Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Implementation for G4Trap class 26 // Implementation for G4Trap class 27 // 27 // 28 // 21.03.95 P.Kent: Modified for `tolerant' ge 28 // 21.03.95 P.Kent: Modified for `tolerant' geometry 29 // 09.09.96 V.Grichine: Final modifications be 29 // 09.09.96 V.Grichine: Final modifications before to commit 30 // 08.12.97 J.Allison: Added "nominal" constru 30 // 08.12.97 J.Allison: Added "nominal" constructor and method SetAllParameters 31 // 28.04.05 V.Grichine: new SurfaceNormal acco 31 // 28.04.05 V.Grichine: new SurfaceNormal according to J.Apostolakis proposal 32 // 18.04.17 E.Tcherniaev: complete revision, s 32 // 18.04.17 E.Tcherniaev: complete revision, speed-up 33 // ------------------------------------------- 33 // -------------------------------------------------------------------- 34 34 35 #include "G4Trap.hh" 35 #include "G4Trap.hh" 36 36 37 #if !defined(G4GEOM_USE_UTRAP) 37 #if !defined(G4GEOM_USE_UTRAP) 38 38 39 #include "globals.hh" 39 #include "globals.hh" 40 #include "G4GeomTools.hh" 40 #include "G4GeomTools.hh" 41 41 42 #include "G4VoxelLimits.hh" 42 #include "G4VoxelLimits.hh" 43 #include "G4AffineTransform.hh" 43 #include "G4AffineTransform.hh" 44 #include "G4BoundingEnvelope.hh" 44 #include "G4BoundingEnvelope.hh" 45 45 46 #include "G4VPVParameterisation.hh" 46 #include "G4VPVParameterisation.hh" 47 47 48 #include "G4QuickRand.hh" 48 #include "G4QuickRand.hh" 49 49 50 #include "G4VGraphicsScene.hh" 50 #include "G4VGraphicsScene.hh" 51 #include "G4Polyhedron.hh" 51 #include "G4Polyhedron.hh" 52 52 53 using namespace CLHEP; 53 using namespace CLHEP; 54 54 55 ////////////////////////////////////////////// 55 ////////////////////////////////////////////////////////////////////////// 56 // 56 // 57 // Constructor - check and set half-widths as 57 // Constructor - check and set half-widths as well as angles: 58 // final check of coplanarity 58 // final check of coplanarity 59 59 60 G4Trap::G4Trap( const G4String& pName, 60 G4Trap::G4Trap( const G4String& pName, 61 G4double pDz, 61 G4double pDz, 62 G4double pTheta, G4doubl 62 G4double pTheta, G4double pPhi, 63 G4double pDy1, G4double 63 G4double pDy1, G4double pDx1, G4double pDx2, 64 G4double pAlp1, 64 G4double pAlp1, 65 G4double pDy2, G4double 65 G4double pDy2, G4double pDx3, G4double pDx4, 66 G4double pAlp2 ) << 66 G4double pAlp2) 67 : G4CSGSolid(pName), halfCarTolerance(0.5*kC 67 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance) 68 { 68 { 69 fDz = pDz; 69 fDz = pDz; 70 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi 70 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi); 71 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi 71 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi); 72 72 73 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalp 73 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalpha1 = std::tan(pAlp1); 74 fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalp 74 fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalpha2 = std::tan(pAlp2); 75 75 76 CheckParameters(); 76 CheckParameters(); 77 MakePlanes(); 77 MakePlanes(); 78 } 78 } 79 79 80 ////////////////////////////////////////////// 80 ////////////////////////////////////////////////////////////////////////// 81 // 81 // 82 // Constructor - Design of trapezoid based on 82 // Constructor - Design of trapezoid based on 8 G4ThreeVector parameters, 83 // which are its vertices. Checking of planari 83 // which are its vertices. Checking of planarity with preparation of 84 // fPlanes[] and than calculation of other mem 84 // fPlanes[] and than calculation of other members 85 85 86 G4Trap::G4Trap( const G4String& pName, 86 G4Trap::G4Trap( const G4String& pName, 87 const G4ThreeVector pt[8] ) 87 const G4ThreeVector pt[8] ) 88 : G4CSGSolid(pName), halfCarTolerance(0.5*kC 88 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance) 89 { 89 { 90 // Start with check of centering - the cente 90 // Start with check of centering - the center of gravity trap line 91 // should cross the origin of frame 91 // should cross the origin of frame 92 // 92 // 93 if ( pt[0].z() >= 0 << 93 if (!( pt[0].z() < 0 94 || pt[0].z() != pt[1].z() << 94 && pt[0].z() == pt[1].z() 95 || pt[0].z() != pt[2].z() << 95 && pt[0].z() == pt[2].z() 96 || pt[0].z() != pt[3].z() << 96 && pt[0].z() == pt[3].z() 97 << 97 98 || pt[4].z() <= 0 << 98 && pt[4].z() > 0 99 || pt[4].z() != pt[5].z() << 99 && pt[4].z() == pt[5].z() 100 || pt[4].z() != pt[6].z() << 100 && pt[4].z() == pt[6].z() 101 || pt[4].z() != pt[7].z() << 101 && pt[4].z() == pt[7].z() 102 << 102 103 || std::fabs( pt[0].z() + pt[4].z() ) << 103 && std::fabs( pt[0].z() + pt[4].z() ) < kCarTolerance 104 << 104 105 || pt[0].y() != pt[1].y() << 105 && pt[0].y() == pt[1].y() 106 || pt[2].y() != pt[3].y() << 106 && pt[2].y() == pt[3].y() 107 || pt[4].y() != pt[5].y() << 107 && pt[4].y() == pt[5].y() 108 || pt[6].y() != pt[7].y() << 108 && pt[6].y() == pt[7].y() 109 << 109 110 || std::fabs(pt[0].y()+pt[2].y()+pt[4] << 110 && std::fabs(pt[0].y()+pt[2].y()+pt[4].y()+pt[6].y()) < kCarTolerance 111 || std::fabs(pt[0].x()+pt[1].x()+pt[4] << 111 && std::fabs(pt[0].x()+pt[1].x()+pt[4].x()+pt[5].x() + 112 pt[2].x()+pt[3].x()+pt[6] << 112 pt[2].x()+pt[3].x()+pt[6].x()+pt[7].x()) < kCarTolerance )) 113 { 113 { 114 std::ostringstream message; 114 std::ostringstream message; 115 message << "Invalid vertice coordinates fo 115 message << "Invalid vertice coordinates for Solid: " << GetName(); 116 G4Exception("G4Trap::G4Trap()", "GeomSolid 116 G4Exception("G4Trap::G4Trap()", "GeomSolids0002", 117 FatalException, message); 117 FatalException, message); 118 } 118 } 119 119 120 // Set parameters 120 // Set parameters 121 // 121 // 122 fDz = (pt[7]).z(); 122 fDz = (pt[7]).z(); 123 123 124 fDy1 = ((pt[2]).y()-(pt[1]).y())*0.5; 124 fDy1 = ((pt[2]).y()-(pt[1]).y())*0.5; 125 fDx1 = ((pt[1]).x()-(pt[0]).x())*0.5; 125 fDx1 = ((pt[1]).x()-(pt[0]).x())*0.5; 126 fDx2 = ((pt[3]).x()-(pt[2]).x())*0.5; 126 fDx2 = ((pt[3]).x()-(pt[2]).x())*0.5; 127 fTalpha1 = ((pt[2]).x()+(pt[3]).x()-(pt[1]). 127 fTalpha1 = ((pt[2]).x()+(pt[3]).x()-(pt[1]).x()-(pt[0]).x())*0.25/fDy1; 128 128 129 fDy2 = ((pt[6]).y()-(pt[5]).y())*0.5; 129 fDy2 = ((pt[6]).y()-(pt[5]).y())*0.5; 130 fDx3 = ((pt[5]).x()-(pt[4]).x())*0.5; 130 fDx3 = ((pt[5]).x()-(pt[4]).x())*0.5; 131 fDx4 = ((pt[7]).x()-(pt[6]).x())*0.5; 131 fDx4 = ((pt[7]).x()-(pt[6]).x())*0.5; 132 fTalpha2 = ((pt[6]).x()+(pt[7]).x()-(pt[5]). 132 fTalpha2 = ((pt[6]).x()+(pt[7]).x()-(pt[5]).x()-(pt[4]).x())*0.25/fDy2; 133 133 134 fTthetaCphi = ((pt[4]).x()+fDy2*fTalpha2+fDx 134 fTthetaCphi = ((pt[4]).x()+fDy2*fTalpha2+fDx3)/fDz; 135 fTthetaSphi = ((pt[4]).y()+fDy2)/fDz; 135 fTthetaSphi = ((pt[4]).y()+fDy2)/fDz; 136 136 137 CheckParameters(); 137 CheckParameters(); 138 MakePlanes(pt); 138 MakePlanes(pt); 139 } 139 } 140 140 141 ////////////////////////////////////////////// 141 ////////////////////////////////////////////////////////////////////////// 142 // 142 // 143 // Constructor for Right Angular Wedge from ST 143 // Constructor for Right Angular Wedge from STEP 144 144 145 G4Trap::G4Trap( const G4String& pName, 145 G4Trap::G4Trap( const G4String& pName, 146 G4double pZ, 146 G4double pZ, 147 G4double pY, 147 G4double pY, 148 G4double pX, G4double pL 148 G4double pX, G4double pLTX ) 149 : G4CSGSolid(pName), halfCarTolerance(0.5*kC 149 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance) 150 { 150 { 151 fDz = 0.5*pZ; fTthetaCphi = 0; fTthetaSphi 151 fDz = 0.5*pZ; fTthetaCphi = 0; fTthetaSphi = 0; 152 fDy1 = 0.5*pY; fDx1 = 0.5*pX; fDx2 = 0.5*pLT 152 fDy1 = 0.5*pY; fDx1 = 0.5*pX; fDx2 = 0.5*pLTX; fTalpha1 = 0.5*(pLTX - pX)/pY; 153 fDy2 = fDy1; fDx3 = fDx1; fDx4 = fDx2; 153 fDy2 = fDy1; fDx3 = fDx1; fDx4 = fDx2; fTalpha2 = fTalpha1; 154 154 155 CheckParameters(); 155 CheckParameters(); 156 MakePlanes(); 156 MakePlanes(); 157 } 157 } 158 158 159 ////////////////////////////////////////////// 159 ////////////////////////////////////////////////////////////////////////// 160 // 160 // 161 // Constructor for G4Trd 161 // Constructor for G4Trd 162 162 163 G4Trap::G4Trap( const G4String& pName, 163 G4Trap::G4Trap( const G4String& pName, 164 G4double pDx1, G4double 164 G4double pDx1, G4double pDx2, 165 G4double pDy1, G4double 165 G4double pDy1, G4double pDy2, 166 G4double pDz ) 166 G4double pDz ) 167 : G4CSGSolid(pName), halfCarTolerance(0.5*kC 167 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance), fTrapType(0) 168 { 168 { 169 fDz = pDz; fTthetaCphi = 0; fTthetaSphi = 169 fDz = pDz; fTthetaCphi = 0; fTthetaSphi = 0; 170 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx1; fTalp 170 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx1; fTalpha1 = 0; 171 fDy2 = pDy2; fDx3 = pDx2; fDx4 = pDx2; fTalp 171 fDy2 = pDy2; fDx3 = pDx2; fDx4 = pDx2; fTalpha2 = 