Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4Trap.cc,v 1.42 2006/10/19 15:33:38 gcosmo Exp $ >> 28 // GEANT4 tag $Name: geant4-08-02-patch-01-ref $ >> 29 // >> 30 // class G4Trap >> 31 // 26 // Implementation for G4Trap class 32 // Implementation for G4Trap class 27 // 33 // 28 // 21.03.95 P.Kent: Modified for `tolerant' ge << 34 // History: >> 35 // >> 36 // 28.04.05 V.Grichine: new SurfaceNormal according to J. Apostolakis proposal >> 37 // 26.04.05 V.Grichine: new SurfaceNormal is default >> 38 // 19.04.05 V.Grichine: bug fixed in G4Trap("name",G4ThreeVector[8] vp) >> 39 // 12.12.04 V.Grichine: SurfaceNormal with edges/vertices >> 40 // 15.11.04 V.Grichine: bug fixed in G4Trap("name",G4ThreeVector[8] vp) >> 41 // 13.12.99 V.Grichine: bug fixed in DistanceToIn(p,v) >> 42 // 19.11.99 V.Grichine: kUndef was added to Eside enum >> 43 // 04.06.99 S.Giani: Fixed CalculateExtent in rotated case. >> 44 // 08.12.97 J.Allison: Added "nominal" constructor and method SetAllParameters. >> 45 // 01.11.96 V.Grichine: Costructor for Right Angular Wedge from STEP, G4Trd/Para 29 // 09.09.96 V.Grichine: Final modifications be 46 // 09.09.96 V.Grichine: Final modifications before to commit 30 // 08.12.97 J.Allison: Added "nominal" constru << 47 // 21.03.95 P.Kent: Modified for `tolerant' geometry 31 // 28.04.05 V.Grichine: new SurfaceNormal acco << 48 // 32 // 18.04.17 E.Tcherniaev: complete revision, s << 49 //////////////////////////////////////////////////////////////////////////////////// 33 // ------------------------------------------- << 34 50 35 #include "G4Trap.hh" 51 #include "G4Trap.hh" 36 << 37 #if !defined(G4GEOM_USE_UTRAP) << 38 << 39 #include "globals.hh" 52 #include "globals.hh" 40 #include "G4GeomTools.hh" << 41 53 42 #include "G4VoxelLimits.hh" 54 #include "G4VoxelLimits.hh" 43 #include "G4AffineTransform.hh" 55 #include "G4AffineTransform.hh" 44 #include "G4BoundingEnvelope.hh" << 45 56 46 #include "G4VPVParameterisation.hh" 57 #include "G4VPVParameterisation.hh" 47 58 48 #include "G4QuickRand.hh" << 59 #include "Randomize.hh" 49 60 50 #include "G4VGraphicsScene.hh" 61 #include "G4VGraphicsScene.hh" 51 #include "G4Polyhedron.hh" 62 #include "G4Polyhedron.hh" >> 63 #include "G4NURBS.hh" >> 64 #include "G4NURBSbox.hh" 52 65 53 using namespace CLHEP; 66 using namespace CLHEP; 54 67 >> 68 //////////////////////////////////////////////////////////////////////// >> 69 // >> 70 // Accuracy of coplanarity >> 71 >> 72 const G4double kCoplanar_Tolerance = 1E-4 ; >> 73 >> 74 ////////////////////////////////////////////////////////////////////////// >> 75 // >> 76 // Private enum: Not for external use >> 77 >> 78 enum Eside {kUndef,ks0,ks1,ks2,ks3,kPZ,kMZ}; >> 79 55 ////////////////////////////////////////////// 80 ////////////////////////////////////////////////////////////////////////// 56 // 81 // 57 // Constructor - check and set half-widths as << 82 // Constructor - check and set half-widths as well as angles: 58 // final check of coplanarity 83 // final check of coplanarity 59 84 60 G4Trap::G4Trap( const G4String& pName, 85 G4Trap::G4Trap( const G4String& pName, 61 G4double pDz, 86 G4double pDz, 62 G4double pTheta, G4doubl 87 G4double pTheta, G4double pPhi, 63 G4double pDy1, G4double 88 G4double pDy1, G4double pDx1, G4double pDx2, 64 G4double pAlp1, 89 G4double pAlp1, 65 G4double pDy2, G4double 90 G4double pDy2, G4double pDx3, G4double pDx4, 66 G4double pAlp2 ) << 91 G4double pAlp2) 67 : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 92 : G4CSGSolid(pName) 68 { 93 { 69 fDz = pDz; << 94 if ( pDz > 0 && pDy1 > 0 && pDx1 > 0 && 70 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi << 95 pDx2 > 0 && pDy2 > 0 && pDx3 > 0 && pDx4 > 0 ) 71 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi << 96 { 72 << 97 fDz=pDz; 73 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalp << 98 fTthetaCphi=std::tan(pTheta)*std::cos(pPhi); 74 fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalp << 99 fTthetaSphi=std::tan(pTheta)*std::sin(pPhi); >> 100 >> 101 fDy1=pDy1; >> 102 fDx1=pDx1; >> 103 fDx2=pDx2; >> 104 fTalpha1=std::tan(pAlp1); >> 105 >> 106 fDy2=pDy2; >> 107 fDx3=pDx3; >> 108 fDx4=pDx4; >> 109 fTalpha2=std::tan(pAlp2); 75 110 76 CheckParameters(); << 111 MakePlanes(); 77 MakePlanes(); << 112 } >> 113 else >> 114 { >> 115 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl >> 116 << " Invalid dimensions !" << G4endl >> 117 << " X - " >> 118 << pDx1 << ", " << pDx2 << ", " << pDx3 << ", " << pDx4 << G4endl >> 119 << " Y - " << pDy1 << ", " << pDy2 << G4endl >> 120 << " Z - " << pDz << G4endl; >> 121 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 122 "Invalid length G4Trap parameters."); >> 123 } 78 } 124 } 79 125 80 ////////////////////////////////////////////// << 126 //////////////////////////////////////////////////////////////////////////// 81 // 127 // 82 // Constructor - Design of trapezoid based on << 128 // Constructor - Design of trapezoid based on 8 G4ThreeVector parameters, 83 // which are its vertices. Checking of planari << 129 // which are its vertices. Checking of planarity with preparation of 84 // fPlanes[] and than calculation of other mem 130 // fPlanes[] and than calculation of other members 85 131 86 G4Trap::G4Trap( const G4String& pName, 132 G4Trap::G4Trap( const G4String& pName, 87 const G4ThreeVector pt[8] ) 133 const G4ThreeVector pt[8] ) 88 : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 134 : G4CSGSolid(pName) 89 { 135 { 90 // Start with check of centering - the cente 136 // Start with check of centering - the center of gravity trap line 91 // should cross the origin of frame 137 // should cross the origin of frame 92 // << 93 if ( pt[0].z() >= 0 << 94 || pt[0].z() != pt[1].z() << 95 || pt[0].z() != pt[2].z() << 96 || pt[0].z() != pt[3].z() << 97 << 98 || pt[4].z() <= 0 << 99 || pt[4].z() != pt[5].z() << 100 || pt[4].z() != pt[6].z() << 101 || pt[4].z() != pt[7].z() << 102 << 103 || std::fabs( pt[0].z() + pt[4].z() ) << 104 << 105 || pt[0].y() != pt[1].y() << 106 || pt[2].y() != pt[3].y() << 107 || pt[4].y() != pt[5].y() << 108 || pt[6].y() != pt[7].y() << 109 << 110 || std::fabs(pt[0].y()+pt[2].y()+pt[4] << 111 || std::fabs(pt[0].x()+pt[1].x()+pt[4] << 112 pt[2].x()+pt[3].x()+pt[6] << 113 { << 114 std::ostringstream message; << 115 message << "Invalid vertice coordinates fo << 116 G4Exception("G4Trap::G4Trap()", "GeomSolid << 117 FatalException, message); << 118 } << 119 << 120 // Set parameters << 121 // << 122 fDz = (pt[7]).z(); << 123 << 124 fDy1 = ((pt[2]).y()-(pt[1]).y())*0.5; << 125 fDx1 = ((pt[1]).x()-(pt[0]).x())*0.5; << 126 fDx2 = ((pt[3]).x()-(pt[2]).x())*0.5; << 127 fTalpha1 = ((pt[2]).x()+(pt[3]).x()-(pt[1]). << 128 << 129 fDy2 = ((pt[6]).y()-(pt[5]).y())*0.5; << 130 fDx3 = ((pt[5]).x()-(pt[4]).x())*0.5; << 131 fDx4 = ((pt[7]).x()-(pt[6]).x())*0.5; << 132 fTalpha2 = ((pt[6]).x()+(pt[7]).x()-(pt[5]). << 133 138 134 fTthetaCphi = ((pt[4]).x()+fDy2*fTalpha2+fDx << 139 if ( pt[0].z() < 0 135 fTthetaSphi = ((pt[4]).y()+fDy2)/fDz; << 140 && pt[0].z() == pt[1].z() && pt[0].z() == pt[2].z() && pt[0].z() == pt[3].z() >> 141 && pt[4].z() > 0 >> 142 && pt[4].z() == pt[5].z() && pt[4].z() == pt[6].z() && pt[4].z() == pt[7].z() >> 143 && ( pt[0].z() + pt[4].z() ) == 0 >> 144 && pt[0].y() == pt[1].y() && pt[2].y() == pt[3].y() >> 145 && pt[4].y() == pt[5].y() && pt[6].y() == pt[7].y() >> 146 && ( pt[0].y() + pt[2].y() + pt[4].y() + pt[6].y() ) == 0 >> 147 && ( pt[0].x() + pt[1].x() + pt[4].x() + pt[5].x() + >> 148 pt[2].x() + pt[3].x() + pt[6].x() + pt[7].x() ) == 0 ) >> 149 { >> 150 G4bool good; >> 151 >> 152 // Bottom side with normal approx. -Y >> 153 >> 154 good = MakePlane(pt[0],pt[4],pt[5],pt[1],fPlanes[0]); >> 155 >> 156 if (!good) >> 157 { >> 158 DumpInfo(); >> 159 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 160 "Face at ~-Y not planar."); >> 161 } >> 162 >> 163 // Top side with normal approx. +Y >> 164 >> 165 good = MakePlane(pt[2],pt[3],pt[7],pt[6],fPlanes[1]); >> 166 >> 167 if (!good) >> 168 { >> 169 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 170 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 171 "Face at ~+Y not planar."); >> 172 } >> 173 >> 174 // Front side with normal approx. -X >> 175 >> 176 good = MakePlane(pt[0],pt[2],pt[6],pt[4],fPlanes[2]); >> 177 >> 178 if (!good) >> 179 { >> 180 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 181 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 182 "Face at ~-X not planar."); >> 183 } >> 184 >> 185 // Back side iwth normal approx. +X >> 186 >> 187 good = MakePlane(pt[1],pt[5],pt[7],pt[3],fPlanes[3]); >> 188 if (!good) >> 189 { >> 190 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 191 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 192 "Face at ~+X not planar."); >> 193 } >> 194 fDz = (pt[7]).z() ; >> 195 >> 196 fDy1 = ((pt[2]).y()-(pt[1]).y())*0.5; >> 197 fDx1 = ((pt[1]).x()-(pt[0]).x())*0.5; >> 198 fDx2 = ((pt[3]).x()-(pt[2]).x())*0.5; >> 199 fTalpha1 = ((pt[2]).x()+(pt[3]).x()-(pt[1]).x()-(pt[0]).x())*0.25/fDy1; >> 200 >> 201 fDy2 = ((pt[6]).y()-(pt[5]).y())*0.5; >> 202 fDx3 = ((pt[5]).x()-(pt[4]).x())*0.5; >> 203 fDx4 = ((pt[7]).x()-(pt[6]).x())*0.5; >> 204 fTalpha2 = ((pt[6]).x()+(pt[7]).x()-(pt[5]).x()-(pt[4]).x())*0.25/fDy2; 136 205 137 CheckParameters(); << 206 fTthetaCphi = ((pt[4]).x()+fDy2*fTalpha2+fDx3)/fDz; 138 MakePlanes(pt); << 207 fTthetaSphi = ((pt[4]).y()+fDy2)/fDz; >> 208 } >> 209 else >> 210 { >> 211 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 212 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 213 "Invalid vertice coordinates."); >> 214 } 139 } 215 } 140 216 141 ////////////////////////////////////////////// << 217 ////////////////////////////////////////////////////////////////////////////// 142 // 218 // 143 // Constructor for Right Angular Wedge from ST 219 // Constructor for Right Angular Wedge from STEP 144 220 145 G4Trap::G4Trap( const G4String& pName, 221 G4Trap::G4Trap( const G4String& pName, 146 G4double pZ, 222 G4double pZ, 147 G4double pY, 223 G4double pY, 148 G4double pX, G4double pL 224 G4double pX, G4double pLTX ) 149 : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 225 : G4CSGSolid(pName) >> 226 150 { 227 { 151 fDz = 0.5*pZ; fTthetaCphi = 0; fTthetaSphi << 228 G4bool good; 152 fDy1 = 0.5*pY; fDx1 = 0.5*pX; fDx2 = 0.5*pLT << 229 153 fDy2 = fDy1; fDx3 = fDx1; fDx4 = fDx2; << 230 if ( pZ>0 && pY>0 && pX>0 && pLTX>0 && pLTX<=pX ) >> 231 { >> 232 fDz = 0.5*pZ ; >> 233 fTthetaCphi = 0 ; >> 234 fTthetaSphi = 0 ; >> 235 >> 236 fDy1 = 0.5*pY; >> 237 fDx1 = 0.5*pX ; >> 238 fDx2 = 0.5*pLTX; >> 239 fTalpha1 = 0.5*(pLTX - pX)/pY; >> 240 >> 241 fDy2 = fDy1 ; >> 242 fDx3 = fDx1; >> 243 fDx4 = fDx2 ; >> 244 fTalpha2 = fTalpha1 ; >> 245 >> 246 G4ThreeVector pt[8] ; >> 247 >> 248 pt[0]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1-fDx1, >> 249 -fDz*fTthetaSphi-fDy1,-fDz); >> 250 pt[1]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1+fDx1, >> 251 -fDz*fTthetaSphi-fDy1,-fDz); >> 252 pt[2]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1-fDx2, >> 253 -fDz*fTthetaSphi+fDy1,-fDz); >> 254 pt[3]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1+fDx2, >> 255 -fDz*fTthetaSphi+fDy1,-fDz); >> 256 pt[4]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2-fDx3, >> 257 +fDz*fTthetaSphi-fDy2,+fDz); >> 258 pt[5]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2+fDx3, >> 259 +fDz*fTthetaSphi-fDy2,+fDz); >> 260 