   }
303   fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalp << 558   fCubicVolume= 0.;
                                                   >> 559   fSurfaceArea= 0.;
                                                   >> 560   fpPolyhedron = 0;
                                                   >> 561   fDz=pDz;
                                                   >> 562   fTthetaCphi=std::tan(pTheta)*std::cos(pPhi);
                                                   >> 563   fTthetaSphi=std::tan(pTheta)*std::sin(pPhi);
                                                   >> 564      
                                                   >> 565   fDy1=pDy1;
                                                   >> 566   fDx1=pDx1;
                                                   >> 567   fDx2=pDx2;
                                                   >> 568   fTalpha1=std::tan(pAlp1);
                                                   >> 569     
                                                   >> 570   fDy2=pDy2;
                                                   >> 571   fDx3=pDx3;
                                                   >> 572   fDx4=pDx4;
                                                   >> 573   fTalpha2=std::tan(pAlp2);
304                                                   574 
305   CheckParameters();                           << 
306   MakePlanes();                                   575   MakePlanes();
307 }                                                 576 }
308                                                   577 
309 //////////////////////////////////////////////    578 //////////////////////////////////////////////////////////////////////////
310 //                                                579 //
311 // Check length parameters                     << 580 // Checking of coplanarity
312                                                   581 
313 void G4Trap::CheckParameters()                 << 582 G4bool G4Trap::MakePlanes()
314 {                                                 583 {
315   if (fDz<=0 ||                                << 584   G4bool good = true;
316       fDy1<=0 || fDx1<=0 || fDx2<=0 ||         << 
317       fDy2<=0 || fDx3<=0 || fDx4<=0)           << 
318   {                                            << 
319     std::ostringstream message;                << 
320     message << "Invalid Length Parameters for  << 
321             << "\n  X - " <<fDx1<<", "<<fDx2<< << 
322             << "\n  Y - " <<fDy1<<", "<<fDy2   << 
323             << "\n  Z - " <<fDz;               << 
324     G4Exception("G4Trap::CheckParameters()", " << 
325                 FatalException, message);      << 
326   }                                            << 
327 }                                              << 
328                                                << 
329 ////////////////////////////////////////////// << 
330 //                                             << 
331 // Compute vertices and set side planes        << 
332                                                   585 
333 void G4Trap::MakePlanes()                      << 586   G4ThreeVector pt[8] ;
334 {                                              << 587      
335   G4double DzTthetaCphi = fDz*fTthetaCphi;     << 588   pt[0]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1-fDx1,
336   G4double DzTthetaSphi = fDz*fTthetaSphi;     << 589                       -fDz*fTthetaSphi-fDy1,-fDz);
337   G4double Dy1Talpha1   = fDy1*fTalpha1;       << 590   pt[1]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1+fDx1,
338   G4double Dy2Talpha2   = fDy2*fTalpha2;       << 591                       -fDz*fTthetaSphi-fDy1,-fDz);
339                                                << 592   pt[2]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1-fDx2,
340   G4ThreeVector pt[8] =                        << 593                       -fDz*fTthetaSphi+fDy1,-fDz);
341   {                                            << 594   pt[3]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1+fDx2,
342     G4ThreeVector(-DzTthetaCphi-Dy1Talpha1-fDx << 595                       -fDz*fTthetaSphi+fDy1,-fDz);
343     G4ThreeVector(-DzTthetaCphi-Dy1Talpha1+fDx << 596   pt[4]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2-fDx3,
344     G4ThreeVector(-DzTthetaCphi+Dy1Talpha1-fDx << 597                       +fDz*fTthetaSphi-fDy2,+fDz);
345     G4ThreeVector(-DzTthetaCphi+Dy1Talpha1+fDx << 598   pt[5]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2+fDx3,
346     G4ThreeVector( DzTthetaCphi-Dy2Talpha2-fDx << 599                       +fDz*fTthetaSphi-fDy2,+fDz);
347     G4ThreeVector( DzTthetaCphi-Dy2Talpha2+fDx << 600   pt[6]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2-fDx4,
348     G4ThreeVector( DzTthetaCphi+Dy2Talpha2-fDx << 601                       +fDz*fTthetaSphi+fDy2,+fDz);
349     G4ThreeVector( DzTthetaCphi+Dy2Talpha2+fDx << 602   pt[7]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2+fDx4,
350   };                                           << 603                       +fDz*fTthetaSphi+fDy2,+fDz);
351                                                   604 
352   MakePlanes(pt);                              << 605   // Bottom side with normal approx. -Y
353 }                                              << 606   //
354                                                << 607   good=MakePlane(pt[0],pt[4],pt[5],pt[1],fPlanes[0]) ;
355 ////////////////////////////////////////////// << 608   if (!good)
356 //                                             << 609   {
357 // Set side planes, check planarity            << 610     G4cerr << "ERROR - G4Trap()::MakePlanes(): " << GetName() << G4endl;
358                                                << 611     G4Exception("G4Trap::MakePlanes()", "InvalidSetup", FatalException,
359 void G4Trap::MakePlanes(const G4ThreeVector pt << 612                 "Face at ~-Y not planar.");
360 {                                              << 613   }
361   constexpr G4int iface[4][4] = { {0,4,5,1}, { << 
362   const static G4String side[4] = { "~-Y", "~+ << 
363                                                   614 
364   for (G4int i=0; i<4; ++i)                    << 615   // Top side with normal approx. +Y
                                                   >> 616   //
                                                   >> 617   good=MakePlane(pt[2],pt[3],pt[7],pt[6],fPlanes[1]);
                                                   >> 618   if (!good)
365   {                                               619   {
366     if (MakePlane(pt[iface[i][0]],             << 620     G4cerr << "ERROR - G4Trap()::MakePlanes(): " << GetName() << G4endl;
367                   pt[iface[i][1]],             << 621     G4Exception("G4Trap::MakePlanes()", "InvalidSetup", FatalException,
368                   pt[iface[i][2]],             << 622                 "Face at ~+Y not planar.");
369                   pt[iface[i][3]],             << 623   }
370                   fPlanes[i])) continue;       << 
371                                                   624 
372     // Non planar side face                    << 625   // Front side with normal approx. -X
373     G4ThreeVector normal(fPlanes[i].a,fPlanes[ << 626   //
374     G4double dmax = 0;                         << 627   good=MakePlane(pt[0],pt[2],pt[6],pt[4],fPlanes[2]);
375     for (G4int k=0; k<4; ++k)                  << 628   if (!good)
376     {                                          << 629   {
377       G4double dist = normal.dot(pt[iface[i][k << 630     G4cerr << "ERROR - G4Trap()::MakePlanes(): " << GetName() << G4endl;
378       if (std::abs(dist) > std::abs(dmax)) dma << 631     G4Exception("G4Trap::MakePlanes()", "InvalidSetup", FatalException,
379     }                                          << 632                 "Face at ~-X not planar.");
380     std::ostringstream message;                << 633   }
381     message << "Side face " << side[i] << " is << 634    
382             << GetName() << "\nDiscrepancy: "  << 635   // Back side iwth normal approx. +X
383     StreamInfo(message);                       << 636   //
384     G4Exception("G4Trap::MakePlanes()", "GeomS << 637   good = MakePlane(pt[1],pt[5],pt[7],pt[3],fPlanes[3]);
385                 FatalException, message);      << 638   if ( !good )
                                                   >> 639   {
                                                   >> 640     G4cerr << "ERROR - G4Trap()::MakePlanes(): " << GetName() << G4endl;
                                                   >> 641     G4Exception("G4Trap::MakePlanes()", "InvalidSetup", FatalException,
                                                   >> 642                 "Face at ~+X not planar");
386   }                                               643   }
387                                                   644 
388   // Re-compute parameters                     << 645   return good;
389   SetCachedValues();                           << 
390 }                                                 646 }
391                                                   647 
392 ////////////////////////////////////////////// << 648 //////////////////////////////////////////////////////////////////////////////
393 //                                                649 //
394 // Calculate the coef's of the plane p1->p2->p    650 // Calculate the coef's of the plane p1->p2->p3->p4->p1
395 // where the ThreeVectors 1-4 are in anti-cloc << 651 // where the ThreeVectors 1-4 are in anti-clockwise order when viewed from
396 // from infront of the plane (i.e. from normal << 652 // infront of the plane (i.e. from normal direction).
397 //                                                653 //
398 // Return true if the points are coplanar, fal << 654 // Return true if the ThreeVectors are coplanar + set coef;s
                                                   >> 655 //        false if ThreeVectors are not coplanar
399                                                   656 
400 G4bool G4Trap::MakePlane( const G4ThreeVector&    657 G4bool G4Trap::MakePlane( const G4ThreeVector& p1,
401                           const G4ThreeVector&    658                           const G4ThreeVector& p2,
402                           const G4ThreeVector&    659                           const G4ThreeVector& p3,
403                           const G4ThreeVector&    660                           const G4ThreeVector& p4,
404                                 TrapSidePlane&    661                                 TrapSidePlane& plane )
405 {                                                 662 {
406   G4ThreeVector normal = ((p4 - p2).cross(p3 - << 663   G4double a, b, c, s;
407   if (std::abs(normal.x()) < DBL_EPSILON) norm << 664   G4ThreeVector v12, v13, v14, Vcross;
408   if (std::abs(normal.y()) < DBL_EPSILON) norm << 
409   if (std::abs(normal.z()) < DBL_EPSILON) norm << 
410   normal = normal.unit();                      << 
411                                                << 
412   G4ThreeVector centre = (p1 + p2 + p3 + p4)*0 << 
413   plane.a =  normal.x();                       << 
414   plane.b =  normal.y();                       << 
415   plane.c =  normal.z();                       << 
416   plane.d = -normal.dot(centre);               << 
417                                                << 
418   // compute distances and check planarity     << 
419   G4double d1 = std::abs(normal.dot(p1) + plan << 
420   G4double d2 = std::abs(normal.dot(p2) + plan << 
421   G4double d3 = std::abs(normal.dot(p3) + plan << 
422   G4double d4 = std::abs(normal.dot(p4) + plan << 
423   G4double dmax = std::max(std::max(std::max(d << 
424                                                << 
425   return dmax <= 1000 * kCarTolerance;         << 
426 }                                              << 
427                                                << 
428 ////////////////////////////////////////////// << 
429 //                                             << 
430 // Recompute parameters using planes           << 
431                                                << 
432 void G4Trap::SetCachedValues()                 << 
433 {                                              << 
434   // Set indeces                               << 
435   constexpr  G4int iface[6][4] =               << 
436       { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2, << 
437                                                << 
438   // Get vertices                              << 
439   G4ThreeVector pt[8];                         << 
440   GetVertices(pt);                             << 
441                                                   665 
442   // Set face areas                            << 666   G4bool good;
443   for (G4int i=0; i<6; ++i)                    << 
444   {                                            << 
445     fAreas[i] = G4GeomTools::QuadAreaNormal(pt << 
446                                             pt << 
447                                             pt << 
448                                             pt << 
449   }                                            << 
450   for (G4int i=1; i<6; ++i) { fAreas[i] += fAr << 
451                                                << 
452   // Define type of trapezoid                  << 
453   fTrapType = 0;                               << 
454   if (fPlanes[0].b  == -1 && fPlanes[1].b == 1 << 
455       std::abs(fPlanes[0].a) < DBL_EPSILON &&  << 
456       std::abs(fPlanes[0].c) < DBL_EPSILON &&  << 
457       std::abs(fPlanes[1].a) < DBL_EPSILON &&  << 
458       std::abs(fPlanes[1].c) < DBL_EPSILON)    << 
459   {                                            << 
460     fTrapType = 1; // YZ section is a rectangl << 
461     if (std::abs(fPlanes[2].a + fPlanes[3].a)  << 
462         std::abs(fPlanes[2].c - fPlanes[3].c)  << 
463         fPlanes[2].b == 0 &&                   << 
464         fPlanes[3].b == 0)                     << 
465     {                                          << 
466       fTrapType = 2; // ... and XZ section is  << 
467       fPlanes[2].a = -fPlanes[3].a;            << 
468       fPlanes[2].c =  fPlanes[3].c;            << 
469     }                                          << 
470     if (std::abs(fPlanes[2].a + fPlanes[3].a)  << 
471         std::abs(fPlanes[2].b - fPlanes[3].b)  << 
472         fPlanes[2].c == 0 &&                   << 
473         fPlanes[3].c == 0)                     << 
474     {                                          << 
475       fTrapType = 3; // ... and XY section is  << 
476       fPlanes[2].a = -fPlanes[3].a;            << 
477       fPlanes[2].b =  fPlanes[3].b;            << 
478     }                                          << 
479   }                                            << 
480 }                                              << 
481                                                   667 
482 ////////////////////////////////////////////// << 668   v12    = p2 - p1;
483 //                                             << 669   v13    = p3 - p1;
484 // Get volume                                  << 670   v14    = p4 - p1;
                                                   >> 671   Vcross = v12.cross(v13);
485                                                   672 
486 G4double G4Trap::GetCubicVolume()              << 673   if (std::fabs(Vcross.dot(v14)/(Vcross.mag()*v14.mag())) > kCoplanar_Tolerance)
487 {                                              << 
488   if (fCubicVolume == 0)                       << 
489   {                                               674   {
490     G4ThreeVector pt[8];                       << 675     good = false;
491     GetVertices(pt);                           << 
492                                                << 
493     G4double dz  = pt[4].z() - pt[0].z();      << 
494     G4double dy1 = pt[2].y() - pt[0].y();      << 
495     G4double dx1 = pt[1].x() - pt[0].x();      << 
496     G4double dx2 = pt[3].x() - pt[2].x();      << 
497     G4double dy2 = pt[6].y() - pt[4].y();      << 
498     G4double dx3 = pt[5].x() - pt[4].x();      << 
499     G4double dx4 = pt[7].x() - pt[6].x();      << 
500                                                << 
501     fCubicVolume = ((dx1 + dx2 + dx3 + dx4)*(d << 
502                     (dx4 + dx3 - dx2 - dx1)*(d << 
503   }                                               676   }
504   return fCubicVolume;                         << 677   else
505 }                                              << 
506                                                << 
507 ////////////////////////////////////////////// << 
508 //                                             << 
509 // Get surface area                            << 
510                                                << 
511 G4double G4Trap::GetSurfaceArea()              << 
512 {                                              << 
513   if (fSurfaceArea == 0)                       << 
514   {                                               678   {
515     G4ThreeVector pt[8];                       << 679     // a,b,c correspond to the x/y/z components of the
516     G4int iface [6][4] =                       << 680     // normal vector to the plane
517       { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2, << 681      
518                                                << 682     //  a  = (p2.y()-p1.y())*(p1.z()+p2.z())+(p3.y()-p2.y())*(p2.z()+p3.z());
519     GetVertices(pt);                           << 683     //  a += (p4.y()-p3.y())*(p3.z()+p4.z())+(p1.y()-p4.y())*(p4.z()+p1.z()); // ?   