0; 172 172 173 CheckParameters(); 173 CheckParameters(); 174 MakePlanes(); 174 MakePlanes(); 175 } 175 } 176 176 177 ////////////////////////////////////////////// 177 ////////////////////////////////////////////////////////////////////////// 178 // 178 // 179 // Constructor for G4Para 179 // Constructor for G4Para 180 180 181 G4Trap::G4Trap( const G4String& pName, 181 G4Trap::G4Trap( const G4String& pName, 182 G4double pDx, G4double p 182 G4double pDx, G4double pDy, 183 G4double pDz, 183 G4double pDz, 184 G4double pAlpha, 184 G4double pAlpha, 185 G4double pTheta, G4doubl 185 G4double pTheta, G4double pPhi ) 186 : G4CSGSolid(pName), halfCarTolerance(0.5*kC 186 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance) 187 { 187 { 188 fDz = pDz; 188 fDz = pDz; 189 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi 189 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi); 190 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi 190 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi); 191 191 192 fDy1 = pDy; fDx1 = pDx; fDx2 = pDx; fTalpha1 192 fDy1 = pDy; fDx1 = pDx; fDx2 = pDx; fTalpha1 = std::tan(pAlpha); 193 fDy2 = pDy; fDx3 = pDx; fDx4 = pDx; fTalpha2 193 fDy2 = pDy; fDx3 = pDx; fDx4 = pDx; fTalpha2 = fTalpha1; 194 194 195 CheckParameters(); 195 CheckParameters(); 196 MakePlanes(); 196 MakePlanes(); 197 } 197 } 198 198 199 ////////////////////////////////////////////// 199 ////////////////////////////////////////////////////////////////////////// 200 // 200 // 201 // Nominal constructor for G4Trap whose parame 201 // Nominal constructor for G4Trap whose parameters are to be set by 202 // a G4VParamaterisation later. Check and set 202 // a G4VParamaterisation later. Check and set half-widths as well as 203 // angles: final check of coplanarity 203 // angles: final check of coplanarity 204 204 205 G4Trap::G4Trap( const G4String& pName ) 205 G4Trap::G4Trap( const G4String& pName ) 206 : G4CSGSolid (pName), halfCarTolerance(0.5*k 206 : G4CSGSolid (pName), halfCarTolerance(0.5*kCarTolerance), 207 fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.), 207 fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.), 208 fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.) 208 fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.), 209 fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.) 209 fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.) 210 { 210 { 211 MakePlanes(); 211 MakePlanes(); 212 } 212 } 213 213 214 ////////////////////////////////////////////// 214 ////////////////////////////////////////////////////////////////////////// 215 // 215 // 216 // Fake default constructor - sets only member 216 // Fake default constructor - sets only member data and allocates memory 217 // for usage restri 217 // for usage restricted to object persistency. 218 // 218 // 219 G4Trap::G4Trap( __void__& a ) 219 G4Trap::G4Trap( __void__& a ) 220 : G4CSGSolid(a), halfCarTolerance(0.5*kCarTo 220 : G4CSGSolid(a), halfCarTolerance(0.5*kCarTolerance), 221 fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.), 221 fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.), 222 fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.) 222 fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.), 223 fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.) 223 fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.) 224 { 224 { 225 MakePlanes(); 225 MakePlanes(); 226 } 226 } 227 227 228 ////////////////////////////////////////////// 228 ////////////////////////////////////////////////////////////////////////// 229 // 229 // 230 // Destructor 230 // Destructor 231 231 232 G4Trap::~G4Trap() = default; << 232 G4Trap::~G4Trap() >> 233 { >> 234 } 233 235 234 ////////////////////////////////////////////// 236 ////////////////////////////////////////////////////////////////////////// 235 // 237 // 236 // Copy constructor 238 // Copy constructor 237 239 238 G4Trap::G4Trap(const G4Trap& rhs) 240 G4Trap::G4Trap(const G4Trap& rhs) 239 : G4CSGSolid(rhs), halfCarTolerance(rhs.half 241 : G4CSGSolid(rhs), halfCarTolerance(rhs.halfCarTolerance), 240 fDz(rhs.fDz), fTthetaCphi(rhs.fTthetaCphi) 242 fDz(rhs.fDz), fTthetaCphi(rhs.fTthetaCphi), fTthetaSphi(rhs.fTthetaSphi), 241 fDy1(rhs.fDy1), fDx1(rhs.fDx1), fDx2(rhs.f 243 fDy1(rhs.fDy1), fDx1(rhs.fDx1), fDx2(rhs.fDx2), fTalpha1(rhs.fTalpha1), 242 fDy2(rhs.fDy2), fDx3(rhs.fDx3), fDx4(rhs.f 244 fDy2(rhs.fDy2), fDx3(rhs.fDx3), fDx4(rhs.fDx4), fTalpha2(rhs.fTalpha2) 243 { 245 { 244 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs 246 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs.fPlanes[i]; } 245 for (G4int i=0; i<6; ++i) { fAreas[i] = rhs. 247 for (G4int i=0; i<6; ++i) { fAreas[i] = rhs.fAreas[i]; } 246 fTrapType = rhs.fTrapType; 248 fTrapType = rhs.fTrapType; 247 } 249 } 248 250 249 ////////////////////////////////////////////// 251 ////////////////////////////////////////////////////////////////////////// 250 // 252 // 251 // Assignment operator 253 // Assignment operator 252 254 253 G4Trap& G4Trap::operator = (const G4Trap& rhs) 255 G4Trap& G4Trap::operator = (const G4Trap& rhs) 254 { 256 { 255 // Check assignment to self 257 // Check assignment to self 256 // 258 // 257 if (this == &rhs) { return *this; } 259 if (this == &rhs) { return *this; } 258 260 259 // Copy base class data 261 // Copy base class data 260 // 262 // 261 G4CSGSolid::operator=(rhs); 263 G4CSGSolid::operator=(rhs); 262 264 263 // Copy data 265 // Copy data 264 // 266 // 265 halfCarTolerance = rhs.halfCarTolerance; 267 halfCarTolerance = rhs.halfCarTolerance; 266 fDz = rhs.fDz; fTthetaCphi = rhs.fTthetaCphi 268 fDz = rhs.fDz; fTthetaCphi = rhs.fTthetaCphi; fTthetaSphi = rhs.fTthetaSphi; 267 fDy1 = rhs.fDy1; fDx1 = rhs.fDx1; fDx2 = rhs 269 fDy1 = rhs.fDy1; fDx1 = rhs.fDx1; fDx2 = rhs.fDx2; fTalpha1 = rhs.fTalpha1; 268 fDy2 = rhs.fDy2; fDx3 = rhs.fDx3; fDx4 = rhs 270 fDy2 = rhs.fDy2; fDx3 = rhs.fDx3; fDx4 = rhs.fDx4; fTalpha2 = rhs.fTalpha2; 269 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs 271 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs.fPlanes[i]; } 270 for (G4int i=0; i<6; ++i) { fAreas[i] = rhs. 272 for (G4int i=0; i<6; ++i) { fAreas[i] = rhs.fAreas[i]; } 271 fTrapType = rhs.fTrapType; 273 fTrapType = rhs.fTrapType; 272 return *this; 274 return *this; 273 } 275 } 274 276 275 ////////////////////////////////////////////// 277 ////////////////////////////////////////////////////////////////////////// 276 // 278 // 277 // Set all parameters, as for constructor - ch 279 // Set all parameters, as for constructor - check and set half-widths 278 // as well as angles: final check of coplanari 280 // as well as angles: final check of coplanarity 279 281 280 void G4Trap::SetAllParameters ( G4double pDz, 282 void G4Trap::SetAllParameters ( G4double pDz, 281 G4double pThet 283 G4double pTheta, 282 G4double pPhi, 284 G4double pPhi, 283 G4double pDy1, 285 G4double pDy1, 284 G4double pDx1, 286 G4double pDx1, 285 G4double pDx2, 287 G4double pDx2, 286 G4double pAlp1 288 G4double pAlp1, 287 G4double pDy2, 289 G4double pDy2, 288 G4double pDx3, 290 G4double pDx3, 289 G4double pDx4, 291 G4double pDx4, 290 G4double pAlp2 292 G4double pAlp2 ) 291 { 293 { 292 // Reset data of the base class 294 // Reset data of the base class 293 fCubicVolume = 0; 295 fCubicVolume = 0; 294 fSurfaceArea = 0; 296 fSurfaceArea = 0; 295 fRebuildPolyhedron = true; 297 fRebuildPolyhedron = true; 296 298 297 // Set parameters 299 // Set parameters 298 fDz = pDz; 300 fDz = pDz; 299 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi 301 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi); 300 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi 302 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi); 301 303 302 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalp 304 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalpha1 = std::tan(pAlp1); 303 fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalp 305 fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalpha2 = std::tan(pAlp2); 304 306 305 CheckParameters(); 307 CheckParameters(); 306 MakePlanes(); 308 MakePlanes(); 307 } 309 } 308 310 309 ////////////////////////////////////////////// 311 ////////////////////////////////////////////////////////////////////////// 310 // 312 // 311 // Check length parameters 313 // Check length parameters 312 314 313 void G4Trap::CheckParameters() 315 void G4Trap::CheckParameters() 314 { 316 { 315 if (fDz<=0 || 317 if (fDz<=0 || 316 fDy1<=0 || fDx1<=0 || fDx2<=0 || 318 fDy1<=0 || fDx1<=0 || fDx2<=0 || 317 fDy2<=0 || fDx3<=0 || fDx4<=0) 319 fDy2<=0 || fDx3<=0 || fDx4<=0) 318 { 320 { 319 std::ostringstream message; 321 std::ostringstream message; 320 message << "Invalid Length Parameters for 322 message << "Invalid Length Parameters for Solid: " << GetName() 321 << "\n X - " <<fDx1<<", "<<fDx2<< 