pt[6]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2-fDx4, >> 261 +fDz*fTthetaSphi+fDy2,+fDz); >> 262 pt[7]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2+fDx4, >> 263 +fDz*fTthetaSphi+fDy2,+fDz); >> 264 >> 265 // Bottom side with normal approx. -Y >> 266 // >> 267 good=MakePlane(pt[0],pt[4],pt[5],pt[1],fPlanes[0]); >> 268 if (!good) >> 269 { >> 270 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 271 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 272 "Face at ~-Y not planar."); >> 273 } >> 274 >> 275 // Top side with normal approx. +Y >> 276 // >> 277 good=MakePlane(pt[2],pt[3],pt[7],pt[6],fPlanes[1]); >> 278 if (!good) >> 279 { >> 280 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 281 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 282 "Face at ~+Y not planar."); >> 283 } 154 284 155 CheckParameters(); << 285 // Front side with normal approx. -X 156 MakePlanes(); << 286 // >> 287 good=MakePlane(pt[0],pt[2],pt[6],pt[4],fPlanes[2]); >> 288 if (!good) >> 289 { >> 290 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 291 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 292 "Face at ~-X not planar."); >> 293 } >> 294 >> 295 // Back side iwth normal approx. +X >> 296 // >> 297 good=MakePlane(pt[1],pt[5],pt[7],pt[3],fPlanes[3]); >> 298 if (!good) >> 299 { >> 300 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 301 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 302 "Face at ~+X not planar."); >> 303 } >> 304 } >> 305 else >> 306 { >> 307 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 308 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 309 "Invalid length G4Trap parameters."); >> 310 } 157 } 311 } 158 312 159 ////////////////////////////////////////////// << 313 /////////////////////////////////////////////////////////////////////////////// 160 // 314 // 161 // Constructor for G4Trd 315 // Constructor for G4Trd 162 316 163 G4Trap::G4Trap( const G4String& pName, 317 G4Trap::G4Trap( const G4String& pName, 164 G4double pDx1, G4double 318 G4double pDx1, G4double pDx2, 165 G4double pDy1, G4double 319 G4double pDy1, G4double pDy2, 166 G4double pDz ) 320 G4double pDz ) 167 : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 321 : G4CSGSolid(pName) 168 { 322 { 169 fDz = pDz; fTthetaCphi = 0; fTthetaSphi = << 323 G4bool good; 170 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx1; fTalp << 324 171 fDy2 = pDy2; fDx3 = pDx2; fDx4 = pDx2; fTalp << 325 if ( pDz>0 && pDy1>0 && pDx1>0 && pDx2>0 && pDy2>0 ) >> 326 { >> 327 fDz = pDz; >> 328 fTthetaCphi = 0 ; >> 329 fTthetaSphi = 0 ; >> 330 >> 331 fDy1 = pDy1 ; >> 332 fDx1 = pDx1 ; >> 333 fDx2 = pDx1 ; >> 334 fTalpha1 = 0 ; >> 335 >> 336 fDy2 = pDy2 ; >> 337 fDx3 = pDx2 ; >> 338 fDx4 = pDx2 ; >> 339 fTalpha2 = 0 ; >> 340 >> 341 G4ThreeVector pt[8] ; >> 342 >> 343 pt[0]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1-fDx1, >> 344 -fDz*fTthetaSphi-fDy1,-fDz); >> 345 pt[1]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1+fDx1, >> 346 -fDz*fTthetaSphi-fDy1,-fDz); >> 347 pt[2]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1-fDx2, >> 348 -fDz*fTthetaSphi+fDy1,-fDz); >> 349 pt[3]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1+fDx2, >> 350 -fDz*fTthetaSphi+fDy1,-fDz); >> 351 pt[4]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2-fDx3, >> 352 +fDz*fTthetaSphi-fDy2,+fDz); >> 353 pt[5]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2+fDx3, >> 354 +fDz*fTthetaSphi-fDy2,+fDz); >> 355 pt[6]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2-fDx4, >> 356 +fDz*fTthetaSphi+fDy2,+fDz); >> 357 pt[7]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2+fDx4, >> 358 +fDz*fTthetaSphi+fDy2,+fDz); >> 359 >> 360 // Bottom side with normal approx. -Y >> 361 // >> 362 good=MakePlane(pt[0],pt[4],pt[5],pt[1],fPlanes[0]); >> 363 if (!good) >> 364 { >> 365 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 366 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 367 "Face at ~-Y not planar."); >> 368 } >> 369 >> 370 // Top side with normal approx. +Y >> 371 // >> 372 good=MakePlane(pt[2],pt[3],pt[7],pt[6],fPlanes[1]); >> 373 if (!good) >> 374 { >> 375 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 376 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 377 "Face at ~+Y not planar."); >> 378 } 172 379 173 CheckParameters(); << 380 // Front side with normal approx. -X 174 MakePlanes(); << 381 // >> 382 good=MakePlane(pt[0],pt[2],pt[6],pt[4],fPlanes[2]); >> 383 if (!good) >> 384 { >> 385 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 386 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 387 "Face at ~-X not planar."); >> 388 } >> 389 >> 390 // Back side iwth normal approx. +X >> 391 // >> 392 good=MakePlane(pt[1],pt[5],pt[7],pt[3],fPlanes[3]); >> 393 if (!good) >> 394 { >> 395 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 396 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 397 "Face at ~+X not planar."); >> 398 } >> 399 } >> 400 else >> 401 { >> 402 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 403 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 404 "Invalid length G4Trap parameters."); >> 405 } 175 } 406 } 176 407 177 ////////////////////////////////////////////// << 408 //////////////////////////////////////////////////////////////////////////// 178 // 409 // 179 // Constructor for G4Para 410 // Constructor for G4Para 180 411 181 G4Trap::G4Trap( const G4String& pName, 412 G4Trap::G4Trap( const G4String& pName, 182 G4double pDx, G4double p 413 G4double pDx, G4double pDy, 183 G4double pDz, 414 G4double pDz, 184 G4double pAlpha, 415 G4double pAlpha, 185 G4double pTheta, G4doubl << 416 G4double pTheta, G4double pPhi) 186 : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 417 : G4CSGSolid(pName) 187 { 418 { 188 fDz = pDz; << 419 G4bool good; 189 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi << 420 190 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi << 421 if ( pDz>0 && pDy>0 && pDx>0 ) >> 422 { >> 423 fDz = pDz ; >> 424 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi) ; >> 425 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi) ; >> 426 >> 427 fDy1 = pDy ; >> 428 fDx1 = pDx ; >> 429 fDx2 = pDx ; >> 430 fTalpha1 = std::tan(pAlpha) ; >> 431 >> 432 fDy2 = pDy ; >> 433 fDx3 = pDx ; >> 434 fDx4 = pDx ; >> 435 fTalpha2 = fTalpha1 ; >> 436 >> 437 G4ThreeVector pt[8] ; >> 438 >> 439 pt[0]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1-fDx1, >> 440 -fDz*fTthetaSphi-fDy1,-fDz); >> 441 pt[1]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1+fDx1, >> 442 -fDz*fTthetaSphi-fDy1,-fDz); >> 443 pt[2]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1-fDx2, >> 444 -fDz*fTthetaSphi+fDy1,-fDz); >> 445 pt[3]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1+fDx2, >> 446 -fDz*fTthetaSphi+fDy1,-fDz); >> 447 pt[4]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2-fDx3, >> 448 +fDz*fTthetaSphi-fDy2,+fDz); >> 449 pt[5]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2+fDx3, >> 450 +fDz*fTthetaSphi-fDy2,+fDz); >> 451 pt[6]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2-fDx4, >> 452 +fDz*fTthetaSphi+fDy2,+fDz); >> 453 pt[7]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2+fDx4, >> 454 +fDz*fTthetaSphi+fDy2,+fDz); 191 455 192 fDy1 = pDy; fDx1 = pDx; fDx2 = pDx; fTalpha1 << 456 // Bottom side with normal approx. -Y 193 fDy2 = pDy; fDx3 = pDx; fDx4 = pDx; fTalpha2 << 457 // >> 458 good=MakePlane(pt[0],pt[4],pt[5],pt[1],fPlanes[0]); >> 459 if (!good) >> 460 { >> 461 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 462 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 463 "Face at ~-Y not planar."); >> 464 } 194 465 195 CheckParameters(); << 466 // Top side with normal approx. +Y 196 MakePlanes(); << 467 // >> 468 good=MakePlane(pt[2],pt[3],pt[7],pt[6],fPlanes[1]); >> 469 if (!good) >> 470 { >> 471 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 472 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 473 "Face at ~+Y not planar."); >> 474 } >> 475 >> 476 // Front side with normal approx. -X >> 477 // >> 478 good=MakePlane(pt[0],pt[2],pt[6],pt[4],fPlanes[2]); >> 479 if (!good) >> 480 { >> 481 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 482 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 483 "Face at ~-X not planar."); >> 484 } >> 485 >> 486 // Back side iwth normal approx. +X >> 487 // >> 488 good=MakePlane(pt[1],pt[5],pt[7],pt[3],fPlanes[3]); >> 489 if (!good) >> 490 { >> 491 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 492 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 493 "Face at ~+X not planar."); >> 494 } >> 495 } >> 496 else >> 497 { >> 498 G4cerr << "ERROR - G4Trap()::G4Trap(): " << GetName() << G4endl; >> 499 G4Exception("G4Trap::G4Trap()", "InvalidSetup", FatalException, >> 500 "Invalid length G4Trap parameters."); >> 501 } 197 } 502 } 198 503 199 ////////////////////////////////////////////// << 504 /////////////////////////////////////////////////////////////////////////// 200 // 505 // 201 // Nominal constructor for G4Trap whose parame 506 // Nominal constructor for G4Trap whose parameters are to be set by 202 // a G4VParamaterisation later. Check and set 507 // a G4VParamaterisation later. Check and set half-widths as well as 203 // angles: final check of coplanarity 508 // angles: final check of coplanarity 204 509 205 G4Trap::G4Trap( const G4String& pName ) 510 G4Trap::G4Trap( const G4String& pName ) 206 : G4CSGSolid (pName), halfCarTolerance(0.5*k << 511 : G4CSGSolid (pName), 207 fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.), << 512 fDz (1.), 208 fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.) << 513 fTthetaCphi (0.), 209 fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.) << 514 fTthetaSphi (0.), >> 515 fDy1 (1.), >> 516 fDx1 (1.), >> 517 fDx2 (1.), >> 518 fTalpha1 (0.), >> 519 fDy2 (1.), >> 520 fDx3 (1.), >> 521 fDx4 (1.), >> 522 fTalpha2 (0.) 210 { 523 { 211 MakePlanes(); << 524 MakePlanes(); 212 } 525 } 213 526 214 ////////////////////////////////////////////// << 527 /////////////////////////////////////////////////////////////////////// 215 // 528 // 216 // Fake default constructor - sets only member 529 // Fake default constructor - sets only member data and allocates memory 217 // for usage restri 530 // for usage restricted to object persistency. 