Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4Trap.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/CSG/src/G4Trap.cc (Version 11.3.0) and /geometry/solids/CSG/src/G4Trap.cc (Version 11.2.1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Implementation for G4Trap class                 26 // Implementation for G4Trap class
 27 //                                                 27 //
 28 // 21.03.95 P.Kent: Modified for `tolerant' ge     28 // 21.03.95 P.Kent: Modified for `tolerant' geometry
 29 // 09.09.96 V.Grichine: Final modifications be     29 // 09.09.96 V.Grichine: Final modifications before to commit
 30 // 08.12.97 J.Allison: Added "nominal" constru     30 // 08.12.97 J.Allison: Added "nominal" constructor and method SetAllParameters
 31 // 28.04.05 V.Grichine: new SurfaceNormal acco     31 // 28.04.05 V.Grichine: new SurfaceNormal according to J.Apostolakis proposal
 32 // 18.04.17 E.Tcherniaev: complete revision, s     32 // 18.04.17 E.Tcherniaev: complete revision, speed-up
 33 // -------------------------------------------     33 // --------------------------------------------------------------------
 34                                                    34 
 35 #include "G4Trap.hh"                               35 #include "G4Trap.hh"
 36                                                    36 
 37 #if !defined(G4GEOM_USE_UTRAP)                     37 #if !defined(G4GEOM_USE_UTRAP)
 38                                                    38 
 39 #include "globals.hh"                              39 #include "globals.hh"
 40 #include "G4GeomTools.hh"                          40 #include "G4GeomTools.hh"
 41                                                    41 
 42 #include "G4VoxelLimits.hh"                        42 #include "G4VoxelLimits.hh"
 43 #include "G4AffineTransform.hh"                    43 #include "G4AffineTransform.hh"
 44 #include "G4BoundingEnvelope.hh"                   44 #include "G4BoundingEnvelope.hh"
 45                                                    45 
 46 #include "G4VPVParameterisation.hh"                46 #include "G4VPVParameterisation.hh"
 47                                                    47 
 48 #include "G4QuickRand.hh"                          48 #include "G4QuickRand.hh"
 49                                                    49 
 50 #include "G4VGraphicsScene.hh"                     50 #include "G4VGraphicsScene.hh"
 51 #include "G4Polyhedron.hh"                         51 #include "G4Polyhedron.hh"
 52                                                    52 
 53 using namespace CLHEP;                             53 using namespace CLHEP;
 54                                                    54 
 55 //////////////////////////////////////////////     55 //////////////////////////////////////////////////////////////////////////
 56 //                                                 56 //
 57 // Constructor - check and set half-widths as      57 // Constructor - check and set half-widths as well as angles:
 58 // final check of coplanarity                      58 // final check of coplanarity
 59                                                    59 
 60 G4Trap::G4Trap( const G4String& pName,             60 G4Trap::G4Trap( const G4String& pName,
 61                       G4double pDz,                61                       G4double pDz,
 62                       G4double pTheta, G4doubl     62                       G4double pTheta, G4double pPhi,
 63                       G4double pDy1, G4double      63                       G4double pDy1, G4double pDx1, G4double pDx2,
 64                       G4double pAlp1,              64                       G4double pAlp1,
 65                       G4double pDy2, G4double      65                       G4double pDy2, G4double pDx3, G4double pDx4,
 66                       G4double pAlp2 )             66                       G4double pAlp2 )
 67   : G4CSGSolid(pName), halfCarTolerance(0.5*kC     67   : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance)
 68 {                                                  68 {
 69   fDz = pDz;                                       69   fDz = pDz;
 70   fTthetaCphi = std::tan(pTheta)*std::cos(pPhi     70   fTthetaCphi = std::tan(pTheta)*std::cos(pPhi);
 71   fTthetaSphi = std::tan(pTheta)*std::sin(pPhi     71   fTthetaSphi = std::tan(pTheta)*std::sin(pPhi);
 72                                                    72 
 73   fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalp     73   fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalpha1 = std::tan(pAlp1);
 74   fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalp     74   fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalpha2 = std::tan(pAlp2);
 75                                                    75 
 76   CheckParameters();                               76   CheckParameters();
 77   MakePlanes();                                    77   MakePlanes();
 78 }                                                  78 }
 79                                                    79 
 80 //////////////////////////////////////////////     80 //////////////////////////////////////////////////////////////////////////
 81 //                                                 81 //
 82 // Constructor - Design of trapezoid based on      82 // Constructor - Design of trapezoid based on 8 G4ThreeVector parameters,
 83 // which are its vertices. Checking of planari     83 // which are its vertices. Checking of planarity with preparation of
 84 // fPlanes[] and than calculation of other mem     84 // fPlanes[] and than calculation of other members
 85                                                    85 
 86 G4Trap::G4Trap( const G4String& pName,             86 G4Trap::G4Trap( const G4String& pName,
 87                 const G4ThreeVector pt[8] )        87                 const G4ThreeVector pt[8] )
 88   : G4CSGSolid(pName), halfCarTolerance(0.5*kC     88   : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance)
 89 {                                                  89 {
 90   // Start with check of centering - the cente     90   // Start with check of centering - the center of gravity trap line
 91   // should cross the origin of frame              91   // should cross the origin of frame
 92   //                                               92   //
 93   if (  pt[0].z() >= 0                             93   if (  pt[0].z() >= 0
 94         || pt[0].z() != pt[1].z()                  94         || pt[0].z() != pt[1].z()
 95         || pt[0].z() != pt[2].z()                  95         || pt[0].z() != pt[2].z()
 96         || pt[0].z() != pt[3].z()                  96         || pt[0].z() != pt[3].z()
 97                                                    97 
 98         || pt[4].z() <= 0                          98         || pt[4].z() <= 0
 99         || pt[4].z() != pt[5].z()                  99         || pt[4].z() != pt[5].z()
100         || pt[4].z() != pt[6].z()                 100         || pt[4].z() != pt[6].z()
101         || pt[4].z() != pt[7].z()                 101         || pt[4].z() != pt[7].z()
102                                                   102 
103         || std::fabs( pt[0].z() + pt[4].z() )     103         || std::fabs( pt[0].z() + pt[4].z() ) >= kCarTolerance
104                                                   104 
105         || pt[0].y() != pt[1].y()                 105         || pt[0].y() != pt[1].y()
106         || pt[2].y() != pt[3].y()                 106         || pt[2].y() != pt[3].y()
107         || pt[4].y() != pt[5].y()                 107         || pt[4].y() != pt[5].y()
108         || pt[6].y() != pt[7].y()                 108         || pt[6].y() != pt[7].y()
109                                                   109 
110         || std::fabs(pt[0].y()+pt[2].y()+pt[4]    110         || std::fabs(pt[0].y()+pt[2].y()+pt[4].y()+pt[6].y()) >= kCarTolerance
111         || std::fabs(pt[0].x()+pt[1].x()+pt[4]    111         || std::fabs(pt[0].x()+pt[1].x()+pt[4].x()+pt[5].x() +
112                      pt[2].x()+pt[3].x()+pt[6]    112                      pt[2].x()+pt[3].x()+pt[6].x()+pt[7].x()) >= kCarTolerance )
113   {                                               113   {
114     std::ostringstream message;                   114     std::ostringstream message;
115     message << "Invalid vertice coordinates fo    115     message << "Invalid vertice coordinates for Solid: " << GetName();
116     G4Exception("G4Trap::G4Trap()", "GeomSolid    116     G4Exception("G4Trap::G4Trap()", "GeomSolids0002",
117                 FatalException, message);         117                 FatalException, message);
118   }                                               118   }
119                                                   119 
120   // Set parameters                               120   // Set parameters
121   //                                              121   //
122   fDz = (pt[7]).z();                              122   fDz = (pt[7]).z();
123                                                   123 
124   fDy1     = ((pt[2]).y()-(pt[1]).y())*0.5;       124   fDy1     = ((pt[2]).y()-(pt[1]).y())*0.5;
125   fDx1     = ((pt[1]).x()-(pt[0]).x())*0.5;       125   fDx1     = ((pt[1]).x()-(pt[0]).x())*0.5;
126   fDx2     = ((pt[3]).x()-(pt[2]).x())*0.5;       126   fDx2     = ((pt[3]).x()-(pt[2]).x())*0.5;
127   fTalpha1 = ((pt[2]).x()+(pt[3]).x()-(pt[1]).    127   fTalpha1 = ((pt[2]).x()+(pt[3]).x()-(pt[1]).x()-(pt[0]).x())*0.25/fDy1;
128                                                   128 
129   fDy2     = ((pt[6]).y()-(pt[5]).y())*0.5;       129   fDy2     = ((pt[6]).y()-(pt[5]).y())*0.5;
130   fDx3     = ((pt[5]).x()-(pt[4]).x())*0.5;       130   fDx3     = ((pt[5]).x()-(pt[4]).x())*0.5;
131   fDx4     = ((pt[7]).x()-(pt[6]).x())*0.5;       131   fDx4     = ((pt[7]).x()-(pt[6]).x())*0.5;
132   fTalpha2 = ((pt[6]).x()+(pt[7]).x()-(pt[5]).    132   fTalpha2 = ((pt[6]).x()+(pt[7]).x()-(pt[5]).x()-(pt[4]).x())*0.25/fDy2;
133                                                   133 
134   fTthetaCphi = ((pt[4]).x()+fDy2*fTalpha2+fDx    134   fTthetaCphi = ((pt[4]).x()+fDy2*fTalpha2+fDx3)/fDz;
135   fTthetaSphi = ((pt[4]).y()+fDy2)/fDz;           135   fTthetaSphi = ((pt[4]).y()+fDy2)/fDz;
136                                                   136 
137   CheckParameters();                              137   CheckParameters();
138   MakePlanes(pt);                                 138   MakePlanes(pt);
139 }                                                 139 }
140                                                   140 
141 //////////////////////////////////////////////    141 //////////////////////////////////////////////////////////////////////////
142 //                                                142 //
143 // Constructor for Right Angular Wedge from ST    143 // Constructor for Right Angular Wedge from STEP
144                                                   144 
145 G4Trap::G4Trap( const G4String& pName,            145 G4Trap::G4Trap( const G4String& pName,
146                       G4double pZ,                146                       G4double pZ,
147                       G4double pY,                147                       G4double pY,
148                       G4double pX, G4double pL    148                       G4double pX, G4double pLTX )
149   : G4CSGSolid(pName), halfCarTolerance(0.5*kC    149   : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance)
150 {                                                 150 {
151   fDz  = 0.5*pZ; fTthetaCphi = 0; fTthetaSphi     151   fDz  = 0.5*pZ; fTthetaCphi = 0; fTthetaSphi = 0;
152   fDy1 = 0.5*pY; fDx1 = 0.5*pX; fDx2 = 0.5*pLT    152   fDy1 = 0.5*pY; fDx1 = 0.5*pX; fDx2 = 0.5*pLTX; fTalpha1 = 0.5*(pLTX - pX)/pY;
153   fDy2 = fDy1;   fDx3 = fDx1;   fDx4 = fDx2;      153   fDy2 = fDy1;   fDx3 = fDx1;   fDx4 = fDx2;     fTalpha2 = fTalpha1;
154                                                   154 
155   CheckParameters();                              155   CheckParameters();
156   MakePlanes();                                   156   MakePlanes();
157 }                                                 157 }
158                                                   158 
159 //////////////////////////////////////////////    159 //////////////////////////////////////////////////////////////////////////
160 //                                                160 //
161 // Constructor for G4Trd                          161 // Constructor for G4Trd
162                                                   162 
163 G4Trap::G4Trap( const G4String& pName,            163 G4Trap::G4Trap( const G4String& pName,
164                       G4double pDx1,  G4double    164                       G4double pDx1,  G4double pDx2,
165                       G4double pDy1,  G4double    165                       G4double pDy1,  G4double pDy2,
166                       G4double pDz )              166                       G4double pDz )
167   : G4CSGSolid(pName), halfCarTolerance(0.5*kC    167   : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance), fTrapType(0)
168 {                                                 168 {
169   fDz  = pDz;  fTthetaCphi = 0; fTthetaSphi =     169   fDz  = pDz;  fTthetaCphi = 0; fTthetaSphi = 0;
170   fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx1; fTalp    170   fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx1; fTalpha1 = 0;
171   fDy2 = pDy2; fDx3 = pDx2; fDx4 = pDx2; fTalp    171   fDy2 = pDy2; fDx3 = pDx2; fDx4 = pDx2; fTalpha2 = 0;
172                                                   172 
173   CheckParameters();                              173   CheckParameters();
174   MakePlanes();                                   174   MakePlanes();
175 }                                                 175 }
176                                                   176 
177 //////////////////////////////////////////////    177 //////////////////////////////////////////////////////////////////////////
178 //                                                178 //
179 // Constructor for G4Para                         179 // Constructor for G4Para
180                                                   180 
181 G4Trap::G4Trap( const G4String& pName,            181 G4Trap::G4Trap( const G4String& pName,
182                       G4double pDx, G4double p    182                       G4double pDx, G4double pDy,
183                       G4double pDz,               183                       G4double pDz,
184                       G4double pAlpha,            184                       G4double pAlpha,
185                       G4double pTheta, G4doubl    185                       G4double pTheta, G4double pPhi )
186   : G4CSGSolid(pName), halfCarTolerance(0.5*kC    186   : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance)
187 {                                                 187 {
188   fDz = pDz;                                      188   fDz = pDz;
189   fTthetaCphi = std::tan(pTheta)*std::cos(pPhi    189   fTthetaCphi = std::tan(pTheta)*std::cos(pPhi);
190   fTthetaSphi = std::tan(pTheta)*std::sin(pPhi    190   fTthetaSphi = std::tan(pTheta)*std::sin(pPhi);
191                                                   191 
192   fDy1 = pDy; fDx1 = pDx; fDx2 = pDx; fTalpha1    192   fDy1 = pDy; fDx1 = pDx; fDx2 = pDx; fTalpha1 = std::tan(pAlpha);
193   fDy2 = pDy; fDx3 = pDx; fDx4 = pDx; fTalpha2    193   fDy2 = pDy; fDx3 = pDx; fDx4 = pDx; fTalpha2 = fTalpha1;
194                                                   194 
195   CheckParameters();                              195   CheckParameters();
196   MakePlanes();                                   196   MakePlanes();
197 }                                                 197 }
198                                                   198 
199 //////////////////////////////////////////////    199 //////////////////////////////////////////////////////////////////////////
200 //                                                200 //
201 // Nominal constructor for G4Trap whose parame    201 // Nominal constructor for G4Trap whose parameters are to be set by
202 // a G4VParamaterisation later.  Check and set    202 // a G4VParamaterisation later.  Check and set half-widths as well as
203 // angles: final check of coplanarity             203 // angles: final check of coplanarity
204                                                   204 
205 G4Trap::G4Trap( const G4String& pName )           205 G4Trap::G4Trap( const G4String& pName )
206   : G4CSGSolid (pName), halfCarTolerance(0.5*k    206   : G4CSGSolid (pName), halfCarTolerance(0.5*kCarTolerance),
207     fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.),    207     fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.),
208     fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.)    208     fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.),
209     fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.)    209     fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.)