520     for (const auto & i : iface)               << 684     // b  = (p2.z()-p1.z())*(p1.x()+p2.x())+(p3.z()-p2.z())*(p2.x()+p3.x());
                                                   >> 685     // b += (p4.z()-p3.z())*(p3.x()+p4.x())+(p1.z()-p4.z())*(p4.x()+p1.x()); // ?      
                                                   >> 686     // c  = (p2.x()-p1.x())*(p1.y()+p2.y())+(p3.x()-p2.x())*(p2.y()+p3.y());
                                                   >> 687     // c += (p4.x()-p3.x())*(p3.y()+p4.y())+(p1.x()-p4.x())*(p4.y()+p1.y()); // ?
                                                   >> 688 
                                                   >> 689     // Let create diagonals 4-2 and 3-1 than (4-2)x(3-1) provides
                                                   >> 690     // vector perpendicular to the plane directed to outside !!!
                                                   >> 691     // and a,b,c, = f(1,2,3,4) external relative to trap normal
                                                   >> 692 
                                                   >> 693     a = +(p4.y() - p2.y())*(p3.z() - p1.z())
                                                   >> 694         - (p3.y() - p1.y())*(p4.z() - p2.z());
                                                   >> 695 
                                                   >> 696     b = -(p4.x() - p2.x())*(p3.z() - p1.z())
                                                   >> 697         + (p3.x() - p1.x())*(p4.z() - p2.z());
                                                   >> 698  
                                                   >> 699     c = +(p4.x() - p2.x())*(p3.y() - p1.y())
                                                   >> 700         - (p3.x() - p1.x())*(p4.y() - p2.y());
                                                   >> 701 
                                                   >> 702     s = std::sqrt( a*a + b*b + c*c ); // so now vector plane.(a,b,c) is unit 
                                                   >> 703 
                                                   >> 704     if( s > 0 )
                                                   >> 705     {
                                                   >> 706       plane.a = a/s;
                                                   >> 707       plane.b = b/s;
                                                   >> 708       plane.c = c/s;
                                                   >> 709     }
                                                   >> 710     else
521     {                                             711     {
522       fSurfaceArea += G4GeomTools::QuadAreaNor << 712       G4cerr << "ERROR - G4Trap()::MakePlane(): " << GetName() << G4endl;
523                                                << 713       G4Exception("G4Trap::MakePlanes()", "InvalidSetup", FatalException,
524                                                << 714                   "Invalid parameters: norm.mod() <= 0") ;
525                                                << 
526     }                                             715     }
                                                   >> 716     // Calculate D: p1 in in plane so D=-n.p1.Vect()
                                                   >> 717     
                                                   >> 718     plane.d = -( plane.a*p1.x() + plane.b*p1.y() + plane.c*p1.z() );
                                                   >> 719 
                                                   >> 720     good = true;
527   }                                               721   }
528   return fSurfaceArea;                         << 722   return good;
529 }                                                 723 }
530                                                   724 
531 ////////////////////////////////////////////// << 725 //////////////////////////////////////////////////////////////////////////////
532 //                                                726 //
533 // Dispatch to parameterisation for replicatio    727 // Dispatch to parameterisation for replication mechanism dimension
534 // computation & modification.                    728 // computation & modification.
535                                                   729 
536 void G4Trap::ComputeDimensions(       G4VPVPar    730 void G4Trap::ComputeDimensions(       G4VPVParameterisation* p,
537                                 const G4int n,    731                                 const G4int n,
538                                 const G4VPhysi    732                                 const G4VPhysicalVolume* pRep )
539 {                                                 733 {
540   p->ComputeDimensions(*this,n,pRep);             734   p->ComputeDimensions(*this,n,pRep);
541 }                                                 735 }
542                                                   736 
543 ////////////////////////////////////////////// << 
544 //                                             << 
545 // Get bounding box                            << 
546                                                << 
547 void G4Trap::BoundingLimits(G4ThreeVector& pMi << 
548 {                                              << 
549   G4ThreeVector pt[8];                         << 
550   GetVertices(pt);                             << 
551                                                   737 
552   G4double xmin = kInfinity, xmax = -kInfinity << 738 ////////////////////////////////////////////////////////////////////////
553   G4double ymin = kInfinity, ymax = -kInfinity << 
554   for (const auto & i : pt)                    << 
555   {                                            << 
556     G4double x = i.x();                        << 
557     if (x < xmin) xmin = x;                    << 
558     if (x > xmax) xmax = x;                    << 
559     G4double y = i.y();                        << 
560     if (y < ymin) ymin = y;                    << 
561     if (y > ymax) ymax = y;                    << 
562   }                                            << 
563                                                << 
564   G4double dz   = GetZHalfLength();            << 
565   pMin.set(xmin,ymin,-dz);                     << 
566   pMax.set(xmax,ymax, dz);                     << 
567                                                << 
568   // Check correctness of the bounding box     << 
569   //                                           << 
570   if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 
571   {                                            << 
572     std::ostringstream message;                << 
573     message << "Bad bounding box (min >= max)  << 
574             << GetName() << " !"               << 
575             << "\npMin = " << pMin             << 
576             << "\npMax = " << pMax;            << 
577     G4Exception("G4Trap::BoundingLimits()", "G << 
578                 JustWarning, message);         << 
579     DumpInfo();                                << 
580   }                                            << 
581 }                                              << 
582                                                << 
583 ////////////////////////////////////////////// << 
584 //                                                739 //
585 // Calculate extent under transform and specif    740 // Calculate extent under transform and specified limit
586                                                   741 
587 G4bool G4Trap::CalculateExtent( const EAxis pA    742 G4bool G4Trap::CalculateExtent( const EAxis pAxis,
588                                 const G4VoxelL    743                                 const G4VoxelLimits& pVoxelLimit,
589                                 const G4Affine    744                                 const G4AffineTransform& pTransform,
590                                       G4double    745                                       G4double& pMin, G4double& pMax) const
591 {                                                 746 {
592   G4ThreeVector bmin, bmax;                    << 747   G4double xMin, xMax, yMin, yMax, zMin, zMax;
593   G4bool exist;                                << 748   G4bool flag;
594                                                   749 
595   // Check bounding box (bbox)                 << 750   if (!pTransform.IsRotated())
596   //                                           << 751   {  
597   BoundingLimits(bmin,bmax);                   << 752     // Special case handling for unrotated trapezoids
598   G4BoundingEnvelope bbox(bmin,bmax);          << 753     // Compute z/x/y/ mins and maxs respecting limits, with early returns
599 #ifdef G4BBOX_EXTENT                           << 754     // if outside limits. Then switch() on pAxis
600   return bbox.CalculateExtent(pAxis,pVoxelLimi << 755 
601 #endif                                         << 756     G4int i ; 
602   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 757     G4double xoffset;
603   {                                            << 758     G4double yoffset;
604     return exist = pMin < pMax;                << 759     G4double zoffset;
                                                   >> 760     G4double temp[8] ;     // some points for intersection with zMin/zMax
                                                   >> 761     G4ThreeVector pt[8];   // vertices after translation
                                                   >> 762     
                                                   >> 763     xoffset=pTransform.NetTranslation().x();      
                                                   >> 764     yoffset=pTransform.NetTranslation().y();
                                                   >> 765     zoffset=pTransform.NetTranslation().z();
                                                   >> 766  
                                                   >> 767     pt[0]=G4ThreeVector(xoffset-fDz*fTthetaCphi-fDy1*fTalpha1-fDx1,
                                                   >> 768                         yoffset-fDz*fTthetaSphi-fDy1,zoffset-fDz);
                                                   >> 769     pt[1]=G4ThreeVector(xoffset-fDz*fTthetaCphi-fDy1*fTalpha1+fDx1,
                                                   >> 770                         yoffset-fDz*fTthetaSphi-fDy1,zoffset-fDz);
                                                   >> 771     pt[2]=G4ThreeVector(xoffset-fDz*fTthetaCphi+fDy1*fTalpha1-fDx2,
                                                   >> 772                         yoffset-fDz*fTthetaSphi+fDy1,zoffset-fDz);
                                                   >> 773     pt[3]=G4ThreeVector(xoffset-fDz*fTthetaCphi+fDy1*fTalpha1+fDx2,
                                                   >> 774                         yoffset-fDz*fTthetaSphi+fDy1,zoffset-fDz);
                                                   >> 775     pt[4]=G4ThreeVector(xoffset+fDz*fTthetaCphi-fDy2*fTalpha2-fDx3,
                                                   >> 776                         yoffset+fDz*fTthetaSphi-fDy2,zoffset+fDz);
                                                   >> 777     pt[5]=G4ThreeVector(xoffset+fDz*fTthetaCphi-fDy2*fTalpha2+fDx3,
                                                   >> 778                         yoffset+fDz*fTthetaSphi-fDy2,zoffset+fDz);
                                                   >> 779     pt[6]=G4ThreeVector(xoffset+fDz*fTthetaCphi+fDy2*fTalpha2-fDx4,
                                                   >> 780                         yoffset+fDz*fTthetaSphi+fDy2,zoffset+fDz);
                                                   >> 781     pt[7]=G4ThreeVector(xoffset+fDz*fTthetaCphi+fDy2*fTalpha2+fDx4,
                                                   >> 782                         yoffset+fDz*fTthetaSphi+fDy2,zoffset+fDz);
                                                   >> 783     zMin=zoffset-fDz;
                                                   >> 784     zMax=zoffset+fDz;
                                                   >> 785 
                                                   >> 786     if ( pVoxelLimit.IsZLimited() )
                                                   >> 787     {
                                                   >> 788       if ( (zMin > pVoxelLimit.GetMaxZExtent() + kCarTolerance)
                                                   >> 789         || (zMax < pVoxelLimit.GetMinZExtent() - kCarTolerance) )
                                                   >> 790       {
                                                   >> 791         return false;
                                                   >> 792       }
                                                   >> 793       else
                                                   >> 794       {
                                                   >> 795         if ( zMin < pVoxelLimit.GetMinZExtent() )
                                                   >> 796         {
                                                   >> 797           zMin = pVoxelLimit.GetMinZExtent() ;
                                                   >> 798         }
                                                   >> 799         if ( zMax > pVoxelLimit.GetMaxZExtent() )
                                                   >> 800         {
                                                   >> 801           zMax = pVoxelLimit.GetMaxZExtent() ;
                                                   >> 802         }
                                                   >> 803       }
                                                   >> 804     }
                                                   >> 805     temp[0] = pt[0].y()+(pt[4].y()-pt[0].y())*(zMin-pt[0].z())
                                                   >> 806                        /(pt[4].z()-pt[0].z()) ;
                                                   >> 807     temp[1] = pt[0].y()+(pt[4].y()-pt[0].y())*(zMax-pt[0].z())
                                                   >> 808                        /(pt[4].z()-pt[0].z()) ;
                                                   >> 809     temp[2] = pt[2].y()+(pt[6].y()-pt[2].y())*(zMin-pt[2].z())
                                                   >> 810                        /(pt[6].z()-pt[2].z()) ;
                                                   >> 811     temp[3] = pt[2].y()+(pt[6].y()-pt[2].y())*(zMax-pt[2].z())
                                                   >> 812                        /(pt[6].z()-pt[2].z()) ;
                                                   >> 813 
                                                   >> 814     yMax = yoffset - std::fabs(fDz*fTthetaSphi) - fDy1 - fDy2 ;
                                                   >> 815     yMin = -yMax ;
                                                   >> 816 
                                                   >> 817     for( i = 0 ; i < 4 ; i++ )
                                                   >> 818     {
                                                   >> 819       if( temp[i] > yMax ) yMax = temp[i] ;
                                                   >> 820       if( temp[i] < yMin ) yMin = temp[i] ;
                                                   >> 821     }    
                                                   >> 822     if ( pVoxelLimit.IsYLimited() )
                                                   >> 823     {
                                                   >> 824       if ( (yMin > pVoxelLimit.GetMaxYExtent() + kCarTolerance)
                                                   >> 825         || (yMax < pVoxelLimit.GetMinYExtent() - kCarTolerance) )
                                                   >> 826       {
                                                   >> 827         return false;
                                                   >> 828       }
                                                   >> 829       else
                                                   >> 830       {
                                                   >> 831         if ( yMin < pVoxelLimit.GetMinYExtent() )
                                                   >> 832         {
                                                   >> 833           yMin = pVoxelLimit.GetMinYExtent() ;
                                                   >> 834         }
                                                   >> 835         if ( yMax > pVoxelLimit.GetMaxYExtent() )
                                                   >> 836         {
                                                   >> 837           yMax = pVoxelLimit.GetMaxYExtent() ;
                                                   >> 838         }
                                                   >> 839       }
                                                   >> 840     }
                                                   >> 841     temp[0] = pt[0].x()+(pt[4].x()-pt[0].x())
                                                   >> 842                        *(zMin-pt[0].z())/(pt[4].z()-pt[0].z()) ;
                                                   >> 843     temp[1] = pt[0].x()+(pt[4].x()-pt[0].x())
                                                   >> 844                        *(zMax-pt[0].z())/(pt[4].z()-pt[0].z()) ;
                                                   >> 845     temp[2] = pt[2].x()+(pt[6].x()-pt[2].x())
                                                   >> 846                        *(zMin-pt[2].z())/(pt[6].z()-pt[2].z()) ;
                                                   >> 847     temp[3] = pt[2].x()+(pt[6].x()-pt[2].x())
                                                   >> 848                        *(zMax-pt[2].z())/(pt[6].z()-pt[2].z()) ;
                                                   >> 849     temp[4] = pt[3].x()+(pt[7].x()-pt[3].x())
                                                   >> 850                        *(zMin-pt[3].z())/(pt[7].z()-pt[3].z()) ;
                                                   >> 851     temp[5] = pt[3].x()+(pt[7].x()-pt[3].x())
                                                   >> 852                        *(zMax-pt[3].z())/(pt[7].z()-pt[3].z()) ;
                                                   >> 853     temp[6] = pt[1].x()+(pt[5].x()-pt[1].x())
                                                   >> 854                        *(zMin-pt[1].z())/(pt[5].z()-pt[1].z()) ;
                                                   >> 855     temp[7] = pt[1].x()+(pt[5].x()-pt[1].x())
                                                   >> 856                        *(zMax-pt[1].z())/(pt[5].z()-pt[1].z()) ;
                                                   >> 857       
                                                   >> 858     xMax = xoffset - std::fabs(fDz*fTthetaCphi) - fDx1 - fDx2 -fDx3 - fDx4 ;
                                                   >> 859     xMin = -xMax ;
                                                   >> 860 
                                                   >> 861     for( i = 0 ; i < 8 ; i++ )
                                                   >> 862     {
                                                   >> 863       if( temp[i] > xMax) xMax = temp[i] ;
                                                   >> 864       if( temp[i] < xMin) xMin = temp[i] ;
                                                   >> 865     }                                            
                                                   >> 866     if (pVoxelLimit.IsXLimited())   // xMax/Min = f(yMax/Min) ?