218 // 531 // 219 G4Trap::G4Trap( __void__& a ) 532 G4Trap::G4Trap( __void__& a ) 220 : G4CSGSolid(a), halfCarTolerance(0.5*kCarTo << 533 : G4CSGSolid(a) 221 fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.), << 222 fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.) << 223 fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.) << 224 { 534 { 225 MakePlanes(); << 226 } 535 } 227 536 228 ////////////////////////////////////////////// << 537 //////////////////////////////////////////////////////////////////////// 229 // 538 // 230 // Destructor 539 // Destructor 231 540 232 G4Trap::~G4Trap() = default; << 541 G4Trap::~G4Trap() 233 << 234 ////////////////////////////////////////////// << 235 // << 236 // Copy constructor << 237 << 238 G4Trap::G4Trap(const G4Trap& rhs) << 239 : G4CSGSolid(rhs), halfCarTolerance(rhs.half << 240 fDz(rhs.fDz), fTthetaCphi(rhs.fTthetaCphi) << 241 fDy1(rhs.fDy1), fDx1(rhs.fDx1), fDx2(rhs.f << 242 fDy2(rhs.fDy2), fDx3(rhs.fDx3), fDx4(rhs.f << 243 { << 244 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs << 245 for (G4int i=0; i<6; ++i) { fAreas[i] = rhs. << 246 fTrapType = rhs.fTrapType; << 247 } << 248 << 249 ////////////////////////////////////////////// << 250 // << 251 // Assignment operator << 252 << 253 G4Trap& G4Trap::operator = (const G4Trap& rhs) << 254 { 542 { 255 // Check assignment to self << 256 // << 257 if (this == &rhs) { return *this; } << 258 << 259 // Copy base class data << 260 // << 261 G4CSGSolid::operator=(rhs); << 262 << 263 // Copy data << 264 // << 265 halfCarTolerance = rhs.halfCarTolerance; << 266 fDz = rhs.fDz; fTthetaCphi = rhs.fTthetaCphi << 267 fDy1 = rhs.fDy1; fDx1 = rhs.fDx1; fDx2 = rhs << 268 fDy2 = rhs.fDy2; fDx3 = rhs.fDx3; fDx4 = rhs << 269 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs << 270 for (G4int i=0; i<6; ++i) { fAreas[i] = rhs. << 271 fTrapType = rhs.fTrapType; << 272 return *this; << 273 } 543 } 274 544 275 ////////////////////////////////////////////// << 545 /////////////////////////////////////////////////////////////////////// 276 // 546 // 277 // Set all parameters, as for constructor - ch 547 // Set all parameters, as for constructor - check and set half-widths 278 // as well as angles: final check of coplanari 548 // as well as angles: final check of coplanarity 279 549 280 void G4Trap::SetAllParameters ( G4double pDz, 550 void G4Trap::SetAllParameters ( G4double pDz, 281 G4double pThet 551 G4double pTheta, 282 G4double pPhi, 552 G4double pPhi, 283 G4double pDy1, 553 G4double pDy1, 284 G4double pDx1, 554 G4double pDx1, 285 G4double pDx2, 555 G4double pDx2, 286 G4double pAlp1 556 G4double pAlp1, 287 G4double pDy2, 557 G4double pDy2, 288 G4double pDx3, 558 G4double pDx3, 289 G4double pDx4, 559 G4double pDx4, 290 G4double pAlp2 560 G4double pAlp2 ) 291 { 561 { 292 // Reset data of the base class << 562 fCubicVolume= 0.; 293 fCubicVolume = 0; << 563 fSurfaceArea= 0.; 294 fSurfaceArea = 0; << 564 fpPolyhedron = 0; 295 fRebuildPolyhedron = true; << 565 if ( pDz>0 && pDy1>0 && pDx1>0 && pDx2>0 && pDy2>0 && pDx3>0 && pDx4>0 ) 296 << 566 { 297 // Set parameters << 567 fDz=pDz; 298 fDz = pDz; << 568 fTthetaCphi=std::tan(pTheta)*std::cos(pPhi); 299 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi << 569 fTthetaSphi=std::tan(pTheta)*std::sin(pPhi); 300 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi << 570 301 << 571 fDy1=pDy1; 302 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalp << 572 fDx1=pDx1; 303 fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalp << 573 fDx2=pDx2; >> 574 fTalpha1=std::tan(pAlp1); >> 575 >> 576 fDy2=pDy2; >> 577 fDx3=pDx3; >> 578 fDx4=pDx4; >> 579 fTalpha2=std::tan(pAlp2); 304 580 305 CheckParameters(); << 581 MakePlanes(); 306 MakePlanes(); << 582 } 307 } << 583 else 308 << 584 { 309 ////////////////////////////////////////////// << 585 G4cerr << "ERROR - G4Trap()::SetAllParameters(): " << GetName() << G4endl 310 // << 586 << " Invalid dimensions !" << G4endl 311 // Check length parameters << 587 << " X - " 312 << 588 << pDx1 << ", " << pDx2 << ", " << pDx3 << ", " << pDx4 << G4endl 313 void G4Trap::CheckParameters() << 589 << " Y - " << pDy1 << ", " << pDy2 << G4endl 314 { << 590 << " Z - " << pDz << G4endl; 315 if (fDz<=0 || << 591 G4Exception("G4Trap::SetAllParameters()", "InvalidSetup", 316 fDy1<=0 || fDx1<=0 || fDx2<=0 || << 592 FatalException, "Invalid Length Parameters."); 317 fDy2<=0 || fDx3<=0 || fDx4<=0) << 318 { << 319 std::ostringstream message; << 320 message << "Invalid Length Parameters for << 321 << "\n X - " <<fDx1<<", "<<fDx2<< << 322 << "\n Y - " <<fDy1<<", "<<fDy2 << 323 << "\n Z - " <<fDz; << 324 G4Exception("G4Trap::CheckParameters()", " << 325 FatalException, message); << 326 } 593 } 327 } 594 } 328 595 329 ////////////////////////////////////////////// 596 ////////////////////////////////////////////////////////////////////////// 330 // 597 // 331 // Compute vertices and set side planes << 598 // Checking of coplanarity 332 << 599 333 void G4Trap::MakePlanes() << 600 G4bool G4Trap::MakePlanes() 334 { << 601 { 335 G4double DzTthetaCphi = fDz*fTthetaCphi; << 602 G4bool good = true; 336 G4double DzTthetaSphi = fDz*fTthetaSphi; << 603 337 G4double Dy1Talpha1 = fDy1*fTalpha1; << 604 G4ThreeVector pt[8] ; 338 G4double Dy2Talpha2 = fDy2*fTalpha2; << 605 339 << 606 pt[0]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1-fDx1, 340 G4ThreeVector pt[8] = << 607 -fDz*fTthetaSphi-fDy1,-fDz); 341 { << 608 pt[1]=G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1+fDx1, 342 G4ThreeVector(-DzTthetaCphi-Dy1Talpha1-fDx << 609 -fDz*fTthetaSphi-fDy1,-fDz); 343 G4ThreeVector(-DzTthetaCphi-Dy1Talpha1+fDx << 610 pt[2]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1-fDx2, 344 G4ThreeVector(-DzTthetaCphi+Dy1Talpha1-fDx << 611 -fDz*fTthetaSphi+fDy1,-fDz); 345 G4ThreeVector(-DzTthetaCphi+Dy1Talpha1+fDx << 612 pt[3]=G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1+fDx2, 346 G4ThreeVector( DzTthetaCphi-Dy2Talpha2-fDx << 613 -fDz*fTthetaSphi+fDy1,-fDz); 347 G4ThreeVector( DzTthetaCphi-Dy2Talpha2+fDx << 614 pt[4]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2-fDx3, 348 G4ThreeVector( DzTthetaCphi+Dy2Talpha2-fDx << 615 +fDz*fTthetaSphi-fDy2,+fDz); 349 G4ThreeVector( DzTthetaCphi+Dy2Talpha2+fDx << 616 pt[5]=G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2+fDx3, 350 }; << 617 +fDz*fTthetaSphi-fDy2,+fDz); 351 << 618 pt[6]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2-fDx4, 352 MakePlanes(pt); << 619 +fDz*fTthetaSphi+fDy2,+fDz); 353 } << 620 pt[7]=G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2+fDx4, 354 << 621 +fDz*fTthetaSphi+fDy2,+fDz); 355 ////////////////////////////////////////////// << 356 // << 357 // Set side planes, check planarity << 358 622 359 void G4Trap::MakePlanes(const G4ThreeVector pt << 623 // Bottom side with normal approx. -Y 360 { << 624 // 361 constexpr G4int iface[4][4] = { {0,4,5,1}, { << 625 good=MakePlane(pt[0],pt[4],pt[5],pt[1],fPlanes[0]) ; 362 const static G4String side[4] = { "~-Y", "~+ << 626 if (!good) >> 627 { >> 628 G4cerr << "ERROR - G4Trap()::MakePlanes(): " << GetName() << G4endl; >> 629 G4Exception("G4Trap::MakePlanes()", "InvalidSetup", FatalException, >> 630 "Face at ~-Y not planar."); >> 631 } 363 632 364 for (G4int i=0; i<4; ++i) << 633 // Top side with normal approx. +Y >> 634 // >> 635 good=MakePlane(pt[2],pt[3],pt[7],pt[6],fPlanes[1]); >> 636 if (!good) 365 { 637 { 366 if (MakePlane(pt[iface[i][0]], << 638 G4cerr << "ERROR - G4Trap()::MakePlanes(): " << GetName() << G4endl; 367 pt[iface[i][1]], << 639 G4Exception("G4Trap::MakePlanes()", "InvalidSetup", FatalException, 368 pt[iface[i][2]], << 640 "Face at ~+Y not planar."); 369 pt[iface[i][3]], << 641 } 370 fPlanes[i])) continue; << 371 642 372 // Non planar side face << 643 // Front side with normal approx. -X 373 G4ThreeVector normal(fPlanes[i].a,fPlanes[ << 644 // 374 G4double dmax = 0; << 645 good=MakePlane(pt[0],pt[2],pt[6],pt[4],fPlanes[2]); 375 for (G4int k=0; k<4; ++k) << 646 if (!good) 376 { << 647 { 377 G4double dist = normal.dot(pt[iface[i][k << 648 G4cerr << "ERROR - G4Trap()::MakePlanes(): " << GetName() << G4endl; 378 if (std::abs(dist) > std::abs(dmax)) dma << 649 G4Exception("G4Trap::MakePlanes()", "InvalidSetup", FatalException, 379 } << 650 "Face at ~-X not planar."); 380 std::ostringstream message; << 651 } 381 message << "Side face " << side[i] << " is << 652 382 << GetName() << "\nDiscrepancy: " << 653 // Back side iwth normal approx. +X 383 StreamInfo(message); << 654 // 384 G4Exception("G4Trap::MakePlanes()", "GeomS << 655 good = MakePlane(pt[1],pt[5],pt[7],pt[3],fPlanes[3]); 385 FatalException, message); << 656 if ( !good ) >> 657 { >> 658 G4cerr << "ERROR - G4Trap()::MakePlanes(): " << GetName() << G4endl; >> 659 G4Exception("G4Trap::MakePlanes()", "InvalidSetup", FatalException, >> 660 "Face at ~+X not planar"); 386 } 661 } 387 662 388 // Re-compute parameters << 663 return good; 389 SetCachedValues(); << 390 } 664 } 391 665 392 ////////////////////////////////////////////// << 666 ////////////////////////////////////////////////////////////////////////////// 393 // 667 // 394 // Calculate the coef's of the plane p1->p2->p 668 // Calculate the coef's of the plane p1->p2->p3->p4->p1 395 // where the ThreeVectors 1-4 are in anti-cloc << 669 // where the ThreeVectors 1-4 are in anti-clockwise order when viewed from 396 // from infront of the plane (i.e. from normal << 670 // infront of the plane (i.e. from normal direction). 397 // 671 // 398 // Return true if the points are coplanar, fal << 672 // Return true if the ThreeVectors are coplanar + set coef;s >> 673 // false if ThreeVectors are not coplanar 399 674 400 G4bool G4Trap::MakePlane( const G4ThreeVector& 675 G4bool G4Trap::MakePlane( const G4ThreeVector& p1, 401 const G4ThreeVector& 676 const G4ThreeVector& p2, 402 const G4ThreeVector& 677 const G4ThreeVector& p3, 403 const G4ThreeVector& 678 const G4ThreeVector& p4, 404 TrapSidePlane& 679 TrapSidePlane& plane ) 405 { 680 { 406 G4ThreeVector normal = ((p4 - p2).cross(p3 - << 681 G4double a, b, c, s; 407 if (std::abs(normal.x()) < DBL_EPSILON) norm << 682 G4ThreeVector v12, v13, v14, Vcross; 408 if (std::abs(normal.y()) < DBL_EPSILON) norm << 409 if (std::abs(normal.z()) < DBL_EPSILON) norm << 410 normal = normal.unit(); << 411 << 412 G4ThreeVector centre = (p1 + p2 + p3 + p4)*0 << 413 plane.a = normal.x(); << 414 plane.b = normal.y(); << 415 plane.c = normal.z(); << 416 plane.d = -normal.dot(centre); << 417 << 418 // compute distances and check planarity << 419 G4double d1 = std::abs(normal.dot(p1) + plan << 420 G4double d2 = std::abs(normal.dot(p2) + plan << 421 G4double d3 = std::abs(normal.dot(p3) + plan << 422 G4double d4 = std::abs(normal.dot(p4) + plan << 423 G4double dmax = std::max(std::max(std::max(d << 424 683 425 return dmax <= 1000 * kCarTolerance; << 684 G4bool good; 426 } << 427 685 428 ////////////////////////////////////////////// << 686 v12 = p2 - p1; 429 // << 687 v13 = p3 - p1; 430 // Recompute parameters using planes << 688 v14 = p4 - p1; >> 689 Vcross = v12.cross(v13); 431 690 432 void G4Trap::SetCachedValues() << 691 if (std::fabs(Vcross.dot(v14)/(Vcross.mag()*v14.mag())) > kCoplanar_Tolerance) 433 { << 434 // Set indeces << 435 constexpr G4int iface[6][4] = << 436 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2, << 437 << 438 // Get vertices << 439 G4ThreeVector pt[8]; << 440 GetVertices(pt); << 441 << 442 // Set face areas << 443 for (G4int i=0; i<6; ++i) << 444 { << 445 fAreas[i] = G4GeomTools::QuadAreaNormal(pt << 446 pt << 447 pt << 448 pt << 449 } << 450 for (G4int i=1; i<6; ++i) { fAreas[i] += fAr << 451 << 452 // Define type of trapezoid << 453 fTrapType = 0; << 454 if (fPlanes[0].b == -1 && fPlanes[1].b == 1 << 455 std::abs(fPlanes[0].a) < DBL_EPSILON && << 456 std::abs(fPlanes[0].c) < DBL_EPSILON && << 457 std::abs(fPlanes[1].a) < DBL_EPSILON && << 458 std::abs(fPlanes[1].c) < DBL_EPSILON) << 459 { << 460 fTrapType = 1; // YZ section is a rectangl << 461 if (std::abs(fPlanes[2].a + fPlanes[3].a) << 462 std::abs(fPlanes[2].c - fPlanes[3].c) << 463 fPlanes[2].b == 0 && << 464 fPlanes[3].b == 0) << 465 { << 466 fTrapType = 2; // ... and XZ section is << 467 fPlanes[2].a = -fPlanes[3].a; << 468 fPlanes[2].c = fPlanes[3].c; << 469 } << 470 if (std::abs(fPlanes[2].a + fPlanes[3].a) << 471 std::abs(fPlanes[2].b - fPlanes[3].b) << 472 fPlanes[2].c == 0 && << 473 fPlanes[3].c == 0) << 474 { << 475 fTrapType = 3; // ... and XY section is << 476 fPlanes[2].a = -fPlanes[3].a; << 477 fPlanes[2].b = fPlanes[3].b; << 478 } << 479 } << 480 } << 481 << 482 ////////////////////////////////////////////// << 483 // << 484 // Get volume << 485 << 486 G4double G4Trap::GetCubicVolume() << 487 { << 488 if (fCubicVolume == 0) << 489 { 692 { 490 G4ThreeVector pt[8]; << 693 good = false; 491 GetVertices(pt); << 492 << 493 G4double dz = pt[4].z() - pt[0].z(); << 494 G4double dy1 = pt[2].y() - pt[0].y(); << 495 G4double dx1 = pt[1].x() - pt[0].x(); << 496 G4double dx2 = pt[3].x() - pt[2].x(); << 497 G4double dy2 = pt[6].y() - pt[4].y(); << 498 G4double dx3 = pt[5].x() - pt[4].x(); << 499 G4double dx4 = pt[7].x() - pt[6].x(); << 500 << 501 fCubicVolume = ((dx1 + dx2 + dx3 + dx4)*(d << 502 (dx4 + dx3 - dx2 - dx1)*(d << 503 } 694 } 504 return fCubicVolume; << 695 else 505 } << 506 << 507 ////////////////////////////////////////////// << 508 // << 509 // Get surface area << 510 << 511 G4double G4Trap::GetSurfaceArea() << 512 { << 513 if (fSurfaceArea == 0) << 514 { 696 { 515 G4ThreeVector pt[8]; << 697 // a,b,c correspond to the x/y/z components of the 516 G4int iface [6][4] = << 698 // normal vector to the plane 517 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2, << 699 518 << 700 // a = (p2.y()-p1.y())*(p1.z()+p2.z())+(p3.y()-p2.y())*(p2.z()+p3.z()); 519 GetVertices(pt); << 701 // a += (p4.y()-p3.y())*(p3.z()+p4.z())+(p1.y()-p4.y())*(p4.z()+p1.z()); // ? 