323 << "\n X - " <<fDx1<<", "<<fDx2<<", "<<fDx3<<", "<<fDx4 322 << "\n Y - " <<fDy1<<", "<<fDy2 324 << "\n Y - " <<fDy1<<", "<<fDy2 323 << "\n Z - " <<fDz; 325 << "\n Z - " <<fDz; 324 G4Exception("G4Trap::CheckParameters()", " 326 G4Exception("G4Trap::CheckParameters()", "GeomSolids0002", 325 FatalException, message); 327 FatalException, message); 326 } 328 } 327 } 329 } 328 330 329 ////////////////////////////////////////////// 331 ////////////////////////////////////////////////////////////////////////// 330 // 332 // 331 // Compute vertices and set side planes 333 // Compute vertices and set side planes 332 334 333 void G4Trap::MakePlanes() 335 void G4Trap::MakePlanes() 334 { 336 { 335 G4double DzTthetaCphi = fDz*fTthetaCphi; 337 G4double DzTthetaCphi = fDz*fTthetaCphi; 336 G4double DzTthetaSphi = fDz*fTthetaSphi; 338 G4double DzTthetaSphi = fDz*fTthetaSphi; 337 G4double Dy1Talpha1 = fDy1*fTalpha1; 339 G4double Dy1Talpha1 = fDy1*fTalpha1; 338 G4double Dy2Talpha2 = fDy2*fTalpha2; 340 G4double Dy2Talpha2 = fDy2*fTalpha2; 339 341 340 G4ThreeVector pt[8] = 342 G4ThreeVector pt[8] = 341 { 343 { 342 G4ThreeVector(-DzTthetaCphi-Dy1Talpha1-fDx 344 G4ThreeVector(-DzTthetaCphi-Dy1Talpha1-fDx1,-DzTthetaSphi-fDy1,-fDz), 343 G4ThreeVector(-DzTthetaCphi-Dy1Talpha1+fDx 345 G4ThreeVector(-DzTthetaCphi-Dy1Talpha1+fDx1,-DzTthetaSphi-fDy1,-fDz), 344 G4ThreeVector(-DzTthetaCphi+Dy1Talpha1-fDx 346 G4ThreeVector(-DzTthetaCphi+Dy1Talpha1-fDx2,-DzTthetaSphi+fDy1,-fDz), 345 G4ThreeVector(-DzTthetaCphi+Dy1Talpha1+fDx 347 G4ThreeVector(-DzTthetaCphi+Dy1Talpha1+fDx2,-DzTthetaSphi+fDy1,-fDz), 346 G4ThreeVector( DzTthetaCphi-Dy2Talpha2-fDx 348 G4ThreeVector( DzTthetaCphi-Dy2Talpha2-fDx3, DzTthetaSphi-fDy2, fDz), 347 G4ThreeVector( DzTthetaCphi-Dy2Talpha2+fDx 349 G4ThreeVector( DzTthetaCphi-Dy2Talpha2+fDx3, DzTthetaSphi-fDy2, fDz), 348 G4ThreeVector( DzTthetaCphi+Dy2Talpha2-fDx 350 G4ThreeVector( DzTthetaCphi+Dy2Talpha2-fDx4, DzTthetaSphi+fDy2, fDz), 349 G4ThreeVector( DzTthetaCphi+Dy2Talpha2+fDx 351 G4ThreeVector( DzTthetaCphi+Dy2Talpha2+fDx4, DzTthetaSphi+fDy2, fDz) 350 }; 352 }; 351 353 352 MakePlanes(pt); 354 MakePlanes(pt); 353 } 355 } 354 356 355 ////////////////////////////////////////////// 357 ////////////////////////////////////////////////////////////////////////// 356 // 358 // 357 // Set side planes, check planarity 359 // Set side planes, check planarity 358 360 359 void G4Trap::MakePlanes(const G4ThreeVector pt 361 void G4Trap::MakePlanes(const G4ThreeVector pt[8]) 360 { 362 { 361 constexpr G4int iface[4][4] = { {0,4,5,1}, { 363 constexpr G4int iface[4][4] = { {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3} }; 362 const static G4String side[4] = { "~-Y", "~+ 364 const static G4String side[4] = { "~-Y", "~+Y", "~-X", "~+X" }; 363 365 364 for (G4int i=0; i<4; ++i) 366 for (G4int i=0; i<4; ++i) 365 { 367 { 366 if (MakePlane(pt[iface[i][0]], 368 if (MakePlane(pt[iface[i][0]], 367 pt[iface[i][1]], 369 pt[iface[i][1]], 368 pt[iface[i][2]], 370 pt[iface[i][2]], 369 pt[iface[i][3]], 371 pt[iface[i][3]], 370 fPlanes[i])) continue; 372 fPlanes[i])) continue; 371 373 372 // Non planar side face 374 // Non planar side face 373 G4ThreeVector normal(fPlanes[i].a,fPlanes[ 375 G4ThreeVector normal(fPlanes[i].a,fPlanes[i].b,fPlanes[i].c); 374 G4double dmax = 0; 376 G4double dmax = 0; 375 for (G4int k=0; k<4; ++k) 377 for (G4int k=0; k<4; ++k) 376 { 378 { 377 G4double dist = normal.dot(pt[iface[i][k 379 G4double dist = normal.dot(pt[iface[i][k]]) + fPlanes[i].d; 378 if (std::abs(dist) > std::abs(dmax)) dma 380 if (std::abs(dist) > std::abs(dmax)) dmax = dist; 379 } 381 } 380 std::ostringstream message; 382 std::ostringstream message; 381 message << "Side face " << side[i] << " is 383 message << "Side face " << side[i] << " is not planar for solid: " 382 << GetName() << "\nDiscrepancy: " 384 << GetName() << "\nDiscrepancy: " << dmax/mm << " mm\n"; 383 StreamInfo(message); 385 StreamInfo(message); 384 G4Exception("G4Trap::MakePlanes()", "GeomS 386 G4Exception("G4Trap::MakePlanes()", "GeomSolids0002", 385 FatalException, message); 387 FatalException, message); 386 } 388 } 387 389 388 // Re-compute parameters 390 // Re-compute parameters 389 SetCachedValues(); 391 SetCachedValues(); 390 } 392 } 391 393 392 ////////////////////////////////////////////// 394 ////////////////////////////////////////////////////////////////////////// 393 // 395 // 394 // Calculate the coef's of the plane p1->p2->p 396 // Calculate the coef's of the plane p1->p2->p3->p4->p1 395 // where the ThreeVectors 1-4 are in anti-cloc 397 // where the ThreeVectors 1-4 are in anti-clockwise order when viewed 396 // from infront of the plane (i.e. from normal 398 // from infront of the plane (i.e. from normal direction). 397 // 399 // 398 // Return true if the points are coplanar, fal 400 // Return true if the points are coplanar, false otherwise 399 401 400 G4bool G4Trap::MakePlane( const G4ThreeVector& 402 G4bool G4Trap::MakePlane( const G4ThreeVector& p1, 401 const G4ThreeVector& 403 const G4ThreeVector& p2, 402 const G4ThreeVector& 404 const G4ThreeVector& p3, 403 const G4ThreeVector& 405 const G4ThreeVector& p4, 404 TrapSidePlane& 406 TrapSidePlane& plane ) 405 { 407 { 406 G4ThreeVector normal = ((p4 - p2).cross(p3 - 408 G4ThreeVector normal = ((p4 - p2).cross(p3 - p1)).unit(); 407 if (std::abs(normal.x()) < DBL_EPSILON) norm 409 if (std::abs(normal.x()) < DBL_EPSILON) normal.setX(0); 408 if (std::abs(normal.y()) < DBL_EPSILON) norm 410 if (std::abs(normal.y()) < DBL_EPSILON) normal.setY(0); 409 if (std::abs(normal.z()) < DBL_EPSILON) norm 411 if (std::abs(normal.z()) < DBL_EPSILON) normal.setZ(0); 410 normal = normal.unit(); 412 normal = normal.unit(); 411 413 412 G4ThreeVector centre = (p1 + p2 + p3 + p4)*0 414 G4ThreeVector centre = (p1 + p2 + p3 + p4)*0.25; 413 plane.a = normal.x(); 415 plane.a = normal.x(); 414 plane.b = normal.y(); 416 plane.b = normal.y(); 415 plane.c = normal.z(); 417 plane.c = normal.z(); 416 plane.d = -normal.dot(centre); 418 plane.d = -normal.dot(centre); 417 419 418 // compute distances and check planarity 420 // compute distances and check planarity 419 G4double d1 = std::abs(normal.dot(p1) + plan 421 G4double d1 = std::abs(normal.dot(p1) + plane.d); 420 G4double d2 = std::abs(normal.dot(p2) + plan 422 G4double d2 = std::abs(normal.dot(p2) + plane.d); 421 G4double d3 = std::abs(normal.dot(p3) + plan 423 G4double d3 = std::abs(normal.dot(p3) + plane.d); 422 G4double d4 = std::abs(normal.dot(p4) + plan 424 G4double d4 = std::abs(normal.dot(p4) + plane.d); 423 G4double dmax = std::max(std::max(std::max(d 425 G4double dmax = std::max(std::max(std::max(d1,d2),d3),d4); 424 426 425 return dmax <= 1000 * kCarTolerance; << 427 return (dmax > 1000 * kCarTolerance) ? false : true; 426 } 428 } 427 429 428 ////////////////////////////////////////////// 430 ////////////////////////////////////////////////////////////////////////// 429 // 431 // 430 // Recompute parameters using planes 432 // Recompute parameters using planes 431 433 432 void G4Trap::SetCachedValues() 434 void G4Trap::SetCachedValues() 433 { 435 { 434 // Set indeces 436 // Set indeces 435 constexpr G4int iface[6][4] = 437 constexpr G4int iface[6][4] = 436 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2, 438 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3}, {4,6,7,5} }; 437 439 438 // Get vertices 440 // Get vertices 439 G4ThreeVector pt[8]; 441 G4ThreeVector pt[8]; 440 GetVertices(pt); 442 GetVertices(pt); 441 443 442 // Set face areas 444 // Set face areas 443 for (G4int i=0; i<6; ++i) 445 for (G4int i=0; i<6; ++i) 444 { 446 { 445 fAreas[i] = G4GeomTools::QuadAreaNormal(pt 447 fAreas[i] = G4GeomTools::QuadAreaNormal(pt[iface[i][0]], 446 pt 448 pt[iface[i][1]], 447 pt 449 pt[iface[i][2]], 448 pt 450 pt[iface[i][3]]).mag(); 449 } 451 } 450 for (G4int i=1; i<6; ++i) { fAreas[i] += fAr 452 for (G4int i=1; i<6; ++i) { fAreas[i] += fAreas[i - 1]; } 451 453 452 // Define type of trapezoid 454 // Define type of trapezoid 453 fTrapType = 0; 455 fTrapType = 0; 454 if (fPlanes[0].b == -1 && fPlanes[1].b == 1 456 if (fPlanes[0].b == -1 && fPlanes[1].b == 1 && 455 std::abs(fPlanes[0].a) < DBL_EPSILON && 457 std::abs(fPlanes[0].a) < DBL_EPSILON && 456 std::abs(fPlanes[0].c) < DBL_EPSILON && 458 std::abs(fPlanes[0].c) < DBL_EPSILON && 457 std::abs(fPlanes[1].a) < DBL_EPSILON && 459 std::abs(fPlanes[1].a) < DBL_EPSILON && 458 std::abs(fPlanes[1].c) < DBL_EPSILON) 460 std::abs(fPlanes[1].c) < DBL_EPSILON) 459 { 461 { 460 fTrapType = 1; // YZ section is a rectangl 462 fTrapType = 1; // YZ section is a rectangle ... 