                                                   >> 867     {
                                                   >> 868       if ( (xMin > pVoxelLimit.GetMaxXExtent() + kCarTolerance)
                                                   >> 869         || (xMax < pVoxelLimit.GetMinXExtent() - kCarTolerance) )
                                                   >> 870       {
                                                   >> 871         return false;
                                                   >> 872       }
                                                   >> 873       else
                                                   >> 874       {
                                                   >> 875         if ( xMin < pVoxelLimit.GetMinXExtent() )
                                                   >> 876         {
                                                   >> 877           xMin = pVoxelLimit.GetMinXExtent() ;
                                                   >> 878         }
                                                   >> 879         if ( xMax > pVoxelLimit.GetMaxXExtent() )
                                                   >> 880         {
                                                   >> 881           xMax = pVoxelLimit.GetMaxXExtent() ;
                                                   >> 882         }
                                                   >> 883       }
                                                   >> 884     }
                                                   >> 885     switch (pAxis)
                                                   >> 886     {
                                                   >> 887       case kXAxis:
                                                   >> 888         pMin=xMin;
                                                   >> 889         pMax=xMax;
                                                   >> 890         break;
                                                   >> 891 
                                                   >> 892       case kYAxis:
                                                   >> 893         pMin=yMin;
                                                   >> 894         pMax=yMax;
                                                   >> 895         break;
                                                   >> 896 
                                                   >> 897       case kZAxis:
                                                   >> 898         pMin=zMin;
                                                   >> 899         pMax=zMax;
                                                   >> 900         break;
                                                   >> 901 
                                                   >> 902       default:
                                                   >> 903         break;
                                                   >> 904     }
                                                   >> 905     pMin -= kCarTolerance;
                                                   >> 906     pMax += kCarTolerance;
                                                   >> 907 
                                                   >> 908     flag = true;
605   }                                               909   }
                                                   >> 910   else    // General rotated case -
                                                   >> 911   {
                                                   >> 912     G4bool existsAfterClip = false ;
                                                   >> 913     G4ThreeVectorList*       vertices;
                                                   >> 914     pMin                   = +kInfinity;
                                                   >> 915     pMax                   = -kInfinity;
                                                   >> 916       
                                                   >> 917     // Calculate rotated vertex coordinates. Operator 'new' is called
                                                   >> 918 
                                                   >> 919     vertices = CreateRotatedVertices(pTransform);
                                                   >> 920       
                                                   >> 921     xMin = +kInfinity; yMin = +kInfinity; zMin = +kInfinity;
                                                   >> 922     xMax = -kInfinity; yMax = -kInfinity; zMax = -kInfinity;
                                                   >> 923       
                                                   >> 924     for( G4int nv = 0 ; nv < 8 ; nv++ )
                                                   >> 925     { 
                                                   >> 926       if( (*vertices)[nv].x() > xMax ) xMax = (*vertices)[nv].x();
                                                   >> 927       if( (*vertices)[nv].y() > yMax ) yMax = (*vertices)[nv].y();
                                                   >> 928       if( (*vertices)[nv].z() > zMax ) zMax = (*vertices)[nv].z();
                                                   >> 929       
                                                   >> 930       if( (*vertices)[nv].x() < xMin ) xMin = (*vertices)[nv].x();
                                                   >> 931       if( (*vertices)[nv].y() < yMin ) yMin = (*vertices)[nv].y();
                                                   >> 932       if( (*vertices)[nv].z() < zMin ) zMin = (*vertices)[nv].z();
                                                   >> 933     }
                                                   >> 934     if ( pVoxelLimit.IsZLimited() )
                                                   >> 935     {
                                                   >> 936       if ( (zMin > pVoxelLimit.GetMaxZExtent() + kCarTolerance)
                                                   >> 937         || (zMax < pVoxelLimit.GetMinZExtent() - kCarTolerance) )
                                                   >> 938       {
                                                   >> 939         delete vertices ;    //  'new' in the function called
                                                   >> 940         return false;
                                                   >> 941       }
                                                   >> 942       else
                                                   >> 943       {
                                                   >> 944         if ( zMin < pVoxelLimit.GetMinZExtent() )
                                                   >> 945         {
                                                   >> 946           zMin = pVoxelLimit.GetMinZExtent() ;
                                                   >> 947         }
                                                   >> 948         if ( zMax > pVoxelLimit.GetMaxZExtent() )
                                                   >> 949         {
                                                   >> 950           zMax = pVoxelLimit.GetMaxZExtent() ;
                                                   >> 951         }
                                                   >> 952       }
                                                   >> 953     } 
                                                   >> 954     if ( pVoxelLimit.IsYLimited() )
                                                   >> 955     {
                                                   >> 956       if ( (yMin > pVoxelLimit.GetMaxYExtent() + kCarTolerance)
                                                   >> 957         || (yMax < pVoxelLimit.GetMinYExtent() - kCarTolerance) )
                                                   >> 958       {
                                                   >> 959         delete vertices ;    //  'new' in the function called
                                                   >> 960         return false;
                                                   >> 961       }
                                                   >> 962       else
                                                   >> 963       {
                                                   >> 964         if ( yMin < pVoxelLimit.GetMinYExtent() )
                                                   >> 965         {
                                                   >> 966           yMin = pVoxelLimit.GetMinYExtent() ;
                                                   >> 967         }
                                                   >> 968         if ( yMax > pVoxelLimit.GetMaxYExtent() )
                                                   >> 969         {
                                                   >> 970           yMax = pVoxelLimit.GetMaxYExtent() ;
                                                   >> 971         }
                                                   >> 972       }
                                                   >> 973     }
                                                   >> 974     if ( pVoxelLimit.IsXLimited() )
                                                   >> 975     {
                                                   >> 976       if ( (xMin > pVoxelLimit.GetMaxXExtent() + kCarTolerance)
                                                   >> 977         || (xMax < pVoxelLimit.GetMinXExtent() - kCarTolerance) )
                                                   >> 978       {
                                                   >> 979         delete vertices ;    //  'new' in the function called
                                                   >> 980         return false ;
                                                   >> 981       } 
                                                   >> 982       else
                                                   >> 983       {
                                                   >> 984         if ( xMin < pVoxelLimit.GetMinXExtent() )
                                                   >> 985         {
                                                   >> 986           xMin = pVoxelLimit.GetMinXExtent() ;
                                                   >> 987         }
                                                   >> 988         if ( xMax > pVoxelLimit.GetMaxXExtent() )
                                                   >> 989         {
                                                   >> 990           xMax = pVoxelLimit.GetMaxXExtent() ;
                                                   >> 991         }
                                                   >> 992       }
                                                   >> 993     }
                                                   >> 994     switch (pAxis)
                                                   >> 995     {
                                                   >> 996       case kXAxis:
                                                   >> 997         pMin=xMin;
                                                   >> 998         pMax=xMax;
                                                   >> 999         break;
606                                                   1000 
607   // Set bounding envelope (benv) and calculat << 1001       case kYAxis:
608   //                                           << 1002         pMin=yMin;
609   G4ThreeVector pt[8];                         << 1003         pMax=yMax;
610   GetVertices(pt);                             << 1004         break;
611                                                   1005 
612   G4ThreeVectorList baseA(4), baseB(4);        << 1006       case kZAxis:
613   baseA[0] = pt[0];                            << 1007         pMin=zMin;
614   baseA[1] = pt[1];                            << 1008         pMax=zMax;
615   baseA[2] = pt[3];                            << 1009         break;
616   baseA[3] = pt[2];                            << 1010 
617                                                << 1011       default:
618   baseB[0] = pt[4];                            << 1012         break;
619   baseB[1] = pt[5];                            << 1013     }
620   baseB[2] = pt[7];                            << 1014     if ( (pMin != kInfinity) || (pMax != -kInfinity) )
621   baseB[3] = pt[6];                            << 1015     {
622                                                << 1016       existsAfterClip=true;
623   std::vector<const G4ThreeVectorList *> polyg << 1017         
624   polygons[0] = &baseA;                        << 1018       // Add tolerance to avoid precision troubles
625   polygons[1] = &baseB;                        << 1019       //
626                                                << 1020       pMin -= kCarTolerance ;
627   G4BoundingEnvelope benv(bmin,bmax,polygons); << 1021       pMax += kCarTolerance ;      
628   exist = benv.CalculateExtent(pAxis,pVoxelLim << 1022     }
629   return exist;                                << 1023     delete vertices ;          //  'new' in the function called
                                                   >> 1024     flag = existsAfterClip ;
                                                   >> 1025   }
                                                   >> 1026   return flag;
630 }                                                 1027 }
631                                                   1028 
632 ////////////////////////////////////////////// << 1029 
                                                   >> 1030 ////////////////////////////////////////////////////////////////////////
633 //                                                1031 //
634 // Return whether point is inside/outside/on_s << 1032 // Return whether point inside/outside/on surface, using tolerance
635                                                   1033 
636 EInside G4Trap::Inside( const G4ThreeVector& p    1034 EInside G4Trap::Inside( const G4ThreeVector& p ) const
637 {                                                 1035 {
638   switch (fTrapType)                           << 1036   EInside in;
                                                   >> 1037   G4double Dist;
                                                   >> 1038   G4int i;
                                                   >> 1039   if ( std::fabs(p.z()) <= fDz-kCarTolerance*0.5)
                                                   >> 1040   {
                                                   >> 1041     in = kInside;
                                                   >> 1042 
                                                   >> 1043     for ( i = 0;i < 4;i++ )
                                                   >> 1044     {
                                                   >> 1045       Dist = fPlanes[i].a*p.x() + fPlanes[i].b*p.y()
                                                   >> 1046             +fPlanes[i].c*p.z() + fPlanes[i].d;
                                                   >> 1047 
                                                   >> 1048       if      (Dist >  kCarTolerance*0.5)  return in = kOutside;
                                                   >> 1049       else if (Dist > -kCarTolerance*0.5)         in = kSurface;
                                                   >> 1050        
                                                   >> 1051     }
                                                   >> 1052   }
                                                   >> 1053   else if (std::fabs(p.z()) <= fDz+kCarTolerance*0.5)
639   {                                               1054   {
640     case 0: // General case                    << 1055     in = kSurface;
                                                   >> 1056 
                                                   >> 1057     for ( i = 0; i < 4; i++ )
641     {                                             1058     {
642       G4double dz = std::abs(p.z())-fDz;       << 1059       Dist =  fPlanes[i].a*p.x() + fPlanes[i].b*p.y()
643       G4double dy1 = fPlanes[0].b*p.y()+fPlane << 1060              +fPlanes[i].c*p.z() + fPlanes[i].d;
644       G4double dy2 = fPlanes[1].b*p.y()+fPlane << 
645       G4double dy = std::max(dz,std::max(dy1,d << 
646                                                << 
647       G4double dx1 = fPlanes[2].a*p.x()+fPlane << 
648                    + fPlanes[2].c*p.z()+fPlane << 
649       G4double dx2 = fPlanes[3].a*p.x()+fPlane << 
650                    + fPlanes[3].c*p.z()+fPlane << 
651       G4double dist = std::max(dy,std::max(dx1 << 
652                                                << 
653       return (dist > halfCarTolerance) ? kOuts << 
654         ((dist > -halfCarTolerance) ? kSurface << 
655     }                                          << 