520 for (const auto & i : iface) << 702 // b = (p2.z()-p1.z())*(p1.x()+p2.x())+(p3.z()-p2.z())*(p2.x()+p3.x()); >> 703 // b += (p4.z()-p3.z())*(p3.x()+p4.x())+(p1.z()-p4.z())*(p4.x()+p1.x()); // ? >> 704 // c = (p2.x()-p1.x())*(p1.y()+p2.y())+(p3.x()-p2.x())*(p2.y()+p3.y()); >> 705 // c += (p4.x()-p3.x())*(p3.y()+p4.y())+(p1.x()-p4.x())*(p4.y()+p1.y()); // ? >> 706 >> 707 // Let create diagonals 4-2 and 3-1 than (4-2)x(3-1) provides >> 708 // vector perpendicular to the plane directed to outside !!! >> 709 // and a,b,c, = f(1,2,3,4) external relative to trap normal >> 710 >> 711 a = +(p4.y() - p2.y())*(p3.z() - p1.z()) >> 712 - (p3.y() - p1.y())*(p4.z() - p2.z()); >> 713 >> 714 b = -(p4.x() - p2.x())*(p3.z() - p1.z()) >> 715 + (p3.x() - p1.x())*(p4.z() - p2.z()); >> 716 >> 717 c = +(p4.x() - p2.x())*(p3.y() - p1.y()) >> 718 - (p3.x() - p1.x())*(p4.y() - p2.y()); >> 719 >> 720 s = std::sqrt( a*a + b*b + c*c ); // so now vector plane.(a,b,c) is unit >> 721 >> 722 if( s > 0 ) >> 723 { >> 724 plane.a = a/s; >> 725 plane.b = b/s; >> 726 plane.c = c/s; >> 727 } >> 728 else 521 { 729 { 522 fSurfaceArea += G4GeomTools::QuadAreaNor << 730 G4cerr << "ERROR - G4Trap()::MakePlane(): " << GetName() << G4endl; 523 << 731 G4Exception("G4Trap::MakePlanes()", "InvalidSetup", FatalException, 524 << 732 "Invalid parameters: norm.mod() <= 0") ; 525 << 526 } 733 } >> 734 // Calculate D: p1 in in plane so D=-n.p1.Vect() >> 735 >> 736 plane.d = -( plane.a*p1.x() + plane.b*p1.y() + plane.c*p1.z() ); >> 737 >> 738 good = true; 527 } 739 } 528 return fSurfaceArea; << 740 return good; 529 } 741 } 530 742 531 ////////////////////////////////////////////// << 743 ////////////////////////////////////////////////////////////////////////////// 532 // 744 // 533 // Dispatch to parameterisation for replicatio 745 // Dispatch to parameterisation for replication mechanism dimension 534 // computation & modification. 746 // computation & modification. 535 747 536 void G4Trap::ComputeDimensions( G4VPVPar 748 void G4Trap::ComputeDimensions( G4VPVParameterisation* p, 537 const G4int n, 749 const G4int n, 538 const G4VPhysi 750 const G4VPhysicalVolume* pRep ) 539 { 751 { 540 p->ComputeDimensions(*this,n,pRep); 752 p->ComputeDimensions(*this,n,pRep); 541 } 753 } 542 754 543 ////////////////////////////////////////////// << 544 // << 545 // Get bounding box << 546 << 547 void G4Trap::BoundingLimits(G4ThreeVector& pMi << 548 { << 549 G4ThreeVector pt[8]; << 550 GetVertices(pt); << 551 755 552 G4double xmin = kInfinity, xmax = -kInfinity << 756 //////////////////////////////////////////////////////////////////////// 553 G4double ymin = kInfinity, ymax = -kInfinity << 554 for (const auto & i : pt) << 555 { << 556 G4double x = i.x(); << 557 if (x < xmin) xmin = x; << 558 if (x > xmax) xmax = x; << 559 G4double y = i.y(); << 560 if (y < ymin) ymin = y; << 561 if (y > ymax) ymax = y; << 562 } << 563 << 564 G4double dz = GetZHalfLength(); << 565 pMin.set(xmin,ymin,-dz); << 566 pMax.set(xmax,ymax, dz); << 567 << 568 // Check correctness of the bounding box << 569 // << 570 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 571 { << 572 std::ostringstream message; << 573 message << "Bad bounding box (min >= max) << 574 << GetName() << " !" << 575 << "\npMin = " << pMin << 576 << "\npMax = " << pMax; << 577 G4Exception("G4Trap::BoundingLimits()", "G << 578 JustWarning, message); << 579 DumpInfo(); << 580 } << 581 } << 582 << 583 ////////////////////////////////////////////// << 584 // 757 // 585 // Calculate extent under transform and specif 758 // Calculate extent under transform and specified limit 586 759 587 G4bool G4Trap::CalculateExtent( const EAxis pA 760 G4bool G4Trap::CalculateExtent( const EAxis pAxis, 588 const G4VoxelL 761 const G4VoxelLimits& pVoxelLimit, 589 const G4Affine 762 const G4AffineTransform& pTransform, 590 G4double 763 G4double& pMin, G4double& pMax) const 591 { 764 { 592 G4ThreeVector bmin, bmax; << 765 G4double xMin, xMax, yMin, yMax, zMin, zMax; 593 G4bool exist; << 766 G4bool flag; 594 767 595 // Check bounding box (bbox) << 768 if (!pTransform.IsRotated()) 596 // << 769 { 597 BoundingLimits(bmin,bmax); << 770 // Special case handling for unrotated trapezoids 598 G4BoundingEnvelope bbox(bmin,bmax); << 771 // Compute z/x/y/ mins and maxs respecting limits, with early returns 599 #ifdef G4BBOX_EXTENT << 772 // if outside limits. Then switch() on pAxis 600 return bbox.CalculateExtent(pAxis,pVoxelLimi << 773 601 #endif << 774 G4int i ; 602 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 775 G4double xoffset; 603 { << 776 G4double yoffset; 604 return exist = pMin < pMax; << 777 G4double zoffset; >> 778 G4double temp[8] ; // some points for intersection with zMin/zMax >> 779 G4ThreeVector pt[8]; // vertices after translation >> 780 >> 781 xoffset=pTransform.NetTranslation().x(); >> 782 yoffset=pTransform.NetTranslation().y(); >> 783 zoffset=pTransform.NetTranslation().z(); >> 784 >> 785 pt[0]=G4ThreeVector(xoffset-fDz*fTthetaCphi-fDy1*fTalpha1-fDx1, >> 786 yoffset-fDz*fTthetaSphi-fDy1,zoffset-fDz); >> 787 pt[1]=G4ThreeVector(xoffset-fDz*fTthetaCphi-fDy1*fTalpha1+fDx1, >> 788 yoffset-fDz*fTthetaSphi-fDy1,zoffset-fDz); >> 789 pt[2]=G4ThreeVector(xoffset-fDz*fTthetaCphi+fDy1*fTalpha1-fDx2, >> 790 yoffset-fDz*fTthetaSphi+fDy1,zoffset-fDz); >> 791 pt[3]=G4ThreeVector(xoffset-fDz*fTthetaCphi+fDy1*fTalpha1+fDx2, >> 792 yoffset-fDz*fTthetaSphi+fDy1,zoffset-fDz); >> 793 pt[4]=G4ThreeVector(xoffset+fDz*fTthetaCphi-fDy2*fTalpha2-fDx3, >> 794 yoffset+fDz*fTthetaSphi-fDy2,zoffset+fDz); >> 795 pt[5]=G4ThreeVector(xoffset+fDz*fTthetaCphi-fDy2*fTalpha2+fDx3, >> 796 yoffset+fDz*fTthetaSphi-fDy2,zoffset+fDz); >> 797 pt[6]=G4ThreeVector(xoffset+fDz*fTthetaCphi+fDy2*fTalpha2-fDx4, >> 798 yoffset+fDz*fTthetaSphi+fDy2,zoffset+fDz); >> 799 pt[7]=G4ThreeVector(xoffset+fDz*fTthetaCphi+fDy2*fTalpha2+fDx4, >> 800 yoffset+fDz*fTthetaSphi+fDy2,zoffset+fDz); >> 801 zMin=zoffset-fDz; >> 802 zMax=zoffset+fDz; >> 803 >> 804 if ( pVoxelLimit.IsZLimited() ) >> 805 { >> 806 if ( (zMin > pVoxelLimit.GetMaxZExtent() + kCarTolerance) >> 807 || (zMax < pVoxelLimit.GetMinZExtent() - kCarTolerance) ) >> 808 { >> 809 return false; >> 810 } >> 811 else >> 812 { >> 813 if ( zMin < pVoxelLimit.GetMinZExtent() ) >> 814 { >> 815 zMin = pVoxelLimit.GetMinZExtent() ; >> 816 } >> 817 if ( zMax > pVoxelLimit.GetMaxZExtent() ) >> 818 { >> 819 zMax = pVoxelLimit.GetMaxZExtent() ; >> 820 } >> 821 } >> 822 } >> 823 temp[0] = pt[0].y()+(pt[4].y()-pt[0].y())*(zMin-pt[0].z()) >> 824 /(pt[4].z()-pt[0].z()) ; >> 825 temp[1] = pt[0].y()+(pt[4].y()-pt[0].y())*(zMax-pt[0].z()) >> 826 /(pt[4].z()-pt[0].z()) ; >> 827 temp[2] = pt[2].y()+(pt[6].y()-pt[2].y())*(zMin-pt[2].z()) >> 828 /(pt[6].z()-pt[2].z()) ; >> 829 temp[3] = pt[2].y()+(pt[6].y()-pt[2].y())*(zMax-pt[2].z()) >> 830 /(pt[6].z()-pt[2].z()) ; >> 831 >> 832 yMax = yoffset - std::fabs(fDz*fTthetaSphi) - fDy1 - fDy2 ; >> 833 yMin = -yMax ; >> 834 >> 835 for( i = 0 ; i < 4 ; i++ ) >> 836 { >> 837 if( temp[i] > yMax ) yMax = temp[i] ; >> 838 if( temp[i] < yMin ) yMin = temp[i] ; >> 839 } >> 840 if ( pVoxelLimit.IsYLimited() ) >> 841 { >> 842 if ( (yMin > pVoxelLimit.GetMaxYExtent() + kCarTolerance) >> 843 || (yMax < pVoxelLimit.GetMinYExtent() - kCarTolerance) ) >> 844 { >> 845 return false; >> 846 } >> 847 else >> 848 { >> 849 if ( yMin < pVoxelLimit.GetMinYExtent() ) >> 850 { >> 851 yMin = pVoxelLimit.GetMinYExtent() ; >> 852 } >> 853 if ( yMax > pVoxelLimit.GetMaxYExtent() ) >> 854 { >> 855 yMax = pVoxelLimit.GetMaxYExtent() ; >> 856 } >> 857 } >> 858 } >> 859 temp[0] = pt[0].x()+(pt[4].x()-pt[0].x()) >> 860 *(zMin-pt[0].z())/(pt[4].z()-pt[0].z()) ; >> 861 temp[1] = pt[0].x()+(pt[4].x()-pt[0].x()) >> 862 *(zMax-pt[0].z())/(pt[4].z()-pt[0].z()) ; >> 863 temp[2] = pt[2].x()+(pt[6].x()-pt[2].x()) >> 864 *(zMin-pt[2].z())/(pt[6].z()-pt[2].z()) ; >> 865 temp[3] = pt[2].x()+(pt[6].x()-pt[2].x()) >> 866 *(zMax-pt[2].z())/(pt[6].z()-pt[2].z()) ; >> 867 temp[4] = pt[3].x()+(pt[7].x()-pt[3].x()) >> 868 *(zMin-pt[3].z())/(pt[7].z()-pt[3].z()) ; >> 869 temp[5] = pt[3].x()+(pt[7].x()-pt[3].x()) >> 870 *(zMax-pt[3].z())/(pt[7].z()-pt[3].z()) ; >> 871 temp[6] = pt[1].x()+(pt[5].x()-pt[1].x()) >> 872 *(zMin-pt[1].z())/(pt[5].z()-pt[1].z()) ; >> 873 temp[7] = pt[1].x()+(pt[5].x()-pt[1].x()) >> 874 *(zMax-pt[1].z())/(pt[5].z()-pt[1].z()) ; >> 875 >> 876 xMax = xoffset - std::fabs(fDz*fTthetaCphi) - fDx1 - fDx2 -fDx3 - fDx4 ; >> 877 xMin = -xMax ; >> 878 >> 879 for( i = 0 ; i < 8 ; i++ ) >> 880 { >> 881 if( temp[i] > xMax) xMax = temp[i] ; >> 882 if( temp[i] < xMin) xMin = temp[i] ; >> 883 } >> 884 if (pVoxelLimit.IsXLimited()) // xMax/Min = f(yMax/Min) ? >> 885 { >> 886 if ( (xMin > pVoxelLimit.GetMaxXExtent() + kCarTolerance) >> 887 || (xMax < pVoxelLimit.GetMinXExtent() - kCarTolerance) ) >> 888 { >> 889 return false; >> 890 } >> 891 else >> 892 { >> 893 if ( xMin < pVoxelLimit.GetMinXExtent() ) >> 894 { >> 895 xMin = pVoxelLimit.GetMinXExtent() ; >> 896 } >> 897 if ( xMax > pVoxelLimit.GetMaxXExtent() ) >> 898 { >> 899 xMax = pVoxelLimit.GetMaxXExtent() ; >> 900 } >> 901 } >> 902 } >> 903 switch (pAxis) >> 904 { >> 905 case kXAxis: >> 906 pMin=xMin; >> 907 pMax=xMax; >> 908 break; >> 909 >> 910 case kYAxis: >> 911 pMin=yMin; >> 912 pMax=yMax; >> 913 break; >> 914 >> 915 case kZAxis: >> 916 pMin=zMin; >> 917 pMax=zMax; >> 918 break; >> 919 >> 920 default: >> 921 break; >> 922 } >> 923 pMin -= kCarTolerance; >> 924 pMax += kCarTolerance; >> 925 >> 926 flag = true; 605 } 927 } >> 928 else // General rotated case - >> 929 { >> 930 G4bool existsAfterClip = false ; >> 931 G4ThreeVectorList* vertices; >> 932 pMin = +kInfinity; >> 933 pMax = -kInfinity; >> 934 >> 935 // Calculate rotated vertex coordinates. Operator 'new' is called >> 936 >> 937 vertices = CreateRotatedVertices(pTransform); >> 938 >> 939 xMin = +kInfinity; yMin = +kInfinity; zMin = +kInfinity; >> 940 xMax = -kInfinity; yMax = -kInfinity; zMax = -kInfinity; >> 941 >> 942 for( G4int nv = 0 ; nv < 8 ; nv++ ) >> 943 { >> 944 