461 if (std::abs(fPlanes[2].a + fPlanes[3].a) 463 if (std::abs(fPlanes[2].a + fPlanes[3].a) < DBL_EPSILON && 462 std::abs(fPlanes[2].c - fPlanes[3].c) 464 std::abs(fPlanes[2].c - fPlanes[3].c) < DBL_EPSILON && 463 fPlanes[2].b == 0 && 465 fPlanes[2].b == 0 && 464 fPlanes[3].b == 0) 466 fPlanes[3].b == 0) 465 { 467 { 466 fTrapType = 2; // ... and XZ section is 468 fTrapType = 2; // ... and XZ section is a isosceles trapezoid 467 fPlanes[2].a = -fPlanes[3].a; 469 fPlanes[2].a = -fPlanes[3].a; 468 fPlanes[2].c = fPlanes[3].c; 470 fPlanes[2].c = fPlanes[3].c; 469 } 471 } 470 if (std::abs(fPlanes[2].a + fPlanes[3].a) 472 if (std::abs(fPlanes[2].a + fPlanes[3].a) < DBL_EPSILON && 471 std::abs(fPlanes[2].b - fPlanes[3].b) 473 std::abs(fPlanes[2].b - fPlanes[3].b) < DBL_EPSILON && 472 fPlanes[2].c == 0 && 474 fPlanes[2].c == 0 && 473 fPlanes[3].c == 0) 475 fPlanes[3].c == 0) 474 { 476 { 475 fTrapType = 3; // ... and XY section is 477 fTrapType = 3; // ... and XY section is a isosceles trapezoid 476 fPlanes[2].a = -fPlanes[3].a; 478 fPlanes[2].a = -fPlanes[3].a; 477 fPlanes[2].b = fPlanes[3].b; 479 fPlanes[2].b = fPlanes[3].b; 478 } 480 } 479 } 481 } 480 } 482 } 481 483 482 ////////////////////////////////////////////// 484 ////////////////////////////////////////////////////////////////////////// 483 // 485 // 484 // Get volume 486 // Get volume 485 487 486 G4double G4Trap::GetCubicVolume() 488 G4double G4Trap::GetCubicVolume() 487 { 489 { 488 if (fCubicVolume == 0) 490 if (fCubicVolume == 0) 489 { 491 { 490 G4ThreeVector pt[8]; 492 G4ThreeVector pt[8]; 491 GetVertices(pt); 493 GetVertices(pt); 492 494 493 G4double dz = pt[4].z() - pt[0].z(); 495 G4double dz = pt[4].z() - pt[0].z(); 494 G4double dy1 = pt[2].y() - pt[0].y(); 496 G4double dy1 = pt[2].y() - pt[0].y(); 495 G4double dx1 = pt[1].x() - pt[0].x(); 497 G4double dx1 = pt[1].x() - pt[0].x(); 496 G4double dx2 = pt[3].x() - pt[2].x(); 498 G4double dx2 = pt[3].x() - pt[2].x(); 497 G4double dy2 = pt[6].y() - pt[4].y(); 499 G4double dy2 = pt[6].y() - pt[4].y(); 498 G4double dx3 = pt[5].x() - pt[4].x(); 500 G4double dx3 = pt[5].x() - pt[4].x(); 499 G4double dx4 = pt[7].x() - pt[6].x(); 501 G4double dx4 = pt[7].x() - pt[6].x(); 500 502 501 fCubicVolume = ((dx1 + dx2 + dx3 + dx4)*(d 503 fCubicVolume = ((dx1 + dx2 + dx3 + dx4)*(dy1 + dy2) + 502 (dx4 + dx3 - dx2 - dx1)*(d 504 (dx4 + dx3 - dx2 - dx1)*(dy2 - dy1)/3)*dz*0.125; 503 } 505 } 504 return fCubicVolume; 506 return fCubicVolume; 505 } 507 } 506 508 507 ////////////////////////////////////////////// 509 ////////////////////////////////////////////////////////////////////////// 508 // 510 // 509 // Get surface area 511 // Get surface area 510 512 511 G4double G4Trap::GetSurfaceArea() 513 G4double G4Trap::GetSurfaceArea() 512 { 514 { 513 if (fSurfaceArea == 0) 515 if (fSurfaceArea == 0) 514 { 516 { 515 G4ThreeVector pt[8]; 517 G4ThreeVector pt[8]; 516 G4int iface [6][4] = 518 G4int iface [6][4] = 517 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2, 519 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3}, {4,6,7,5} }; 518 520 519 GetVertices(pt); 521 GetVertices(pt); 520 for (const auto & i : iface) << 522 for (G4int i=0; i<6; ++i) 521 { 523 { 522 fSurfaceArea += G4GeomTools::QuadAreaNor << 524 fSurfaceArea += G4GeomTools::QuadAreaNormal(pt[iface[i][0]], 523 << 525 pt[iface[i][1]], 524 << 526 pt[iface[i][2]], 525 << 527 pt[iface[i][3]]).mag(); 526 } 528 } 527 } 529 } 528 return fSurfaceArea; 530 return fSurfaceArea; 529 } 531 } 530 532 531 ////////////////////////////////////////////// 533 ////////////////////////////////////////////////////////////////////////// 532 // 534 // 533 // Dispatch to parameterisation for replicatio 535 // Dispatch to parameterisation for replication mechanism dimension 534 // computation & modification. 536 // computation & modification. 535 537 536 void G4Trap::ComputeDimensions( G4VPVPar 538 void G4Trap::ComputeDimensions( G4VPVParameterisation* p, 537 const G4int n, 539 const G4int n, 538 const G4VPhysi 540 const G4VPhysicalVolume* pRep ) 539 { 541 { 540 p->ComputeDimensions(*this,n,pRep); 542 p->ComputeDimensions(*this,n,pRep); 541 } 543 } 542 544 543 ////////////////////////////////////////////// 545 ////////////////////////////////////////////////////////////////////////// 544 // 546 // 545 // Get bounding box 547 // Get bounding box 546 548 547 void G4Trap::BoundingLimits(G4ThreeVector& pMi 549 void G4Trap::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const 548 { 550 { 549 G4ThreeVector pt[8]; 551 G4ThreeVector pt[8]; 550 GetVertices(pt); 552 GetVertices(pt); 551 553 552 G4double xmin = kInfinity, xmax = -kInfinity 554 G4double xmin = kInfinity, xmax = -kInfinity; 553 G4double ymin = kInfinity, ymax = -kInfinity 555 G4double ymin = kInfinity, ymax = -kInfinity; 554 for (const auto & i : pt) << 556 for (G4int i=0; i<8; ++i) 555 { 557 { 556 G4double x = i.x(); << 558 G4double x = pt[i].x(); 557 if (x < xmin) xmin = x; 559 if (x < xmin) xmin = x; 558 if (x > xmax) xmax = x; 560 if (x > xmax) xmax = x; 559 G4double y = i.y(); << 561 G4double y = pt[i].y(); 560 if (y < ymin) ymin = y; 562 if (y < ymin) ymin = y; 561 if (y > ymax) ymax = y; 563 if (y > ymax) ymax = y; 562 } 564 } 563 565 564 G4double dz = GetZHalfLength(); 566 G4double dz = GetZHalfLength(); 565 pMin.set(xmin,ymin,-dz); 567 pMin.set(xmin,ymin,-dz); 566 pMax.set(xmax,ymax, dz); 568 pMax.set(xmax,ymax, dz); 567 569 568 // Check correctness of the bounding box 570 // Check correctness of the bounding box 569 // 571 // 570 if (pMin.x() >= pMax.x() || pMin.y() >= pMax 572 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 571 { 573 { 572 std::ostringstream message; 574 std::ostringstream message; 573 message << "Bad bounding box (min >= max) 575 message << "Bad bounding box (min >= max) for solid: " 574 << GetName() << " !" 576 << GetName() << " !" 575 << "\npMin = " << pMin 577 << "\npMin = " << pMin 576 << "\npMax = " << pMax; 578 << "\npMax = " << pMax; 577 G4Exception("G4Trap::BoundingLimits()", "G 579 G4Exception("G4Trap::BoundingLimits()", "GeomMgt0001", 578 JustWarning, message); 580 JustWarning, message); 579 DumpInfo(); 581 DumpInfo(); 580 } 582 } 581 } 583 } 582 584 583 ////////////////////////////////////////////// 585 ////////////////////////////////////////////////////////////////////////// 584 // 586 // 585 // Calculate extent under transform and specif 587 // Calculate extent under transform and specified limit 586 588 587 G4bool G4Trap::CalculateExtent( const EAxis pA 589 G4bool G4Trap::CalculateExtent( const EAxis pAxis, 588 const G4VoxelL 590 const G4VoxelLimits& pVoxelLimit, 589 const G4Affine 591 const G4AffineTransform& pTransform, 590 G4double 592 G4double& pMin, G4double& pMax) const 591 { 593 { 592 G4ThreeVector bmin, bmax; 594 G4ThreeVector bmin, bmax; 593 G4bool exist; 595 G4bool exist; 594 596 595 // Check bounding box (bbox) 597 // Check bounding box (bbox) 596 // 598 // 597 BoundingLimits(bmin,bmax); 599 BoundingLimits(bmin,bmax); 598 G4BoundingEnvelope bbox(bmin,bmax); 600 G4BoundingEnvelope bbox(bmin,bmax); 599 #ifdef G4BBOX_EXTENT 601 #ifdef G4BBOX_EXTENT 600 return bbox.CalculateExtent(pAxis,pVoxelLimi 602 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 601 #endif 603 #endif 602 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox 604 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax)) 603 { 605 { 604 return exist = pMin < pMax; << 606 return exist = (pMin < pMax) ? true : false; 605 } 607 } 606 608 607 // Set bounding envelope (benv) and calculat 609 // Set bounding envelope (benv) and calculate extent 608 // 610 // 609 G4ThreeVector pt[8]; 611 G4ThreeVector pt[8]; 610 GetVertices(pt); 612 GetVertices(pt); 611 613 612 G4ThreeVectorList baseA(4), baseB(4); 614 G4ThreeVectorList baseA(4), baseB(4); 613 baseA[0] = pt[0]; 615 baseA[0] = pt[0]; 614 baseA[1] = pt[1]; 616 baseA[1] = pt[1]; 615 baseA[2] = pt[3]; 617 baseA[2] = pt[3]; 616 baseA[3] = pt[2]; 618 baseA[3] = pt[2]; 617 619 618 baseB[0] = pt[4]; 620 baseB[0] = pt[4]; 619 baseB[1] = pt[5]; 621 baseB[1] = pt[5]; 620 baseB[2] = pt[7]; 622 baseB[2] = pt[7]; 621 baseB[3] = pt[6]; 623 baseB[3] = pt[6]; 622 624 623 std::vector<const G4ThreeVectorList *> polyg 625 std::vector<const G4ThreeVectorList *> polygons(2); 624 polygons[0] = &baseA; 626 polygons[0] = &baseA; 625 polygons[1] = &baseB; 627 polygons[1] = &baseB; 626 628 627 G4BoundingEnvelope benv(bmin,bmax,polygons); 629 G4BoundingEnvelope benv(bmin,bmax,polygons); 628 exist = benv.CalculateExtent(pAxis,pVoxelLim 630 exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 629 return exist; 631 return exist; 630 } 632 } 631 633 632 ////////////////////////////////////////////// 634 ////////////////////////////////////////////////////////////////////////// 633 // 635 // 634 // Return whether point is inside/outside/on_s 636 // Return whether point is inside/outside/on_surface 635 637 636 EInside G4Trap::Inside( const G4ThreeVector& p 638 EInside G4Trap::Inside( const G4ThreeVector& p ) const 637 { 639 { 638 switch (fTrapType) 640 switch (fTrapType) 639 { 641 { 640 case 0: // General case 642 case 0: // General case 641 { 643 { 642 G4double dz = std::abs(p.z())-fDz; 644 G4double dz = std::abs(p.z())-fDz; 643 G4double dy1 = fPlanes[0].b*p.y()+fPlane 645 G4double dy1 = fPlanes[0].b*p.y()+fPlanes[0].c*p.z()+fPlanes[0].d; 644 G4double dy2 = fPlanes[1].b*p.y()+fPlane 646 G4double dy2 = fPlanes[1].b*p.y()+fPlanes[1].c*p.z()+fPlanes[1].d; 645 G4double dy = std::max(dz,std::max(dy1,d 647 G4double dy = std::max(dz,std::max(dy1,dy2)); 646 648 647 G4double dx1 = fPlanes[2].a*p.x()+fPlane 649 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 648 + fPlanes[2].c*p.z()+fPlane 650 + fPlanes[2].c*p.z()+fPlanes[2].d; 649 G4double dx2 = fPlanes[3].a*p.x()+fPlane 651 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 650 + fPlanes[3].c*p.z()+fPlane 652 + fPlanes[3].c*p.z()+fPlanes[3].d; 651 G4double dist = std::max(dy,std::max(dx1 653 G4double dist = std::max(dy,std::max(dx1,dx2)); 652 654 653 return (dist > halfCarTolerance) ? kOuts 655 return (dist > halfCarTolerance) ? kOutside : 654 ((dist > -halfCarTolerance) ? kSurface 656 ((dist > -halfCarTolerance) ? kSurface : kInside); 655 } 657 } 656 case 1: // YZ section is a rectangle 658 case 1: // YZ section is a rectangle 657 { 659 { 658 G4double dz = std::abs(p.z())-fDz; 660 G4double dz = std::abs(p.z())-fDz; 659 G4double dy = std::max(dz,std::abs(p.y() 661 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 660 G4double dx1 = fPlanes[2].a*p.x()+fPlane 662 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 661 + fPlanes[2].c*p.z()+fPlane 663 + fPlanes[2].c*p.z()+fPlanes[2].d; 662 G4double dx2 = fPlanes[3].a*p.x()+fPlane 664 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 663 + fPlanes[3].c*p.z()+fPlane 665 + fPlanes[3].c*p.z()+fPlanes[3].d; 664 G4double dist = std::max(dy,std::max(dx1 666 G4double dist = std::max(dy,std::max(dx1,dx2)); 665 667 666 return (dist > halfCarTolerance) ? kOuts 668 return (dist > halfCarTolerance) ? kOutside : 667 ((dist > -halfCarTolerance) ? kSurface 669 ((dist > -halfCarTolerance) ? kSurface : kInside); 668 } 670 } 669 case 2: // YZ section is a rectangle and 671 case 2: // YZ section is a rectangle and 670 { // XZ section is an isosceles trap 672 { // XZ section is an isosceles trapezoid 671 G4double dz = std::abs(p.z())-fDz; 673 G4double dz = std::abs(p.z())-fDz; 672 G4double dy = std::max(dz,std::abs(p.y() 674 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 673 G4double dx = fPlanes[3].a*std::abs(p.x( 675 G4double dx = fPlanes[3].a*std::abs(p.x()) 674 + fPlanes[3].c*p.z()+fPlanes 676 + fPlanes[3].c*p.z()+fPlanes[3].d; 675 G4double dist = std::max(dy,dx); 677 G4double dist = std::max(dy,dx); 676 678 677 return (dist > halfCarTolerance) ? kOuts 679 return (dist > halfCarTolerance) ? kOutside : 678 ((dist > -halfCarTolerance) ? kSurface 680 ((dist > -halfCarTolerance) ? kSurface : kInside); 679 } 681 } 680 case 3: // YZ section is a rectangle and 682 case 3: // YZ section is a rectangle and 681 { // XY section is an isosceles trap 683 { // XY section is an isosceles trapezoid 682 G4double dz = std::abs(p.z())-fDz; 684 G4double dz = std::abs(p.z())-fDz; 683 G4double dy = std::max(dz,std::abs(p.y() 685 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 684 G4double dx = fPlanes[3].a*std::abs(p.x( 686 G4double dx = fPlanes[3].a*std::abs(p.x()) 685 + fPlanes[3].b*p.y()+fPlanes 687 + fPlanes[3].b*p.y()+fPlanes[3].d; 686 G4double dist = std::max(dy,dx); 688 G4double dist = std::max(dy,dx); 687 689 688 return (dist > halfCarTolerance) ? kOuts 690 return (dist > halfCarTolerance) ? kOutside : 689 ((dist > -halfCarTolerance) ? kSurface 691 ((dist > -halfCarTolerance) ? kSurface : kInside); 690 } 692 } 691 } 693 } 692 return kOutside; 694 return kOutside; 693 } 695 } 694 696 695 ////////////////////////////////////////////// 697 ////////////////////////////////////////////////////////////////////////// 696 // 698 // 697 // Determine side, and return corresponding no 699 // Determine side, and return corresponding normal 698 700 699 G4ThreeVector G4Trap::SurfaceNormal( const G4T 701 G4ThreeVector G4Trap::SurfaceNormal( const G4ThreeVector& p ) const 700 { 702 { 701 G4double nx = 0, ny = 0, nz = 0; 703 G4double nx = 0, ny = 0, nz = 0; 702 G4double dz = std::abs(p.z()) - fDz; 704 G4double dz = std::abs(p.z()) - fDz; 703 nz = std::copysign(G4double(std::abs(dz) <= 705 nz = std::copysign(G4double(std::abs(dz) <= halfCarTolerance), p.z()); 704 706 705 switch (fTrapType) 707 switch (fTrapType) 706 { 708 { 707 case 0: // General case 709 case 0: // General case 708 { 710 { 709 for (G4int i=0; i<2; ++i) 711 for (G4int i=0; i<2; ++i) 710 { 712 { 711 G4double dy = fPlanes[i].b*p.y() + fPl 713 G4double dy = fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 712 if (std::abs(dy) > halfCarTolerance) c 714 if (std::abs(dy) > halfCarTolerance) continue; 713 ny = fPlanes[i].b; 715 ny = fPlanes[i].b; 714 nz += fPlanes[i].c; 716 nz += fPlanes[i].c; 715 break; 717 break; 716 } 718 } 717 for (G4int i=2; i<4; ++i) 719 for (G4int i=2; i<4; ++i) 718 { 720 { 719 G4double dx = fPlanes[i].a*p.x() + 721 G4double dx = fPlanes[i].a*p.x() + 720 fPlanes[i].b*p.y() + fPl 722 fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 721 if (std::abs(dx) > halfCarTolerance) c 723 if (std::abs(dx) > halfCarTolerance) continue; 722 nx = fPlanes[i].a; 724 nx = fPlanes[i].a; 723 ny += fPlanes[i].b; 725 ny += fPlanes[i].b; 724 nz += fPlanes[i].c; 726 nz += fPlanes[i].c; 725 break; 727 break; 726 } 728 } 727 break; 729 break; 728 } 730 } 729 case 1: // YZ section - rectangle 731 case 1: // YZ section - rectangle 730 { 732 { 731 G4double dy = std::abs(p.y()) + fPlanes[ 733 G4double dy = std::abs(p.y()) + fPlanes[1].d; 732 ny = std::copysign(G4double(std::abs(dy) 734 ny = std::copysign(G4double(std::abs(dy) <= halfCarTolerance), p.y()); 733 for (G4int i=2; i<4; ++i) 735 for (G4int i=2; i<4; ++i) 734 { 736 { 735 G4double dx = fPlanes[i].a*p.x() + 737 G4double dx = fPlanes[i].a*p.x() + 736 fPlanes[i].b*p.y() + fPl 738 fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 737 if (std::abs(dx) > halfCarTolerance) c 739 if (std::abs(dx) > halfCarTolerance) continue; 738 nx = fPlanes[i].a; 740 nx = fPlanes[i].a; 739 ny += fPlanes[i].b; 741 ny += fPlanes[i].b; 740 nz += fPlanes[i].c; 742 nz += fPlanes[i].c; 741 break; 743 break; 742 } 744 } 743 break; 745 break; 744 } 746 } 745 case 2: // YZ section - rectangle, XZ sect 747 case 2: // YZ section - rectangle, XZ section - isosceles trapezoid 746 { 748 { 747 G4double dy = std::abs(p.y()) + fPlanes[ 749 G4double dy = std::abs(p.y()) + fPlanes[1].d; 748 ny = std::copysign(G4double(std::abs(dy) 750 ny = std::copysign(G4double(std::abs(dy) <= halfCarTolerance), p.y()); 749 G4double dx = fPlanes[3].a*std::abs(p.x( 751 G4double dx = fPlanes[3].a*std::abs(p.x()) + 750 fPlanes[3].c*p.z() + fPlan 752 fPlanes[3].c*p.z() + fPlanes[3].d; 751 G4double k = std::abs(dx) <= halfCarTole 753 G4double k = std::abs(dx) <= halfCarTolerance; 752 nx = std::copysign(k, p.x())*fPlanes[3] 754 nx = std::copysign(k, p.x())*fPlanes[3].a; 753 nz += k*fPlanes[3].c; 755 nz += k*fPlanes[3].c; 754 break; 756 break; 755 } 757 } 756 case 3: // YZ section - rectangle, XY sect 758 case 3: // YZ section - rectangle, XY section - isosceles trapezoid 757 { 759 { 758 G4double dy = std::abs(p.y()) + fPlanes[ 760 G4double dy = std::abs(p.y()) + fPlanes[1].d; 759 ny = std::copysign(G4double(std::abs(dy) 761 ny = std::copysign(G4double(std::abs(dy) <= halfCarTolerance), p.y()); 760 G4double dx = fPlanes[3].a*std::abs(p.x( 762 G4double dx = fPlanes[3].a*std::abs(p.x()) + 761 fPlanes[3].b*p.y() + fPlan 763 fPlanes[3].b*p.y() + fPlanes[3].d; 762 G4double k = std::abs(dx) <= halfCarTole 764 G4double k = std::abs(dx) <= halfCarTolerance; 763 nx = std::copysign(k, p.x())*fPlanes[3] 765 nx = std::copysign(k, p.x())*fPlanes[3].a; 764 ny += k*fPlanes[3].b; 766 ny += k*fPlanes[3].b; 765 break; 767 break; 766 } 768 } 767 } 769 } 768 770 769 // Return normal 771 // Return normal 770 // 772 // 771 G4double mag2 = nx*nx + ny*ny + nz*nz; 773 G4double mag2 = nx*nx + ny*ny + nz*nz; 772 if (mag2 == 1) return { nx,ny,nz }; << 774 if (mag2 == 1) return G4ThreeVector(nx,ny,nz); 773 else if (mag2 != 0) return G4ThreeVector(nx, 775 else if (mag2 != 0) return G4ThreeVector(nx,ny,nz).unit(); // edge or corner 774 else 776 else 775 { 777 { 776 // Point is not on the surface 778 // Point is not on the surface 777 // 779 // 778 #ifdef G4CSGDEBUG 780 #ifdef G4CSGDEBUG 779 std::ostringstream message; 781 std::ostringstream message; 780 G4long oldprc = message.precision(16); << 782 G4int oldprc = message.precision(16); 781 message << "Point p is not on surface (!?) 