210 {                                                 210 {
211   MakePlanes();                                   211   MakePlanes();
212 }                                                 212 }
213                                                   213 
214 //////////////////////////////////////////////    214 //////////////////////////////////////////////////////////////////////////
215 //                                                215 //
216 // Fake default constructor - sets only member    216 // Fake default constructor - sets only member data and allocates memory
217 //                            for usage restri    217 //                            for usage restricted to object persistency.
218 //                                                218 //
219 G4Trap::G4Trap( __void__& a )                     219 G4Trap::G4Trap( __void__& a )
220   : G4CSGSolid(a), halfCarTolerance(0.5*kCarTo    220   : G4CSGSolid(a), halfCarTolerance(0.5*kCarTolerance),
221     fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.),    221     fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.),
222     fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.)    222     fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.),
223     fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.)    223     fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.)
224 {                                                 224 {
225   MakePlanes();                                   225   MakePlanes();
226 }                                                 226 }
227                                                   227 
228 //////////////////////////////////////////////    228 //////////////////////////////////////////////////////////////////////////
229 //                                                229 //
230 // Destructor                                     230 // Destructor
231                                                   231 
232 G4Trap::~G4Trap() = default;                      232 G4Trap::~G4Trap() = default;
233                                                   233 
234 //////////////////////////////////////////////    234 //////////////////////////////////////////////////////////////////////////
235 //                                                235 //
236 // Copy constructor                               236 // Copy constructor
237                                                   237 
238 G4Trap::G4Trap(const G4Trap& rhs)                 238 G4Trap::G4Trap(const G4Trap& rhs)
239   : G4CSGSolid(rhs), halfCarTolerance(rhs.half    239   : G4CSGSolid(rhs), halfCarTolerance(rhs.halfCarTolerance),
240     fDz(rhs.fDz), fTthetaCphi(rhs.fTthetaCphi)    240     fDz(rhs.fDz), fTthetaCphi(rhs.fTthetaCphi), fTthetaSphi(rhs.fTthetaSphi),
241     fDy1(rhs.fDy1), fDx1(rhs.fDx1), fDx2(rhs.f    241     fDy1(rhs.fDy1), fDx1(rhs.fDx1), fDx2(rhs.fDx2), fTalpha1(rhs.fTalpha1),
242     fDy2(rhs.fDy2), fDx3(rhs.fDx3), fDx4(rhs.f    242     fDy2(rhs.fDy2), fDx3(rhs.fDx3), fDx4(rhs.fDx4), fTalpha2(rhs.fTalpha2)
243 {                                                 243 {
244   for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs    244   for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs.fPlanes[i]; }
245   for (G4int i=0; i<6; ++i) { fAreas[i] = rhs.    245   for (G4int i=0; i<6; ++i) { fAreas[i] = rhs.fAreas[i]; }
246   fTrapType = rhs.fTrapType;                      246   fTrapType = rhs.fTrapType;
247 }                                                 247 }
248                                                   248 
249 //////////////////////////////////////////////    249 //////////////////////////////////////////////////////////////////////////
250 //                                                250 //
251 // Assignment operator                            251 // Assignment operator
252                                                   252 
253 G4Trap& G4Trap::operator = (const G4Trap& rhs)    253 G4Trap& G4Trap::operator = (const G4Trap& rhs)
254 {                                                 254 {
255   // Check assignment to self                     255   // Check assignment to self
256   //                                              256   //
257   if (this == &rhs)  { return *this; }            257   if (this == &rhs)  { return *this; }
258                                                   258 
259   // Copy base class data                         259   // Copy base class data
260   //                                              260   //
261   G4CSGSolid::operator=(rhs);                     261   G4CSGSolid::operator=(rhs);
262                                                   262 
263   // Copy data                                    263   // Copy data
264   //                                              264   //
265   halfCarTolerance = rhs.halfCarTolerance;        265   halfCarTolerance = rhs.halfCarTolerance;
266   fDz = rhs.fDz; fTthetaCphi = rhs.fTthetaCphi    266   fDz = rhs.fDz; fTthetaCphi = rhs.fTthetaCphi; fTthetaSphi = rhs.fTthetaSphi;
267   fDy1 = rhs.fDy1; fDx1 = rhs.fDx1; fDx2 = rhs    267   fDy1 = rhs.fDy1; fDx1 = rhs.fDx1; fDx2 = rhs.fDx2; fTalpha1 = rhs.fTalpha1;
268   fDy2 = rhs.fDy2; fDx3 = rhs.fDx3; fDx4 = rhs    268   fDy2 = rhs.fDy2; fDx3 = rhs.fDx3; fDx4 = rhs.fDx4; fTalpha2 = rhs.fTalpha2;
269   for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs    269   for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs.fPlanes[i]; }
270   for (G4int i=0; i<6; ++i) { fAreas[i] = rhs.    270   for (G4int i=0; i<6; ++i) { fAreas[i] = rhs.fAreas[i]; }
271   fTrapType = rhs.fTrapType;                      271   fTrapType = rhs.fTrapType;
272   return *this;                                   272   return *this;
273 }                                                 273 }
274                                                   274 
275 //////////////////////////////////////////////    275 //////////////////////////////////////////////////////////////////////////
276 //                                                276 //
277 // Set all parameters, as for constructor - ch    277 // Set all parameters, as for constructor - check and set half-widths
278 // as well as angles: final check of coplanari    278 // as well as angles: final check of coplanarity
279                                                   279 
280 void G4Trap::SetAllParameters ( G4double pDz,     280 void G4Trap::SetAllParameters ( G4double pDz,
281                                 G4double pThet    281                                 G4double pTheta,
282                                 G4double pPhi,    282                                 G4double pPhi,
283                                 G4double pDy1,    283                                 G4double pDy1,
284                                 G4double pDx1,    284                                 G4double pDx1,
285                                 G4double pDx2,    285                                 G4double pDx2,
286                                 G4double pAlp1    286                                 G4double pAlp1,
287                                 G4double pDy2,    287                                 G4double pDy2,
288                                 G4double pDx3,    288                                 G4double pDx3,
289                                 G4double pDx4,    289                                 G4double pDx4,
290                                 G4double pAlp2    290                                 G4double pAlp2 )
291 {                                                 291 {
292   // Reset data of the base class                 292   // Reset data of the base class
293   fCubicVolume = 0;                               293   fCubicVolume = 0;
294   fSurfaceArea = 0;                               294   fSurfaceArea = 0;
295   fRebuildPolyhedron = true;                      295   fRebuildPolyhedron = true;
296                                                   296 
297   // Set parameters                               297   // Set parameters
298   fDz = pDz;                                      298   fDz = pDz;
299   fTthetaCphi = std::tan(pTheta)*std::cos(pPhi    299   fTthetaCphi = std::tan(pTheta)*std::cos(pPhi);
300   fTthetaSphi = std::tan(pTheta)*std::sin(pPhi    300   fTthetaSphi = std::tan(pTheta)*std::sin(pPhi);
301                                                   301 
302   fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalp    302   fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalpha1 = std::tan(pAlp1);
303   fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalp    303   fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalpha2 = std::tan(pAlp2);
304                                                   304 
305   CheckParameters();                              305   CheckParameters();
306   MakePlanes();                                   306   MakePlanes();
307 }                                                 307 }
308                                                   308 
309 //////////////////////////////////////////////    309 //////////////////////////////////////////////////////////////////////////
310 //                                                310 //
311 // Check length parameters                        311 // Check length parameters
312                                                   312 
313 void G4Trap::CheckParameters()                    313 void G4Trap::CheckParameters()
314 {                                                 314 {
315   if (fDz<=0 ||                                   315   if (fDz<=0 ||
316       fDy1<=0 || fDx1<=0 || fDx2<=0 ||            316       fDy1<=0 || fDx1<=0 || fDx2<=0 ||
317       fDy2<=0 || fDx3<=0 || fDx4<=0)              317       fDy2<=0 || fDx3<=0 || fDx4<=0)
318   {                                               318   {
319     std::ostringstream message;                   319     std::ostringstream message;
320     message << "Invalid Length Parameters for     320     message << "Invalid Length Parameters for Solid: " << GetName()
321             << "\n  X - " <<fDx1<<", "<<fDx2<<    321             << "\n  X - " <<fDx1<<", "<<fDx2<<", "<<fDx3<<", "<<fDx4
322             << "\n  Y - " <<fDy1<<", "<<fDy2      322             << "\n  Y - " <<fDy1<<", "<<fDy2
323             << "\n  Z - " <<fDz;                  323             << "\n  Z - " <<fDz;
324     G4Exception("G4Trap::CheckParameters()", "    324     G4Exception("G4Trap::CheckParameters()", "GeomSolids0002",
325                 FatalException, message);         325                 FatalException, message);
326   }                                               326   }
327 }                                                 327 }
328                                                   328 
329 //////////////////////////////////////////////    329 //////////////////////////////////////////////////////////////////////////
330 //                                                330 //
331 // Compute vertices and set side planes           331 // Compute vertices and set side planes
332                                                   332 
333 void G4Trap::MakePlanes()                         333 void G4Trap::MakePlanes()
334 {                                                 334 {
335   G4double DzTthetaCphi = fDz*fTthetaCphi;        335   G4double DzTthetaCphi = fDz*fTthetaCphi;
336   G4double DzTthetaSphi = fDz*fTthetaSphi;        336   G4double DzTthetaSphi = fDz*fTthetaSphi;