656     case 1: // YZ section is a rectangle       << 
657     {                                          << 
658       G4double dz = std::abs(p.z())-fDz;       << 
659       G4double dy = std::max(dz,std::abs(p.y() << 
660       G4double dx1 = fPlanes[2].a*p.x()+fPlane << 
661                    + fPlanes[2].c*p.z()+fPlane << 
662       G4double dx2 = fPlanes[3].a*p.x()+fPlane << 
663                    + fPlanes[3].c*p.z()+fPlane << 
664       G4double dist = std::max(dy,std::max(dx1 << 
665                                                << 
666       return (dist > halfCarTolerance) ? kOuts << 
667         ((dist > -halfCarTolerance) ? kSurface << 
668     }                                          << 
669     case 2: // YZ section is a rectangle and   << 
670     {       // XZ section is an isosceles trap << 
671       G4double dz = std::abs(p.z())-fDz;       << 
672       G4double dy = std::max(dz,std::abs(p.y() << 
673       G4double dx = fPlanes[3].a*std::abs(p.x( << 
674                   + fPlanes[3].c*p.z()+fPlanes << 
675       G4double dist = std::max(dy,dx);         << 
676                                                << 
677       return (dist > halfCarTolerance) ? kOuts << 
678         ((dist > -halfCarTolerance) ? kSurface << 
679     }                                          << 
680     case 3: // YZ section is a rectangle and   << 
681     {       // XY section is an isosceles trap << 
682       G4double dz = std::abs(p.z())-fDz;       << 
683       G4double dy = std::max(dz,std::abs(p.y() << 
684       G4double dx = fPlanes[3].a*std::abs(p.x( << 
685                   + fPlanes[3].b*p.y()+fPlanes << 
686       G4double dist = std::max(dy,dx);         << 
687                                                   1061 
688       return (dist > halfCarTolerance) ? kOuts << 1062       if (Dist > kCarTolerance*0.5)        return in = kOutside;      
689         ((dist > -halfCarTolerance) ? kSurface << 
690     }                                             1063     }
691   }                                               1064   }
692   return kOutside;                             << 1065   else  in = kOutside;
                                                   >> 1066   
                                                   >> 1067   return in;
693 }                                                 1068 }
694                                                   1069 
695 ////////////////////////////////////////////// << 1070 /////////////////////////////////////////////////////////////////////////////
696 //                                                1071 //
697 // Determine side, and return corresponding no << 1072 // Calculate side nearest to p, and return normal
                                                   >> 1073 // If 2+ sides equidistant, first side's normal returned (arbitrarily)
698                                                   1074 
699 G4ThreeVector G4Trap::SurfaceNormal( const G4T    1075 G4ThreeVector G4Trap::SurfaceNormal( const G4ThreeVector& p ) const
700 {                                                 1076 {
701   G4double nx = 0, ny = 0, nz = 0;             << 1077   G4int i, imin = 0, noSurfaces = 0;
702   G4double dz = std::abs(p.z()) - fDz;         << 1078   G4double dist, distz, distx, disty, distmx, distmy, safe = kInfinity;
703   nz = std::copysign(G4double(std::abs(dz) <=  << 1079   G4double delta    = 0.5*kCarTolerance;
                                                   >> 1080   G4ThreeVector norm, sumnorm(0.,0.,0.);
704                                                   1081 
705   switch (fTrapType)                           << 1082   for (i = 0; i < 4; i++)
706   {                                               1083   {
707     case 0: // General case                    << 1084     dist =  std::fabs(fPlanes[i].a*p.x() + fPlanes[i].b*p.y()
708     {                                          << 1085           + fPlanes[i].c*p.z() + fPlanes[i].d);
709       for (G4int i=0; i<2; ++i)                << 1086     if ( dist < safe )
710       {                                        << 
711         G4double dy = fPlanes[i].b*p.y() + fPl << 
712         if (std::abs(dy) > halfCarTolerance) c << 
713         ny  = fPlanes[i].b;                    << 
714         nz += fPlanes[i].c;                    << 
715         break;                                 << 
716       }                                        << 
717       for (G4int i=2; i<4; ++i)                << 
718       {                                        << 
719         G4double dx = fPlanes[i].a*p.x() +     << 
720                       fPlanes[i].b*p.y() + fPl << 
721         if (std::abs(dx) > halfCarTolerance) c << 
722         nx  = fPlanes[i].a;                    << 
723         ny += fPlanes[i].b;                    << 
724         nz += fPlanes[i].c;                    << 
725         break;                                 << 
726       }                                        << 
727       break;                                   << 
728     }                                          << 
729     case 1: // YZ section - rectangle          << 
730     {                                             1087     {
731       G4double dy = std::abs(p.y()) + fPlanes[ << 1088       safe = dist;
732       ny = std::copysign(G4double(std::abs(dy) << 1089       imin = i;
733       for (G4int i=2; i<4; ++i)                << 
734       {                                        << 
735         G4double dx = fPlanes[i].a*p.x() +     << 
736                       fPlanes[i].b*p.y() + fPl << 
737         if (std::abs(dx) > halfCarTolerance) c << 
738         nx  = fPlanes[i].a;                    << 
739         ny += fPlanes[i].b;                    << 
740         nz += fPlanes[i].c;                    << 
741         break;                                 << 
742       }                                        << 
743       break;                                   << 
744     }                                          << 
745     case 2: // YZ section - rectangle, XZ sect << 
746     {                                          << 
747       G4double dy = std::abs(p.y()) + fPlanes[ << 
748       ny = std::copysign(G4double(std::abs(dy) << 
749       G4double dx = fPlanes[3].a*std::abs(p.x( << 
750                     fPlanes[3].c*p.z() + fPlan << 
751       G4double k = std::abs(dx) <= halfCarTole << 
752       nx  = std::copysign(k, p.x())*fPlanes[3] << 
753       nz += k*fPlanes[3].c;                    << 
754       break;                                   << 
755     }                                          << 
756     case 3: // YZ section - rectangle, XY sect << 
757     {                                          << 
758       G4double dy = std::abs(p.y()) + fPlanes[ << 
759       ny = std::copysign(G4double(std::abs(dy) << 
760       G4double dx = fPlanes[3].a*std::abs(p.x( << 
761                     fPlanes[3].b*p.y() + fPlan << 
762       G4double k = std::abs(dx) <= halfCarTole << 
763       nx  = std::copysign(k, p.x())*fPlanes[3] << 
764       ny += k*fPlanes[3].b;                    << 
765       break;                                   << 
766     }                                             1090     }
767   }                                               1091   }
                                                   >> 1092   distz  = std::fabs( std::fabs( p.z() ) - fDz );
768                                                   1093 
769   // Return normal                             << 1094   distmy = std::fabs( fPlanes[0].a*p.x() + fPlanes[0].b*p.y()
770   //                                           << 1095                     + fPlanes[0].c*p.z() + fPlanes[0].d      );
771   G4double mag2 = nx*nx + ny*ny + nz*nz;       << 1096 
772   if (mag2 == 1)      return { nx,ny,nz };     << 1097   disty  = std::fabs( fPlanes[1].a*p.x() + fPlanes[1].b*p.y()
773   else if (mag2 != 0) return G4ThreeVector(nx, << 1098                     + fPlanes[1].c*p.z() + fPlanes[1].d      );
774   else                                         << 1099 
                                                   >> 1100   distmx = std::fabs( fPlanes[2].a*p.x() + fPlanes[2].b*p.y()
                                                   >> 1101                     + fPlanes[2].c*p.z() + fPlanes[2].d      );
                                                   >> 1102 
                                                   >> 1103   distx  = std::fabs( fPlanes[3].a*p.x() + fPlanes[3].b*p.y()
                                                   >> 1104                     + fPlanes[3].c*p.z() + fPlanes[3].d      );
                                                   >> 1105 
                                                   >> 1106   G4ThreeVector nX  = G4ThreeVector(fPlanes[3].a,fPlanes[3].b,fPlanes[3].c);
                                                   >> 1107   G4ThreeVector nmX = G4ThreeVector(fPlanes[2].a,fPlanes[2].b,fPlanes[2].c);
                                                   >> 1108   G4ThreeVector nY  = G4ThreeVector(fPlanes[1].a,fPlanes[1].b,fPlanes[1].c);
                                                   >> 1109   G4ThreeVector nmY = G4ThreeVector(fPlanes[0].a,fPlanes[0].b,fPlanes[0].c);
                                                   >> 1110   G4ThreeVector nZ  = G4ThreeVector(0.,0.,1.0);
                                                   >> 1111 
                                                   >> 1112   if (distx <= delta)      
                                                   >> 1113   {
                                                   >> 1114     noSurfaces ++;
                                                   >> 1115     sumnorm += nX;     
                                                   >> 1116   }
                                                   >> 1117   if (distmx <= delta)      
                                                   >> 1118   {
                                                   >> 1119     noSurfaces ++;
                                                   >> 1120     sumnorm += nmX;      
                                                   >> 1121   }
                                                   >> 1122   if (disty <= delta)
                                                   >> 1123   {
                                                   >> 1124     noSurfaces ++;
                                                   >> 1125     sumnorm += nY;  
                                                   >> 1126   }
                                                   >> 1127   if (distmy <= delta)
                                                   >> 1128   {
                                                   >> 1129     noSurfaces ++;
                                                   >> 1130     sumnorm += nmY;  
                                                   >> 1131   }
                                                   >> 1132   if (distz <= delta)  
                                                   >> 1133   {
                                                   >> 1134     noSurfaces ++;
                                                   >> 1135     if ( p.z() >= 0.)  sumnorm += nZ;
                                                   >> 1136     else               sumnorm -= nZ; 
                                                   >> 1137   }
                                                   >> 1138   if ( noSurfaces == 0 )
775   {                                               1139   {
776     // Point is not on the surface             << 
777     //                                         << 
778 #ifdef G4CSGDEBUG                                 1140 #ifdef G4CSGDEBUG
779     std::ostringstream message;                << 1141     G4Exception("G4Trap::SurfaceNormal(p)", "Notification", JustWarning, 
780     G4long oldprc = message.precision(16);     << 1142                 "Point p is not on surface !?" );
781     message << "Point p is not on surface (!?) << 1143 #endif 
782             << GetName() << G4endl;            << 1144      norm = ApproxSurfaceNormal(p);
783     message << "Position:\n";                  << 
784     message << "   p.x() = " << p.x()/mm << "  << 
785     message << "   p.y() = " << p.y()/mm << "  << 
786     message << "   p.z() = " << p.z()/mm << "  << 
787     G4cout.precision(oldprc) ;                 << 
788     G4Exception("G4Trap::SurfaceNormal(p)", "G << 
789                 JustWarning, message );        << 
790     DumpInfo();                                << 
791 #endif                                         << 
792     return ApproxSurfaceNormal(p);             << 
793   }                                               1145   }
                                                   >> 1146   else if ( noSurfaces == 1 ) norm = sumnorm;
                                                   >> 1147   else                        norm = sumnorm.unit();
                                                   >> 1148   return norm;
794 }                                                 1149 }
795                                                   1150 
796 ////////////////////////////////////////////// << 1151 ////////////////////////////////////////////////////////////////////////////////////
797 //                                                1152 //
798 // Algorithm for SurfaceNormal() following the    1153 // Algorithm for SurfaceNormal() following the original specification
799 // for points not on the surface                  1154 // for points not on the surface
800                                                   1155 
801 G4ThreeVector G4Trap::ApproxSurfaceNormal( con    1156 G4ThreeVector G4Trap::ApproxSurfaceNormal( const G4ThreeVector& p ) const
802 {                                                 1157 {
803   G4double dist = -DBL_MAX;                    << 1158   G4double safe=kInfinity,Dist,safez;
804   G4int iside = 0;                             << 1159   G4int i,imin=0;
805   for (G4int i=0; i<4; ++i)                    << 1160   for (i=0;i<4;i++)
806   {                                            << 1161   {
807     G4double d = fPlanes[i].a*p.x() +          << 1162     Dist=std::fabs(fPlanes[i].a*p.x()+fPlanes[i].b*p.y()
808                  fPlanes[i].b*p.y() +          << 1163         +fPlanes[i].c*p.z()+fPlanes[i].d);
809                  fPlanes[i].c*p.z() + fPlanes[ << 1164     if (Dist<safe)
810     if (d > dist) { dist = d; iside = i; }     << 1165     {
                                                   >> 1166       safe=Dist;
                                                   >> 1167       imin=i;
                                                   >> 1168     }
                                                   >> 1169   }
                                                   >> 1170   safez=std::fabs(std::fabs(p.z())-fDz);
                                                   >> 1171   if (safe<safez)
                                                   >> 1172   {
                                                   >> 1173     return G4ThreeVector(fPlanes[imin].a,fPlanes[imin].b,fPlanes[imin].c);
811   }                                               1174   }
812                                                << 
813   G4double distz = std::abs(p.z()) - fDz;      << 
814   if (dist > distz)                            << 
815     return { fPlanes[iside].a, fPlanes[iside]. << 
816   else                                            1175   else
817     return { 0, 0, (G4double)((p.z() < 0) ? -1 << 1176   {
                                                   >> 1177     if (p.z()>0)
                                                   >> 1178     {
                                                   >> 1179       return G4ThreeVector(0,0,1);
                                                   >> 1180     }
                                                   >> 1181     else
                                                   >> 1182     {
                                                   >> 1183       return G4ThreeVector(0,0,-1);
                                                   >> 1184     }
                                                   >> 1185   }
818 }                                                 1186 }
819                                                   1187 
820 ////////////////////////////////////////////// << 1188 ////////////////////////////////////////////////////////////////////////////
821 //                                                1189 //
822 // Calculate distance to shape from outside    << 1190 // Calculate distance to shape from outside - return kInfinity if no intersection
823 //  - return kInfinity if no intersection      << 1191 //
                                                   >> 1192 // ALGORITHM:
                                                   >> 1193 // For each component, calculate pair of minimum and maximum intersection
                                                   >> 1194 // values for which the particle is in the extent of the shape
                                                   >> 1195 // - The smallest (MAX minimum) allowed distance of the pairs is intersect
824                                                   1196 
825 G4double G4Trap::DistanceToIn(const G4ThreeVec << 1197 G4double G4Trap::DistanceToIn( const G4ThreeVector& p,
826                               const G4ThreeVec << 1198                                const G4ThreeVector& v ) const
827 {                                                 1199 {
828   // Z intersections                           << 
829   //                                           << 
830   if ((std::abs(p.z()) - fDz) >= -halfCarToler << 
831     return kInfinity;                          << 
832   G4double invz = (-v.z() == 0) ? DBL_MAX : -1 << 
833   G4double dz = (invz < 0) ? fDz : -fDz;       << 
834   G4double tzmin = (p.z() + dz)*invz;          << 
835   G4double tzmax = (p.z() - dz)*invz;          << 
836                                                   1200 
837   // Y intersections                           << 1201   G4double snxt;    // snxt = default return value
                                                   >> 1202   G4double max,smax,smin;
                                                   >> 1203   G4double pdist,Comp,vdist;
                                                   >> 1204   G4int i;
838   //                                              1205   //
839   G4double tymin = 0, tymax = DBL_MAX;         << 1206   // Z Intersection range
840   G4int i = 0;                                 << 1207   //
841   for ( ; i<2; ++i)                            << 1208   if ( v.z() > 0 )
842   {                                               1209   {
843     G4double cosa = fPlanes[i].b*v.y() + fPlan << 1210     max = fDz - p.z() ;
844     G4double dist = fPlanes[i].b*p.y() + fPlan << 1211     if (max > 0.5*kCarTolerance)
845     if (dist >= -halfCarTolerance)             << 
846     {                                             1212     {
847       if (cosa >= 0) return kInfinity;         << 1213       smax = max/v.z();
848       G4double tmp  = -dist/cosa;              << 1214       smin = (-fDz-p.z())/v.z();
849       if (tymin < tmp) tymin = tmp;            << 
850     }                                             1215     }
851     else if (cosa > 0)                         << 1216     else
852     {                                             1217     {
853       G4double tmp  = -dist/cosa;              << 1218       return snxt=kInfinity;
854       if (tymax > tmp) tymax = tmp;            << 
855     }                                             1219     }
856   }                                               1220   }
857                                                << 1221   else if (v.z() < 0 )
858   // Z intersections                           << 1222   {
859   //                                           << 1223     max = - fDz - p.z() ;
860   G4double txmin = 0, txmax = DBL_MAX;         << 1224     if (max < -0.5*kCarTolerance )
861   for ( ; i<4; ++i)                            << 1225     {
                                                   >> 1226       smax=max/v.z();
                                                   >> 1227       smin=(fDz-p.z())/v.z();
                                                   >> 1228     }
                                                   >> 1229     else
                                                   >> 1230     {
                                                   >> 1231       return snxt=kInfinity;
                                                   >> 1232     }
                                                   >> 1233   }
                                                   >> 1234   else
862   {                                               1235   {
863     G4double cosa = fPlanes[i].a*v.x()+fPlanes << 1236     if (std::fabs(p.z())<fDz - 0.5*kCarTolerance) // Inside was <=fDz
864     G4double dist = fPlanes[i].a*p.x()+fPlanes << 
865                     fPlanes[i].d;              << 
866     if (dist >= -halfCarTolerance)             << 
867     {                                             1237     {
868       if (cosa >= 0) return kInfinity;         << 1238       smin=0;
869       G4double tmp  = -dist/cosa;              << 1239       smax=kInfinity;
870       if (txmin < tmp) txmin = tmp;            << 
871     }                                             1240     }
872     else if (cosa > 0)                         << 1241     else
873     {                                             1242     {
874       G4double tmp  = -dist/cosa;              << 1243       return snxt=kInfinity;
875       if (txmax > tmp) txmax = tmp;            << 
876     }                                             1244     }
877   }                                               1245   }
878                                                   1246 
879   // Find distance                             << 1247   for (i=0;i<4;i++)
                                                   >> 1248   {
                                                   >> 1249     pdist=fPlanes[i].a*p.x()+fPlanes[i].b*p.y()
                                                   >> 1250          +fPlanes[i].c*p.z()+fPlanes[i].d;
                                                   >> 1251     Comp=fPlanes[i].a*v.x()+fPlanes[i].b*v.y()+fPlanes[i].c*v.z();
                                                   >> 1252     if ( pdist >= -0.5*kCarTolerance )      // was >0
                                                   >> 1253     {
                                                   >> 1254       //
                                                   >> 1255       // Outside the plane -> this is an extent entry distance
                                                   >> 1256       //
                                                   >> 1257       if (Comp >= 0)   // was >0
                                                   >> 1258       {
                                                   >> 1259         return snxt=kInfinity ;
                                                   >> 1260       }
                                                   >> 1261       else 
                                                   >> 1262       {
                                                   >> 1263         vdist=-pdist/Comp;
                                                   >> 1264         if (vdist>smin)
                                                   >> 1265         {
                                                   >> 1266           if (vdist<smax)
                                                   >> 1267           {
                                                   >> 1268             smin = vdist;
                                                   >> 1269           }
                                                   >> 1270           else
                                                   >> 1271           {
                                                   >> 1272             return snxt=kInfinity;
                                                   >> 1273           }
                                                   >> 1274         }
                                                   >> 1275       }
                                                   >> 1276     }
                                                   >> 1277     else
                                                   >> 1278     {
                                                   >> 1279       //
                                                   >> 1280       // Inside the plane -> couble  be an extent exit distance (smax)
                                                   >> 1281       //
                                                   >> 1282       if (Comp>0)  // Will leave extent
                                                   >> 1283       {
                                                   >> 1284         vdist=-pdist/Comp;
                                                   >> 1285         if (vdist<smax)
                                                   >> 1286         {
                                                   >> 1287           if (vdist>smin)
                                                   >> 1288           {
                                                   >> 1289             smax=vdist;
                                                   >> 1290           }
                                                   >> 1291           else
                                                   >> 1292           {
                                                   >> 1293             return snxt=kInfinity;
                                                   >> 1294           }
                                                   >> 1295         }  
                                                   >> 1296       }
                                                   >> 1297     }
                                                   >> 1298   }
880   //                                              1299   //
881   G4double tmin = std::max(std::max(txmin,tymi << 1300   // Checks in non z plane intersections ensure smin<smax
882   G4double tmax = std::min(std::min(txmax,tyma << 1301   //
883                                                << 1302   if (smin >=0 )
884   if (tmax <= tmin + halfCarTolerance) return  << 1303   {
885   return (tmin < halfCarTolerance ) ? 0. : tmi << 1304     snxt = smin ;
                                                   >> 1305   }
                                                   >> 1306   else
                                                   >> 1307   {
                                                   >> 1308     snxt = 0 ;
                                                   >> 1309   }
                                                   >> 1310   return snxt;
886 }                                                 1311 }
887                                                   1312 
888 ////////////////////////////////////////////// << 1313 ///////////////////////////////////////////////////////////////////////////
889 //                                                1314 //
890 // Calculate exact shortest distance to any bo    1315 // Calculate exact shortest distance to any boundary from outside
891 // This is the best fast estimation of the sho    1316 // This is the best fast estimation of the shortest distance to trap
892 // - return 0 if point is inside               << 1317 // - Returns 0 is ThreeVector inside
893                                                   1318 
894 G4double G4Trap::DistanceToIn( const G4ThreeVe    1319 G4double G4Trap::DistanceToIn( const G4ThreeVector& p ) const
895 {                                                 1320 {
896   switch (fTrapType)                           << 1321   G4double safe=0.0,Dist;
                                                   >> 1322   G4int i;
                                                   >> 1323   safe=std::fabs(p.z())-fDz;
                                                   >> 1324   for (i=0;i<4;i++)
897   {                                               1325   {
898     case 0: // General case                    << 1326     Dist=fPlanes[i].a*p.x()+fPlanes[i].b*p.y()
899     {                                          << 1327         +fPlanes[i].c*p.z()+fPlanes[i].d;
900       G4double dz = std::abs(p.z())-fDz;       << 1328     if (Dist > safe) safe=Dist;
901       G4double dy1 = fPlanes[0].b*p.y()+fPlane << 
902       G4double dy2 = fPlanes[1].b*p.y()+fPlane << 
903       G4double dy = std::max(dz,std::max(dy1,d << 
904                                                << 
905       G4double dx1 = fPlanes[2].a*p.x()+fPlane << 
906                    + fPlanes[2].c*p.z()+fPlane << 
907       G4double dx2 = fPlanes[3].a*p.x()+fPlane << 
908                    + fPlanes[3].c*p.z()+fPlane << 
909       G4double dist = std::max(dy,std::max(dx1 << 
910       return (dist > 0) ? dist : 0.;           << 
911     }                                          << 
912     case 1: // YZ section is a rectangle       << 
913     {                                          << 
914       G4double dz = std::abs(p.z())-fDz;       << 
915       G4double dy = std::max(dz,std::abs(p.y() << 
916       G4double dx1 = fPlanes[2].a*p.x()+fPlane << 
917                    + fPlanes[2].c*p.z()+fPlane << 
918       G4double dx2 = fPlanes[3].a*p.x()+fPlane << 
919                    + fPlanes[3].c*p.z()+fPlane << 
920       G4double dist = std::max(dy,std::max(dx1 << 
921       return (dist > 0) ? dist : 0.;           << 
922     }                                          << 
923     case 2: // YZ section is a rectangle and   << 
924     {       // XZ section is an isosceles trap << 
925       G4double dz = std::abs(p.z())-fDz;       << 
926       G4double dy = std::max(dz,std::abs(p.y() << 
927       G4double dx = fPlanes[3].a*std::abs(p.x( << 
928                   + fPlanes[3].c*p.z()+fPlanes << 
929       G4double dist = std::max(dy,dx);         << 
930       return (dist > 0) ? dist : 0.;           << 
931     }                                          << 
932     case 3: // YZ section is a rectangle and   << 
933     {       // XY section is an isosceles trap << 
934       G4double dz = std::abs(p.z())-fDz;       << 
935       G4double dy = std::max(dz,std::abs(p.y() << 
936       G4double dx = fPlanes[3].a*std::abs(p.x( << 
937                   + fPlanes[3].b*p.y()+fPlanes << 
938       G4double dist = std::max(dy,dx);         << 
939       return (dist > 0) ? dist : 0.;           << 
940     }                                          << 
941   }                                               1329   }
942   return 0.;                                   << 1330   if (safe<0) safe=0;
                                                   >> 1331   return safe;  
943 }                                                 1332 }
944                                                   1333 
945 ////////////////////////////////////////////// << 1334 /////////////////////////////////////////////////////////////////////////////////
946 //                                                1335 //
947 // Calculate distance to surface of shape from << 1336 // Calculate distance to surface of shape from inside
948 // find normal at exit point, if required      << 1337 // Calculate distance to x/y/z planes - smallest is exiting distance
949 // - when leaving the surface, return 0        << 
950                                                   1338 
951 G4double G4Trap::DistanceToOut(const G4ThreeVe    1339 G4double G4Trap::DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v,
952                                const G4bool ca    1340                                const G4bool calcNorm,
953                                      G4bool* v << 1341                                      G4bool *validNorm, G4ThreeVector *n) const
954 {                                                 1342 {
955   // Z intersections                           << 1343   Eside side = kUndef;
                                                   >> 1344   G4double snxt;    // snxt = return value
                                                   >> 1345   G4double pdist,Comp,vdist,max;
                                                   >> 1346   //
                                                   >> 1347   // Z Intersections
                                                   >> 1348   //
                                                   >> 1349   if (v.z()>0)
                                                   >> 1350   {
                                                   >> 1351     max=fDz-p.z();
                                                   >> 1352     if (max>kCarTolerance/2)
                                                   >> 1353     {
                                                   >> 1354       snxt=max/v.z();
                                                   >> 1355       side=kPZ;
                                                   >> 1356     }
                                                   >> 1357     else
                                                   >> 1358     {
                                                   >> 1359       if (calcNorm)
                                                   >> 1360       {
                                                   >> 1361         *validNorm=true;
                                                   >> 1362         *n=G4ThreeVector(0,0,1);