if( (*vertices)[nv].x() > xMax ) xMax = (*vertices)[nv].x(); >> 945 if( (*vertices)[nv].y() > yMax ) yMax = (*vertices)[nv].y(); >> 946 if( (*vertices)[nv].z() > zMax ) zMax = (*vertices)[nv].z(); >> 947 >> 948 if( (*vertices)[nv].x() < xMin ) xMin = (*vertices)[nv].x(); >> 949 if( (*vertices)[nv].y() < yMin ) yMin = (*vertices)[nv].y(); >> 950 if( (*vertices)[nv].z() < zMin ) zMin = (*vertices)[nv].z(); >> 951 } >> 952 if ( pVoxelLimit.IsZLimited() ) >> 953 { >> 954 if ( (zMin > pVoxelLimit.GetMaxZExtent() + kCarTolerance) >> 955 || (zMax < pVoxelLimit.GetMinZExtent() - kCarTolerance) ) >> 956 { >> 957 delete vertices ; // 'new' in the function called >> 958 return false; >> 959 } >> 960 else >> 961 { >> 962 if ( zMin < pVoxelLimit.GetMinZExtent() ) >> 963 { >> 964 zMin = pVoxelLimit.GetMinZExtent() ; >> 965 } >> 966 if ( zMax > pVoxelLimit.GetMaxZExtent() ) >> 967 { >> 968 zMax = pVoxelLimit.GetMaxZExtent() ; >> 969 } >> 970 } >> 971 } >> 972 if ( pVoxelLimit.IsYLimited() ) >> 973 { >> 974 if ( (yMin > pVoxelLimit.GetMaxYExtent() + kCarTolerance) >> 975 || (yMax < pVoxelLimit.GetMinYExtent() - kCarTolerance) ) >> 976 { >> 977 delete vertices ; // 'new' in the function called >> 978 return false; >> 979 } >> 980 else >> 981 { >> 982 if ( yMin < pVoxelLimit.GetMinYExtent() ) >> 983 { >> 984 yMin = pVoxelLimit.GetMinYExtent() ; >> 985 } >> 986 if ( yMax > pVoxelLimit.GetMaxYExtent() ) >> 987 { >> 988 yMax = pVoxelLimit.GetMaxYExtent() ; >> 989 } >> 990 } >> 991 } >> 992 if ( pVoxelLimit.IsXLimited() ) >> 993 { >> 994 if ( (xMin > pVoxelLimit.GetMaxXExtent() + kCarTolerance) >> 995 || (xMax < pVoxelLimit.GetMinXExtent() - kCarTolerance) ) >> 996 { >> 997 delete vertices ; // 'new' in the function called >> 998 return false ; >> 999 } >> 1000 else >> 1001 { >> 1002 if ( xMin < pVoxelLimit.GetMinXExtent() ) >> 1003 { >> 1004 xMin = pVoxelLimit.GetMinXExtent() ; >> 1005 } >> 1006 if ( xMax > pVoxelLimit.GetMaxXExtent() ) >> 1007 { >> 1008 xMax = pVoxelLimit.GetMaxXExtent() ; >> 1009 } >> 1010 } >> 1011 } >> 1012 switch (pAxis) >> 1013 { >> 1014 case kXAxis: >> 1015 pMin=xMin; >> 1016 pMax=xMax; >> 1017 break; 606 1018 607 // Set bounding envelope (benv) and calculat << 1019 case kYAxis: 608 // << 1020 pMin=yMin; 609 G4ThreeVector pt[8]; << 1021 pMax=yMax; 610 GetVertices(pt); << 1022 break; 611 1023 612 G4ThreeVectorList baseA(4), baseB(4); << 1024 case kZAxis: 613 baseA[0] = pt[0]; << 1025 pMin=zMin; 614 baseA[1] = pt[1]; << 1026 pMax=zMax; 615 baseA[2] = pt[3]; << 1027 break; 616 baseA[3] = pt[2]; << 1028 617 << 1029 default: 618 baseB[0] = pt[4]; << 1030 break; 619 baseB[1] = pt[5]; << 1031 } 620 baseB[2] = pt[7]; << 1032 if ( (pMin != kInfinity) || (pMax != -kInfinity) ) 621 baseB[3] = pt[6]; << 1033 { 622 << 1034 existsAfterClip=true; 623 std::vector<const G4ThreeVectorList *> polyg << 1035 624 polygons[0] = &baseA; << 1036 // Add tolerance to avoid precision troubles 625 polygons[1] = &baseB; << 1037 // 626 << 1038 pMin -= kCarTolerance ; 627 G4BoundingEnvelope benv(bmin,bmax,polygons); << 1039 pMax += kCarTolerance ; 628 exist = benv.CalculateExtent(pAxis,pVoxelLim << 1040 } 629 return exist; << 1041 delete vertices ; // 'new' in the function called >> 1042 flag = existsAfterClip ; >> 1043 } >> 1044 return flag; 630 } 1045 } 631 1046 632 ////////////////////////////////////////////// << 1047 >> 1048 //////////////////////////////////////////////////////////////////////// 633 // 1049 // 634 // Return whether point is inside/outside/on_s << 1050 // Return whether point inside/outside/on surface, using tolerance 635 1051 636 EInside G4Trap::Inside( const G4ThreeVector& p 1052 EInside G4Trap::Inside( const G4ThreeVector& p ) const 637 { 1053 { 638 switch (fTrapType) << 1054 EInside in; >> 1055 G4double Dist; >> 1056 G4int i; >> 1057 if ( std::fabs(p.z()) <= fDz-kCarTolerance*0.5) 639 { 1058 { 640 case 0: // General case << 1059 in = kInside; >> 1060 >> 1061 for ( i = 0;i < 4;i++ ) >> 1062 { >> 1063 Dist = fPlanes[i].a*p.x() + fPlanes[i].b*p.y() >> 1064 +fPlanes[i].c*p.z() + fPlanes[i].d; >> 1065 >> 1066 if (Dist > kCarTolerance*0.5) return in = kOutside; >> 1067 else if (Dist > -kCarTolerance*0.5) in = kSurface; >> 1068 >> 1069 } >> 1070 } >> 1071 else if (std::fabs(p.z()) <= fDz+kCarTolerance*0.5) >> 1072 { >> 1073 in = kSurface; >> 1074 >> 1075 for ( i = 0; i < 4; i++ ) 641 { 1076 { 642 G4double dz = std::abs(p.z())-fDz; << 1077 Dist = fPlanes[i].a*p.x() + fPlanes[i].b*p.y() 643 G4double dy1 = fPlanes[0].b*p.y()+fPlane << 1078 +fPlanes[i].c*p.z() + fPlanes[i].d; 644 G4double dy2 = fPlanes[1].b*p.y()+fPlane << 645 G4double dy = std::max(dz,std::max(dy1,d << 646 << 647 G4double dx1 = fPlanes[2].a*p.x()+fPlane << 648 + fPlanes[2].c*p.z()+fPlane << 649 G4double dx2 = fPlanes[3].a*p.x()+fPlane << 650 + fPlanes[3].c*p.z()+fPlane << 651 G4double dist = std::max(dy,std::max(dx1 << 652 << 653 return (dist > halfCarTolerance) ? kOuts << 654 ((dist > -halfCarTolerance) ? kSurface << 655 } << 656 case 1: // YZ section is a rectangle << 657 { << 658 G4double dz = std::abs(p.z())-fDz; << 659 G4double dy = std::max(dz,std::abs(p.y() << 660 G4double dx1 = fPlanes[2].a*p.x()+fPlane << 661 + fPlanes[2].c*p.z()+fPlane << 662 G4double dx2 = fPlanes[3].a*p.x()+fPlane << 663 + fPlanes[3].c*p.z()+fPlane << 664 G4double dist = std::max(dy,std::max(dx1 << 665 << 666 return (dist > halfCarTolerance) ? kOuts << 667 ((dist > -halfCarTolerance) ? kSurface << 668 } << 669 case 2: // YZ section is a rectangle and << 670 { // XZ section is an isosceles trap << 671 G4double dz = std::abs(p.z())-fDz; << 672 G4double dy = std::max(dz,std::abs(p.y() << 673 G4double dx = fPlanes[3].a*std::abs(p.x( << 674 + fPlanes[3].c*p.z()+fPlanes << 675 G4double dist = std::max(dy,dx); << 676 << 677 return (dist > halfCarTolerance) ? kOuts << 678 ((dist > -halfCarTolerance) ? kSurface << 679 } << 680 case 3: // YZ section is a rectangle and << 681 { // XY section is an isosceles trap << 682 G4double dz = std::abs(p.z())-fDz; << 683 G4double dy = std::max(dz,std::abs(p.y() << 684 G4double dx = fPlanes[3].a*std::abs(p.x( << 685 + fPlanes[3].b*p.y()+fPlanes << 686 G4double dist = std::max(dy,dx); << 687 1079 688 return (dist > halfCarTolerance) ? kOuts << 1080 if (Dist > kCarTolerance*0.5) return in = kOutside; 689 ((dist > -halfCarTolerance) ? kSurface << 690 } 1081 } 691 } 1082 } 692 return kOutside; << 1083 else in = kOutside; >> 1084 >> 1085 return in; 693 } 1086 } 694 1087 695 ////////////////////////////////////////////// << 1088 ///////////////////////////////////////////////////////////////////////////// 696 // 1089 // 697 // Determine side, and return corresponding no << 1090 // Calculate side nearest to p, and return normal >> 1091 // If 2+ sides equidistant, first side's normal returned (arbitrarily) 698 1092 699 G4ThreeVector G4Trap::SurfaceNormal( const G4T 1093 G4ThreeVector G4Trap::SurfaceNormal( const G4ThreeVector& p ) const 700 { 1094 { 701 G4double nx = 0, ny = 0, nz = 0; << 1095 G4int i, imin = 0, noSurfaces = 0; 702 G4double dz = std::abs(p.z()) - fDz; << 1096 G4double dist, distz, distx, disty, distmx, distmy, safe = kInfinity; 703 nz = std::copysign(G4double(std::abs(dz) <= << 1097 G4double delta = 0.5*kCarTolerance; >> 1098 G4ThreeVector norm, sumnorm(0.,0.,0.); 704 1099 705 switch (fTrapType) << 1100 for (i = 0; i < 4; i++) 706 { 1101 { 707 case 0: // General case << 1102 dist = std::fabs(fPlanes[i].a*p.x() + fPlanes[i].b*p.y() 708 { << 1103 + fPlanes[i].c*p.z() + fPlanes[i].d); 709 for (G4int i=0; i<2; ++i) << 1104 if ( dist < safe ) 710 { << 711 G4double dy = fPlanes[i].b*p.y() + fPl << 712 if (std::abs(dy) > halfCarTolerance) c << 713 ny = fPlanes[i].b; << 714 nz += fPlanes[i].c; << 715 break; << 716 } << 717 for (G4int i=2; i<4; ++i) << 718 { << 719 G4double dx = fPlanes[i].a*p.x() + << 720 fPlanes[i].b*p.y() + fPl << 721 if (std::abs(dx) > halfCarTolerance) c << 722 nx = fPlanes[i].a; << 723 ny += fPlanes[i].b; << 724 nz += fPlanes[i].c; << 725 break; << 726 } << 727 break; << 728 } << 729 case 1: // YZ section - rectangle << 730 { 1105 { 731 G4double dy = std::abs(p.y()) + fPlanes[ << 1106 safe = dist; 732 ny = std::copysign(G4double(std::abs(dy) << 1107 imin = i; 733 for (G4int i=2; i<4; ++i) << 734 { << 735 G4double dx = fPlanes[i].a*p.x() + << 736 fPlanes[i].b*p.y() + fPl << 737 if (std::abs(dx) > halfCarTolerance) c << 738 nx = fPlanes[i].a; << 739 ny += fPlanes[i].b; << 740 nz += fPlanes[i].c; << 741 break; << 742 } << 743 break; << 744 } << 745 case 2: // YZ section - rectangle, XZ sect << 746 { << 747 G4double dy = std::abs(p.y()) + fPlanes[ << 748 ny = std::copysign(G4double(std::abs(dy) << 749 G4double dx = fPlanes[3].a*std::abs(p.x( << 750 fPlanes[3].c*p.z() + fPlan << 751 G4double k = std::abs(dx) <= halfCarTole << 752 nx = std::copysign(k, p.x())*fPlanes[3] << 753 nz += k*fPlanes[3].c; << 754 break; << 755 } << 756 case 3: // YZ section - rectangle, XY sect << 757 { << 758 G4double dy = std::abs(p.y()) + fPlanes[ << 759 ny = std::copysign(G4double(std::abs(dy) << 760 G4double dx = fPlanes[3].a*std::abs(p.x( << 761 fPlanes[3].b*p.y() + fPlan << 762 G4double k = std::abs(dx) <= halfCarTole << 763 nx = std::copysign(k, p.x())*fPlanes[3] << 764 ny += k*fPlanes[3].b; << 765 break; << 766 } 1108 } 767 } 1109 } >> 1110 distz = std::fabs( std::fabs( p.z() ) - fDz ); 768 1111 769 // Return normal << 1112 distmy = std::fabs( fPlanes[0].a*p.x() + fPlanes[0].b*p.y() 770 // << 1113 + fPlanes[0].c*p.z() + fPlanes[0].d ); 771 G4double mag2 = nx*nx + ny*ny + nz*nz; << 1114 772 if (mag2 == 1) return { nx,ny,nz }; << 1115 disty = std::fabs( fPlanes[1].a*p.x() + fPlanes[1].b*p.y() 773 else if (mag2 != 0) return G4ThreeVector(nx, << 1116 + fPlanes[1].c*p.z() + fPlanes[1].d ); 774 else << 1117 >> 1118 distmx = std::fabs( fPlanes[2].a*p.x() + fPlanes[2].b*p.y() >> 1119 + fPlanes[2].c*p.z() + fPlanes[2].d ); >> 1120 >> 1121 distx = std::fabs( fPlanes[3].a*p.x() + fPlanes[3].b*p.y() >> 1122 + fPlanes[3].c*p.z() + fPlanes[3].d ); >> 1123 >> 1124 G4ThreeVector nX = G4ThreeVector(fPlanes[3].a,fPlanes[3].b,fPlanes[3].c); >> 1125 G4ThreeVector nmX = G4ThreeVector(fPlanes[2].a,fPlanes[2].b,fPlanes[2].c); >> 1126 G4ThreeVector nY = G4ThreeVector(fPlanes[1].a,fPlanes[1].b,fPlanes[1].c); >> 1127 G4ThreeVector nmY = G4ThreeVector(fPlanes[0].a,fPlanes[0].b,fPlanes[0].c); >> 1128 G4ThreeVector nZ = G4ThreeVector(0.,0.,1.0); >> 1129 >> 1130 if (distx <= delta) >> 1131 { >> 1132 noSurfaces ++; >> 1133 sumnorm += nX; >> 1134 } >> 1135 if (distmx <= delta) >> 1136 { >> 1137 noSurfaces ++; >> 1138 sumnorm += nmX; >> 1139 } >> 1140 if (disty <= delta) >> 1141 { >> 1142 noSurfaces ++; >> 1143 sumnorm += nY; >> 1144 } >> 1145 if (distmy <= delta) >> 1146 { >> 1147 noSurfaces ++; >> 1148 sumnorm += nmY; >> 1149 } >> 1150 if (distz <= delta) >> 1151 { >> 1152 noSurfaces ++; >> 1153 if ( p.z() >= 0.) sumnorm += nZ; >> 1154 else sumnorm -= nZ; >> 1155 } >> 1156 if ( noSurfaces == 0 ) 775 { 1157 { 776 // Point is not on the surface << 777 // << 778 #ifdef G4CSGDEBUG 1158 #ifdef G4CSGDEBUG 779 std::ostringstream message; << 1159 G4Exception("G4Trap::SurfaceNormal(p)", "Notification", JustWarning, 780 G4long oldprc = message.precision(16); << 1160 "Point p is not on surface !?" ); 781 message << "Point p is not on surface (!?) << 1161 #endif 782 << GetName() << G4endl; << 1162 norm = ApproxSurfaceNormal(p); 783 message << "Position:\n"; << 784 message << " p.x() = " << p.x()/mm << " << 