337   G4double Dy1Talpha1   = fDy1*fTalpha1;          337   G4double Dy1Talpha1   = fDy1*fTalpha1;
338   G4double Dy2Talpha2   = fDy2*fTalpha2;          338   G4double Dy2Talpha2   = fDy2*fTalpha2;
339                                                   339 
340   G4ThreeVector pt[8] =                           340   G4ThreeVector pt[8] =
341   {                                               341   {
342     G4ThreeVector(-DzTthetaCphi-Dy1Talpha1-fDx    342     G4ThreeVector(-DzTthetaCphi-Dy1Talpha1-fDx1,-DzTthetaSphi-fDy1,-fDz),
343     G4ThreeVector(-DzTthetaCphi-Dy1Talpha1+fDx    343     G4ThreeVector(-DzTthetaCphi-Dy1Talpha1+fDx1,-DzTthetaSphi-fDy1,-fDz),
344     G4ThreeVector(-DzTthetaCphi+Dy1Talpha1-fDx    344     G4ThreeVector(-DzTthetaCphi+Dy1Talpha1-fDx2,-DzTthetaSphi+fDy1,-fDz),
345     G4ThreeVector(-DzTthetaCphi+Dy1Talpha1+fDx    345     G4ThreeVector(-DzTthetaCphi+Dy1Talpha1+fDx2,-DzTthetaSphi+fDy1,-fDz),
346     G4ThreeVector( DzTthetaCphi-Dy2Talpha2-fDx    346     G4ThreeVector( DzTthetaCphi-Dy2Talpha2-fDx3, DzTthetaSphi-fDy2, fDz),
347     G4ThreeVector( DzTthetaCphi-Dy2Talpha2+fDx    347     G4ThreeVector( DzTthetaCphi-Dy2Talpha2+fDx3, DzTthetaSphi-fDy2, fDz),
348     G4ThreeVector( DzTthetaCphi+Dy2Talpha2-fDx    348     G4ThreeVector( DzTthetaCphi+Dy2Talpha2-fDx4, DzTthetaSphi+fDy2, fDz),
349     G4ThreeVector( DzTthetaCphi+Dy2Talpha2+fDx    349     G4ThreeVector( DzTthetaCphi+Dy2Talpha2+fDx4, DzTthetaSphi+fDy2, fDz)
350   };                                              350   };
351                                                   351 
352   MakePlanes(pt);                                 352   MakePlanes(pt);
353 }                                                 353 }
354                                                   354 
355 //////////////////////////////////////////////    355 //////////////////////////////////////////////////////////////////////////
356 //                                                356 //
357 // Set side planes, check planarity               357 // Set side planes, check planarity
358                                                   358 
359 void G4Trap::MakePlanes(const G4ThreeVector pt    359 void G4Trap::MakePlanes(const G4ThreeVector pt[8])
360 {                                                 360 {
361   constexpr G4int iface[4][4] = { {0,4,5,1}, {    361   constexpr G4int iface[4][4] = { {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3} };
362   const static G4String side[4] = { "~-Y", "~+    362   const static G4String side[4] = { "~-Y", "~+Y", "~-X", "~+X" };
363                                                   363 
364   for (G4int i=0; i<4; ++i)                       364   for (G4int i=0; i<4; ++i)
365   {                                               365   {
366     if (MakePlane(pt[iface[i][0]],                366     if (MakePlane(pt[iface[i][0]],
367                   pt[iface[i][1]],                367                   pt[iface[i][1]],
368                   pt[iface[i][2]],                368                   pt[iface[i][2]],
369                   pt[iface[i][3]],                369                   pt[iface[i][3]],
370                   fPlanes[i])) continue;          370                   fPlanes[i])) continue;
371                                                   371 
372     // Non planar side face                       372     // Non planar side face
373     G4ThreeVector normal(fPlanes[i].a,fPlanes[    373     G4ThreeVector normal(fPlanes[i].a,fPlanes[i].b,fPlanes[i].c);
374     G4double dmax = 0;                            374     G4double dmax = 0;
375     for (G4int k=0; k<4; ++k)                     375     for (G4int k=0; k<4; ++k)
376     {                                             376     {
377       G4double dist = normal.dot(pt[iface[i][k    377       G4double dist = normal.dot(pt[iface[i][k]]) + fPlanes[i].d;
378       if (std::abs(dist) > std::abs(dmax)) dma    378       if (std::abs(dist) > std::abs(dmax)) dmax = dist;
379     }                                             379     }
380     std::ostringstream message;                   380     std::ostringstream message;
381     message << "Side face " << side[i] << " is    381     message << "Side face " << side[i] << " is not planar for solid: "
382             << GetName() << "\nDiscrepancy: "     382             << GetName() << "\nDiscrepancy: " << dmax/mm << " mm\n";
383     StreamInfo(message);                          383     StreamInfo(message);
384     G4Exception("G4Trap::MakePlanes()", "GeomS    384     G4Exception("G4Trap::MakePlanes()", "GeomSolids0002",
385                 FatalException, message);         385                 FatalException, message);
386   }                                               386   }
387                                                   387 
388   // Re-compute parameters                        388   // Re-compute parameters
389   SetCachedValues();                              389   SetCachedValues();
390 }                                                 390 }
391                                                   391 
392 //////////////////////////////////////////////    392 //////////////////////////////////////////////////////////////////////////
393 //                                                393 //
394 // Calculate the coef's of the plane p1->p2->p    394 // Calculate the coef's of the plane p1->p2->p3->p4->p1
395 // where the ThreeVectors 1-4 are in anti-cloc    395 // where the ThreeVectors 1-4 are in anti-clockwise order when viewed
396 // from infront of the plane (i.e. from normal    396 // from infront of the plane (i.e. from normal direction).
397 //                                                397 //
398 // Return true if the points are coplanar, fal    398 // Return true if the points are coplanar, false otherwise
399                                                   399 
400 G4bool G4Trap::MakePlane( const G4ThreeVector&    400 G4bool G4Trap::MakePlane( const G4ThreeVector& p1,
401                           const G4ThreeVector&    401                           const G4ThreeVector& p2,
402                           const G4ThreeVector&    402                           const G4ThreeVector& p3,
403                           const G4ThreeVector&    403                           const G4ThreeVector& p4,
404                                 TrapSidePlane&    404                                 TrapSidePlane& plane )
405 {                                                 405 {
406   G4ThreeVector normal = ((p4 - p2).cross(p3 -    406   G4ThreeVector normal = ((p4 - p2).cross(p3 - p1)).unit();
407   if (std::abs(normal.x()) < DBL_EPSILON) norm    407   if (std::abs(normal.x()) < DBL_EPSILON) normal.setX(0);
408   if (std::abs(normal.y()) < DBL_EPSILON) norm    408   if (std::abs(normal.y()) < DBL_EPSILON) normal.setY(0);
409   if (std::abs(normal.z()) < DBL_EPSILON) norm    409   if (std::abs(normal.z()) < DBL_EPSILON) normal.setZ(0);
410   normal = normal.unit();                         410   normal = normal.unit();
411                                                   411 
412   G4ThreeVector centre = (p1 + p2 + p3 + p4)*0    412   G4ThreeVector centre = (p1 + p2 + p3 + p4)*0.25;
413   plane.a =  normal.x();                          413   plane.a =  normal.x();
414   plane.b =  normal.y();                          414   plane.b =  normal.y();
415   plane.c =  normal.z();                          415   plane.c =  normal.z();
416   plane.d = -normal.dot(centre);                  416   plane.d = -normal.dot(centre);
417                                                   417 
418   // compute distances and check planarity        418   // compute distances and check planarity
419   G4double d1 = std::abs(normal.dot(p1) + plan    419   G4double d1 = std::abs(normal.dot(p1) + plane.d);
420   G4double d2 = std::abs(normal.dot(p2) + plan    420   G4double d2 = std::abs(normal.dot(p2) + plane.d);
421   G4double d3 = std::abs(normal.dot(p3) + plan    421   G4double d3 = std::abs(normal.dot(p3) + plane.d);
422   G4double d4 = std::abs(normal.dot(p4) + plan    422   G4double d4 = std::abs(normal.dot(p4) + plane.d);
423   G4double dmax = std::max(std::max(std::max(d    423   G4double dmax = std::max(std::max(std::max(d1,d2),d3),d4);
424                                                   424 
425   return dmax <= 1000 * kCarTolerance;            425   return dmax <= 1000 * kCarTolerance;
426 }                                                 426 }
427                                                   427 
428 //////////////////////////////////////////////    428 //////////////////////////////////////////////////////////////////////////
429 //                                                429 //
430 // Recompute parameters using planes              430 // Recompute parameters using planes
431                                                   431 
432 void G4Trap::SetCachedValues()                    432 void G4Trap::SetCachedValues()
433 {                                                 433 {
434   // Set indeces                                  434   // Set indeces
435   constexpr  G4int iface[6][4] =                  435   constexpr  G4int iface[6][4] =
436       { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,    436       { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3}, {4,6,7,5} };
437                                                   437 
438   // Get vertices                                 438   // Get vertices
439   G4ThreeVector pt[8];                            439   G4ThreeVector pt[8];
440   GetVertices(pt);                                440   GetVertices(pt);
441                                                   441 
442   // Set face areas                               442   // Set face areas
443   for (G4int i=0; i<6; ++i)                       443   for (G4int i=0; i<6; ++i)
444   {                                               444   {
445     fAreas[i] = G4GeomTools::QuadAreaNormal(pt    445     fAreas[i] = G4GeomTools::QuadAreaNormal(pt[iface[i][0]],
446                                             pt    446                                             pt[iface[i][1]],
447                                             pt    447                                             pt[iface[i][2]],
448                                             pt    448                                             pt[iface[i][3]]).mag();
449   }                                               449   }
450   for (G4int i=1; i<6; ++i) { fAreas[i] += fAr    450   for (G4int i=1; i<6; ++i) { fAreas[i] += fAreas[i - 1]; }
451                                                   451 
452   // Define type of trapezoid                     452   // Define type of trapezoid
453   fTrapType = 0;                                  453   fTrapType = 0;
454   if (fPlanes[0].b  == -1 && fPlanes[1].b == 1    454   if (fPlanes[0].b  == -1 && fPlanes[1].b == 1 &&
455       std::abs(fPlanes[0].a) < DBL_EPSILON &&     455       std::abs(fPlanes[0].a) < DBL_EPSILON &&
456       std::abs(fPlanes[0].c) < DBL_EPSILON &&     456       std::abs(fPlanes[0].c) < DBL_EPSILON &&
457       std::abs(fPlanes[1].a) < DBL_EPSILON &&     457       std::abs(fPlanes[1].a) < DBL_EPSILON &&
458       std::abs(fPlanes[1].c) < DBL_EPSILON)       458       std::abs(fPlanes[1].c) < DBL_EPSILON)
459   {                                               459   {
460     fTrapType = 1; // YZ section is a rectangl    460     fTrapType = 1; // YZ section is a rectangle ...