                                                   >> 1363       }
                                                   >> 1364       return snxt=0;
                                                   >> 1365     }
                                                   >> 1366   }
                                                   >> 1367   else if (v.z()<0)
                                                   >> 1368   {
                                                   >> 1369     max=-fDz-p.z();
                                                   >> 1370     if (max<-kCarTolerance/2)
                                                   >> 1371     {
                                                   >> 1372       snxt=max/v.z();
                                                   >> 1373       side=kMZ;
                                                   >> 1374     }
                                                   >> 1375     else
                                                   >> 1376     {
                                                   >> 1377       if (calcNorm)
                                                   >> 1378       {
                                                   >> 1379         *validNorm=true;
                                                   >> 1380         *n=G4ThreeVector(0,0,-1);
                                                   >> 1381       }
                                                   >> 1382       return snxt=0;
                                                   >> 1383     }
                                                   >> 1384   }
                                                   >> 1385   else
                                                   >> 1386   {
                                                   >> 1387     snxt=kInfinity;
                                                   >> 1388   }
                                                   >> 1389 
                                                   >> 1390   //
                                                   >> 1391   // Intersections with planes[0] (expanded because of setting enum)
956   //                                              1392   //
957   if ((std::abs(p.z()) - fDz) >= -halfCarToler << 1393   pdist=fPlanes[0].a*p.x()+fPlanes[0].b*p.y()+fPlanes[0].c*p.z()+fPlanes[0].d;
                                                   >> 1394   Comp=fPlanes[0].a*v.x()+fPlanes[0].b*v.y()+fPlanes[0].c*v.z();
                                                   >> 1395   if (pdist>0)
                                                   >> 1396   {
                                                   >> 1397     // Outside the plane
                                                   >> 1398     if (Comp>0)
                                                   >> 1399     {
                                                   >> 1400       // Leaving immediately
                                                   >> 1401       if (calcNorm)
                                                   >> 1402       {
                                                   >> 1403         *validNorm=true;
                                                   >> 1404         *n=G4ThreeVector(fPlanes[0].a,fPlanes[0].b,fPlanes[0].c);
                                                   >> 1405       }
                                                   >> 1406       return snxt=0;
                                                   >> 1407     }
                                                   >> 1408   }
                                                   >> 1409   else if (pdist<-kCarTolerance/2)
958   {                                               1410   {
959     if (calcNorm)                              << 1411     // Inside the plane
                                                   >> 1412     if (Comp>0)
960     {                                             1413     {
961       *validNorm = true;                       << 1414       // Will leave extent
962       n->set(0, 0, (p.z() < 0) ? -1 : 1);      << 1415       vdist=-pdist/Comp;
                                                   >> 1416       if (vdist<snxt)
                                                   >> 1417       {
                                                   >> 1418         snxt=vdist;
                                                   >> 1419         side=ks0;
                                                   >> 1420       }
                                                   >> 1421     }
                                                   >> 1422   }
                                                   >> 1423   else
                                                   >> 1424   {
                                                   >> 1425     // On surface
                                                   >> 1426     if (Comp>0)
                                                   >> 1427     {
                                                   >> 1428       if (calcNorm)
                                                   >> 1429       {
                                                   >> 1430         *validNorm=true;
                                                   >> 1431         *n=G4ThreeVector(fPlanes[0].a,fPlanes[0].b,fPlanes[0].c);
                                                   >> 1432       }
                                                   >> 1433       return snxt=0;
963     }                                             1434     }
964     return 0;                                  << 
965   }                                               1435   }
966   G4double vz = v.z();                         << 
967   G4double tmax = (vz == 0) ? DBL_MAX : (std:: << 
968   G4int iside = (vz < 0) ? -4 : -2; // little  << 
969                                                   1436 
970   // Y intersections                           << 
971   //                                              1437   //
972   G4int i = 0;                                 << 1438   // Intersections with planes[1] (expanded because of setting enum)
973   for ( ; i<2; ++i)                            << 1439   //
                                                   >> 1440   pdist=fPlanes[1].a*p.x()+fPlanes[1].b*p.y()+fPlanes[1].c*p.z()+fPlanes[1].d;
                                                   >> 1441   Comp=fPlanes[1].a*v.x()+fPlanes[1].b*v.y()+fPlanes[1].c*v.z();
                                                   >> 1442   if (pdist>0)
974   {                                               1443   {
975     G4double cosa = fPlanes[i].b*v.y() + fPlan << 1444     // Outside the plane
976     if (cosa > 0)                              << 1445     if (Comp>0)
977     {                                             1446     {
978       G4double dist = fPlanes[i].b*p.y() + fPl << 1447       // Leaving immediately
979       if (dist >= -halfCarTolerance)           << 1448       if (calcNorm)
980       {                                           1449       {
981         if (calcNorm)                          << 1450         *validNorm=true;
982         {                                      << 1451         *n=G4ThreeVector(fPlanes[1].a,fPlanes[1].b,fPlanes[1].c);
983           *validNorm = true;                   << 
984           n->set(0, fPlanes[i].b, fPlanes[i].c << 
985         }                                      << 
986         return 0;                              << 
987       }                                           1452       }
988       G4double tmp = -dist/cosa;               << 1453       return snxt=0;
989       if (tmax > tmp) { tmax = tmp; iside = i; << 1454     }
                                                   >> 1455   }
                                                   >> 1456   else if (pdist<-kCarTolerance/2)
                                                   >> 1457   {
                                                   >> 1458     // Inside the plane
                                                   >> 1459     if (Comp>0)
                                                   >> 1460     {
                                                   >> 1461       // Will leave extent
                                                   >> 1462       vdist=-pdist/Comp;
                                                   >> 1463       if (vdist<snxt)
                                                   >> 1464       {
                                                   >> 1465         snxt=vdist;
                                                   >> 1466         side=ks1;
                                                   >> 1467       }
                                                   >> 1468     }
                                                   >> 1469   }
                                                   >> 1470   else
                                                   >> 1471   {
                                                   >> 1472     // On surface
                                                   >> 1473     if (Comp>0)
                                                   >> 1474     {
                                                   >> 1475       if (calcNorm)
                                                   >> 1476       {
                                                   >> 1477         *validNorm=true;
                                                   >> 1478         *n=G4ThreeVector(fPlanes[1].a,fPlanes[1].b,fPlanes[1].c);
                                                   >> 1479       }
                                                   >> 1480       return snxt=0;
990     }                                             1481     }
991   }                                               1482   }
992                                                   1483 
993   // X intersections                           << 
994   //                                              1484   //
995   for ( ; i<4; ++i)                            << 1485   // Intersections with planes[2] (expanded because of setting enum)
                                                   >> 1486   //
                                                   >> 1487   pdist=fPlanes[2].a*p.x()+fPlanes[2].b*p.y()+fPlanes[2].c*p.z()+fPlanes[2].d;
                                                   >> 1488   Comp=fPlanes[2].a*v.x()+fPlanes[2].b*v.y()+fPlanes[2].c*v.z();
                                                   >> 1489   if (pdist>0)
996   {                                               1490   {
997     G4double cosa = fPlanes[i].a*v.x()+fPlanes << 1491     // Outside the plane
998     if (cosa > 0)                              << 1492     if (Comp>0)
999     {                                             1493     {
1000       G4double dist = fPlanes[i].a*p.x() +    << 1494       // Leaving immediately
1001                       fPlanes[i].b*p.y() + fP << 1495       if (calcNorm)
1002       if (dist >= -halfCarTolerance)          << 
1003       {                                          1496       {
1004         if (calcNorm)                         << 1497         *validNorm=true;
1005         {                                     << 1498         *n=G4ThreeVector(fPlanes[2].a,fPlanes[2].b,fPlanes[2].c);
1006            *validNorm = true;                 << 
1007            n->set(fPlanes[i].a, fPlanes[i].b, << 
1008         }                                     << 
1009         return 0;                             << 
1010       }                                          1499       }
1011       G4double tmp = -dist/cosa;              << 1500       return snxt=0;
1012       if (tmax > tmp) { tmax = tmp; iside = i << 1501     }
                                                   >> 1502   }
                                                   >> 1503   else if (pdist<-kCarTolerance/2)
                                                   >> 1504   {
                                                   >> 1505     // Inside the plane
                                                   >> 1506     if (Comp>0)
                                                   >> 1507     {
                                                   >> 1508       // Will leave extent
                                                   >> 1509       vdist=-pdist/Comp;
                                                   >> 1510       if (vdist<snxt)
                                                   >> 1511       {
                                                   >> 1512         snxt=vdist;
                                                   >> 1513         side=ks2;
                                                   >> 1514       }
                                                   >> 1515     }
                                                   >> 1516   }
                                                   >> 1517   else
                                                   >> 1518   {
                                                   >> 1519     // On surface
                                                   >> 1520     if (Comp>0)
                                                   >> 1521     {
                                                   >> 1522       if (calcNorm)
                                                   >> 1523       {
                                                   >> 1524         *validNorm=true;
                                                   >> 1525         *n=G4ThreeVector(fPlanes[2].a,fPlanes[2].b,fPlanes[2].c);
                                                   >> 1526       }
                                                   >> 1527       return snxt=0;
1013     }                                            1528     }
1014   }                                              1529   }
1015                                                  1530 
1016   // Set normal, if required, and return dist << 
1017   //                                             1531   //
                                                   >> 1532   // Intersections with planes[3] (expanded because of setting enum)
                                                   >> 1533   //
                                                   >> 1534   pdist=fPlanes[3].a*p.x()+fPlanes[3].b*p.y()+fPlanes[3].c*p.z()+fPlanes[3].d;
                                                   >> 1535   Comp=fPlanes[3].a*v.x()+fPlanes[3].b*v.y()+fPlanes[3].c*v.z();
                                                   >> 1536   if (pdist>0)
                                                   >> 1537   {
                                                   >> 1538     // Outside the plane
                                                   >> 1539     if (Comp>0)
                                                   >> 1540     {
                                                   >> 1541       // Leaving immediately
                                                   >> 1542       if (calcNorm)
                                                   >> 1543       {
                                                   >> 1544         *validNorm=true;
                                                   >> 1545         *n=G4ThreeVector(fPlanes[3].a,fPlanes[3].b,fPlanes[3].c);
                                                   >> 1546       }
                                                   >> 1547       return snxt=0;
                                                   >> 1548     }
                                                   >> 1549   }
                                                   >> 1550   else if (pdist<-kCarTolerance/2)
                                                   >> 1551   {
                                                   >> 1552     // Inside the plane
                                                   >> 1553     if (Comp>0)
                                                   >> 1554     {
                                                   >> 1555       // Will leave extent
                                                   >> 1556       vdist=-pdist/Comp;
                                                   >> 1557       if (vdist<snxt)
                                                   >> 1558       {
                                                   >> 1559         snxt=vdist;
                                                   >> 1560         side=ks3;
                                                   >> 1561       }
                                                   >> 1562     }
                                                   >> 1563   }
                                                   >> 1564   else
                                                   >> 1565   {
                                                   >> 1566     // On surface