785 message << " p.y() = " << p.y()/mm << " << 786 message << " p.z() = " << p.z()/mm << " << 787 G4cout.precision(oldprc) ; << 788 G4Exception("G4Trap::SurfaceNormal(p)", "G << 789 JustWarning, message ); << 790 DumpInfo(); << 791 #endif << 792 return ApproxSurfaceNormal(p); << 793 } 1163 } >> 1164 else if ( noSurfaces == 1 ) norm = sumnorm; >> 1165 else norm = sumnorm.unit(); >> 1166 return norm; 794 } 1167 } 795 1168 796 ////////////////////////////////////////////// << 1169 //////////////////////////////////////////////////////////////////////////////////// 797 // 1170 // 798 // Algorithm for SurfaceNormal() following the 1171 // Algorithm for SurfaceNormal() following the original specification 799 // for points not on the surface 1172 // for points not on the surface 800 1173 801 G4ThreeVector G4Trap::ApproxSurfaceNormal( con 1174 G4ThreeVector G4Trap::ApproxSurfaceNormal( const G4ThreeVector& p ) const 802 { 1175 { 803 G4double dist = -DBL_MAX; << 1176 G4double safe=kInfinity,Dist,safez; 804 G4int iside = 0; << 1177 G4int i,imin=0; 805 for (G4int i=0; i<4; ++i) << 1178 for (i=0;i<4;i++) 806 { << 1179 { 807 G4double d = fPlanes[i].a*p.x() + << 1180 Dist=std::fabs(fPlanes[i].a*p.x()+fPlanes[i].b*p.y() 808 fPlanes[i].b*p.y() + << 1181 +fPlanes[i].c*p.z()+fPlanes[i].d); 809 fPlanes[i].c*p.z() + fPlanes[ << 1182 if (Dist<safe) 810 if (d > dist) { dist = d; iside = i; } << 1183 { >> 1184 safe=Dist; >> 1185 imin=i; >> 1186 } >> 1187 } >> 1188 safez=std::fabs(std::fabs(p.z())-fDz); >> 1189 if (safe<safez) >> 1190 { >> 1191 return G4ThreeVector(fPlanes[imin].a,fPlanes[imin].b,fPlanes[imin].c); 811 } 1192 } 812 << 813 G4double distz = std::abs(p.z()) - fDz; << 814 if (dist > distz) << 815 return { fPlanes[iside].a, fPlanes[iside]. << 816 else 1193 else 817 return { 0, 0, (G4double)((p.z() < 0) ? -1 << 1194 { >> 1195 if (p.z()>0) >> 1196 { >> 1197 return G4ThreeVector(0,0,1); >> 1198 } >> 1199 else >> 1200 { >> 1201 return G4ThreeVector(0,0,-1); >> 1202 } >> 1203 } 818 } 1204 } 819 1205 820 ////////////////////////////////////////////// << 1206 //////////////////////////////////////////////////////////////////////////// >> 1207 // >> 1208 // Calculate distance to shape from outside - return kInfinity if no intersection 821 // 1209 // 822 // Calculate distance to shape from outside << 1210 // ALGORITHM: 823 // - return kInfinity if no intersection << 1211 // For each component, calculate pair of minimum and maximum intersection >> 1212 // values for which the particle is in the extent of the shape >> 1213 // - The smallest (MAX minimum) allowed distance of the pairs is intersect 824 1214 825 G4double G4Trap::DistanceToIn(const G4ThreeVec << 1215 G4double G4Trap::DistanceToIn( const G4ThreeVector& p, 826 const G4ThreeVec << 1216 const G4ThreeVector& v ) const 827 { 1217 { 828 // Z intersections << 829 // << 830 if ((std::abs(p.z()) - fDz) >= -halfCarToler << 831 return kInfinity; << 832 G4double invz = (-v.z() == 0) ? DBL_MAX : -1 << 833 G4double dz = (invz < 0) ? fDz : -fDz; << 834 G4double tzmin = (p.z() + dz)*invz; << 835 G4double tzmax = (p.z() - dz)*invz; << 836 1218 837 // Y intersections << 1219 G4double snxt; // snxt = default return value >> 1220 G4double max,smax,smin; >> 1221 G4double pdist,Comp,vdist; >> 1222 G4int i; >> 1223 // >> 1224 // Z Intersection range 838 // 1225 // 839 G4double tymin = 0, tymax = DBL_MAX; << 1226 if ( v.z() > 0 ) 840 G4int i = 0; << 841 for ( ; i<2; ++i) << 842 { 1227 { 843 G4double cosa = fPlanes[i].b*v.y() + fPlan << 1228 max = fDz - p.z() ; 844 G4double dist = fPlanes[i].b*p.y() + fPlan << 1229 if (max > 0.5*kCarTolerance) 845 if (dist >= -halfCarTolerance) << 846 { 1230 { 847 if (cosa >= 0) return kInfinity; << 1231 smax = max/v.z(); 848 G4double tmp = -dist/cosa; << 1232 smin = (-fDz-p.z())/v.z(); 849 if (tymin < tmp) tymin = tmp; << 850 } 1233 } 851 else if (cosa > 0) << 1234 else 852 { 1235 { 853 G4double tmp = -dist/cosa; << 1236 return snxt=kInfinity; 854 if (tymax > tmp) tymax = tmp; << 855 } 1237 } 856 } 1238 } 857 << 1239 else if (v.z() < 0 ) 858 // Z intersections << 859 // << 860 G4double txmin = 0, txmax = DBL_MAX; << 861 for ( ; i<4; ++i) << 862 { 1240 { 863 G4double cosa = fPlanes[i].a*v.x()+fPlanes << 1241 max = - fDz - p.z() ; 864 G4double dist = fPlanes[i].a*p.x()+fPlanes << 1242 if (max < -0.5*kCarTolerance ) 865 fPlanes[i].d; << 866 if (dist >= -halfCarTolerance) << 867 { 1243 { 868 if (cosa >= 0) return kInfinity; << 1244 smax=max/v.z(); 869 G4double tmp = -dist/cosa; << 1245 smin=(fDz-p.z())/v.z(); 870 if (txmin < tmp) txmin = tmp; << 871 } 1246 } 872 else if (cosa > 0) << 1247 else 873 { 1248 { 874 G4double tmp = -dist/cosa; << 1249 return snxt=kInfinity; 875 if (txmax > tmp) txmax = tmp; << 1250 } >> 1251 } >> 1252 else >> 1253 { >> 1254 if (std::fabs(p.z())<fDz - 0.5*kCarTolerance) // Inside was <=fDz >> 1255 { >> 1256 smin=0; >> 1257 smax=kInfinity; >> 1258 } >> 1259 else >> 1260 { >> 1261 return snxt=kInfinity; 876 } 1262 } 877 } 1263 } 878 1264 879 // Find distance << 1265 for (i=0;i<4;i++) >> 1266 { >> 1267 pdist=fPlanes[i].a*p.x()+fPlanes[i].b*p.y() >> 1268 +fPlanes[i].c*p.z()+fPlanes[i].d; >> 1269 Comp=fPlanes[i].a*v.x()+fPlanes[i].b*v.y()+fPlanes[i].c*v.z(); >> 1270 if ( pdist >= -0.5*kCarTolerance ) // was >0 >> 1271 { >> 1272 // >> 1273 // Outside the plane -> this is an extent entry distance >> 1274 // >> 1275 if (Comp >= 0) // was >0 >> 1276 { >> 1277 return snxt=kInfinity ; >> 1278 } >> 1279 else >> 1280 { >> 1281 vdist=-pdist/Comp; >> 1282 if (vdist>smin) >> 1283 { >> 1284 if (vdist<smax) >> 1285 { >> 1286 smin = vdist; >> 1287 } >> 1288 else >> 1289 { >> 1290 return snxt=kInfinity; >> 1291 } >> 1292 } >> 1293 } >> 1294 } >> 1295 else >> 1296 { >> 1297 // >> 1298 // Inside the plane -> couble be an extent exit distance (smax) >> 1299 // >> 1300 if (Comp>0) // Will leave extent >> 1301 { >> 1302 vdist=-pdist/Comp; >> 1303 if (vdist<smax) >> 1304 { >> 1305 if (vdist>smin) >> 1306 { >> 1307 smax=vdist; >> 1308 } >> 1309 else >> 1310 { >> 1311 return snxt=kInfinity; >> 1312 } >> 1313 } >> 1314 } >> 1315 } >> 1316 } 880 // 1317 // 881 G4double tmin = std::max(std::max(txmin,tymi << 1318 // Checks in non z plane intersections ensure smin<smax 882 G4double tmax = std::min(std::min(txmax,tyma << 1319 // 883 << 1320 if (smin >=0 ) 884 if (tmax <= tmin + halfCarTolerance) return << 1321 { 885 return (tmin < halfCarTolerance ) ? 0. : tmi << 1322 snxt = smin ; >> 1323 } >> 1324 else >> 1325 { >> 1326 snxt = 0 ; >> 1327 } >> 1328 return snxt; 886 } 1329 } 887 1330 888 ////////////////////////////////////////////// << 1331 /////////////////////////////////////////////////////////////////////////// 889 // 1332 // 890 // Calculate exact shortest distance to any bo 1333 // Calculate exact shortest distance to any boundary from outside 891 // This is the best fast estimation of the sho 1334 // This is the best fast estimation of the shortest distance to trap 892 // - return 0 if point is inside << 1335 // - Returns 0 is ThreeVector inside 893 1336 894 G4double G4Trap::DistanceToIn( const G4ThreeVe 1337 G4double G4Trap::DistanceToIn( const G4ThreeVector& p ) const 895 { 1338 { 896 switch (fTrapType) << 1339 G4double safe=0.0,Dist; >> 1340 G4int i; >> 1341 safe=std::fabs(p.z())-fDz; >> 1342 for (i=0;i<4;i++) 897 { 1343 { 898 case 0: // General case << 1344 Dist=fPlanes[i].a*p.x()+fPlanes[i].b*p.y() 899 { << 1345 +fPlanes[i].c*p.z()+fPlanes[i].d; 900 G4double dz = std::abs(p.z())-fDz; << 1346 if (Dist > safe) safe=Dist; 901 G4double dy1 = fPlanes[0].b*p.y()+fPlane << 902 G4double dy2 = fPlanes[1].b*p.y()+fPlane << 903 G4double dy = std::max(dz,std::max(dy1,d << 904 << 905 G4double dx1 = fPlanes[2].a*p.x()+fPlane << 906 + fPlanes[2].c*p.z()+fPlane << 907 G4double dx2 = fPlanes[3].a*p.x()+fPlane << 908 + fPlanes[3].c*p.z()+fPlane << 909 G4double dist = std::max(dy,std::max(dx1 << 910 return (dist > 0) ? dist : 0.; << 911 } << 912 case 1: // YZ section is a rectangle << 913 { << 914 G4double dz = std::abs(p.z())-fDz; << 915 G4double dy = std::max(dz,std::abs(p.y() << 916 G4double dx1 = fPlanes[2].a*p.x()+fPlane << 917 + fPlanes[2].c*p.z()+fPlane << 918 G4double dx2 = fPlanes[3].a*p.x()+fPlane << 919 + fPlanes[3].c*p.z()+fPlane << 920 G4double dist = std::max(dy,std::max(dx1 << 921 return (dist > 0) ? dist : 0.; << 922 } << 923 case 2: // YZ section is a rectangle and << 924 { // XZ section is an isosceles trap << 925 G4double dz = std::abs(p.z())-fDz; << 926 G4double dy = std::max(dz,std::abs(p.y() << 927 G4double dx = fPlanes[3].a*std::abs(p.x( << 928 + fPlanes[3].c*p.z()+fPlanes << 929 G4double dist = std::max(dy,dx); << 930 return (dist > 0) ? dist : 0.; << 931 } << 932 case 3: // YZ section is a rectangle and << 933 { // XY section is an isosceles trap << 934 G4double dz = std::abs(p.z())-fDz; << 935 G4double dy = std::max(dz,std::abs(p.y() << 936 G4double dx = fPlanes[3].a*std::abs(p.x( << 937 + fPlanes[3].b*p.y()+fPlanes << 938 G4double dist = std::max(dy,dx); << 939 return (dist > 0) ? dist : 0.; << 940 } << 941 } 1347 } 942 return 0.; << 1348 if (safe<0) safe=0; >> 1349 return safe; 943 } 1350 } 944 1351 945 ////////////////////////////////////////////// << 1352 ///////////////////////////////////////////////////////////////////////////////// 946 // 1353 // 947 // Calculate distance to surface of shape from << 1354 // Calculate distance to surface of shape from inside 948 // find normal at exit point, if required << 1355 // Calculate distance to x/y/z planes - smallest is exiting distance 949 // - when leaving the surface, return 0 << 950 1356 951 G4double G4Trap::DistanceToOut(const G4ThreeVe 1357 G4double G4Trap::DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v, 952 const G4bool ca 1358 const G4bool calcNorm, 953 G4bool* v << 1359 G4bool *validNorm, G4ThreeVector *n) const 954 { 1360 { 955 // Z intersections << 1361 Eside side = kUndef; >> 1362 G4double snxt; // snxt = return value >> 1363 G4double pdist,Comp,vdist,max; >> 1364 // >> 1365 // Z Intersections 956 // 1366 // 957 if ((std::abs(p.z()) - fDz) >= -halfCarToler << 1367 if (v.z()>0) >> 1368 { >> 1369 max=fDz-p.z(); >> 1370 if (max>kCarTolerance/2) >> 1371 { >> 1372 snxt=max/v.z(); >> 1373 side=kPZ; >> 1374 } >> 1375 else >> 1376 { >> 1377 if (calcNorm) >> 1378 { >> 1379 *validNorm=true; >> 1380 *n=G4ThreeVector(0,0,1); >> 1381 } >> 1382 return snxt=0; >> 1383 } >> 1384 } >> 1385 else if (v.z()<0) 958 { 1386 { 959 if (calcNorm) << 1387 max=-fDz-p.z(); >> 1388 if (max<-kCarTolerance/2) >> 1389 { >> 1390 snxt=max/v.z(); >> 1391 side=kMZ; >> 1392 } >> 1393 else 960 { 1394 { 961 *validNorm = true; << 1395 if (calcNorm) 962 n->set(0, 0, (p.z() < 0) ? -1 : 1); << 1396 { >> 1397 *validNorm=true; >> 1398 *n=G4ThreeVector(0,0,-1); >> 1399 } >> 1400 return snxt=0; 963 } 1401 } 964 return 0; << 965 } 1402 } 966 G4double vz = v.z(); << 1403 else 967 G4double tmax = (vz == 0) ? DBL_MAX : (std:: << 1404 { 968 G4int iside = (vz < 0) ? -4 : -2; // little << 1405 snxt=kInfinity; >> 1406 } 969 1407 970 // Y intersections << 971 // 1408 // 972 G4int i = 0; << 1409 // Intersections with planes[0] (expanded because of setting enum) 973 for ( ; i<2; ++i) << 1410 // >> 1411 pdist=fPlanes[0].a*p.x()+fPlanes[0].b*p.y()+fPlanes[0].c*p.z()+fPlanes[0].d; >> 1412 Comp=fPlanes[0].a*v.x()+fPlanes[0].b*v.y()+fPlanes[0].c*v.z(); >> 1413 if (pdist>0) 974 { 1414 { 975 G4double cosa = fPlanes[i].b*v.y() + fPlan << 1415 // Outside