461     if (std::abs(fPlanes[2].a + fPlanes[3].a)     461     if (std::abs(fPlanes[2].a + fPlanes[3].a) < DBL_EPSILON &&
462         std::abs(fPlanes[2].c - fPlanes[3].c)     462         std::abs(fPlanes[2].c - fPlanes[3].c) < DBL_EPSILON &&
463         fPlanes[2].b == 0 &&                      463         fPlanes[2].b == 0 &&
464         fPlanes[3].b == 0)                        464         fPlanes[3].b == 0)
465     {                                             465     {
466       fTrapType = 2; // ... and XZ section is     466       fTrapType = 2; // ... and XZ section is a isosceles trapezoid
467       fPlanes[2].a = -fPlanes[3].a;               467       fPlanes[2].a = -fPlanes[3].a;
468       fPlanes[2].c =  fPlanes[3].c;               468       fPlanes[2].c =  fPlanes[3].c;
469     }                                             469     }
470     if (std::abs(fPlanes[2].a + fPlanes[3].a)     470     if (std::abs(fPlanes[2].a + fPlanes[3].a) < DBL_EPSILON &&
471         std::abs(fPlanes[2].b - fPlanes[3].b)     471         std::abs(fPlanes[2].b - fPlanes[3].b) < DBL_EPSILON &&
472         fPlanes[2].c == 0 &&                      472         fPlanes[2].c == 0 &&
473         fPlanes[3].c == 0)                        473         fPlanes[3].c == 0)
474     {                                             474     {
475       fTrapType = 3; // ... and XY section is     475       fTrapType = 3; // ... and XY section is a isosceles trapezoid
476       fPlanes[2].a = -fPlanes[3].a;               476       fPlanes[2].a = -fPlanes[3].a;
477       fPlanes[2].b =  fPlanes[3].b;               477       fPlanes[2].b =  fPlanes[3].b;
478     }                                             478     }
479   }                                               479   }
480 }                                                 480 }
481                                                   481 
482 //////////////////////////////////////////////    482 //////////////////////////////////////////////////////////////////////////
483 //                                                483 //
484 // Get volume                                     484 // Get volume
485                                                   485 
486 G4double G4Trap::GetCubicVolume()                 486 G4double G4Trap::GetCubicVolume()
487 {                                                 487 {
488   if (fCubicVolume == 0)                          488   if (fCubicVolume == 0)
489   {                                               489   {
490     G4ThreeVector pt[8];                          490     G4ThreeVector pt[8];
491     GetVertices(pt);                              491     GetVertices(pt);
492                                                   492 
493     G4double dz  = pt[4].z() - pt[0].z();         493     G4double dz  = pt[4].z() - pt[0].z();
494     G4double dy1 = pt[2].y() - pt[0].y();         494     G4double dy1 = pt[2].y() - pt[0].y();
495     G4double dx1 = pt[1].x() - pt[0].x();         495     G4double dx1 = pt[1].x() - pt[0].x();
496     G4double dx2 = pt[3].x() - pt[2].x();         496     G4double dx2 = pt[3].x() - pt[2].x();
497     G4double dy2 = pt[6].y() - pt[4].y();         497     G4double dy2 = pt[6].y() - pt[4].y();
498     G4double dx3 = pt[5].x() - pt[4].x();         498     G4double dx3 = pt[5].x() - pt[4].x();
499     G4double dx4 = pt[7].x() - pt[6].x();         499     G4double dx4 = pt[7].x() - pt[6].x();
500                                                   500 
501     fCubicVolume = ((dx1 + dx2 + dx3 + dx4)*(d    501     fCubicVolume = ((dx1 + dx2 + dx3 + dx4)*(dy1 + dy2) +
502                     (dx4 + dx3 - dx2 - dx1)*(d    502                     (dx4 + dx3 - dx2 - dx1)*(dy2 - dy1)/3)*dz*0.125;
503   }                                               503   }
504   return fCubicVolume;                            504   return fCubicVolume;
505 }                                                 505 }
506                                                   506 
507 //////////////////////////////////////////////    507 //////////////////////////////////////////////////////////////////////////
508 //                                                508 //
509 // Get surface area                               509 // Get surface area
510                                                   510 
511 G4double G4Trap::GetSurfaceArea()                 511 G4double G4Trap::GetSurfaceArea()
512 {                                                 512 {
513   if (fSurfaceArea == 0)                          513   if (fSurfaceArea == 0)
514   {                                               514   {
515     G4ThreeVector pt[8];                          515     G4ThreeVector pt[8];
516     G4int iface [6][4] =                          516     G4int iface [6][4] =
517       { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,    517       { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3}, {4,6,7,5} };
518                                                   518 
519     GetVertices(pt);                              519     GetVertices(pt);
520     for (const auto & i : iface)                  520     for (const auto & i : iface)
521     {                                             521     {
522       fSurfaceArea += G4GeomTools::QuadAreaNor    522       fSurfaceArea += G4GeomTools::QuadAreaNormal(pt[i[0]],
523                                                   523                                                   pt[i[1]],
524                                                   524                                                   pt[i[2]],
525                                                   525                                                   pt[i[3]]).mag();
526     }                                             526     }
527   }                                               527   }
528   return fSurfaceArea;                            528   return fSurfaceArea;
529 }                                                 529 }
530                                                   530 
531 //////////////////////////////////////////////    531 //////////////////////////////////////////////////////////////////////////
532 //                                                532 //
533 // Dispatch to parameterisation for replicatio    533 // Dispatch to parameterisation for replication mechanism dimension
534 // computation & modification.                    534 // computation & modification.
535                                                   535 
536 void G4Trap::ComputeDimensions(       G4VPVPar    536 void G4Trap::ComputeDimensions(       G4VPVParameterisation* p,
537                                 const G4int n,    537                                 const G4int n,
538                                 const G4VPhysi    538                                 const G4VPhysicalVolume* pRep )
539 {                                                 539 {
540   p->ComputeDimensions(*this,n,pRep);             540   p->ComputeDimensions(*this,n,pRep);
541 }                                                 541 }
542                                                   542 
543 //////////////////////////////////////////////    543 //////////////////////////////////////////////////////////////////////////
544 //                                                544 //
545 // Get bounding box                               545 // Get bounding box
546                                                   546 
547 void G4Trap::BoundingLimits(G4ThreeVector& pMi    547 void G4Trap::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const
548 {                                                 548 {
549   G4ThreeVector pt[8];                            549   G4ThreeVector pt[8];
550   GetVertices(pt);                                550   GetVertices(pt);
551                                                   551 
552   G4double xmin = kInfinity, xmax = -kInfinity    552   G4double xmin = kInfinity, xmax = -kInfinity;
553   G4double ymin = kInfinity, ymax = -kInfinity    553   G4double ymin = kInfinity, ymax = -kInfinity;
554   for (const auto & i : pt)                       554   for (const auto & i : pt)
555   {                                               555   {
556     G4double x = i.x();                           556     G4double x = i.x();
557     if (x < xmin) xmin = x;                       557     if (x < xmin) xmin = x;
558     if (x > xmax) xmax = x;                       558     if (x > xmax) xmax = x;
559     G4double y = i.y();                           559     G4double y = i.y();
560     if (y < ymin) ymin = y;                       560     if (y < ymin) ymin = y;
561     if (y > ymax) ymax = y;                       561     if (y > ymax) ymax = y;
562   }                                               562   }
563                                                   563 
564   G4double dz   = GetZHalfLength();               564   G4double dz   = GetZHalfLength();
565   pMin.set(xmin,ymin,-dz);                        565   pMin.set(xmin,ymin,-dz);
566   pMax.set(xmax,ymax, dz);                        566   pMax.set(xmax,ymax, dz);
567                                                   567 
568   // Check correctness of the bounding box        568   // Check correctness of the bounding box
569   //                                              569   //
570   if (pMin.x() >= pMax.x() || pMin.y() >= pMax    570   if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
571   {                                               571   {
572     std::ostringstream message;                   572     std::ostringstream message;
573     message << "Bad bounding box (min >= max)     573     message << "Bad bounding box (min >= max) for solid: "
574             << GetName() << " !"                  574             << GetName() << " !"
575             << "\npMin = " << pMin                575             << "\npMin = " << pMin
576             << "\npMax = " << pMax;               576             << "\npMax = " << pMax;
577     G4Exception("G4Trap::BoundingLimits()", "G    577     G4Exception("G4Trap::BoundingLimits()", "GeomMgt0001",
578                 JustWarning, message);            578                 JustWarning, message);
579     DumpInfo();                                   579     DumpInfo();
580   }                                               580   }
581 }                                                 581 }
582                                                   582 
583 //////////////////////////////////////////////    583 //////////////////////////////////////////////////////////////////////////
584 //                                                584 //
585 // Calculate extent under transform and specif    585 // Calculate extent under transform and specified limit
586                                                   586 
587 G4bool G4Trap::CalculateExtent( const EAxis pA    587 G4bool G4Trap::CalculateExtent( const EAxis pAxis,
588                                 const G4VoxelL    588                                 const G4VoxelLimits& pVoxelLimit,
589                                 const G4Affine    589                                 const G4AffineTransform& pTransform,
590                                       G4double    590                                       G4double& pMin, G4double& pMax) const
591 {                                                 591 {
592   G4ThreeVector bmin, bmax;                       592   G4ThreeVector bmin, bmax;
593   G4bool exist;                                   593   G4bool exist;
594                                                   594 
595   // Check bounding box (bbox)                    595   // Check bounding box (bbox)
596   //                                              596   //
597   BoundingLimits(bmin,bmax);                      597   BoundingLimits(bmin,bmax);
598   G4BoundingEnvelope bbox(bmin,bmax);             598   G4BoundingEnvelope bbox(bmin,bmax);
599 #ifdef G4BBOX_EXTENT                              599 #ifdef G4BBOX_EXTENT
600   return bbox.CalculateExtent(pAxis,pVoxelLimi    600   return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
601 #endif                                            601 #endif
602   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox    602   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax))
603   {                                               603   {
604     return exist = pMin < pMax;                   604     return exist = pMin < pMax;
605   }                                               605   }
606                                                   606 
607   // Set bounding envelope (benv) and calculat    607   // Set bounding envelope (benv) and calculate extent
608   //                                              608   //
609   G4ThreeVector pt[8];                            609   G4ThreeVector pt[8];
610   GetVertices(pt);                                610   GetVertices(pt);
611                                                   611 
612   G4ThreeVectorList baseA(4), baseB(4);           612   G4ThreeVectorList baseA(4), baseB(4);
613   baseA[0] = pt[0];                               613   baseA[0] = pt[0];
614   baseA[1] = pt[1];                               614   baseA[1] = pt[1];
615   baseA[2] = pt[3];                               615   baseA[2] = pt[3];
616   baseA[3] = pt[2];                               616   baseA[3] = pt[2];
617                                                   617 
618   baseB[0] = pt[4];                               618   baseB[0] = pt[4];
619   baseB[1] = pt[5];                               619   baseB[1] = pt[5];
620   baseB[2] = pt[7];                               620   baseB[2] = pt[7];
621   baseB[3] = pt[6];                               621   baseB[3] = pt[6];
622                                                   622 
623   std::vector<const G4ThreeVectorList *> polyg    623   std::vector<const G4ThreeVectorList *> polygons(2);