                                                   >> 1567     if (Comp>0)
                                                   >> 1568     {
                                                   >> 1569       if (calcNorm)
                                                   >> 1570       {
                                                   >> 1571         *validNorm=true;
                                                   >> 1572         *n=G4ThreeVector(fPlanes[3].a,fPlanes[3].b,fPlanes[3].c);
                                                   >> 1573       }
                                                   >> 1574       return snxt=0;
                                                   >> 1575     }
                                                   >> 1576   }
                                                   >> 1577 
                                                   >> 1578   // set normal
1018   if (calcNorm)                                  1579   if (calcNorm)
1019   {                                              1580   {
1020     *validNorm = true;                        << 1581     *validNorm=true;
1021     if (iside < 0)                            << 1582     switch(side)
1022       n->set(0, 0, iside + 3); // (-4+3)=-1,  << 1583     {
1023     else                                      << 1584       case ks0:
1024       n->set(fPlanes[iside].a, fPlanes[iside] << 1585         *n=G4ThreeVector(fPlanes[0].a,fPlanes[0].b,fPlanes[0].c);
                                                   >> 1586         break;
                                                   >> 1587       case ks1:
                                                   >> 1588         *n=G4ThreeVector(fPlanes[1].a,fPlanes[1].b,fPlanes[1].c);
                                                   >> 1589         break;
                                                   >> 1590       case ks2:
                                                   >> 1591         *n=G4ThreeVector(fPlanes[2].a,fPlanes[2].b,fPlanes[2].c);
                                                   >> 1592         break;
                                                   >> 1593       case ks3:
                                                   >> 1594         *n=G4ThreeVector(fPlanes[3].a,fPlanes[3].b,fPlanes[3].c);
                                                   >> 1595         break;
                                                   >> 1596       case kMZ:
                                                   >> 1597         *n=G4ThreeVector(0,0,-1);
                                                   >> 1598         break;
                                                   >> 1599       case kPZ:
                                                   >> 1600         *n=G4ThreeVector(0,0,1);
                                                   >> 1601         break;
                                                   >> 1602       default:
                                                   >> 1603         G4cout.precision(16);
                                                   >> 1604         G4cout << G4endl;
                                                   >> 1605         DumpInfo();
                                                   >> 1606         G4cout << "Position:"  << G4endl << G4endl;
                                                   >> 1607         G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl;
                                                   >> 1608         G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl;
                                                   >> 1609         G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl;
                                                   >> 1610         G4cout << "Direction:" << G4endl << G4endl;
                                                   >> 1611         G4cout << "v.x() = "   << v.x() << G4endl;
                                                   >> 1612         G4cout << "v.y() = "   << v.y() << G4endl;
                                                   >> 1613         G4cout << "v.z() = "   << v.z() << G4endl << G4endl;
                                                   >> 1614         G4cout << "Proposed distance :" << G4endl << G4endl;
                                                   >> 1615         G4cout << "snxt = "    << snxt/mm << " mm" << G4endl << G4endl;
                                                   >> 1616         G4cout.precision(6);
                                                   >> 1617         G4Exception("G4Trap::DistanceToOut(p,v,..)","Notification",JustWarning,
                                                   >> 1618                     "Undefined side for valid surface normal to solid.");
                                                   >> 1619         break;
                                                   >> 1620     }
1025   }                                              1621   }
1026   return tmax;                                << 1622   return snxt;
1027 }                                                1623 }
1028                                                  1624 
1029 ///////////////////////////////////////////// << 1625 //////////////////////////////////////////////////////////////////////////////
1030 //                                               1626 //
1031 // Calculate exact shortest distance to any b    1627 // Calculate exact shortest distance to any boundary from inside
1032 // - Returns 0 is ThreeVector outside            1628 // - Returns 0 is ThreeVector outside
1033                                                  1629 
1034 G4double G4Trap::DistanceToOut( const G4Three    1630 G4double G4Trap::DistanceToOut( const G4ThreeVector& p ) const
1035 {                                                1631 {
                                                   >> 1632   G4double safe=0.0,Dist;
                                                   >> 1633   G4int i;
                                                   >> 1634 
1036 #ifdef G4CSGDEBUG                                1635 #ifdef G4CSGDEBUG
1037   if( Inside(p) == kOutside )                    1636   if( Inside(p) == kOutside )
1038   {                                              1637   {
1039     std::ostringstream message;               << 1638      G4cout.precision(16) ;
1040     G4long oldprc = message.precision(16);    << 1639      G4cout << G4endl ;
1041     message << "Point p is outside (!?) of so << 1640      DumpInfo();
1042     message << "Position:\n";                 << 1641      G4cout << "Position:"  << G4endl << G4endl ;
1043     message << "   p.x() = " << p.x()/mm << " << 1642      G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl ;
1044     message << "   p.y() = " << p.y()/mm << " << 1643      G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl ;
1045     message << "   p.z() = " << p.z()/mm << " << 1644      G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl ;
1046     G4cout.precision(oldprc);                 << 1645      G4Exception("G4Trap::DistanceToOut(p)",
1047     G4Exception("G4Trap::DistanceToOut(p)", " << 1646                  "Notification", JustWarning, "Point p is outside !?" );
1048                 JustWarning, message );       << 
1049     DumpInfo();                               << 
1050   }                                              1647   }
1051 #endif                                           1648 #endif
1052   switch (fTrapType)                          << 1649 
                                                   >> 1650   safe=fDz-std::fabs(p.z());
                                                   >> 1651   if (safe<0) safe=0;
                                                   >> 1652   else
1053   {                                              1653   {
1054     case 0: // General case                   << 1654     for (i=0;i<4;i++)
1055     {                                            1655     {
1056       G4double dz = std::abs(p.z())-fDz;      << 1656       Dist=-(fPlanes[i].a*p.x()+fPlanes[i].b*p.y()
1057       G4double dy1 = fPlanes[0].b*p.y()+fPlan << 1657             +fPlanes[i].c*p.z()+fPlanes[i].d);
1058       G4double dy2 = fPlanes[1].b*p.y()+fPlan << 1658       if (Dist<safe) safe=Dist;
1059       G4double dy = std::max(dz,std::max(dy1, << 1659     }
1060                                               << 1660     if (safe<0) safe=0;
1061       G4double dx1 = fPlanes[2].a*p.x()+fPlan << 1661   }
1062                    + fPlanes[2].c*p.z()+fPlan << 1662   return safe;  
1063       G4double dx2 = fPlanes[3].a*p.x()+fPlan << 
1064                    + fPlanes[3].c*p.z()+fPlan << 
1065       G4double dist = std::max(dy,std::max(dx << 
1066       return (dist < 0) ? -dist : 0.;         << 
1067     }                                         << 
1068     case 1: // YZ section is a rectangle      << 
1069     {                                         << 
1070       G4double dz = std::abs(p.z())-fDz;      << 
1071       G4double dy = std::max(dz,std::abs(p.y( << 
1072       G4double dx1 = fPlanes[2].a*p.x()+fPlan << 
1073                    + fPlanes[2].c*p.z()+fPlan << 
1074       G4double dx2 = fPlanes[3].a*p.x()+fPlan << 
1075                    + fPlanes[3].c*p.z()+fPlan << 
1076       G4double dist = std::max(dy,std::max(dx << 
1077       return (dist < 0) ? -dist : 0.;         << 
1078     }                                         << 
1079     case 2: // YZ section is a rectangle and  << 
1080     {       // XZ section is an isosceles tra << 
1081       G4double dz = std::abs(p.z())-fDz;      << 
1082       G4double dy = std::max(dz,std::abs(p.y( << 
1083       G4double dx = fPlanes[3].a*std::abs(p.x << 
1084                   + fPlanes[3].c*p.z()+fPlane << 
1085       G4double dist = std::max(dy,dx);        << 
1086       return (dist < 0) ? -dist : 0.;         << 
1087     }                                         << 
1088     case 3: // YZ section is a rectangle and  << 
1089     {       // XY section is an isosceles tra << 
1090       G4double dz = std::abs(p.z())-fDz;      << 
1091       G4double dy = std::max(dz,std::abs(p.y( << 
1092       G4double dx = fPlanes[3].a*std::abs(p.x << 
1093                   + fPlanes[3].b*p.y()+fPlane << 
1094       G4double dist = std::max(dy,dx);        << 
1095       return (dist < 0) ? -dist : 0.;         << 
1096     }                                         << 
1097   }                                           << 
1098   return 0.;                                  << 
1099 }                                                1663 }
1100                                                  1664 
1101 /////////////////////////////////////////////    1665 //////////////////////////////////////////////////////////////////////////
1102 //                                               1666 //
1103 // GetEntityType                              << 1667 // Create a List containing the transformed vertices
1104                                               << 1668 // Ordering [0-3] -fDz cross section
1105 G4GeometryType G4Trap::GetEntityType() const  << 1669 //          [4-7] +fDz cross section such that [0] is below [4],
1106 {                                             << 1670 //                                             [1] below [5] etc.
1107   return {"G4Trap"};                          << 1671 // Note:
                                                   >> 1672 //  Caller has deletion resposibility
                                                   >> 1673 
                                                   >> 1674 G4ThreeVectorList*
                                                   >> 1675 G4Trap::CreateRotatedVertices( const G4AffineTransform& pTransform ) const
                                                   >> 1676 {
                                                   >> 1677   G4ThreeVectorList *vertices;
                                                   >> 1678   vertices=new G4ThreeVectorList();
                                                   >> 1679   if (vertices)
                                                   >> 1680   {
                                                   >> 1681     vertices->reserve(8);
                                                   >> 1682     G4ThreeVector vertex0(-fDz*fTthetaCphi-fDy1*fTalpha1-fDx1,
                                                   >> 1683                           -fDz*fTthetaSphi-fDy1,-fDz);
                                                   >> 1684     G4ThreeVector vertex1(-fDz*fTthetaCphi-fDy1*fTalpha1+fDx1,
                                                   >> 1685                           -fDz*fTthetaSphi-fDy1,-fDz);
                                                   >> 1686     G4ThreeVector vertex2(-fDz*fTthetaCphi+fDy1*fTalpha1-fDx2,
                                                   >> 1687                           -fDz*fTthetaSphi+fDy1,-fDz);
                                                   >> 1688     G4ThreeVector vertex3(-fDz*fTthetaCphi+fDy1*fTalpha1+fDx2,
                                                   >> 1689                           -fDz*fTthetaSphi+fDy1,-fDz);
                                                   >> 1690     G4ThreeVector vertex4(+fDz*fTthetaCphi-fDy2*fTalpha2-fDx3,
                                                   >> 1691                           +fDz*fTthetaSphi-fDy2,+fDz);
                                                   >> 1692     G4ThreeVector vertex5(+fDz*fTthetaCphi-fDy2*fTalpha2+fDx3,
                                                   >> 1693                           +fDz*fTthetaSphi-fDy2,+fDz);
                                                   >> 1694     G4ThreeVector vertex6(+fDz*fTthetaCphi+fDy2*fTalpha2-fDx4,
                                                   >> 1695                           +fDz*fTthetaSphi+fDy2,+fDz);
                                                   >> 1696     G4ThreeVector vertex7(+fDz*fTthetaCphi+fDy2*fTalpha2+fDx4,
                                                   >> 1697                           +fDz*fTthetaSphi+fDy2,+fDz);
                                                   >> 1698 
                                                   >> 1699     vertices->push_back(pTransform.TransformPoint(vertex0));
                                                   >> 1700     vertices->push_back(pTransform.TransformPoint(vertex1));
                                                   >> 1701     vertices->push_back(pTransform.TransformPoint(vertex2));
                                                   >> 1702     vertices->push_back(pTransform.TransformPoint(vertex3));
                                                   >> 1703     vertices->push_back(pTransform.TransformPoint(vertex4));
                                                   >> 1704     vertices->push_back(pTransform.TransformPoint(vertex5));
                                                   >> 1705     vertices->push_back(pTransform.TransformPoint(vertex6));
                                                   >> 1706     vertices->push_back(pTransform.TransformPoint(vertex7));
                                                   >> 1707   }
                                                   >> 1708   else
                                                   >> 1709   {
                                                   >> 1710     DumpInfo();
                                                   >> 1711     G4Exception("G4Trap::CreateRotatedVertices()",
                                                   >> 1712                 "FatalError", FatalException,
                                                   >> 1713                 "Error in allocation of vertices. Out of memory !");
                                                   >> 1714   }
                                                   >> 1715   return vertices;
1108 }                                                1716 }
1109                                                  1717 
1110 /////////////////////////////////////////////    1718 //////////////////////////////////////////////////////////////////////////
1111 //                                               1719 //
1112 // IsFaceted                                  << 1720 // GetEntityType
1113                                               << 
1114 G4bool G4Trap::IsFaceted() const              << 
1115 {                                             << 
1116   return true;                                << 
1117 }                                             << 
1118                                                  1721 
1119 ///////////////////////////////////////////// << 1722 G4GeometryType G4Trap::GetEntityType() const
1120 //                                            << 
1121 // Make a clone of the object                 << 
1122 //                                            << 