the plane 976 if (cosa > 0) << 1416 if (Comp>0) 977 { 1417 { 978 G4double dist = fPlanes[i].b*p.y() + fPl << 1418 // Leaving immediately 979 if (dist >= -halfCarTolerance) << 1419 if (calcNorm) 980 { 1420 { 981 if (calcNorm) << 1421 *validNorm=true; 982 { << 1422 *n=G4ThreeVector(fPlanes[0].a,fPlanes[0].b,fPlanes[0].c); 983 *validNorm = true; << 984 n->set(0, fPlanes[i].b, fPlanes[i].c << 985 } << 986 return 0; << 987 } 1423 } 988 G4double tmp = -dist/cosa; << 1424 return snxt=0; 989 if (tmax > tmp) { tmax = tmp; iside = i; << 1425 } >> 1426 } >> 1427 else if (pdist<-kCarTolerance/2) >> 1428 { >> 1429 // Inside the plane >> 1430 if (Comp>0) >> 1431 { >> 1432 // Will leave extent >> 1433 vdist=-pdist/Comp; >> 1434 if (vdist<snxt) >> 1435 { >> 1436 snxt=vdist; >> 1437 side=ks0; >> 1438 } >> 1439 } >> 1440 } >> 1441 else >> 1442 { >> 1443 // On surface >> 1444 if (Comp>0) >> 1445 { >> 1446 if (calcNorm) >> 1447 { >> 1448 *validNorm=true; >> 1449 *n=G4ThreeVector(fPlanes[0].a,fPlanes[0].b,fPlanes[0].c); >> 1450 } >> 1451 return snxt=0; 990 } 1452 } 991 } 1453 } 992 1454 993 // X intersections << 994 // 1455 // 995 for ( ; i<4; ++i) << 1456 // Intersections with planes[1] (expanded because of setting enum) >> 1457 // >> 1458 pdist=fPlanes[1].a*p.x()+fPlanes[1].b*p.y()+fPlanes[1].c*p.z()+fPlanes[1].d; >> 1459 Comp=fPlanes[1].a*v.x()+fPlanes[1].b*v.y()+fPlanes[1].c*v.z(); >> 1460 if (pdist>0) 996 { 1461 { 997 G4double cosa = fPlanes[i].a*v.x()+fPlanes << 1462 // Outside the plane 998 if (cosa > 0) << 1463 if (Comp>0) 999 { 1464 { 1000 G4double dist = fPlanes[i].a*p.x() + << 1465 // Leaving immediately 1001 fPlanes[i].b*p.y() + fP << 1466 if (calcNorm) 1002 if (dist >= -halfCarTolerance) << 1003 { 1467 { 1004 if (calcNorm) << 1468 *validNorm=true; 1005 { << 1469 *n=G4ThreeVector(fPlanes[1].a,fPlanes[1].b,fPlanes[1].c); 1006 *validNorm = true; << 1470 } 1007 n->set(fPlanes[i].a, fPlanes[i].b, << 1471 return snxt=0; 1008 } << 1472 } 1009 return 0; << 1473 } >> 1474 else if (pdist<-kCarTolerance/2) >> 1475 { >> 1476 // Inside the plane >> 1477 if (Comp>0) >> 1478 { >> 1479 // Will leave extent >> 1480 vdist=-pdist/Comp; >> 1481 if (vdist<snxt) >> 1482 { >> 1483 snxt=vdist; >> 1484 side=ks1; 1010 } 1485 } 1011 G4double tmp = -dist/cosa; << 1486 } 1012 if (tmax > tmp) { tmax = tmp; iside = i << 1487 } >> 1488 else >> 1489 { >> 1490 // On surface >> 1491 if (Comp>0) >> 1492 { >> 1493 if (calcNorm) >> 1494 { >> 1495 *validNorm=true; >> 1496 *n=G4ThreeVector(fPlanes[1].a,fPlanes[1].b,fPlanes[1].c); >> 1497 } >> 1498 return snxt=0; >> 1499 } >> 1500 } >> 1501 >> 1502 // >> 1503 // Intersections with planes[2] (expanded because of setting enum) >> 1504 // >> 1505 pdist=fPlanes[2].a*p.x()+fPlanes[2].b*p.y()+fPlanes[2].c*p.z()+fPlanes[2].d; >> 1506 Comp=fPlanes[2].a*v.x()+fPlanes[2].b*v.y()+fPlanes[2].c*v.z(); >> 1507 if (pdist>0) >> 1508 { >> 1509 // Outside the plane >> 1510 if (Comp>0) >> 1511 { >> 1512 // Leaving immediately >> 1513 if (calcNorm) >> 1514 { >> 1515 *validNorm=true; >> 1516 *n=G4ThreeVector(fPlanes[2].a,fPlanes[2].b,fPlanes[2].c); >> 1517 } >> 1518 return snxt=0; >> 1519 } >> 1520 } >> 1521 else if (pdist<-kCarTolerance/2) >> 1522 { >> 1523 // Inside the plane >> 1524 if (Comp>0) >> 1525 { >> 1526 // Will leave extent >> 1527 vdist=-pdist/Comp; >> 1528 if (vdist<snxt) >> 1529 { >> 1530 snxt=vdist; >> 1531 side=ks2; >> 1532 } >> 1533 } >> 1534 } >> 1535 else >> 1536 { >> 1537 // On surface >> 1538 if (Comp>0) >> 1539 { >> 1540 if (calcNorm) >> 1541 { >> 1542 *validNorm=true; >> 1543 *n=G4ThreeVector(fPlanes[2].a,fPlanes[2].b,fPlanes[2].c); >> 1544 } >> 1545 return snxt=0; 1013 } 1546 } 1014 } 1547 } 1015 1548 1016 // Set normal, if required, and return dist << 1017 // 1549 // >> 1550 // Intersections with planes[3] (expanded because of setting enum) >> 1551 // >> 1552 pdist=fPlanes[3].a*p.x()+fPlanes[3].b*p.y()+fPlanes[3].c*p.z()+fPlanes[3].d; >> 1553 Comp=fPlanes[3].a*v.x()+fPlanes[3].b*v.y()+fPlanes[3].c*v.z(); >> 1554 if (pdist>0) >> 1555 { >> 1556 // Outside the plane >> 1557 if (Comp>0) >> 1558 { >> 1559 // Leaving immediately >> 1560 if (calcNorm) >> 1561 { >> 1562 *validNorm=true; >> 1563 *n=G4ThreeVector(fPlanes[3].a,fPlanes[3].b,fPlanes[3].c); >> 1564 } >> 1565 return snxt=0; >> 1566 } >> 1567 } >> 1568 else if (pdist<-kCarTolerance/2) >> 1569 { >> 1570 // Inside the plane >> 1571 if (Comp>0) >> 1572 { >> 1573 // Will leave extent >> 1574 vdist=-pdist/Comp; >> 1575 if (vdist<snxt) >> 1576 { >> 1577 snxt=vdist; >> 1578 side=ks3; >> 1579 } >> 1580 } >> 1581 } >> 1582 else >> 1583 { >> 1584 // On surface >> 1585 if (Comp>0) >> 1586 { >> 1587 if (calcNorm) >> 1588 { >> 1589 *validNorm=true; >> 1590 *n=G4ThreeVector(fPlanes[3].a,fPlanes[3].b,fPlanes[3].c); >> 1591 } >> 1592 return snxt=0; >> 1593 } >> 1594 } >> 1595 >> 1596 // set normal 1018 if (calcNorm) 1597 if (calcNorm) 1019 { 1598 { 1020 *validNorm = true; << 1599 *validNorm=true; 1021 if (iside < 0) << 1600 switch(side) 1022 n->set(0, 0, iside + 3); // (-4+3)=-1, << 1601 { 1023 else << 1602 case ks0: 1024 n->set(fPlanes[iside].a, fPlanes[iside] << 1603 *n=G4ThreeVector(fPlanes[0].a,fPlanes[0].b,fPlanes[0].c); >> 1604 break; >> 1605 case ks1: >> 1606 *n=G4ThreeVector(fPlanes[1].a,fPlanes[1].b,fPlanes[1].c); >> 1607 break; >> 1608 case ks2: >> 1609 *n=G4ThreeVector(fPlanes[2].a,fPlanes[2].b,fPlanes[2].c); >> 1610 break; >> 1611 case ks3: >> 1612 *n=G4ThreeVector(fPlanes[3].a,fPlanes[3].b,fPlanes[3].c); >> 1613 break; >> 1614 case kMZ: >> 1615 *n=G4ThreeVector(0,0,-1); >> 1616 break; >> 1617 case kPZ: >> 1618 *n=G4ThreeVector(0,0,1); >> 1619 break; >> 1620 default: >> 1621 G4cout.precision(16); >> 1622 G4cout << G4endl; >> 1623 DumpInfo(); >> 1624 G4cout << "Position:" << G4endl << G4endl; >> 1625 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl; >> 1626 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl; >> 1627 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl; >> 1628 G4cout << "Direction:" << G4endl << G4endl; >> 1629 G4cout << "v.x() = " << v.x() << G4endl; >> 1630 G4cout << "v.y() = " << v.y() << G4endl; >> 1631 G4cout << "v.z() = " << v.z() << G4endl << G4endl; >> 1632 G4cout << "Proposed distance :" << G4endl << G4endl; >> 1633 G4cout << "snxt = " << snxt/mm << " mm" << G4endl << G4endl; >> 1634 G4Exception("G4Trap::DistanceToOut(p,v,..)","Notification",JustWarning, >> 1635 "Undefined side for valid surface normal to solid."); >> 1636 break; >> 1637 } 1025 } 1638 } 1026 return tmax; << 1639 return snxt; 1027 } 1640 } 1028 1641 1029 ///////////////////////////////////////////// << 1642 ////////////////////////////////////////////////////////////////////////////// 1030 // 1643 // 1031 // Calculate exact shortest distance to any b 1644 // Calculate exact shortest distance to any boundary from inside 1032 // - Returns 0 is ThreeVector outside 1645 // - Returns 0 is ThreeVector outside 1033 1646 1034 G4double G4Trap::DistanceToOut( const G4Three 1647 G4double G4Trap::DistanceToOut( const G4ThreeVector& p ) const 1035 { 1648 { >> 1649 G4double safe=0.0,Dist; >> 1650 G4int i; >> 1651 1036 #ifdef G4CSGDEBUG 1652 #ifdef G4CSGDEBUG 1037 if( Inside(p) == kOutside ) 1653 if( Inside(p) == kOutside ) 1038 { 1654 { 1039 std::ostringstream message; << 1655 G4cout.precision(16) ; 1040 G4long oldprc = message.precision(16); << 1656 G4cout << G4endl ; 1041 message << "Point p is outside (!?) of so << 1657 DumpInfo(); 1042 message << "Position:\n"; << 1658 G4cout << "Position:" << G4endl << G4endl ; 1043 message << " p.x() = " << p.x()/mm << " << 1659 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 1044 message << " p.y() = " << p.y()/mm << " << 1660 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 1045 message << " p.z() = " << p.z()/mm << " << 1661 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 1046 G4cout.precision(oldprc); << 1662 G4Exception("G4Trap::DistanceToOut(p)", 1047 G4Exception("G4Trap::DistanceToOut(p)", " << 1663 "Notification", JustWarning, "Point p is outside !?" ); 1048 JustWarning, message ); << 1049 DumpInfo(); << 1050 } 1664 } 1051 #endif 1665 #endif 1052 switch (fTrapType) << 1666 >> 1667 safe=fDz-std::fabs(p.z()); >> 1668 if (safe<0) safe=0; >> 1669 else 1053 { 1670 { 1054 case 0: // General case << 1671 for (i=0;i<4;i++) 1055 { 1672 { 1056 G4double dz = std::abs(p.z())-fDz; << 1673 Dist=-(fPlanes[i].a*p.x()+fPlanes[i].b*p.y() 1057 G4double dy1 = fPlanes[0].b*p.y()+fPlan << 1674 +fPlanes[i].c*p.z()+fPlanes[i].d); 1058 G4double dy2 = fPlanes[1].b*p.y()+fPlan << 1675 if (Dist<safe) safe=Dist; 1059 G4double dy = std::max(dz,std::max(dy1, << 1676 } 1060 << 1677 if (safe<0) safe=0; 1061 G4double dx1 = fPlanes[2].a*p.x()+fPlan << 1678 } 1062 + fPlanes[2].c*p.z()+fPlan << 1679 return safe; 1063 G4double dx2 = fPlanes[3].a*p.x()+fPlan << 1064 + fPlanes[3].c*p.z()+fPlan << 1065 G4double dist = std::max(dy,std::max(dx << 1066 return (dist < 0) ? -dist : 0.; << 1067 } << 1068 case 1: // YZ section is a rectangle << 1069 { << 1070 G4double dz = std::abs(p.z())-fDz; << 1071 G4double dy = std::max(dz,std::abs(p.y( << 1072 G4double dx1 = fPlanes[2].a*p.x()+fPlan << 1073 + fPlanes[2].c*p.z()+fPlan << 1074 G4double dx2 = fPlanes[3].a*p.x()+fPlan << 1075 + fPlanes[3].c*p.z()+fPlan << 1076 G4double dist = std::max(dy,std::max(dx << 1077 return (dist < 0) ? -dist : 0.; << 1078 } << 1079 case 2: // YZ section is a rectangle and << 1080 { // XZ section is an isosceles tra << 1081 G4double dz = std::abs(p.z())-fDz; << 1082 G4double dy = std::max(dz,std::abs(p.y( << 1083 G4double dx = fPlanes[3].a*std::abs(p.x << 1084 + fPlanes[3].c*p.z()+fPlane << 1085 G4double dist = std::max(dy,dx); << 1086 return (dist < 0) ? -dist : 0.; << 1087 } << 1088 case 3: // YZ section is a rectangle and << 1089 { // XY section is an isosceles tra << 1090 G4double dz = std::abs(p.z())-fDz; << 1091 G4double dy = std::max(dz,std::abs(p.y( << 1092 G4double dx = fPlanes[3].a*std::abs(p.x << 1093 + fPlanes[3].b*p.y()+fPlane << 1094 G4double dist = std::max(dy,dx); << 1095 return (dist < 0) ? -dist : 0.; << 1096 } << 1097 } << 1098 return 0.; << 1099 } 1680 } 1100 1681 1101 ///////////////////////////////////////////// 1682 ////////////////////////////////////////////////////////////////////////// 1102 // 1683 // 1103 // GetEntityType << 1684 // Create a List containing the transformed vertices 1104 << 1685 // Ordering [0-3] -fDz cross section 1105 G4GeometryType G4Trap::GetEntityType() const << 1686 // [4-7] +fDz cross section such that [0] is below [4], 1106 { << 1687 // [1] below [5] etc. 1107 return {"G4Trap"}; << 1688 // Note: >> 1689 // Caller has deletion resposibility >> 1690 >> 1691 G4ThreeVectorList* >> 1692 G4Trap::CreateRotatedVertices( const G4AffineTransform& pTransform ) const >> 1693 { >> 1694 G4ThreeVectorList *vertices; >> 1695 vertices=new G4ThreeVectorList(); >> 1696 vertices->reserve(8); >> 1697 if (vertices) >> 1698 { >> 1699 G4ThreeVector vertex0(-fDz*fTthetaCphi-fDy1*fTalpha1-fDx1, >> 1700 -fDz*fTthetaSphi-fDy1,-fDz); >> 1701 G4ThreeVector vertex1(-fDz*fTthetaCphi-fDy1*fTalpha1+fDx1, >> 1702 -fDz*fTthetaSphi-fDy1,-fDz); >> 1703 G4ThreeVector vertex2(-fDz*fTthetaCphi+fDy1*fTalpha1-fDx2, >> 1704 -fDz*fTthetaSphi+fDy1,-fDz); >> 1705 G4ThreeVector vertex3(-fDz*fTthetaCphi+fDy1*fTalpha1+fDx2, >> 1706 -fDz*fTthetaSphi+fDy1,-fDz); >> 1707 G4ThreeVector vertex4(+fDz*fTthetaCphi-fDy2*fTalpha2-fDx3, >> 1708 +fDz*fTthetaSphi-fDy2,+fDz); >> 1709 G4ThreeVector