624   polygons[0] = &baseA;                           624   polygons[0] = &baseA;
625   polygons[1] = &baseB;                           625   polygons[1] = &baseB;
626                                                   626 
627   G4BoundingEnvelope benv(bmin,bmax,polygons);    627   G4BoundingEnvelope benv(bmin,bmax,polygons);
628   exist = benv.CalculateExtent(pAxis,pVoxelLim    628   exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
629   return exist;                                   629   return exist;
630 }                                                 630 }
631                                                   631 
632 //////////////////////////////////////////////    632 //////////////////////////////////////////////////////////////////////////
633 //                                                633 //
634 // Return whether point is inside/outside/on_s    634 // Return whether point is inside/outside/on_surface
635                                                   635 
636 EInside G4Trap::Inside( const G4ThreeVector& p    636 EInside G4Trap::Inside( const G4ThreeVector& p ) const
637 {                                                 637 {
638   switch (fTrapType)                              638   switch (fTrapType)
639   {                                               639   {
640     case 0: // General case                       640     case 0: // General case
641     {                                             641     {
642       G4double dz = std::abs(p.z())-fDz;          642       G4double dz = std::abs(p.z())-fDz;
643       G4double dy1 = fPlanes[0].b*p.y()+fPlane    643       G4double dy1 = fPlanes[0].b*p.y()+fPlanes[0].c*p.z()+fPlanes[0].d;
644       G4double dy2 = fPlanes[1].b*p.y()+fPlane    644       G4double dy2 = fPlanes[1].b*p.y()+fPlanes[1].c*p.z()+fPlanes[1].d;
645       G4double dy = std::max(dz,std::max(dy1,d    645       G4double dy = std::max(dz,std::max(dy1,dy2));
646                                                   646 
647       G4double dx1 = fPlanes[2].a*p.x()+fPlane    647       G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y()
648                    + fPlanes[2].c*p.z()+fPlane    648                    + fPlanes[2].c*p.z()+fPlanes[2].d;
649       G4double dx2 = fPlanes[3].a*p.x()+fPlane    649       G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y()
650                    + fPlanes[3].c*p.z()+fPlane    650                    + fPlanes[3].c*p.z()+fPlanes[3].d;
651       G4double dist = std::max(dy,std::max(dx1    651       G4double dist = std::max(dy,std::max(dx1,dx2));
652                                                   652 
653       return (dist > halfCarTolerance) ? kOuts    653       return (dist > halfCarTolerance) ? kOutside :
654         ((dist > -halfCarTolerance) ? kSurface    654         ((dist > -halfCarTolerance) ? kSurface : kInside);
655     }                                             655     }
656     case 1: // YZ section is a rectangle          656     case 1: // YZ section is a rectangle
657     {                                             657     {
658       G4double dz = std::abs(p.z())-fDz;          658       G4double dz = std::abs(p.z())-fDz;
659       G4double dy = std::max(dz,std::abs(p.y()    659       G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d);
660       G4double dx1 = fPlanes[2].a*p.x()+fPlane    660       G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y()
661                    + fPlanes[2].c*p.z()+fPlane    661                    + fPlanes[2].c*p.z()+fPlanes[2].d;
662       G4double dx2 = fPlanes[3].a*p.x()+fPlane    662       G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y()
663                    + fPlanes[3].c*p.z()+fPlane    663                    + fPlanes[3].c*p.z()+fPlanes[3].d;
664       G4double dist = std::max(dy,std::max(dx1    664       G4double dist = std::max(dy,std::max(dx1,dx2));
665                                                   665 
666       return (dist > halfCarTolerance) ? kOuts    666       return (dist > halfCarTolerance) ? kOutside :
667         ((dist > -halfCarTolerance) ? kSurface    667         ((dist > -halfCarTolerance) ? kSurface : kInside);
668     }                                             668     }
669     case 2: // YZ section is a rectangle and      669     case 2: // YZ section is a rectangle and
670     {       // XZ section is an isosceles trap    670     {       // XZ section is an isosceles trapezoid
671       G4double dz = std::abs(p.z())-fDz;          671       G4double dz = std::abs(p.z())-fDz;
672       G4double dy = std::max(dz,std::abs(p.y()    672       G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d);
673       G4double dx = fPlanes[3].a*std::abs(p.x(    673       G4double dx = fPlanes[3].a*std::abs(p.x())
674                   + fPlanes[3].c*p.z()+fPlanes    674                   + fPlanes[3].c*p.z()+fPlanes[3].d;
675       G4double dist = std::max(dy,dx);            675       G4double dist = std::max(dy,dx);
676                                                   676 
677       return (dist > halfCarTolerance) ? kOuts    677       return (dist > halfCarTolerance) ? kOutside :
678         ((dist > -halfCarTolerance) ? kSurface    678         ((dist > -halfCarTolerance) ? kSurface : kInside);
679     }                                             679     }
680     case 3: // YZ section is a rectangle and      680     case 3: // YZ section is a rectangle and
681     {       // XY section is an isosceles trap    681     {       // XY section is an isosceles trapezoid
682       G4double dz = std::abs(p.z())-fDz;          682       G4double dz = std::abs(p.z())-fDz;
683       G4double dy = std::max(dz,std::abs(p.y()    683       G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d);
684       G4double dx = fPlanes[3].a*std::abs(p.x(    684       G4double dx = fPlanes[3].a*std::abs(p.x())
685                   + fPlanes[3].b*p.y()+fPlanes    685                   + fPlanes[3].b*p.y()+fPlanes[3].d;
686       G4double dist = std::max(dy,dx);            686       G4double dist = std::max(dy,dx);
687                                                   687 
688       return (dist > halfCarTolerance) ? kOuts    688       return (dist > halfCarTolerance) ? kOutside :
689         ((dist > -halfCarTolerance) ? kSurface    689         ((dist > -halfCarTolerance) ? kSurface : kInside);
690     }                                             690     }
691   }                                               691   }
692   return kOutside;                                692   return kOutside;
693 }                                                 693 }
694                                                   694 
695 //////////////////////////////////////////////    695 //////////////////////////////////////////////////////////////////////////
696 //                                                696 //
697 // Determine side, and return corresponding no    697 // Determine side, and return corresponding normal
698                                                   698 
699 G4ThreeVector G4Trap::SurfaceNormal( const G4T    699 G4ThreeVector G4Trap::SurfaceNormal( const G4ThreeVector& p ) const
700 {                                                 700 {
701   G4double nx = 0, ny = 0, nz = 0;                701   G4double nx = 0, ny = 0, nz = 0;
702   G4double dz = std::abs(p.z()) - fDz;            702   G4double dz = std::abs(p.z()) - fDz;
703   nz = std::copysign(G4double(std::abs(dz) <=     703   nz = std::copysign(G4double(std::abs(dz) <= halfCarTolerance), p.z());
704                                                   704 
705   switch (fTrapType)                              705   switch (fTrapType)
706   {                                               706   {
707     case 0: // General case                       707     case 0: // General case
708     {                                             708     {
709       for (G4int i=0; i<2; ++i)                   709       for (G4int i=0; i<2; ++i)
710       {                                           710       {
711         G4double dy = fPlanes[i].b*p.y() + fPl    711         G4double dy = fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d;
712         if (std::abs(dy) > halfCarTolerance) c    712         if (std::abs(dy) > halfCarTolerance) continue;
713         ny  = fPlanes[i].b;                       713         ny  = fPlanes[i].b;
714         nz += fPlanes[i].c;                       714         nz += fPlanes[i].c;
715         break;                                    715         break;
716       }                                           716       }
717       for (G4int i=2; i<4; ++i)                   717       for (G4int i=2; i<4; ++i)
718       {                                           718       {
719         G4double dx = fPlanes[i].a*p.x() +        719         G4double dx = fPlanes[i].a*p.x() +
720                       fPlanes[i].b*p.y() + fPl    720                       fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d;
721         if (std::abs(dx) > halfCarTolerance) c    721         if (std::abs(dx) > halfCarTolerance) continue;
722         nx  = fPlanes[i].a;                       722         nx  = fPlanes[i].a;
723         ny += fPlanes[i].b;                       723         ny += fPlanes[i].b;
724         nz += fPlanes[i].c;                       724         nz += fPlanes[i].c;
725         break;                                    725         break;
726       }                                           726       }
727       break;                                      727       break;
728     }                                             728     }
729     case 1: // YZ section - rectangle             729     case 1: // YZ section - rectangle
730     {                                             730     {
731       G4double dy = std::abs(p.y()) + fPlanes[    731       G4double dy = std::abs(p.y()) + fPlanes[1].d;
732       ny = std::copysign(G4double(std::abs(dy)    732       ny = std::copysign(G4double(std::abs(dy) <= halfCarTolerance), p.y());
733       for (G4int i=2; i<4; ++i)                   733       for (G4int i=2; i<4; ++i)
734       {                                           734       {
735         G4double dx = fPlanes[i].a*p.x() +        735         G4double dx = fPlanes[i].a*p.x() +
736                       fPlanes[i].b*p.y() + fPl    736                       fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d;
737         if (std::abs(dx) > halfCarTolerance) c    737         if (std::abs(dx) > halfCarTolerance) continue;
738         nx  = fPlanes[i].a;                       738         nx  = fPlanes[i].a;
739         ny += fPlanes[i].b;                       739         ny += fPlanes[i].b;
740         nz += fPlanes[i].c;                       740         nz += fPlanes[i].c;
741         break;                                    741         break;
742       }                                           742       }
743       break;                                      743       break;
744     }                                             744     }
745     case 2: // YZ section - rectangle, XZ sect    745     case 2: // YZ section - rectangle, XZ section - isosceles trapezoid
746     {                                             746     {
747       G4double dy = std::abs(p.y()) + fPlanes[    747       G4double dy = std::abs(p.y()) + fPlanes[1].d;
748       ny = std::copysign(G4double(std::abs(dy)    748       ny = std::copysign(G4double(std::abs(dy) <= halfCarTolerance), p.y());
749       G4double dx = fPlanes[3].a*std::abs(p.x(    749       G4double dx = fPlanes[3].a*std::abs(p.x()) +
750                     fPlanes[3].c*p.z() + fPlan    750                     fPlanes[3].c*p.z() + fPlanes[3].d;
751       G4double k = std::abs(dx) <= halfCarTole    751       G4double k = std::abs(dx) <= halfCarTolerance;
752       nx  = std::copysign(k, p.x())*fPlanes[3]    752       nx  = std::copysign(k, p.x())*fPlanes[3].a;
753       nz += k*fPlanes[3].c;                       753       nz += k*fPlanes[3].c;
754       break;                                      754       break;
755     }                                             755     }
756     case 3: // YZ section - rectangle, XY sect    756     case 3: // YZ section - rectangle, XY section - isosceles trapezoid
757     {                                             757     {
758       G4double dy = std::abs(p.y()) + fPlanes[    758       G4double dy = std::abs(p.y()) + fPlanes[1].d;
759       ny = std::copysign(G4double(std::abs(dy)    759       ny = std::copysign(G4double(std::abs(dy) <= halfCarTolerance), p.y());
760       G4double dx = fPlanes[3].a*std::abs(p.x(    760       G4double dx = fPlanes[3].a*std::abs(p.x()) +
761                     fPlanes[3].b*p.y() + fPlan    761                     fPlanes[3].b*p.y() + fPlanes[3].d;
762       G4double k = std::abs(dx) <= halfCarTole    762       G4double k = std::abs(dx) <= halfCarTolerance;
763       nx  = std::copysign(k, p.x())*fPlanes[3]    763       nx  = std::copysign(k, p.x())*fPlanes[3].a;
764       ny += k*fPlanes[3].b;                       764       ny += k*fPlanes[3].b;
765       break;                                      765       break;
766     }                                             766     }
767   }                                               767   }
768                                                   768 
769   // Return normal                                769   // Return normal
770   //                                              770   //
771   G4double mag2 = nx*nx + ny*ny + nz*nz;          771   G4double mag2 = nx*nx + ny*ny + nz*nz;
772   if (mag2 == 1)      return { nx,ny,nz };        772   if (mag2 == 1)      return { nx,ny,nz };
773   else if (mag2 != 0) return G4ThreeVector(nx,    773   else if (mag2 != 0) return G4ThreeVector(nx,ny,nz).unit(); // edge or corner
774   else                                            774   else
