Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4Trap.cc 107555 2017-11-22 15:26:59Z gcosmo $ >> 28 // >> 29 // class G4Trap >> 30 // 26 // Implementation for G4Trap class 31 // Implementation for G4Trap class 27 // 32 // 28 // 21.03.95 P.Kent: Modified for `tolerant' ge << 33 // History: 29 // 09.09.96 V.Grichine: Final modifications be << 34 // 30 // 08.12.97 J.Allison: Added "nominal" constru << 31 // 28.04.05 V.Grichine: new SurfaceNormal acco << 32 // 18.04.17 E.Tcherniaev: complete revision, s 35 // 18.04.17 E.Tcherniaev: complete revision, speed-up 33 // ------------------------------------------- << 36 // 23.09.16 E.Tcherniaev: use G4BoundingEnvelope for CalculateExtent(), >> 37 // removed CreateRotatedVertices() >> 38 // 28.04.05 V.Grichine: new SurfaceNormal according to J. Apostolakis proposal >> 39 // 26.04.05 V.Grichine: new SurfaceNormal is default >> 40 // 19.04.05 V.Grichine: bug fixed in G4Trap("name",G4ThreeVector[8] vp) >> 41 // 12.12.04 V.Grichine: SurfaceNormal with edges/vertices >> 42 // 15.11.04 V.Grichine: bug fixed in G4Trap("name",G4ThreeVector[8] vp) >> 43 // 13.12.99 V.Grichine: bug fixed in DistanceToIn(p,v) >> 44 // 19.11.99 V.Grichine: kUndef was added to Eside enum >> 45 // 04.06.99 S.Giani: Fixed CalculateExtent in rotated case. >> 46 // 08.12.97 J.Allison: Added "nominal" constructor and method SetAllParameters. >> 47 // 01.11.96 V.Grichine: Costructor for Right Angular Wedge from STEP, G4Trd/Para >> 48 // 09.09.96 V.Grichine: Final modifications before to commit >> 49 // 21.03.95 P.Kent: Modified for `tolerant' geometry >> 50 // >> 51 /////////////////////////////////////////////////////////////////////////////// 34 52 35 #include "G4Trap.hh" 53 #include "G4Trap.hh" 36 54 37 #if !defined(G4GEOM_USE_UTRAP) 55 #if !defined(G4GEOM_USE_UTRAP) 38 56 39 #include "globals.hh" 57 #include "globals.hh" 40 #include "G4GeomTools.hh" 58 #include "G4GeomTools.hh" 41 59 42 #include "G4VoxelLimits.hh" 60 #include "G4VoxelLimits.hh" 43 #include "G4AffineTransform.hh" 61 #include "G4AffineTransform.hh" 44 #include "G4BoundingEnvelope.hh" 62 #include "G4BoundingEnvelope.hh" 45 63 46 #include "G4VPVParameterisation.hh" 64 #include "G4VPVParameterisation.hh" 47 65 48 #include "G4QuickRand.hh" << 66 #include "Randomize.hh" 49 67 50 #include "G4VGraphicsScene.hh" 68 #include "G4VGraphicsScene.hh" 51 #include "G4Polyhedron.hh" 69 #include "G4Polyhedron.hh" 52 70 53 using namespace CLHEP; 71 using namespace CLHEP; 54 72 55 ////////////////////////////////////////////// 73 ////////////////////////////////////////////////////////////////////////// 56 // 74 // 57 // Constructor - check and set half-widths as << 75 // Constructor - check and set half-widths as well as angles: 58 // final check of coplanarity 76 // final check of coplanarity 59 77 60 G4Trap::G4Trap( const G4String& pName, 78 G4Trap::G4Trap( const G4String& pName, 61 G4double pDz, 79 G4double pDz, 62 G4double pTheta, G4doubl 80 G4double pTheta, G4double pPhi, 63 G4double pDy1, G4double 81 G4double pDy1, G4double pDx1, G4double pDx2, 64 G4double pAlp1, 82 G4double pAlp1, 65 G4double pDy2, G4double 83 G4double pDy2, G4double pDx3, G4double pDx4, 66 G4double pAlp2 ) << 84 G4double pAlp2) 67 : G4CSGSolid(pName), halfCarTolerance(0.5*kC 85 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance) 68 { 86 { 69 fDz = pDz; 87 fDz = pDz; 70 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi 88 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi); 71 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi 89 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi); 72 90 73 