783 message << "Point p is not on surface (!?) of solid: " 782 << GetName() << G4endl; 784 << GetName() << G4endl; 783 message << "Position:\n"; 785 message << "Position:\n"; 784 message << " p.x() = " << p.x()/mm << " 786 message << " p.x() = " << p.x()/mm << " mm\n"; 785 message << " p.y() = " << p.y()/mm << " 787 message << " p.y() = " << p.y()/mm << " mm\n"; 786 message << " p.z() = " << p.z()/mm << " 788 message << " p.z() = " << p.z()/mm << " mm"; 787 G4cout.precision(oldprc) ; 789 G4cout.precision(oldprc) ; 788 G4Exception("G4Trap::SurfaceNormal(p)", "G 790 G4Exception("G4Trap::SurfaceNormal(p)", "GeomSolids1002", 789 JustWarning, message ); 791 JustWarning, message ); 790 DumpInfo(); 792 DumpInfo(); 791 #endif 793 #endif 792 return ApproxSurfaceNormal(p); 794 return ApproxSurfaceNormal(p); 793 } 795 } 794 } 796 } 795 797 796 ////////////////////////////////////////////// 798 ////////////////////////////////////////////////////////////////////////// 797 // 799 // 798 // Algorithm for SurfaceNormal() following the 800 // Algorithm for SurfaceNormal() following the original specification 799 // for points not on the surface 801 // for points not on the surface 800 802 801 G4ThreeVector G4Trap::ApproxSurfaceNormal( con 803 G4ThreeVector G4Trap::ApproxSurfaceNormal( const G4ThreeVector& p ) const 802 { 804 { 803 G4double dist = -DBL_MAX; 805 G4double dist = -DBL_MAX; 804 G4int iside = 0; 806 G4int iside = 0; 805 for (G4int i=0; i<4; ++i) 807 for (G4int i=0; i<4; ++i) 806 { 808 { 807 G4double d = fPlanes[i].a*p.x() + 809 G4double d = fPlanes[i].a*p.x() + 808 fPlanes[i].b*p.y() + 810 fPlanes[i].b*p.y() + 809 fPlanes[i].c*p.z() + fPlanes[ 811 fPlanes[i].c*p.z() + fPlanes[i].d; 810 if (d > dist) { dist = d; iside = i; } 812 if (d > dist) { dist = d; iside = i; } 811 } 813 } 812 814 813 G4double distz = std::abs(p.z()) - fDz; 815 G4double distz = std::abs(p.z()) - fDz; 814 if (dist > distz) 816 if (dist > distz) 815 return { fPlanes[iside].a, fPlanes[iside]. << 817 return G4ThreeVector(fPlanes[iside].a, fPlanes[iside].b, fPlanes[iside].c); 816 else 818 else 817 return { 0, 0, (G4double)((p.z() < 0) ? -1 << 819 return G4ThreeVector(0, 0, (p.z() < 0) ? -1 : 1); 818 } 820 } 819 821 820 ////////////////////////////////////////////// 822 ////////////////////////////////////////////////////////////////////////// 821 // 823 // 822 // Calculate distance to shape from outside 824 // Calculate distance to shape from outside 823 // - return kInfinity if no intersection 825 // - return kInfinity if no intersection 824 826 825 G4double G4Trap::DistanceToIn(const G4ThreeVec 827 G4double G4Trap::DistanceToIn(const G4ThreeVector& p, 826 const G4ThreeVec 828 const G4ThreeVector& v ) const 827 { 829 { 828 // Z intersections 830 // Z intersections 829 // 831 // 830 if ((std::abs(p.z()) - fDz) >= -halfCarToler 832 if ((std::abs(p.z()) - fDz) >= -halfCarTolerance && p.z()*v.z() >= 0) 831 return kInfinity; 833 return kInfinity; 832 G4double invz = (-v.z() == 0) ? DBL_MAX : -1 834 G4double invz = (-v.z() == 0) ? DBL_MAX : -1./v.z(); 833 G4double dz = (invz < 0) ? fDz : -fDz; 835 G4double dz = (invz < 0) ? fDz : -fDz; 834 G4double tzmin = (p.z() + dz)*invz; 836 G4double tzmin = (p.z() + dz)*invz; 835 G4double tzmax = (p.z() - dz)*invz; 837 G4double tzmax = (p.z() - dz)*invz; 836 838 837 // Y intersections 839 // Y intersections 838 // 840 // 839 G4double tymin = 0, tymax = DBL_MAX; 841 G4double tymin = 0, tymax = DBL_MAX; 840 G4int i = 0; 842 G4int i = 0; 841 for ( ; i<2; ++i) 843 for ( ; i<2; ++i) 842 { 844 { 843 G4double cosa = fPlanes[i].b*v.y() + fPlan 845 G4double cosa = fPlanes[i].b*v.y() + fPlanes[i].c*v.z(); 844 G4double dist = fPlanes[i].b*p.y() + fPlan 846 G4double dist = fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 845 if (dist >= -halfCarTolerance) 847 if (dist >= -halfCarTolerance) 846 { 848 { 847 if (cosa >= 0) return kInfinity; 849 if (cosa >= 0) return kInfinity; 848 G4double tmp = -dist/cosa; 850 G4double tmp = -dist/cosa; 849 if (tymin < tmp) tymin = tmp; 851 if (tymin < tmp) tymin = tmp; 850 } 852 } 851 else if (cosa > 0) 853 else if (cosa > 0) 852 { 854 { 853 G4double tmp = -dist/cosa; 855 G4double tmp = -dist/cosa; 854 if (tymax > tmp) tymax = tmp; 856 if (tymax > tmp) tymax = tmp; 855 } 857 } 856 } 858 } 857 859 858 // Z intersections 860 // Z intersections 859 // 861 // 860 G4double txmin = 0, txmax = DBL_MAX; 862 G4double txmin = 0, txmax = DBL_MAX; 861 for ( ; i<4; ++i) 863 for ( ; i<4; ++i) 862 { 864 { 863 G4double cosa = fPlanes[i].a*v.x()+fPlanes 865 G4double cosa = fPlanes[i].a*v.x()+fPlanes[i].b*v.y()+fPlanes[i].c*v.z(); 864 G4double dist = fPlanes[i].a*p.x()+fPlanes 866 G4double dist = fPlanes[i].a*p.x()+fPlanes[i].b*p.y()+fPlanes[i].c*p.z() + 865 fPlanes[i].d; 867 fPlanes[i].d; 866 if (dist >= -halfCarTolerance) 868 if (dist >= -halfCarTolerance) 867 { 869 { 868 if (cosa >= 0) return kInfinity; 870 if (cosa >= 0) return kInfinity; 869 G4double tmp = -dist/cosa; 871 G4double tmp = -dist/cosa; 870 if (txmin < tmp) txmin = tmp; 872 if (txmin < tmp) txmin = tmp; 871 } 873 } 872 else if (cosa > 0) 874 else if (cosa > 0) 873 { 875 { 874 G4double tmp = -dist/cosa; 876 G4double tmp = -dist/cosa; 875 if (txmax > tmp) txmax = tmp; 877 if (txmax > tmp) txmax = tmp; 876 } 878 } 877 } 879 } 878 880 879 // Find distance 881 // Find distance 880 // 882 // 881 G4double tmin = std::max(std::max(txmin,tymi 883 G4double tmin = std::max(std::max(txmin,tymin),tzmin); 882 G4double tmax = std::min(std::min(txmax,tyma 884 G4double tmax = std::min(std::min(txmax,tymax),tzmax); 883 885 884 if (tmax <= tmin + halfCarTolerance) return 886 if (tmax <= tmin + halfCarTolerance) return kInfinity; // touch or no hit 885 return (tmin < halfCarTolerance ) ? 0. : tmi 887 return (tmin < halfCarTolerance ) ? 0. : tmin; 886 } 888 } 887 889 888 ////////////////////////////////////////////// 890 ////////////////////////////////////////////////////////////////////////// 889 // 891 // 890 // Calculate exact shortest distance to any bo 892 // Calculate exact shortest distance to any boundary from outside 891 // This is the best fast estimation of the sho 893 // This is the best fast estimation of the shortest distance to trap 892 // - return 0 if point is inside 894 // - return 0 if point is inside 893 895 894 G4double G4Trap::DistanceToIn( const G4ThreeVe 896 G4double G4Trap::DistanceToIn( const G4ThreeVector& p ) const 895 { 897 { 896 switch (fTrapType) 898 switch (fTrapType) 897 { 899 { 898 case 0: // General case 900 case 0: // General case 899 { 901 { 900 G4double dz = std::abs(p.z())-fDz; 902 G4double dz = std::abs(p.z())-fDz; 901 G4double dy1 = fPlanes[0].b*p.y()+fPlane 903 G4double dy1 = fPlanes[0].b*p.y()+fPlanes[0].c*p.z()+fPlanes[0].d; 902 G4double dy2 = fPlanes[1].b*p.y()+fPlane 904 G4double dy2 = fPlanes[1].b*p.y()+fPlanes[1].c*p.z()+fPlanes[1].d; 903 G4double dy = std::max(dz,std::max(dy1,d 905 G4double dy = std::max(dz,std::max(dy1,dy2)); 904 906 905 G4double dx1 = fPlanes[2].a*p.x()+fPlane 907 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 906 + fPlanes[2].c*p.z()+fPlane 908 + fPlanes[2].c*p.z()+fPlanes[2].d; 907 G4double dx2 = fPlanes[3].a*p.x()+fPlane 909 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 908 + fPlanes[3].c*p.z()+fPlane 910 + fPlanes[3].c*p.z()+fPlanes[3].d; 909 G4double dist = std::max(dy,std::max(dx1 911 G4double dist = std::max(dy,std::max(dx1,dx2)); 910 return (dist > 0) ? dist : 0.; 912 return (dist > 0) ? dist : 0.; 911 } 913 } 912 case 1: // YZ section is a rectangle 914 case 1: // YZ section is a rectangle 913 { 915 { 914 G4double dz = std::abs(p.z())-fDz; 916 G4double dz = std::abs(p.z())-fDz; 915 G4double dy = std::max(dz,std::abs(p.y() 917 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 916 G4double dx1 = fPlanes[2].a*p.x()+fPlane 918 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 917 + fPlanes[2].c*p.z()+fPlane 919 + fPlanes[2].c*p.z()+fPlanes[2].d; 918 G4double dx2 = fPlanes[3].a*p.x()+fPlane 920 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 919 + fPlanes[3].c*p.z()+fPlane 921 + fPlanes[3].c*p.z()+fPlanes[3].d; 920 G4double dist = std::max(dy,std::max(dx1 922 G4double dist = std::max(dy,std::max(dx1,dx2)); 921 return (dist > 0) ? dist : 0.; 923 return (dist > 0) ? dist : 0.; 922 } 924 } 923 case 2: // YZ section is a rectangle and 925 case 2: // YZ section is a rectangle and 924 { // XZ section is an isosceles trap 926 { // XZ section is an isosceles trapezoid 925 G4double dz = std::abs(p.z())-fDz; 927 G4double dz = std::abs(p.z())-fDz; 926 G4double dy = std::max(dz,std::abs(p.y() 928 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 927 G4double dx = fPlanes[3].a*std::abs(p.x( 929 G4double dx = fPlanes[3].a*std::abs(p.x()) 928 + fPlanes[3].c*p.z()+fPlanes 930 + fPlanes[3].c*p.z()+fPlanes[3].d; 929 G4double dist = std::max(dy,dx); 931 G4double dist = std::max(dy,dx); 930 return (dist > 0) ? dist : 0.; 932 return (dist > 0) ? dist : 0.; 931 } 933 } 932 case 3: // YZ section is a rectangle and 934 case 3: // YZ section is a