vertex5(+fDz*fTthetaCphi-fDy2*fTalpha2+fDx3, >> 1710 +fDz*fTthetaSphi-fDy2,+fDz); >> 1711 G4ThreeVector vertex6(+fDz*fTthetaCphi+fDy2*fTalpha2-fDx4, >> 1712 +fDz*fTthetaSphi+fDy2,+fDz); >> 1713 G4ThreeVector vertex7(+fDz*fTthetaCphi+fDy2*fTalpha2+fDx4, >> 1714 +fDz*fTthetaSphi+fDy2,+fDz); >> 1715 >> 1716 vertices->push_back(pTransform.TransformPoint(vertex0)); >> 1717 vertices->push_back(pTransform.TransformPoint(vertex1)); >> 1718 vertices->push_back(pTransform.TransformPoint(vertex2)); >> 1719 vertices->push_back(pTransform.TransformPoint(vertex3)); >> 1720 vertices->push_back(pTransform.TransformPoint(vertex4)); >> 1721 vertices->push_back(pTransform.TransformPoint(vertex5)); >> 1722 vertices->push_back(pTransform.TransformPoint(vertex6)); >> 1723 vertices->push_back(pTransform.TransformPoint(vertex7)); >> 1724 } >> 1725 else >> 1726 { >> 1727 DumpInfo(); >> 1728 G4Exception("G4Trap::CreateRotatedVertices()", >> 1729 "FatalError", FatalException, >> 1730 "Error in allocation of vertices. Out of memory !"); >> 1731 } >> 1732 return vertices; 1108 } 1733 } 1109 1734 1110 ///////////////////////////////////////////// 1735 ////////////////////////////////////////////////////////////////////////// 1111 // 1736 // 1112 // IsFaceted << 1737 // GetEntityType 1113 << 1114 G4bool G4Trap::IsFaceted() const << 1115 { << 1116 return true; << 1117 } << 1118 1738 1119 ///////////////////////////////////////////// << 1739 G4GeometryType G4Trap::GetEntityType() const 1120 // << 1121 // Make a clone of the object << 1122 // << 1123 G4VSolid* G4Trap::Clone() const << 1124 { 1740 { 1125 return new G4Trap(*this); << 1741 return G4String("G4Trap"); 1126 } 1742 } 1127 1743 1128 ///////////////////////////////////////////// 1744 ////////////////////////////////////////////////////////////////////////// 1129 // 1745 // 1130 // Stream object contents to an output stream 1746 // Stream object contents to an output stream 1131 1747 1132 std::ostream& G4Trap::StreamInfo( std::ostrea 1748 std::ostream& G4Trap::StreamInfo( std::ostream& os ) const 1133 { 1749 { 1134 G4double phi = GetPhi(); << 1135 G4double theta = GetTheta(); << 1136 G4double alpha1 = GetAlpha1(); << 1137 G4double alpha2 = GetAlpha2(); << 1138 << 1139 G4long oldprc = os.precision(16); << 1140 os << "------------------------------------ 1750 os << "-----------------------------------------------------------\n" 1141 << " *** Dump for solid: " << GetName << 1751 << " *** Dump for solid - " << GetName() << " ***\n" 1142 << " ================================ 1752 << " ===================================================\n" 1143 << " Solid type: G4Trap\n" 1753 << " Solid type: G4Trap\n" 1144 << " Parameters:\n" << 1754 << " Parameters: \n" 1145 << " half length Z: " << fDz/mm << " << 1755 << " half length Z: " << fDz/mm << " mm \n" 1146 << " half length Y, face -Dz: " << fD << 1756 << " half length Y of face -fDz: " << fDy1/mm << " mm \n" 1147 << " half length X, face -Dz, side -D << 1757 << " half length X of side -fDy1, face -fDz: " << fDx1/mm << " mm \n" 1148 << " half length X, face -Dz, side +D << 1758 << " half length X of side +fDy1, face -fDz: " << fDx2/mm << " mm \n" 1149 << " half length Y, face +Dz: " << fD << 1759 << " half length Y of face +fDz: " << fDy2/mm << " mm \n" 1150 << " half length X, face +Dz, side -D << 1760 << " half length X of side -fDy2, face +fDz: " << fDx3/mm << " mm \n" 1151 << " half length X, face +Dz, side +D << 1761 << " half length X of side +fDy2, face +fDz: " << fDx4/mm << " mm \n" 1152 << " theta: " << theta/degree << " de << 1762 << " std::tan(theta)*std::cos(phi): " << fTthetaCphi/degree << " degrees \n" 1153 << " phi: " << phi/degree << " degr << 1763 << " std::tan(theta)*std::sin(phi): " << fTthetaSphi/degree << " degrees \n" 1154 << " alpha, face -Dz: " << alpha1/deg << 1764 << " std::tan(alpha), -fDz: " << fTalpha1/degree << " degrees \n" 1155 << " alpha, face +Dz: " << alpha2/deg << 1765 << " std::tan(alpha), +fDz: " << fTalpha2/degree << " degrees \n" >> 1766 << " trap side plane equations:\n" >> 1767 << " " << fPlanes[0].a << " X + " << fPlanes[0].b << " Y + " >> 1768 << fPlanes[0].c << " Z + " << fPlanes[0].d << " = 0\n" >> 1769 << " " << fPlanes[1].a << " X + " << fPlanes[1].b << " Y + " >> 1770 << fPlanes[1].c << " Z + " << fPlanes[1].d << " = 0\n" >> 1771 << " " << fPlanes[2].a << " X + " << fPlanes[2].b << " Y + " >> 1772 << fPlanes[2].c << " Z + " << fPlanes[2].d << " = 0\n" >> 1773 << " " << fPlanes[3].a << " X + " << fPlanes[3].b << " Y + " >> 1774 << fPlanes[3].c << " Z + " << fPlanes[3].d << " = 0\n" 1156 << "------------------------------------ 1775 << "-----------------------------------------------------------\n"; 1157 os.precision(oldprc); << 1158 1776 1159 return os; 1777 return os; 1160 } 1778 } 1161 1779 1162 ///////////////////////////////////////////// << 1780 ///////////////////////////////////////////////////////////////////////// 1163 // 1781 // 1164 // Compute vertices from planes << 1782 // GetPointOnPlane >> 1783 // >> 1784 // Auxiliary method for Get Point on Surface 1165 1785 1166 void G4Trap::GetVertices(G4ThreeVector pt[8]) << 1786 G4ThreeVector G4Trap::GetPointOnPlane(G4ThreeVector p0, G4ThreeVector p1, 1167 { << 1787 G4ThreeVector p2, G4ThreeVector p3, 1168 for (G4int i=0; i<8; ++i) << 1788 G4double& area) const 1169 { << 1789 { 1170 G4int iy = (i==0 || i==1 || i==4 || i==5) << 1790 G4double lambda1, lambda2, chose, aOne, aTwo; 1171 G4int ix = (i==0 || i==2 || i==4 || i==6) << 1791 G4ThreeVector t, u, v, w, Area, normal; 1172 G4double z = (i < 4) ? -fDz : fDz; << 1792 1173 G4double y = -(fPlanes[iy].c*z + fPlanes[ << 1793 t = p1 - p0; 1174 G4double x = -(fPlanes[ix].b*y + fPlanes[ << 1794 u = p2 - p1; 1175 + fPlanes[ix].d)/fPlanes[i << 1795 v = p3 - p2; 1176 pt[i].set(x,y,z); << 1796 w = p0 - p3; 1177 } << 1797 >> 1798 Area = G4ThreeVector(w.y()*v.z() - w.z()*v.y(), >> 1799 w.z()*v.x() - w.x()*v.z(), >> 1800 w.x()*v.y() - w.y()*v.x()); >> 1801 >> 1802 aOne = 0.5*Area.mag(); >> 1803 >> 1804 Area = G4ThreeVector(t.y()*u.z() - t.z()*u.y(), >> 1805 t.z()*u.x() - t.x()*u.z(), >> 1806 t.x()*u.y() - t.y()*u.x()); >> 1807 >> 1808 aTwo = 0.5*Area.mag(); >> 1809 >> 1810 area = aOne + aTwo; >> 1811 >> 1812 chose = RandFlat::shoot(0.,aOne+aTwo); >> 1813 >> 1814 if( (chose>=0.) && (chose < aOne) ) >> 1815 { >> 1816 lambda1 = RandFlat::shoot(0.,1.); >> 1817 lambda2 = RandFlat::shoot(0.,lambda1); >> 1818 return (p2+lambda1*v+lambda2*w); >> 1819 } >> 1820 >> 1821 // else >> 1822 >> 1823 lambda1 = RandFlat::shoot(0.,1.); >> 1824 lambda2 = RandFlat::shoot(0.,lambda1); >> 1825 >> 1826 return (p0+lambda1*t+lambda2*u); 1178 } 1827 } 1179 1828 1180 ///////////////////////////////////////////// << 1829 /////////////////////////////////////////////////////////////// 1181 // 1830 // 1182 // Generate random point on the surface << 1831 // GetPointOnSurface 1183 1832 1184 G4ThreeVector G4Trap::GetPointOnSurface() con 1833 G4ThreeVector G4Trap::GetPointOnSurface() const 1185 { 1834 { 1186 // Set indeces << 1835 G4double aOne, aTwo, aThree, aFour, aFive, aSix, chose; 1187 constexpr G4int iface [6][4] = << 1836 G4ThreeVector One, Two, Three, Four, Five, Six, test; 1188 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6 << 1189 << 1190 // Set vertices << 1191 G4ThreeVector pt[8]; 1837 G4ThreeVector pt[8]; 1192 GetVertices(pt); << 1838 1193 << 1839 pt[0] = G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1-fDx1, 1194 // Select face << 1840 -fDz*fTthetaSphi-fDy1,-fDz); 1195 // << 1841 pt[1] = G4ThreeVector(-fDz*fTthetaCphi-fDy1*fTalpha1+fDx1, 1196 G4double select = fAreas[5]*G4QuickRand(); << 1842 -fDz*fTthetaSphi-fDy1,-fDz); 1197 G4int k = 5; << 1843 pt[2] = G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1-fDx2, 1198 k -= (G4int)(select <= fAreas[4]); << 1844 -fDz*fTthetaSphi+fDy1,-fDz); 1199 k -= (G4int)(select <= fAreas[3]); << 1845 pt[3] = G4ThreeVector(-fDz*fTthetaCphi+fDy1*fTalpha1+fDx2, 1200 k -= (G4int)(select <= fAreas[2]); << 1846 -fDz*fTthetaSphi+fDy1,-fDz); 1201 k -= (G4int)(select <= fAreas[1]); << 1847 pt[4] = G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2-fDx3, 1202 k -= (G4int)(select <= fAreas[0]); << 1848 +fDz*fTthetaSphi-fDy2,+fDz); 1203 << 1849 pt[5] = G4ThreeVector(+fDz*fTthetaCphi-fDy2*fTalpha2+fDx3, 1204 // Select sub-triangle << 1850 +fDz*fTthetaSphi-fDy2,+fDz); 1205 // << 1851 pt[6] = G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2-fDx4, 1206 G4int i0 = iface[k][0]; << 1852 +fDz*fTthetaSphi+fDy2,+fDz); 1207 G4int i1 = iface[k][1]; << 1853 pt[7] = G4ThreeVector(+fDz*fTthetaCphi+fDy2*fTalpha2+fDx4, 1208 G4int i2 = iface[k][2]; << 1854 +fDz*fTthetaSphi+fDy2,+fDz); 1209 G4int i3 = iface[k][3]; << 1855 1210 G4double s2 = G4GeomTools::TriangleAreaNorm << 1856 // make sure we provide the points in a clockwise fashion 1211 if (select > fAreas[k] - s2) i0 = i2; << 1857 1212 << 1858 One = GetPointOnPlane(pt[0],pt[1],pt[3],pt[2], aOne); 1213 // Generate point << 1859 Two = GetPointOnPlane(pt[4],pt[5],pt[7],pt[6], aTwo); 1214 // << 1860 Three = GetPointOnPlane(pt[6],pt[7],pt[3],pt[2], aThree); 1215 G4double u = G4QuickRand(); << 1861 Four = GetPointOnPlane(pt[4],pt[5],pt[1],pt[0], aFour); 1216 G4double v = G4QuickRand(); << 1862 Five = GetPointOnPlane(pt[0],pt[2],pt[6],pt[4], aFive); 1217 if (u + v > 1.) { u = 1. - u; v = 1. - v; } << 1863 Six = GetPointOnPlane(pt[1],pt[3],pt[7],pt[5], aSix); 1218 return (1.-u-v)*pt[i0] + u*pt[i1] + v*pt[i3 << 1864 >> 1865 chose = RandFlat::shoot(0.,aOne+aTwo+aThree+aFour+aFive+aSix); >> 1866 if( (chose>=0.) && (chose<aOne) ) >> 1867 { return One; } >> 1868 else if( (chose>=aOne) && (chose<aOne+aTwo) ) >> 1869 { return Two; } >> 1870 else if( (chose>=aOne+aTwo) && (chose<aOne+aTwo+aThree) ) >> 1871 { return Three; } >> 1872 else if( (chose>=aOne+aTwo+aThree) && (chose<aOne+aTwo+aThree+aFour) ) >> 1873 { return Four; } >> 1874 else if( (chose>=aOne+aTwo+aThree+aFour) >> 1875 && (chose<aOne+aTwo+aThree+aFour+aFive) ) >> 1876 { return Five; } >> 1877 return Six; 1219 } 1878 } 1220 1879 1221 ///////////////////////////////////////////// 1880 ////////////////////////////////////////////////////////////////////////// 1222 // 1881 // 1223 // Methods for visualisation 1882 // Methods for visualisation 1224 1883 1225 void G4Trap::DescribeYourselfTo ( G4VGraphics 1884 void G4Trap::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 1226 { 1885 { 1227 scene.AddSolid (*this); 1886 scene.AddSolid (*this); 1228 } 1887 } 1229 1888 1230 G4Polyhedron* G4Trap::CreatePolyhedron () con 1889 G4Polyhedron* G4Trap::CreatePolyhedron () const 1231 { 1890 { 1232 G4double phi = std::atan2(fTthetaSphi, fTth 1891 G4double phi = std::atan2(fTthetaSphi, fTthetaCphi); 1233 G4double alpha1 = std::atan(fTalpha1); 1892 G4double alpha1 = std::atan(fTalpha1); 1234 G4double alpha2 = std::atan(fTalpha2); 1893 G4double alpha2 = std::atan(fTalpha2); 1235 G4double theta = std::atan(std::sqrt(fTthet << 1894 G4double theta = std::atan(std::sqrt(fTthetaCphi*fTthetaCphi+fTthetaSphi*fTthetaSphi)); 1236 +fTthet << 1237 1895 1238 return new G4PolyhedronTrap(fDz, theta, phi 1896 return new G4PolyhedronTrap(fDz, theta, phi, 1239 fDy1, fDx1, fDx 1897 fDy1, fDx1, fDx2, alpha1, 1240 fDy2, fDx3, fDx 1898 fDy2, fDx3, fDx4, alpha2); 1241 } 1899 } 1242 1900 1243 #endif << 1901 G4NURBS* G4Trap::CreateNURBS () const >> 1902 { >> 1903 // return new G4NURBSbox (fDx, fDy, fDz); >> 1904 return 0 ; >> 1905 } 1244 1906