775   {                                               775   {
776     // Point is not on the surface                776     // Point is not on the surface
777     //                                            777     //
778 #ifdef G4CSGDEBUG                                 778 #ifdef G4CSGDEBUG
779     std::ostringstream message;                   779     std::ostringstream message;
780     G4long oldprc = message.precision(16);        780     G4long oldprc = message.precision(16);
781     message << "Point p is not on surface (!?)    781     message << "Point p is not on surface (!?) of solid: "
782             << GetName() << G4endl;               782             << GetName() << G4endl;
783     message << "Position:\n";                     783     message << "Position:\n";
784     message << "   p.x() = " << p.x()/mm << "     784     message << "   p.x() = " << p.x()/mm << " mm\n";
785     message << "   p.y() = " << p.y()/mm << "     785     message << "   p.y() = " << p.y()/mm << " mm\n";
786     message << "   p.z() = " << p.z()/mm << "     786     message << "   p.z() = " << p.z()/mm << " mm";
787     G4cout.precision(oldprc) ;                    787     G4cout.precision(oldprc) ;
788     G4Exception("G4Trap::SurfaceNormal(p)", "G    788     G4Exception("G4Trap::SurfaceNormal(p)", "GeomSolids1002",
789                 JustWarning, message );           789                 JustWarning, message );
790     DumpInfo();                                   790     DumpInfo();
791 #endif                                            791 #endif
792     return ApproxSurfaceNormal(p);                792     return ApproxSurfaceNormal(p);
793   }                                               793   }
794 }                                                 794 }
795                                                   795 
796 //////////////////////////////////////////////    796 //////////////////////////////////////////////////////////////////////////
797 //                                                797 //
798 // Algorithm for SurfaceNormal() following the    798 // Algorithm for SurfaceNormal() following the original specification
799 // for points not on the surface                  799 // for points not on the surface
800                                                   800 
801 G4ThreeVector G4Trap::ApproxSurfaceNormal( con    801 G4ThreeVector G4Trap::ApproxSurfaceNormal( const G4ThreeVector& p ) const
802 {                                                 802 {
803   G4double dist = -DBL_MAX;                       803   G4double dist = -DBL_MAX;
804   G4int iside = 0;                                804   G4int iside = 0;
805   for (G4int i=0; i<4; ++i)                       805   for (G4int i=0; i<4; ++i)
806   {                                               806   {
807     G4double d = fPlanes[i].a*p.x() +             807     G4double d = fPlanes[i].a*p.x() +
808                  fPlanes[i].b*p.y() +             808                  fPlanes[i].b*p.y() +
809                  fPlanes[i].c*p.z() + fPlanes[    809                  fPlanes[i].c*p.z() + fPlanes[i].d;
810     if (d > dist) { dist = d; iside = i; }        810     if (d > dist) { dist = d; iside = i; }
811   }                                               811   }
812                                                   812 
813   G4double distz = std::abs(p.z()) - fDz;         813   G4double distz = std::abs(p.z()) - fDz;
814   if (dist > distz)                               814   if (dist > distz)
815     return { fPlanes[iside].a, fPlanes[iside].    815     return { fPlanes[iside].a, fPlanes[iside].b, fPlanes[iside].c };
816   else                                            816   else
817     return { 0, 0, (G4double)((p.z() < 0) ? -1    817     return { 0, 0, (G4double)((p.z() < 0) ? -1 : 1) };
818 }                                                 818 }
819                                                   819 
820 //////////////////////////////////////////////    820 //////////////////////////////////////////////////////////////////////////
821 //                                                821 //
822 // Calculate distance to shape from outside       822 // Calculate distance to shape from outside
823 //  - return kInfinity if no intersection         823 //  - return kInfinity if no intersection
824                                                   824 
825 G4double G4Trap::DistanceToIn(const G4ThreeVec    825 G4double G4Trap::DistanceToIn(const G4ThreeVector& p,
826                               const G4ThreeVec    826                               const G4ThreeVector& v ) const
827 {                                                 827 {
828   // Z intersections                              828   // Z intersections
829   //                                              829   //
830   if ((std::abs(p.z()) - fDz) >= -halfCarToler    830   if ((std::abs(p.z()) - fDz) >= -halfCarTolerance && p.z()*v.z() >= 0)
831     return kInfinity;                             831     return kInfinity;
832   G4double invz = (-v.z() == 0) ? DBL_MAX : -1    832   G4double invz = (-v.z() == 0) ? DBL_MAX : -1./v.z();
833   G4double dz = (invz < 0) ? fDz : -fDz;          833   G4double dz = (invz < 0) ? fDz : -fDz;
834   G4double tzmin = (p.z() + dz)*invz;             834   G4double tzmin = (p.z() + dz)*invz;
835   G4double tzmax = (p.z() - dz)*invz;             835   G4double tzmax = (p.z() - dz)*invz;
836                                                   836 
837   // Y intersections                              837   // Y intersections
838   //                                              838   //
839   G4double tymin = 0, tymax = DBL_MAX;            839   G4double tymin = 0, tymax = DBL_MAX;
840   G4int i = 0;                                    840   G4int i = 0;
841   for ( ; i<2; ++i)                               841   for ( ; i<2; ++i)
842   {                                               842   {
843     G4double cosa = fPlanes[i].b*v.y() + fPlan    843     G4double cosa = fPlanes[i].b*v.y() + fPlanes[i].c*v.z();
844     G4double dist = fPlanes[i].b*p.y() + fPlan    844     G4double dist = fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d;
845     if (dist >= -halfCarTolerance)                845     if (dist >= -halfCarTolerance)
846     {                                             846     {
847       if (cosa >= 0) return kInfinity;            847       if (cosa >= 0) return kInfinity;
848       G4double tmp  = -dist/cosa;                 848       G4double tmp  = -dist/cosa;
849       if (tymin < tmp) tymin = tmp;               849       if (tymin < tmp) tymin = tmp;
850     }                                             850     }
851     else if (cosa > 0)                            851     else if (cosa > 0)
852     {                                             852     {
853       G4double tmp  = -dist/cosa;                 853       G4double tmp  = -dist/cosa;
854       if (tymax > tmp) tymax = tmp;               854       if (tymax > tmp) tymax = tmp;
855     }                                             855     }
856   }                                               856   }
857                                                   857 
858   // Z intersections                              858   // Z intersections
859   //                                              859   //
860   G4double txmin = 0, txmax = DBL_MAX;            860   G4double txmin = 0, txmax = DBL_MAX;
861   for ( ; i<4; ++i)                               861   for ( ; i<4; ++i)
862   {                                               862   {
863     G4double cosa = fPlanes[i].a*v.x()+fPlanes    863     G4double cosa = fPlanes[i].a*v.x()+fPlanes[i].b*v.y()+fPlanes[i].c*v.z();
864     G4double dist = fPlanes[i].a*p.x()+fPlanes    864     G4double dist = fPlanes[i].a*p.x()+fPlanes[i].b*p.y()+fPlanes[i].c*p.z() +
865                     fPlanes[i].d;                 865                     fPlanes[i].d;
866     if (dist >= -halfCarTolerance)                866     if (dist >= -halfCarTolerance)
867     {                                             867     {
868       if (cosa >= 0) return kInfinity;            868       if (cosa >= 0) return kInfinity;
869       G4double tmp  = -dist/cosa;                 869       G4double tmp  = -dist/cosa;
870       if (txmin < tmp) txmin = tmp;               870       if (txmin < tmp) txmin = tmp;
871     }                                             871     }
872     else if (cosa > 0)                            872     else if (cosa > 0)
873     {                                             873     {
874       G4double tmp  = -dist/cosa;                 874       G4double tmp  = -dist/cosa;
875       if (txmax > tmp) txmax = tmp;               875       if (txmax > tmp) txmax = tmp;
876     }                                             876     }
877   }                                               877   }
878                                                   878 
879   // Find distance                                879   // Find distance
880   //                                              880   //
881   G4double tmin = std::max(std::max(txmin,tymi    881   G4double tmin = std::max(std::max(txmin,tymin),tzmin);
882   G4double tmax = std::min(std::min(txmax,tyma    882   G4double tmax = std::min(std::min(txmax,tymax),tzmax);
883                                                   883 
884   if (tmax <= tmin + halfCarTolerance) return     884   if (tmax <= tmin + halfCarTolerance) return kInfinity; // touch or no hit
885   return (tmin < halfCarTolerance ) ? 0. : tmi    885   return (tmin < halfCarTolerance ) ? 0. : tmin;
886 }                                                 886 }
887                                                   887 
888 //////////////////////////////////////////////    888 //////////////////////////////////////////////////////////////////////////
889 //                                                889 //
890 // Calculate exact shortest distance to any bo    890 // Calculate exact shortest distance to any boundary from outside
891 // This is the best fast estimation of the sho    891 // This is the best fast estimation of the shortest distance to trap
892 // - return 0 if point is inside                  892 // - return 0 if point is inside
893                                                   893 
894 G4double G4Trap::DistanceToIn( const G4ThreeVe    894 G4double G4Trap::DistanceToIn( const G4ThreeVector& p ) const
895 {                                                 895 {
896   switch (fTrapType)                              896   switch (fTrapType)
897   {                                               897   {
898     case 0: // General case                       898     case 0: // General case
899     {                                             899     {
900       G4double dz = std::abs(p.z())-fDz;          900       G4double dz = std::abs(p.z())-fDz;
901       G4double dy1 = fPlanes[0].b*p.y()+fPlane    901       G4double dy1 = fPlanes[0].b*p.y()+fPlanes[0].c*p.z()+fPlanes[0].d;
902       G4double dy2 = fPlanes[1].b*p.y()+fPlane    902       G4double dy2 = fPlanes[1].b*p.y()+fPlanes[1].c*p.z()+fPlanes[1].d;
903       G4double dy = std::max(dz,std::max(dy1,d    903       G4double dy = std::max(dz,std::max(dy1,dy2));
904                                                   904 
905       G4double dx1 = fPlanes[2].a*p.x()+fPlane    905       G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y()
906                    + fPlanes[2].c*p.z()+fPlane    906                    + fPlanes[2].c*p.z()+fPlanes[2].d;
907       G4double dx2 = fPlanes[3].a*p.x()+fPlane    907       G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y()
908                    + fPlanes[3].c*p.z()+fPlane    908                    + fPlanes[3].c*p.z()+fPlanes[3].d;
909       G4double dist = std::max(dy,std::max(dx1    909       G4double dist = std::max(dy,std::max(dx1,dx2));
910       return (dist > 0) ? dist : 0.;              910       return (dist > 0) ? dist : 0.;
911     }                                             911     }
912     case 1: // YZ section is a rectangle          912     case 1: // YZ section is a rectangle
913     {                                             913     {
914       G4double dz = std::abs(p.z())-fDz;          914       G4double dz = std::abs(p.z())-fDz;
915       G4double dy = std::max(dz,std::abs(p.y()    915       G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d);
916       G4double dx1 = fPlanes[2].a*p.x()+fPlane    916       G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y()
917                    + fPlanes[2].c*p.z()+fPlane    917                    + fPlanes[2].c*p.z()+fPlanes[2].d;
918       G4double dx2 = fPlanes[3].a*p.x()+fPlane    918       G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y()
919                    + fPlanes[3].c*p.z()+fPlane    919                    + fPlanes[3].c*p.z()+fPlanes[3].d;
920       G4double dist = std::max(dy,std::max(dx1    920       G4double dist = std::max(dy,std::max(dx1,dx2));
921       return (dist > 0) ? dist : 0.;              921       return (dist > 0) ? dist : 0.;
922     }                                             922     }
923     case 2: // YZ section is a rectangle and      923     case 2: // YZ section is a rectangle and
924     {       // XZ section is an isosceles trap    924     {       // XZ section is an isosceles trapezoid
925       G4double dz = std::abs(p.z())-fDz;          925       G4double dz = std::abs(p.z())-fDz;
926       G4double dy = std::max(dz,std::abs(p.y()    926       G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d);
927       G4double dx = fPlanes[3].a*std::abs(p.x(    927       G4double dx = fPlanes[3].a*std::abs(p.x())
928                   + fPlanes[3].c*p.z()+fPlanes    928                   + fPlanes[3].c*p.z()+fPlanes[3].d;
929       G4double dist = std::max(dy,dx);            929       G4double dist = std::max(dy,dx);