rectangle and 933 { // XY section is an isosceles trap 935 { // XY section is an isosceles trapezoid 934 G4double dz = std::abs(p.z())-fDz; 936 G4double dz = std::abs(p.z())-fDz; 935 G4double dy = std::max(dz,std::abs(p.y() 937 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 936 G4double dx = fPlanes[3].a*std::abs(p.x( 938 G4double dx = fPlanes[3].a*std::abs(p.x()) 937 + fPlanes[3].b*p.y()+fPlanes 939 + fPlanes[3].b*p.y()+fPlanes[3].d; 938 G4double dist = std::max(dy,dx); 940 G4double dist = std::max(dy,dx); 939 return (dist > 0) ? dist : 0.; 941 return (dist > 0) ? dist : 0.; 940 } 942 } 941 } 943 } 942 return 0.; 944 return 0.; 943 } 945 } 944 946 945 ////////////////////////////////////////////// 947 ////////////////////////////////////////////////////////////////////////// 946 // 948 // 947 // Calculate distance to surface of shape from 949 // Calculate distance to surface of shape from inside and 948 // find normal at exit point, if required 950 // find normal at exit point, if required 949 // - when leaving the surface, return 0 951 // - when leaving the surface, return 0 950 952 951 G4double G4Trap::DistanceToOut(const G4ThreeVe 953 G4double G4Trap::DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v, 952 const G4bool ca 954 const G4bool calcNorm, 953 G4bool* v 955 G4bool* validNorm, G4ThreeVector* n) const 954 { 956 { 955 // Z intersections 957 // Z intersections 956 // 958 // 957 if ((std::abs(p.z()) - fDz) >= -halfCarToler 959 if ((std::abs(p.z()) - fDz) >= -halfCarTolerance && p.z()*v.z() > 0) 958 { 960 { 959 if (calcNorm) 961 if (calcNorm) 960 { 962 { 961 *validNorm = true; 963 *validNorm = true; 962 n->set(0, 0, (p.z() < 0) ? -1 : 1); 964 n->set(0, 0, (p.z() < 0) ? -1 : 1); 963 } 965 } 964 return 0; 966 return 0; 965 } 967 } 966 G4double vz = v.z(); 968 G4double vz = v.z(); 967 G4double tmax = (vz == 0) ? DBL_MAX : (std:: 969 G4double tmax = (vz == 0) ? DBL_MAX : (std::copysign(fDz,vz) - p.z())/vz; 968 G4int iside = (vz < 0) ? -4 : -2; // little 970 G4int iside = (vz < 0) ? -4 : -2; // little trick: (-4+3)=-1, (-2+3)=+1 969 971 970 // Y intersections 972 // Y intersections 971 // 973 // 972 G4int i = 0; 974 G4int i = 0; 973 for ( ; i<2; ++i) 975 for ( ; i<2; ++i) 974 { 976 { 975 G4double cosa = fPlanes[i].b*v.y() + fPlan 977 G4double cosa = fPlanes[i].b*v.y() + fPlanes[i].c*v.z(); 976 if (cosa > 0) 978 if (cosa > 0) 977 { 979 { 978 G4double dist = fPlanes[i].b*p.y() + fPl 980 G4double dist = fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 979 if (dist >= -halfCarTolerance) 981 if (dist >= -halfCarTolerance) 980 { 982 { 981 if (calcNorm) 983 if (calcNorm) 982 { 984 { 983 *validNorm = true; 985 *validNorm = true; 984 n->set(0, fPlanes[i].b, fPlanes[i].c 986 n->set(0, fPlanes[i].b, fPlanes[i].c); 985 } 987 } 986 return 0; 988 return 0; 987 } 989 } 988 G4double tmp = -dist/cosa; 990 G4double tmp = -dist/cosa; 989 if (tmax > tmp) { tmax = tmp; iside = i; 991 if (tmax > tmp) { tmax = tmp; iside = i; } 990 } 992 } 991 } 993 } 992 994 993 // X intersections 995 // X intersections 994 // 996 // 995 for ( ; i<4; ++i) 997 for ( ; i<4; ++i) 996 { 998 { 997 G4double cosa = fPlanes[i].a*v.x()+fPlanes 999 G4double cosa = fPlanes[i].a*v.x()+fPlanes[i].b*v.y()+fPlanes[i].c*v.z(); 998 if (cosa > 0) 1000 if (cosa > 0) 999 { 1001 { 1000 G4double dist = fPlanes[i].a*p.x() + 1002 G4double dist = fPlanes[i].a*p.x() + 1001 fPlanes[i].b*p.y() + fP 1003 fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 1002 if (dist >= -halfCarTolerance) 1004 if (dist >= -halfCarTolerance) 1003 { 1005 { 1004 if (calcNorm) 1006 if (calcNorm) 1005 { 1007 { 1006 *validNorm = true; 1008 *validNorm = true; 1007 n->set(fPlanes[i].a, fPlanes[i].b, 1009 n->set(fPlanes[i].a, fPlanes[i].b, fPlanes[i].c); 1008 } 1010 } 1009 return 0; 1011 return 0; 1010 } 1012 } 1011 G4double tmp = -dist/cosa; 1013 G4double tmp = -dist/cosa; 1012 if (tmax > tmp) { tmax = tmp; iside = i 1014 if (tmax > tmp) { tmax = tmp; iside = i; } 1013 } 1015 } 1014 } 1016 } 1015 1017 1016 // Set normal, if required, and return dist 1018 // Set normal, if required, and return distance 1017 // 1019 // 1018 if (calcNorm) 1020 if (calcNorm) 1019 { 1021 { 1020 *validNorm = true; 1022 *validNorm = true; 1021 if (iside < 0) 1023 if (iside < 0) 1022 n->set(0, 0, iside + 3); // (-4+3)=-1, 1024 n->set(0, 0, iside + 3); // (-4+3)=-1, (-2+3)=+1 1023 else 1025 else 1024 n->set(fPlanes[iside].a, fPlanes[iside] 1026 n->set(fPlanes[iside].a, fPlanes[iside].b, fPlanes[iside].c); 1025 } 1027 } 1026 return tmax; 1028 return tmax; 1027 } 1029 } 1028 1030 1029 ///////////////////////////////////////////// 1031 ////////////////////////////////////////////////////////////////////////// 1030 // 1032 // 1031 // Calculate exact shortest distance to any b 1033 // Calculate exact shortest distance to any boundary from inside 1032 // - Returns 0 is ThreeVector outside 1034 // - Returns 0 is ThreeVector outside 1033 1035 1034 G4double G4Trap::DistanceToOut( const G4Three 1036 G4double G4Trap::DistanceToOut( const G4ThreeVector& p ) const 1035 { 1037 { 1036 #ifdef G4CSGDEBUG 1038 #ifdef G4CSGDEBUG 1037 if( Inside(p) == kOutside ) 1039 if( Inside(p) == kOutside ) 1038 { 1040 { 1039 std::ostringstream message; 1041 std::ostringstream message; 1040 G4long oldprc = message.precision(16); << 1042 G4int oldprc = message.precision(16); 1041 message << "Point p is outside (!?) of so 1043 message << "Point p is outside (!?) of solid: " << GetName() << G4endl; 1042 message << "Position:\n"; 1044 message << "Position:\n"; 1043 message << " p.x() = " << p.x()/mm << " 1045 message << " p.x() = " << p.x()/mm << " mm\n"; 1044 message << " p.y() = " << p.y()/mm << " 1046 message << " p.y() = " << p.y()/mm << " mm\n"; 1045 message << " p.z() = " << p.z()/mm << " 1047 message << " p.z() = " << p.z()/mm << " mm"; 1046 G4cout.precision(oldprc); 1048 G4cout.precision(oldprc); 1047 G4Exception("G4Trap::DistanceToOut(p)", " 1049 G4Exception("G4Trap::DistanceToOut(p)", "GeomSolids1002", 1048 JustWarning, message ); 1050 JustWarning, message ); 1049 DumpInfo(); 1051 DumpInfo(); 1050 } 1052 } 1051 #endif 1053 #endif 1052 switch (fTrapType) 1054 switch (fTrapType) 1053 { 1055 { 1054 case 0: // General case 1056 case 0: // General case 1055 { 1057 { 1056 G4double dz = std::abs(p.z())-fDz; 1058 G4double dz = std::abs(p.z())-fDz; 1057 G4double dy1 = fPlanes[0].b*p.y()+fPlan 1059 G4double dy1 = fPlanes[0].b*p.y()+fPlanes[0].c*p.z()+fPlanes[0].d; 1058 G4double dy2 = fPlanes[1].b*p.y()+fPlan 1060 G4double dy2 = fPlanes[1].b*p.y()+fPlanes[1].c*p.z()+fPlanes[1].d; 1059 G4double dy = std::max(dz,std::max(dy1, 1061 G4double dy = std::max(dz,std::max(dy1,dy2)); 1060 1062 1061 G4double dx1 = fPlanes[2].a*p.x()+fPlan 1063 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 1062 + fPlanes[2].c*p.z()+fPlan 1064 + fPlanes[2].c*p.z()+fPlanes[2].d; 1063 G4double dx2 = fPlanes[3].a*p.x()+fPlan 1065 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 1064 + fPlanes[3].c*p.z()+fPlan 1066 + fPlanes[3].c*p.z()+fPlanes[3].d; 1065 G4double dist = std::max(dy,std::max(dx 1067 G4double dist = std::max(dy,std::max(dx1,dx2)); 1066 return (dist < 0) ? -dist : 0.; 1068 return (dist < 0) ? -dist : 0.; 1067 } 1069 } 1068 case 1: // YZ section is a rectangle 1070 case 1: // YZ section is a rectangle 1069 { 1071 { 1070 G4double dz = std::abs(p.z())-fDz; 1072 G4double dz = std::abs(p.z())-fDz; 1071 G4double dy = std::max(dz,std::abs(p.y( 1073 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 1072 G4double dx1 = fPlanes[2].a*p.x()+fPlan 1074 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 1073 + fPlanes[2].c*p.z()+fPlan 1075 + fPlanes[2].c*p.z()+fPlanes[2].d; 1074 G4double dx2 = fPlanes[3].a*p.x()+fPlan 1076 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 1075 + fPlanes[3].c*p.z()+fPlan 1077 + fPlanes[3].c*p.z()+fPlanes[3].d; 1076 G4double dist = std::max(dy,std::max(dx 1078 G4double dist = std::max(dy,std::max(dx1,dx2)); 1077 return (dist < 0) ? -dist : 0.; 1079 return (dist < 0) ? -dist : 0.; 1078 } 1080 } 1079 case 2: // YZ section is a rectangle and 1081 case 2: // YZ section is a rectangle and 1080 { // XZ section is an isosceles tra 1082 { // XZ section is an isosceles trapezoid 1081 G4double dz = std::abs(p.z())-fDz; 1083 G4double dz = std::abs(p.z())-fDz; 1082 G4double dy = std::max(dz,std::abs(p.y( 1084 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 1083 G4double dx = fPlanes[3].a*std::abs(p.x 1085 G4double dx = fPlanes[3].a*std::abs(p.x()) 1084 + fPlanes[3].c*p.z()+fPlane 1086 + fPlanes[3].c*p.z()+fPlanes[3].d; 1085 G4double dist = std::max(dy,dx); 1087 G4double dist = std::max(dy,dx); 1086 return (dist < 0) ? -dist : 0.; 1088 return (dist < 0) ? -dist : 0.; 1087 } 1089 } 1088 case 3: // YZ section is a rectangle and 1090 case 3: // YZ section is a rectangle and 1089 { // XY section is an isosceles