1123 G4VSolid* G4Trap::Clone() const               << 
1124 {                                                1723 {
1125   return new G4Trap(*this);                   << 1724   return G4String("G4Trap");
1126 }                                                1725 }
1127                                                  1726 
1128 /////////////////////////////////////////////    1727 //////////////////////////////////////////////////////////////////////////
1129 //                                               1728 //
1130 // Stream object contents to an output stream    1729 // Stream object contents to an output stream
1131                                                  1730 
1132 std::ostream& G4Trap::StreamInfo( std::ostrea    1731 std::ostream& G4Trap::StreamInfo( std::ostream& os ) const
1133 {                                                1732 {
1134   G4double phi    = GetPhi();                 << 
1135   G4double theta  = GetTheta();               << 
1136   G4double alpha1 = GetAlpha1();              << 
1137   G4double alpha2 = GetAlpha2();              << 
1138                                               << 
1139   G4long oldprc = os.precision(16);           << 
1140   os << "------------------------------------    1733   os << "-----------------------------------------------------------\n"
1141      << "    *** Dump for solid: " << GetName << 1734      << "    *** Dump for solid - " << GetName() << " ***\n"
1142      << "    ================================    1735      << "    ===================================================\n"
1143      << " Solid type: G4Trap\n"                  1736      << " Solid type: G4Trap\n"
1144      << " Parameters:\n"                      << 1737      << " Parameters: \n"
1145      << "    half length Z: " << fDz/mm << "  << 1738      << "    half length Z: " << fDz/mm << " mm \n"
1146      << "    half length Y, face -Dz: " << fD << 1739      << "    half length Y of face -fDz: " << fDy1/mm << " mm \n"
1147      << "    half length X, face -Dz, side -D << 1740      << "    half length X of side -fDy1, face -fDz: " << fDx1/mm << " mm \n"
1148      << "    half length X, face -Dz, side +D << 1741      << "    half length X of side +fDy1, face -fDz: " << fDx2/mm << " mm \n"
1149      << "    half length Y, face +Dz: " << fD << 1742      << "    half length Y of face +fDz: " << fDy2/mm << " mm \n"
1150      << "    half length X, face +Dz, side -D << 1743      << "    half length X of side -fDy2, face +fDz: " << fDx3/mm << " mm \n"
1151      << "    half length X, face +Dz, side +D << 1744      << "    half length X of side +fDy2, face +fDz: " << fDx4/mm << " mm \n"
1152      << "    theta: " << theta/degree << " de << 1745      << "    std::tan(theta)*std::cos(phi): " << fTthetaCphi/degree << " degrees \n"
1153      << "    phi:   " << phi/degree << " degr << 1746      << "    std::tan(theta)*std::sin(phi): " << fTthetaSphi/degree << " degrees \n"
1154      << "    alpha, face -Dz: " << alpha1/deg << 1747      << "    std::tan(alpha), -fDz: " << fTalpha1/degree << " degrees \n"
1155      << "    alpha, face +Dz: " << alpha2/deg << 1748      << "    std::tan(alpha), +fDz: " << fTalpha2/degree << " degrees \n"
                                                   >> 1749      << "    trap side plane equations:\n"
                                                   >> 1750      << "        " << fPlanes[0].a << " X + " << fPlanes[0].b << " Y + "
                                                   >> 1751                    << fPlanes[0].c << " Z + " << fPlanes[0].d << " = 0\n"
                                                   >> 1752      << "        " << fPlanes[1].a << " X + " << fPlanes[1].b << " Y + "
                                                   >> 1753                    << fPlanes[1].c << " Z + " << fPlanes[1].d << " = 0\n"
                                                   >> 1754      << "        " << fPlanes[2].a << " X + " << fPlanes[2].b << " Y + "
                                                   >> 1755                    << fPlanes[2].c << " Z + " << fPlanes[2].d << " = 0\n"
                                                   >> 1756      << "        " << fPlanes[3].a << " X + " << fPlanes[3].b << " Y + "
                                                   >> 1757                    << fPlanes[3].c << " Z + " << fPlanes[3].d << " = 0\n"
1156      << "------------------------------------    1758      << "-----------------------------------------------------------\n";
1157   os.precision(oldprc);                       << 
1158                                                  1759 
1159   return os;                                     1760   return os;
1160 }                                                1761 }
1161                                                  1762 
1162 ///////////////////////////////////////////// << 1763 /////////////////////////////////////////////////////////////////////////
                                                   >> 1764 //
                                                   >> 1765 // GetPointOnPlane
1163 //                                               1766 //
1164 // Compute vertices from planes               << 1767 // Auxiliary method for Get Point on Surface
1165                                                  1768 
1166 void G4Trap::GetVertices(G4ThreeVector pt[8]) << 1769 G4ThreeVector G4Trap::GetPointOnPlane(G4ThreeVector p0, G4ThreeVector p1, 
1167 {                                             << 1770                                       G4ThreeVector p2, G4ThreeVector p3,
1168   for (G4int i=0; i<8; ++i)                   << 1771                                       G4double& area) const
1169   {                                           << 1772 {
1170     G4int iy = (i==0 || i==1 || i==4 || i==5) << 1773   G4double lambda1, lambda2, chose, aOne, aTwo;
1171     G4int ix = (i==0 || i==2 || i==4 || i==6) << 1774   G4ThreeVector t, u, v, w, Area, normal;
1172     G4double z = (i < 4) ? -fDz : fDz;        << 1775   
1173     G4double y = -(fPlanes[iy].c*z + fPlanes[ << 1776   t = p1 - p0;
1174     G4double x = -(fPlanes[ix].b*y + fPlanes[ << 1777   u = p2 - p1;
1175                    + fPlanes[ix].d)/fPlanes[i << 1778   v = p3 - p2;
1176     pt[i].set(x,y,z);                         << 1779   w = p0 - p3;
1177   }                                           << 1780 
                                                   >> 1781   Area = G4ThreeVector(w.y()*v.z() - w.z()*v.y(),
                                                   >> 1782                        w.z()*v.x() - w.x()*v.z(),
                                                   >> 1783                        w.x()*v.y() - w.y()*v.x());
                                                   >> 1784   
                                                   >> 1785   aOne = 0.5*Area.mag();
                                                   >> 1786   
                                                   >> 1787   Area = G4ThreeVector(t.y()*u.z() - t.z()*u.y(),
                                                   >> 1788                        t.z()*u.x() - t.x()*u.z(),
                                                   >> 1789                        t.x()*u.y() - t.y()*u.x());
                                                   >> 1790   
                                                   >> 1791   aTwo = 0.5*Area.mag();
                                                   >> 1792   
                                                   >> 1793   area = aOne + aTwo;
                                                   >> 1794   
                                                   >> 1795   chose = RandFlat::shoot(0.,aOne+aTwo);
                                                   >> 1796 
                                                   >> 1797   if( (chose>=0.) && (chose < aOne) )
                                                   >> 1798   {
                                                   >> 1799     lambda1 = RandFlat::shoot(0.,1.);
                                                   >> 1800     lambda2 = RandFlat::shoot(0.,lambda1);
                                                   >> 1801     return (p2+lambda1*v+lambda2*w);    
                                                   >> 1802   }
                                                   >> 1803   
                                                   >> 1804   // else
                                                   >> 1805 
                                                   >> 1806   lambda1 = RandFlat::shoot(0.,1.);
                                                   >> 1807   lambda2 = RandFlat::shoot(0.,lambda1);
                                                   >> 1808 
                                                   >> 1809   return (p0+lambda1*t+lambda2*u);    
1178 }                                                1810 }
1179                                                  1811 
1180 ///////////////////////////////////////////// << 1812 ///////////////////////////////////////////////////////////////
1181 //                                               1813 //
1182 // Generate random point on the surface       << 1814 // GetPointOnSurface
1183                                                  1815 
1184 G4ThreeVector G4Trap::GetPointOnSurface() con    1816 G4ThreeVector G4Trap::GetPointOnSurface() const
1185 {                                                1817 {
1186   // Set indeces                              << 1818   G4double aOne, aTwo, aThree, aFour, aFive, aSix, chose;
1187   constexpr G4int iface [6][4] =              << 1819   G4ThreeVector One, Two, Three, Four, Five, Six, test;
1188     { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6 << 
1189                                               << 
1190   // Set vertices                             << 
1191   G4ThreeVector pt[8];                           1820   G4ThreeVector pt[8];
1192   GetVertices(pt);                            << 1821      
1193                                               << 1822   pt[0] = G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1-fDx1,
1194   // Select face                              << 1823                         -fDz*fTthetaSphi-fDy1,-fDz);
1195   //                                          << 1824   pt[1] = G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1+fDx1,
1196   G4double select = fAreas[5]*G4QuickRand();  << 1825                         -fDz*fTthetaSphi-fDy1,-fDz);
1197   G4int k = 5;                                << 1826   pt[2] = G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1-fDx2,
1198   k -= (G4int)(select <= fAreas[4]);          << 1827                         -fDz*fTthetaSphi+fDy1,-fDz);
1199   k -= (G4int)(select <= fAreas[3]);          << 1828   pt[3] = G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1+fDx2,
1200   k -= (G4int)(select <= fAreas[2]);          << 1829                         -fDz*fTthetaSphi+fDy1,-fDz);
1201   k -= (G4int)(select <= fAreas[1]);          << 1830   pt[4] = G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2-fDx3,
1202   k -= (G4int)(select <= fAreas[0]);          << 1831                         +fDz*fTthetaSphi-fDy2,+fDz);
1203                                               << 1832   pt[5] = G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2+fDx3,
1204   // Select sub-triangle                      << 1833                         +fDz*fTthetaSphi-fDy2,+fDz);
1205   //                                          << 1834   pt[6] = G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2-fDx4,
1206   G4int i0 = iface[k][0];                     << 1835                         +fDz*fTthetaSphi+fDy2,+fDz);
1207   G4int i1 = iface[k][1];                     << 1836   pt[7] = G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2+fDx4,
1208   G4int i2 = iface[k][2];                     << 1837                         +fDz*fTthetaSphi+fDy2,+fDz);
1209   G4int i3 = iface[k][3];                     << 1838   
1210   G4double s2 = G4GeomTools::TriangleAreaNorm << 1839   // make sure we provide the points in a clockwise fashion
1211   if (select > fAreas[k] - s2) i0 = i2;       << 1840 
1212                                               << 1841   One   = GetPointOnPlane(pt[0],pt[1],pt[3],pt[2], aOne);
1213   // Generate point                           << 1842   Two   = GetPointOnPlane(pt[4],pt[5],pt[7],pt[6], aTwo);
1214   //                                          << 1843   Three = GetPointOnPlane(pt[6],pt[7],pt[3],pt[2], aThree);
1215   G4double u = G4QuickRand();                 << 1844   Four  = GetPointOnPlane(pt[4],pt[5],pt[1],pt[0], aFour); 
1216   G4double v = G4QuickRand();                 << 1845   Five  = GetPointOnPlane(pt[0],pt[2],pt[6],pt[4], aFive);
1217   if (u + v > 1.) { u = 1. - u; v = 1. - v; } << 1846   Six   = GetPointOnPlane(pt[1],pt[3],pt[7],pt[5], aSix);
1218   return (1.-u-v)*pt[i0] + u*pt[i1] + v*pt[i3 << 1847  
                                                   >> 1848   chose = RandFlat::shoot(0.,aOne+aTwo+aThree+aFour+aFive+aSix);
                                                   >> 1849   if( (chose>=0.) && (chose<aOne) )                    
                                                   >> 1850     { return One; }
                                                   >> 1851   else if( (chose>=aOne) && (chose<aOne+aTwo) )  
                                                   >> 1852     { return Two; }
                                                   >> 1853   else if( (chose>=aOne+aTwo) && (chose<aOne+aTwo+aThree) )
                                                   >> 1854     { return Three; }
                                                   >> 1855   else if( (chose>=aOne+aTwo+aThree) && (chose<aOne+aTwo+aThree+aFour) )
                                                   >> 1856     { return Four; }
                                                   >> 1857   else if( (chose>=aOne+aTwo+aThree+aFour)
                                                   >> 1858         && (chose<aOne+aTwo+aThree+aFour+aFive) )
                                                   >> 1859     { return Five; }
                                                   >> 1860   return Six;
1219 }                                                1861 }
1220                                                  1862 
1221 /////////////////////////////////////////////    1863 //////////////////////////////////////////////////////////////////////////
1222 //                                               1864 //
1223 // Methods for visualisation                     1865 // Methods for visualisation
1224                                                  1866 
1225 void G4Trap::DescribeYourselfTo ( G4VGraphics    1867 void G4Trap::DescribeYourselfTo ( G4VGraphicsScene& scene ) const
1226 {                                                1868 {
1227   scene.AddSolid (*this);                        1869   scene.AddSolid (*this);
1228 }                                                1870 }
1229                                                  1871 
1230 G4Polyhedron* G4Trap::CreatePolyhedron () con    1872 G4Polyhedron* G4Trap::CreatePolyhedron () const
1231 {                                                1873 {
1232   G4double phi = std::atan2(fTthetaSphi, fTth    1874   G4double phi = std::atan2(fTthetaSphi, fTthetaCphi);
1233   G4double alpha1 = std::atan(fTalpha1);         1875   G4double alpha1 = std::atan(fTalpha1);
1234   G4double alpha2 = std::atan(fTalpha2);         1876   G4double alpha2 = std::atan(fTalpha2);
1235   G4double theta = std::atan(std::sqrt(fTthet << 1877   G4double theta = std::atan(std::sqrt(fTthetaCphi*fTthetaCphi+fTthetaSphi*fTthetaSphi));
1236                                       +fTthet << 
1237                                                  1878 
1238   return new G4PolyhedronTrap(fDz, theta, phi    1879   return new G4PolyhedronTrap(fDz, theta, phi,
1239                               fDy1, fDx1, fDx    1880                               fDy1, fDx1, fDx2, alpha1,
1240                               fDy2, fDx3, fDx    1881                               fDy2, fDx3, fDx4, alpha2);
1241 }                                                1882 }
1242                                                  1883 
1243 #endif                                        << 1884 G4NURBS* G4Trap::CreateNURBS () const
                                                   >> 1885 {
                                                   >> 1886    // return new G4NURBSbox (fDx, fDy, fDz);
                                                   >> 1887    return 0 ;
                                                   >> 1888 }
1244                                                  1889