930       return (dist > 0) ? dist : 0.;              930       return (dist > 0) ? dist : 0.;
931     }                                             931     }
932     case 3: // YZ section is a rectangle and      932     case 3: // YZ section is a rectangle and
933     {       // XY section is an isosceles trap    933     {       // XY section is an isosceles trapezoid
934       G4double dz = std::abs(p.z())-fDz;          934       G4double dz = std::abs(p.z())-fDz;
935       G4double dy = std::max(dz,std::abs(p.y()    935       G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d);
936       G4double dx = fPlanes[3].a*std::abs(p.x(    936       G4double dx = fPlanes[3].a*std::abs(p.x())
937                   + fPlanes[3].b*p.y()+fPlanes    937                   + fPlanes[3].b*p.y()+fPlanes[3].d;
938       G4double dist = std::max(dy,dx);            938       G4double dist = std::max(dy,dx);
939       return (dist > 0) ? dist : 0.;              939       return (dist > 0) ? dist : 0.;
940     }                                             940     }
941   }                                               941   }
942   return 0.;                                      942   return 0.;
943 }                                                 943 }
944                                                   944 
945 //////////////////////////////////////////////    945 //////////////////////////////////////////////////////////////////////////
946 //                                                946 //
947 // Calculate distance to surface of shape from    947 // Calculate distance to surface of shape from inside and
948 // find normal at exit point, if required         948 // find normal at exit point, if required
949 // - when leaving the surface, return 0           949 // - when leaving the surface, return 0
950                                                   950 
951 G4double G4Trap::DistanceToOut(const G4ThreeVe    951 G4double G4Trap::DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v,
952                                const G4bool ca    952                                const G4bool calcNorm,
953                                      G4bool* v    953                                      G4bool* validNorm, G4ThreeVector* n) const
954 {                                                 954 {
955   // Z intersections                              955   // Z intersections
956   //                                              956   //
957   if ((std::abs(p.z()) - fDz) >= -halfCarToler    957   if ((std::abs(p.z()) - fDz) >= -halfCarTolerance && p.z()*v.z() > 0)
958   {                                               958   {
959     if (calcNorm)                                 959     if (calcNorm)
960     {                                             960     {
961       *validNorm = true;                          961       *validNorm = true;
962       n->set(0, 0, (p.z() < 0) ? -1 : 1);         962       n->set(0, 0, (p.z() < 0) ? -1 : 1);
963     }                                             963     }
964     return 0;                                     964     return 0;
965   }                                               965   }
966   G4double vz = v.z();                            966   G4double vz = v.z();
967   G4double tmax = (vz == 0) ? DBL_MAX : (std::    967   G4double tmax = (vz == 0) ? DBL_MAX : (std::copysign(fDz,vz) - p.z())/vz;
968   G4int iside = (vz < 0) ? -4 : -2; // little     968   G4int iside = (vz < 0) ? -4 : -2; // little trick: (-4+3)=-1, (-2+3)=+1
969                                                   969 
970   // Y intersections                              970   // Y intersections
971   //                                              971   //
972   G4int i = 0;                                    972   G4int i = 0;
973   for ( ; i<2; ++i)                               973   for ( ; i<2; ++i)
974   {                                               974   {
975     G4double cosa = fPlanes[i].b*v.y() + fPlan    975     G4double cosa = fPlanes[i].b*v.y() + fPlanes[i].c*v.z();
976     if (cosa > 0)                                 976     if (cosa > 0)
977     {                                             977     {
978       G4double dist = fPlanes[i].b*p.y() + fPl    978       G4double dist = fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d;
979       if (dist >= -halfCarTolerance)              979       if (dist >= -halfCarTolerance)
980       {                                           980       {
981         if (calcNorm)                             981         if (calcNorm)
982         {                                         982         {
983           *validNorm = true;                      983           *validNorm = true;
984           n->set(0, fPlanes[i].b, fPlanes[i].c    984           n->set(0, fPlanes[i].b, fPlanes[i].c);
985         }                                         985         }
986         return 0;                                 986         return 0;
987       }                                           987       }
988       G4double tmp = -dist/cosa;                  988       G4double tmp = -dist/cosa;
989       if (tmax > tmp) { tmax = tmp; iside = i;    989       if (tmax > tmp) { tmax = tmp; iside = i; }
990     }                                             990     }
991   }                                               991   }
992                                                   992 
993   // X intersections                              993   // X intersections
994   //                                              994   //
995   for ( ; i<4; ++i)                               995   for ( ; i<4; ++i)
996   {                                               996   {
997     G4double cosa = fPlanes[i].a*v.x()+fPlanes    997     G4double cosa = fPlanes[i].a*v.x()+fPlanes[i].b*v.y()+fPlanes[i].c*v.z();
998     if (cosa > 0)                                 998     if (cosa > 0)
999     {                                             999     {
1000       G4double dist = fPlanes[i].a*p.x() +       1000       G4double dist = fPlanes[i].a*p.x() +
1001                       fPlanes[i].b*p.y() + fP    1001                       fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d;
1002       if (dist >= -halfCarTolerance)             1002       if (dist >= -halfCarTolerance)
1003       {                                          1003       {
1004         if (calcNorm)                            1004         if (calcNorm)
1005         {                                        1005         {
1006            *validNorm = true;                    1006            *validNorm = true;
1007            n->set(fPlanes[i].a, fPlanes[i].b,    1007            n->set(fPlanes[i].a, fPlanes[i].b, fPlanes[i].c);
1008         }                                        1008         }
1009         return 0;                                1009         return 0;
1010       }                                          1010       }
1011       G4double tmp = -dist/cosa;                 1011       G4double tmp = -dist/cosa;
1012       if (tmax > tmp) { tmax = tmp; iside = i    1012       if (tmax > tmp) { tmax = tmp; iside = i; }
1013     }                                            1013     }
1014   }                                              1014   }
1015                                                  1015 
1016   // Set normal, if required, and return dist    1016   // Set normal, if required, and return distance
1017   //                                             1017   //
1018   if (calcNorm)                                  1018   if (calcNorm)
1019   {                                              1019   {
1020     *validNorm = true;                           1020     *validNorm = true;
1021     if (iside < 0)                               1021     if (iside < 0)
1022       n->set(0, 0, iside + 3); // (-4+3)=-1,     1022       n->set(0, 0, iside + 3); // (-4+3)=-1, (-2+3)=+1
1023     else                                         1023     else
1024       n->set(fPlanes[iside].a, fPlanes[iside]    1024       n->set(fPlanes[iside].a, fPlanes[iside].b, fPlanes[iside].c);
1025   }                                              1025   }
1026   return tmax;                                   1026   return tmax;
1027 }                                                1027 }
1028                                                  1028 
1029 /////////////////////////////////////////////    1029 //////////////////////////////////////////////////////////////////////////
1030 //                                               1030 //
1031 // Calculate exact shortest distance to any b    1031 // Calculate exact shortest distance to any boundary from inside
1032 // - Returns 0 is ThreeVector outside            1032 // - Returns 0 is ThreeVector outside
1033                                                  1033 
1034 G4double G4Trap::DistanceToOut( const G4Three    1034 G4double G4Trap::DistanceToOut( const G4ThreeVector& p ) const
1035 {                                                1035 {
1036 #ifdef G4CSGDEBUG                                1036 #ifdef G4CSGDEBUG
1037   if( Inside(p) == kOutside )                    1037   if( Inside(p) == kOutside )
1038   {                                              1038   {
1039     std::ostringstream message;                  1039     std::ostringstream message;
1040     G4long oldprc = message.precision(16);       1040     G4long oldprc = message.precision(16);
1041     message << "Point p is outside (!?) of so    1041     message << "Point p is outside (!?) of solid: " << GetName() << G4endl;
1042     message << "Position:\n";                    1042     message << "Position:\n";
1043     message << "   p.x() = " << p.x()/mm << "    1043     message << "   p.x() = " << p.x()/mm << " mm\n";
1044     message << "   p.y() = " << p.y()/mm << "    1044     message << "   p.y() = " << p.y()/mm << " mm\n";
1045     message << "   p.z() = " << p.z()/mm << "    1045     message << "   p.z() = " << p.z()/mm << " mm";
1046     G4cout.precision(oldprc);                    1046     G4cout.precision(oldprc);
1047     G4Exception("G4Trap::DistanceToOut(p)", "    1047     G4Exception("G4Trap::DistanceToOut(p)", "GeomSolids1002",
1048                 JustWarning, message );          1048                 JustWarning, message );
1049     DumpInfo();                                  1049     DumpInfo();
1050   }                                              1050   }
1051 #endif                                           1051 #endif
1052   switch (fTrapType)                             1052   switch (fTrapType)
1053   {                                              1053   {
1054     case 0: // General case                      1054     case 0: // General case
1055     {                                            1055     {
1056       G4double dz = std::abs(p.z())-fDz;         1056       G4double dz = std::abs(p.z())-fDz;
1057       G4double dy1 = fPlanes[0].b*p.y()+fPlan    1057       G4double dy1 = fPlanes[0].b*p.y()+fPlanes[0].c*p.z()+fPlanes[0].d;
1058       G4double dy2 = fPlanes[1].b*p.y()+fPlan    1058       G4double dy2 = fPlanes[1].b*p.y()+fPlanes[1].c*p.z()+fPlanes[1].d;
1059       G4double dy = std::max(dz,std::max(dy1,    1059       G4double dy = std::max(dz,std::max(dy1,dy2));
1060                                                  1060 
1061       G4double dx1 = fPlanes[2].a*p.x()+fPlan    1061       G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y()
1062                    + fPlanes[2].c*p.z()+fPlan    1062                    + fPlanes[2].c*p.z()+fPlanes[2].d;
1063       G4double dx2 = fPlanes[3].a*p.x()+fPlan    1063       G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y()
1064                    + fPlanes[3].c*p.z()+fPlan    1064                    + fPlanes[3].c*p.z()+fPlanes[3].d;
1065       G4double dist = std::max(dy,std::max(dx    1065       G4double dist = std::max(dy,std::max(dx1,dx2));
1066       return (dist < 0) ? -dist : 0.;            1066       return (dist < 0) ? -dist : 0.;
1067     }                                            1067     }
1068     case 1: // YZ section is a rectangle         1068     case 1: // YZ section is a rectangle
1069     {                                            1069     {
1070       G4double dz = std::abs(p.z())-fDz;         1070       G4double dz = std::abs(p.z())-fDz;
1071       G4double dy = std::max(dz,std::abs(p.y(    1071       G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d);
1072       G4double dx1 = fPlanes[2].a*p.x()+fPlan    1072       G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y()
1073                    + fPlanes[2].c*p.z()+fPlan    1073                    + fPlanes[2].c*p.z()+fPlanes[2].d;
1074       G4double dx2 = fPlanes[3].a*p.x()+fPlan    1074       G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y()
1075                    + fPlanes[3].c*p.z()+fPlan    1075                    + fPlanes[3].c*p.z()+fPlanes[3].d;
1076       G4double dist = std::max(dy,std::max(dx    1076       G4double dist = std::max(dy,std::max(dx1,dx2));
1077       return (dist < 0) ? -dist : 0.;            1077       return (dist < 0) ? -dist : 0.;
1078     }                                            1078     }
1079     case 2: // YZ section is a rectangle and     1079     case 2: // YZ section is a rectangle and
1080     {       // XZ section is an isosceles tra    1080     {       // XZ section is an isosceles trapezoid
1081       G4double dz = std::abs(p.z())-fDz;         1081       G4double dz = std::abs(p.z())-fDz;
1082       G4double dy = std::max(dz,std::abs(p.y(    1082       G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d);
1083       G4double dx = fPlanes[3].a*std::abs(p.x    1083       G4double dx = fPlanes[3].a*std::abs(p.x())
1084                   + fPlanes[3].c*p.z()+fPlane    1084                   + fPlanes[3].c*p.z()+fPlanes[3].d;