tra 1091 { // XY section is an isosceles trapezoid 1090 G4double dz = std::abs(p.z())-fDz; 1092 G4double dz = std::abs(p.z())-fDz; 1091 G4double dy = std::max(dz,std::abs(p.y( 1093 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 1092 G4double dx = fPlanes[3].a*std::abs(p.x 1094 G4double dx = fPlanes[3].a*std::abs(p.x()) 1093 + fPlanes[3].b*p.y()+fPlane 1095 + fPlanes[3].b*p.y()+fPlanes[3].d; 1094 G4double dist = std::max(dy,dx); 1096 G4double dist = std::max(dy,dx); 1095 return (dist < 0) ? -dist : 0.; 1097 return (dist < 0) ? -dist : 0.; 1096 } 1098 } 1097 } 1099 } 1098 return 0.; 1100 return 0.; 1099 } 1101 } 1100 1102 1101 ///////////////////////////////////////////// 1103 ////////////////////////////////////////////////////////////////////////// 1102 // 1104 // 1103 // GetEntityType 1105 // GetEntityType 1104 1106 1105 G4GeometryType G4Trap::GetEntityType() const 1107 G4GeometryType G4Trap::GetEntityType() const 1106 { 1108 { 1107 return {"G4Trap"}; << 1109 return G4String("G4Trap"); 1108 } << 1109 << 1110 ///////////////////////////////////////////// << 1111 // << 1112 // IsFaceted << 1113 << 1114 G4bool G4Trap::IsFaceted() const << 1115 { << 1116 return true; << 1117 } 1110 } 1118 1111 1119 ///////////////////////////////////////////// 1112 ////////////////////////////////////////////////////////////////////////// 1120 // 1113 // 1121 // Make a clone of the object 1114 // Make a clone of the object 1122 // 1115 // 1123 G4VSolid* G4Trap::Clone() const 1116 G4VSolid* G4Trap::Clone() const 1124 { 1117 { 1125 return new G4Trap(*this); 1118 return new G4Trap(*this); 1126 } 1119 } 1127 1120 1128 ///////////////////////////////////////////// 1121 ////////////////////////////////////////////////////////////////////////// 1129 // 1122 // 1130 // Stream object contents to an output stream 1123 // Stream object contents to an output stream 1131 1124 1132 std::ostream& G4Trap::StreamInfo( std::ostrea 1125 std::ostream& G4Trap::StreamInfo( std::ostream& os ) const 1133 { 1126 { 1134 G4double phi = GetPhi(); 1127 G4double phi = GetPhi(); 1135 G4double theta = GetTheta(); 1128 G4double theta = GetTheta(); 1136 G4double alpha1 = GetAlpha1(); 1129 G4double alpha1 = GetAlpha1(); 1137 G4double alpha2 = GetAlpha2(); 1130 G4double alpha2 = GetAlpha2(); 1138 1131 1139 G4long oldprc = os.precision(16); << 1132 G4int oldprc = os.precision(16); 1140 os << "------------------------------------ 1133 os << "-----------------------------------------------------------\n" 1141 << " *** Dump for solid: " << GetName 1134 << " *** Dump for solid: " << GetName() << " ***\n" 1142 << " ================================ 1135 << " ===================================================\n" 1143 << " Solid type: G4Trap\n" 1136 << " Solid type: G4Trap\n" 1144 << " Parameters:\n" 1137 << " Parameters:\n" 1145 << " half length Z: " << fDz/mm << " 1138 << " half length Z: " << fDz/mm << " mm\n" 1146 << " half length Y, face -Dz: " << fD 1139 << " half length Y, face -Dz: " << fDy1/mm << " mm\n" 1147 << " half length X, face -Dz, side -D 1140 << " half length X, face -Dz, side -Dy1: " << fDx1/mm << " mm\n" 1148 << " half length X, face -Dz, side +D 1141 << " half length X, face -Dz, side +Dy1: " << fDx2/mm << " mm\n" 1149 << " half length Y, face +Dz: " << fD 1142 << " half length Y, face +Dz: " << fDy2/mm << " mm\n" 1150 << " half length X, face +Dz, side -D 1143 << " half length X, face +Dz, side -Dy2: " << fDx3/mm << " mm\n" 1151 << " half length X, face +Dz, side +D 1144 << " half length X, face +Dz, side +Dy2: " << fDx4/mm << " mm\n" 1152 << " theta: " << theta/degree << " de 1145 << " theta: " << theta/degree << " degrees\n" 1153 << " phi: " << phi/degree << " degr 1146 << " phi: " << phi/degree << " degrees\n" 1154 << " alpha, face -Dz: " << alpha1/deg 1147 << " alpha, face -Dz: " << alpha1/degree << " degrees\n" 1155 << " alpha, face +Dz: " << alpha2/deg 1148 << " alpha, face +Dz: " << alpha2/degree << " degrees\n" 1156 << "------------------------------------ 1149 << "-----------------------------------------------------------\n"; 1157 os.precision(oldprc); 1150 os.precision(oldprc); 1158 1151 1159 return os; 1152 return os; 1160 } 1153 } 1161 1154 1162 ///////////////////////////////////////////// 1155 ////////////////////////////////////////////////////////////////////////// 1163 // 1156 // 1164 // Compute vertices from planes 1157 // Compute vertices from planes 1165 1158 1166 void G4Trap::GetVertices(G4ThreeVector pt[8]) 1159 void G4Trap::GetVertices(G4ThreeVector pt[8]) const 1167 { 1160 { 1168 for (G4int i=0; i<8; ++i) 1161 for (G4int i=0; i<8; ++i) 1169 { 1162 { 1170 G4int iy = (i==0 || i==1 || i==4 || i==5) 1163 G4int iy = (i==0 || i==1 || i==4 || i==5) ? 0 : 1; 1171 G4int ix = (i==0 || i==2 || i==4 || i==6) 1164 G4int ix = (i==0 || i==2 || i==4 || i==6) ? 2 : 3; 1172 G4double z = (i < 4) ? -fDz : fDz; 1165 G4double z = (i < 4) ? -fDz : fDz; 1173 G4double y = -(fPlanes[iy].c*z + fPlanes[ 1166 G4double y = -(fPlanes[iy].c*z + fPlanes[iy].d)/fPlanes[iy].b; 1174 G4double x = -(fPlanes[ix].b*y + fPlanes[ 1167 G4double x = -(fPlanes[ix].b*y + fPlanes[ix].c*z 1175 + fPlanes[ix].d)/fPlanes[i 1168 + fPlanes[ix].d)/fPlanes[ix].a; 1176 pt[i].set(x,y,z); 1169 pt[i].set(x,y,z); 1177 } 1170 } 1178 } 1171 } 1179 1172 1180 ///////////////////////////////////////////// 1173 ////////////////////////////////////////////////////////////////////////// 1181 // 1174 // 1182 // Generate random point on the surface 1175 // Generate random point on the surface 1183 1176 1184 G4ThreeVector G4Trap::GetPointOnSurface() con 1177 G4ThreeVector G4Trap::GetPointOnSurface() const 1185 { 1178 { 1186 // Set indeces 1179 // Set indeces 1187 constexpr G4int iface [6][4] = 1180 constexpr G4int iface [6][4] = 1188 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6 1181 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3}, {4,6,7,5} }; 1189 1182 1190 // Set vertices 1183 // Set vertices 1191 G4ThreeVector pt[8]; 1184 G4ThreeVector pt[8]; 1192 GetVertices(pt); 1185 GetVertices(pt); 1193 1186 1194 // Select face 1187 // Select face 1195 // 1188 // 1196 G4double select = fAreas[5]*G4QuickRand(); 1189 G4double select = fAreas[5]*G4QuickRand(); 1197 G4int k = 5; 1190 G4int k = 5; 1198 k -= (G4int)(select <= fAreas[4]); << 1191 k -= (select <= fAreas[4]); 1199 k -= (G4int)(select <= fAreas[3]); << 1192 k -= (select <= fAreas[3]); 1200 k -= (G4int)(select <= fAreas[2]); << 1193 k -= (select <= fAreas[2]); 1201 k -= (G4int)(select <= fAreas[1]); << 1194 k -= (select <= fAreas[1]); 1202 k -= (G4int)(select <= fAreas[0]); << 1195 k -= (select <= fAreas[0]); 1203 1196 1204 // Select sub-triangle 1197 // Select sub-triangle 1205 // 1198 // 1206 G4int i0 = iface[k][0]; 1199 G4int i0 = iface[k][0]; 1207 G4int i1 = iface[k][1]; 1200 G4int i1 = iface[k][1]; 1208 G4int i2 = iface[k][2]; 1201 G4int i2 = iface[k][2]; 1209 G4int i3 = iface[k][3]; 1202 G4int i3 = iface[k][3]; 1210 G4double s2 = G4GeomTools::TriangleAreaNorm 1203 G4double s2 = G4GeomTools::TriangleAreaNormal(pt[i2],pt[i1],pt[i3]).mag(); 1211 if (select > fAreas[k] - s2) i0 = i2; 1204 if (select > fAreas[k] - s2) i0 = i2; 1212 1205 1213 // Generate point 1206 // Generate point 1214 // 1207 // 1215 G4double u = G4QuickRand(); 1208 G4double u = G4QuickRand(); 1216 G4double v = G4QuickRand(); 1209 G4double v = G4QuickRand(); 1217 if (u + v > 1.) { u = 1. - u; v = 1. - v; } 1210 if (u + v > 1.) { u = 1. - u; v = 1. - v; } 1218 return (1.-u-v)*pt[i0] + u*pt[i1] + v*pt[i3 1211 return (1.-u-v)*pt[i0] + u*pt[i1] + v*pt[i3]; 1219 } 1212 } 1220 1213 1221 ///////////////////////////////////////////// 1214 ////////////////////////////////////////////////////////////////////////// 1222 // 1215 // 1223 // Methods for visualisation 1216 // Methods for visualisation 1224 1217 1225 void G4Trap::DescribeYourselfTo ( G4VGraphics 1218 void G4Trap::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 1226 { 1219 { 1227 scene.AddSolid (*this); 1220 scene.AddSolid (*this); 1228 } 1221 } 1229 1222 1230 G4Polyhedron* G4Trap::CreatePolyhedron () con 1223 G4Polyhedron* G4Trap::CreatePolyhedron () const 1231 { 1224 { 1232 G4double phi = std::atan2(fTthetaSphi, fTth 1225 G4double phi = std::atan2(fTthetaSphi, fTthetaCphi); 1233 G4double alpha1 = std::atan(fTalpha1); 1226 G4double alpha1 = std::atan(fTalpha1); 1234 G4double alpha2 = std::atan(fTalpha2); 1227 G4double alpha2 = std::atan(fTalpha2); 1235 G4double theta = std::atan(std::sqrt(fTthet 1228 G4double theta = std::atan(std::sqrt(fTthetaCphi*fTthetaCphi 1236 +fTthet 1229 +fTthetaSphi*fTthetaSphi)); 1237 1230 1238 return new G4PolyhedronTrap(fDz, theta, phi 1231 return new G4PolyhedronTrap(fDz, theta, phi, 1239 fDy1, fDx1, fDx 1232 fDy1, fDx1, fDx2, alpha1, 1240 fDy2, fDx3, fDx 1233 fDy2, fDx3, fDx4, alpha2); 1241 } 1234 } 1242 1235 1243 #endif 1236 #endif 1244 1237