1085       G4double dist = std::max(dy,dx);           1085       G4double dist = std::max(dy,dx);
1086       return (dist < 0) ? -dist : 0.;            1086       return (dist < 0) ? -dist : 0.;
1087     }                                            1087     }
1088     case 3: // YZ section is a rectangle and     1088     case 3: // YZ section is a rectangle and
1089     {       // XY section is an isosceles tra    1089     {       // XY section is an isosceles trapezoid
1090       G4double dz = std::abs(p.z())-fDz;         1090       G4double dz = std::abs(p.z())-fDz;
1091       G4double dy = std::max(dz,std::abs(p.y(    1091       G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d);
1092       G4double dx = fPlanes[3].a*std::abs(p.x    1092       G4double dx = fPlanes[3].a*std::abs(p.x())
1093                   + fPlanes[3].b*p.y()+fPlane    1093                   + fPlanes[3].b*p.y()+fPlanes[3].d;
1094       G4double dist = std::max(dy,dx);           1094       G4double dist = std::max(dy,dx);
1095       return (dist < 0) ? -dist : 0.;            1095       return (dist < 0) ? -dist : 0.;
1096     }                                            1096     }
1097   }                                              1097   }
1098   return 0.;                                     1098   return 0.;
1099 }                                                1099 }
1100                                                  1100 
1101 /////////////////////////////////////////////    1101 //////////////////////////////////////////////////////////////////////////
1102 //                                               1102 //
1103 // GetEntityType                                 1103 // GetEntityType
1104                                                  1104 
1105 G4GeometryType G4Trap::GetEntityType() const     1105 G4GeometryType G4Trap::GetEntityType() const
1106 {                                                1106 {
1107   return {"G4Trap"};                             1107   return {"G4Trap"};
1108 }                                                1108 }
1109                                                  1109 
1110 /////////////////////////////////////////////    1110 //////////////////////////////////////////////////////////////////////////
1111 //                                               1111 //
1112 // IsFaceted                                  << 
1113                                               << 
1114 G4bool G4Trap::IsFaceted() const              << 
1115 {                                             << 
1116   return true;                                << 
1117 }                                             << 
1118                                               << 
1119 ///////////////////////////////////////////// << 
1120 //                                            << 
1121 // Make a clone of the object                    1112 // Make a clone of the object
1122 //                                               1113 //
1123 G4VSolid* G4Trap::Clone() const                  1114 G4VSolid* G4Trap::Clone() const
1124 {                                                1115 {
1125   return new G4Trap(*this);                      1116   return new G4Trap(*this);
1126 }                                                1117 }
1127                                                  1118 
1128 /////////////////////////////////////////////    1119 //////////////////////////////////////////////////////////////////////////
1129 //                                               1120 //
1130 // Stream object contents to an output stream    1121 // Stream object contents to an output stream
1131                                                  1122 
1132 std::ostream& G4Trap::StreamInfo( std::ostrea    1123 std::ostream& G4Trap::StreamInfo( std::ostream& os ) const
1133 {                                                1124 {
1134   G4double phi    = GetPhi();                    1125   G4double phi    = GetPhi();   
1135   G4double theta  = GetTheta();                  1126   G4double theta  = GetTheta();
1136   G4double alpha1 = GetAlpha1();                 1127   G4double alpha1 = GetAlpha1();
1137   G4double alpha2 = GetAlpha2();                 1128   G4double alpha2 = GetAlpha2();
1138                                                  1129 
1139   G4long oldprc = os.precision(16);              1130   G4long oldprc = os.precision(16);
1140   os << "------------------------------------    1131   os << "-----------------------------------------------------------\n"
1141      << "    *** Dump for solid: " << GetName    1132      << "    *** Dump for solid: " << GetName() << " ***\n"
1142      << "    ================================    1133      << "    ===================================================\n"
1143      << " Solid type: G4Trap\n"                  1134      << " Solid type: G4Trap\n"
1144      << " Parameters:\n"                         1135      << " Parameters:\n"
1145      << "    half length Z: " << fDz/mm << "     1136      << "    half length Z: " << fDz/mm << " mm\n"
1146      << "    half length Y, face -Dz: " << fD    1137      << "    half length Y, face -Dz: " << fDy1/mm << " mm\n"
1147      << "    half length X, face -Dz, side -D    1138      << "    half length X, face -Dz, side -Dy1: " << fDx1/mm << " mm\n"
1148      << "    half length X, face -Dz, side +D    1139      << "    half length X, face -Dz, side +Dy1: " << fDx2/mm << " mm\n"
1149      << "    half length Y, face +Dz: " << fD    1140      << "    half length Y, face +Dz: " << fDy2/mm << " mm\n"
1150      << "    half length X, face +Dz, side -D    1141      << "    half length X, face +Dz, side -Dy2: " << fDx3/mm << " mm\n"
1151      << "    half length X, face +Dz, side +D    1142      << "    half length X, face +Dz, side +Dy2: " << fDx4/mm << " mm\n"
1152      << "    theta: " << theta/degree << " de    1143      << "    theta: " << theta/degree << " degrees\n"
1153      << "    phi:   " << phi/degree << " degr    1144      << "    phi:   " << phi/degree << " degrees\n"
1154      << "    alpha, face -Dz: " << alpha1/deg    1145      << "    alpha, face -Dz: " << alpha1/degree << " degrees\n"
1155      << "    alpha, face +Dz: " << alpha2/deg    1146      << "    alpha, face +Dz: " << alpha2/degree << " degrees\n"
1156      << "------------------------------------    1147      << "-----------------------------------------------------------\n";
1157   os.precision(oldprc);                          1148   os.precision(oldprc);
1158                                                  1149 
1159   return os;                                     1150   return os;
1160 }                                                1151 }
1161                                                  1152 
1162 /////////////////////////////////////////////    1153 //////////////////////////////////////////////////////////////////////////
1163 //                                               1154 //
1164 // Compute vertices from planes                  1155 // Compute vertices from planes
1165                                                  1156 
1166 void G4Trap::GetVertices(G4ThreeVector pt[8])    1157 void G4Trap::GetVertices(G4ThreeVector pt[8]) const
1167 {                                                1158 {
1168   for (G4int i=0; i<8; ++i)                      1159   for (G4int i=0; i<8; ++i)
1169   {                                              1160   {
1170     G4int iy = (i==0 || i==1 || i==4 || i==5)    1161     G4int iy = (i==0 || i==1 || i==4 || i==5) ? 0 : 1;
1171     G4int ix = (i==0 || i==2 || i==4 || i==6)    1162     G4int ix = (i==0 || i==2 || i==4 || i==6) ? 2 : 3;
1172     G4double z = (i < 4) ? -fDz : fDz;           1163     G4double z = (i < 4) ? -fDz : fDz;
1173     G4double y = -(fPlanes[iy].c*z + fPlanes[    1164     G4double y = -(fPlanes[iy].c*z + fPlanes[iy].d)/fPlanes[iy].b;
1174     G4double x = -(fPlanes[ix].b*y + fPlanes[    1165     G4double x = -(fPlanes[ix].b*y + fPlanes[ix].c*z
1175                    + fPlanes[ix].d)/fPlanes[i    1166                    + fPlanes[ix].d)/fPlanes[ix].a;
1176     pt[i].set(x,y,z);                            1167     pt[i].set(x,y,z);
1177   }                                              1168   }
1178 }                                                1169 }
1179                                                  1170 
1180 /////////////////////////////////////////////    1171 //////////////////////////////////////////////////////////////////////////
1181 //                                               1172 //
1182 // Generate random point on the surface          1173 // Generate random point on the surface
1183                                                  1174 
1184 G4ThreeVector G4Trap::GetPointOnSurface() con    1175 G4ThreeVector G4Trap::GetPointOnSurface() const
1185 {                                                1176 {
1186   // Set indeces                                 1177   // Set indeces
1187   constexpr G4int iface [6][4] =                 1178   constexpr G4int iface [6][4] =
1188     { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6    1179     { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3}, {4,6,7,5} };
1189                                                  1180 
1190   // Set vertices                                1181   // Set vertices
1191   G4ThreeVector pt[8];                           1182   G4ThreeVector pt[8];
1192   GetVertices(pt);                               1183   GetVertices(pt);
1193                                                  1184 
1194   // Select face                                 1185   // Select face
1195   //                                             1186   //
1196   G4double select = fAreas[5]*G4QuickRand();     1187   G4double select = fAreas[5]*G4QuickRand();
1197   G4int k = 5;                                   1188   G4int k = 5;
1198   k -= (G4int)(select <= fAreas[4]);             1189   k -= (G4int)(select <= fAreas[4]);
1199   k -= (G4int)(select <= fAreas[3]);             1190   k -= (G4int)(select <= fAreas[3]);
1200   k -= (G4int)(select <= fAreas[2]);             1191   k -= (G4int)(select <= fAreas[2]);
1201   k -= (G4int)(select <= fAreas[1]);             1192   k -= (G4int)(select <= fAreas[1]);
1202   k -= (G4int)(select <= fAreas[0]);             1193   k -= (G4int)(select <= fAreas[0]);
1203                                                  1194 
1204   // Select sub-triangle                         1195   // Select sub-triangle
1205   //                                             1196   //
1206   G4int i0 = iface[k][0];                        1197   G4int i0 = iface[k][0];
1207   G4int i1 = iface[k][1];                        1198   G4int i1 = iface[k][1];
1208   G4int i2 = iface[k][2];                        1199   G4int i2 = iface[k][2];
1209   G4int i3 = iface[k][3];                        1200   G4int i3 = iface[k][3];
1210   G4double s2 = G4GeomTools::TriangleAreaNorm    1201   G4double s2 = G4GeomTools::TriangleAreaNormal(pt[i2],pt[i1],pt[i3]).mag();
1211   if (select > fAreas[k] - s2) i0 = i2;          1202   if (select > fAreas[k] - s2) i0 = i2;
1212                                                  1203 
1213   // Generate point                              1204   // Generate point
1214   //                                             1205   //
1215   G4double u = G4QuickRand();                    1206   G4double u = G4QuickRand();
1216   G4double v = G4QuickRand();                    1207   G4double v = G4QuickRand();
1217   if (u + v > 1.) { u = 1. - u; v = 1. - v; }    1208   if (u + v > 1.) { u = 1. - u; v = 1. - v; }
1218   return (1.-u-v)*pt[i0] + u*pt[i1] + v*pt[i3    1209   return (1.-u-v)*pt[i0] + u*pt[i1] + v*pt[i3];
1219 }                                                1210 }
1220                                                  1211 
1221 /////////////////////////////////////////////    1212 //////////////////////////////////////////////////////////////////////////
1222 //                                               1213 //
1223 // Methods for visualisation                     1214 // Methods for visualisation
1224                                                  1215 
1225 void G4Trap::DescribeYourselfTo ( G4VGraphics    1216 void G4Trap::DescribeYourselfTo ( G4VGraphicsScene& scene ) const
1226 {                                                1217 {
1227   scene.AddSolid (*this);                        1218   scene.AddSolid (*this);
1228 }                                                1219 }
1229                                                  1220 
1230 G4Polyhedron* G4Trap::CreatePolyhedron () con    1221 G4Polyhedron* G4Trap::CreatePolyhedron () const
1231 {                                                1222 {
1232   G4double phi = std::atan2(fTthetaSphi, fTth    1223   G4double phi = std::atan2(fTthetaSphi, fTthetaCphi);
1233   G4double alpha1 = std::atan(fTalpha1);         1224   G4double alpha1 = std::atan(fTalpha1);
1234   G4double alpha2 = std::atan(fTalpha2);         1225   G4double alpha2 = std::atan(fTalpha2);
1235   G4double theta = std::atan(std::sqrt(fTthet    1226   G4double theta = std::atan(std::sqrt(fTthetaCphi*fTthetaCphi
1236                                       +fTthet    1227                                       +fTthetaSphi*fTthetaSphi));
1237                                                  1228 
1238   return new G4PolyhedronTrap(fDz, theta, phi    1229   return new G4PolyhedronTrap(fDz, theta, phi,
1239                               fDy1, fDx1, fDx    1230                               fDy1, fDx1, fDx2, alpha1,
1240                               fDy2, fDx3, fDx    1231                               fDy2, fDx3, fDx4, alpha2);
1241 }                                                1232 }
1242                                                  1233 
1243 #endif                                           1234 #endif
1244                                                  1235