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalp 91 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalpha1 = std::tan(pAlp1); 74 fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalp 92 fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalpha2 = std::tan(pAlp2); 75 93 76 CheckParameters(); 94 CheckParameters(); 77 MakePlanes(); 95 MakePlanes(); 78 } 96 } 79 97 80 ////////////////////////////////////////////// 98 ////////////////////////////////////////////////////////////////////////// 81 // 99 // 82 // Constructor - Design of trapezoid based on << 100 // Constructor - Design of trapezoid based on 8 G4ThreeVector parameters, 83 // which are its vertices. Checking of planari << 101 // which are its vertices. Checking of planarity with preparation of 84 // fPlanes[] and than calculation of other mem 102 // fPlanes[] and than calculation of other members 85 103 86 G4Trap::G4Trap( const G4String& pName, 104 G4Trap::G4Trap( const G4String& pName, 87 const G4ThreeVector pt[8] ) 105 const G4ThreeVector pt[8] ) 88 : G4CSGSolid(pName), halfCarTolerance(0.5*kC 106 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance) 89 { 107 { 90 // Start with check of centering - the cente 108 // Start with check of centering - the center of gravity trap line 91 // should cross the origin of frame 109 // should cross the origin of frame 92 // 110 // 93 if ( pt[0].z() >= 0 << 111 if (!( pt[0].z() < 0 94 || pt[0].z() != pt[1].z() << 112 && pt[0].z() == pt[1].z() 95 || pt[0].z() != pt[2].z() << 113 && pt[0].z() == pt[2].z() 96 || pt[0].z() != pt[3].z() << 114 && pt[0].z() == pt[3].z() 97 << 115 98 || pt[4].z() <= 0 << 116 && pt[4].z() > 0 99 || pt[4].z() != pt[5].z() << 117 && pt[4].z() == pt[5].z() 100 || pt[4].z() != pt[6].z() << 118 && pt[4].z() == pt[6].z() 101 || pt[4].z() != pt[7].z() << 119 && pt[4].z() == pt[7].z() 102 << 120 103 || std::fabs( pt[0].z() + pt[4].z() ) << 121 && std::fabs( pt[0].z() + pt[4].z() ) < kCarTolerance 104 << 122 105 || pt[0].y() != pt[1].y() << 123 && pt[0].y() == pt[1].y() 106 || pt[2].y() != pt[3].y() << 124 && pt[2].y() == pt[3].y() 107 || pt[4].y() != pt[5].y() << 125 && pt[4].y() == pt[5].y() 108 || pt[6].y() != pt[7].y() << 126 && pt[6].y() == pt[7].y() 109 << 127 110 || std::fabs(pt[0].y()+pt[2].y()+pt[4] << 128 && std::fabs(pt[0].y()+pt[2].y()+pt[4].y()+pt[6].y()) < kCarTolerance 111 || std::fabs(pt[0].x()+pt[1].x()+pt[4] << 129 && std::fabs(pt[0].x()+pt[1].x()+pt[4].x()+pt[5].x() + 112 pt[2].x()+pt[3].x()+pt[6] << 130 pt[2].x()+pt[3].x()+pt[6].x()+pt[7].x()) < kCarTolerance )) 113 { 131 { 114 std::ostringstream message; 132 std::ostringstream message; 115 message << "Invalid vertice coordinates fo 133 message << "Invalid vertice coordinates for Solid: " << GetName(); 116 G4Exception("G4Trap::G4Trap()", "GeomSolid 134 G4Exception("G4Trap::G4Trap()", "GeomSolids0002", 117 FatalException, message); 135 FatalException, message); 118 } 136 } 119 << 137 120 // Set parameters 138 // Set parameters 121 // 139 // 122 fDz = (pt[7]).z(); 140 fDz = (pt[7]).z(); 123 << 141 124 fDy1 = ((pt[2]).y()-(pt[1]).y())*0.5; 142 fDy1 = ((pt[2]).y()-(pt[1]).y())*0.5; 125 fDx1 = ((pt[1]).x()-(pt[0]).x())*0.5; 143 fDx1 = ((pt[1]).x()-(pt[0]).x())*0.5; 126 fDx2 = ((pt[3]).x()-(pt[2]).x())*0.5; 144 fDx2 = ((pt[3]).x()-(pt[2]).x())*0.5; 127 fTalpha1 = ((pt[2]).x()+(pt[3]).x()-(pt[1]). 145 fTalpha1 = ((pt[2]).x()+(pt[3]).x()-(pt[1]).x()-(pt[0]).x())*0.25/fDy1; 128 146 129 fDy2 = ((pt[6]).y()-(pt[5]).y())*0.5; 147 fDy2 = ((pt[6]).y()-(pt[5]).y())*0.5; 130 fDx3 = ((pt[5]).x()-(pt[4]).x())*0.5; 148 fDx3 = ((pt[5]).x()-(pt[4]).x())*0.5; 131 fDx4 = ((pt[7]).x()-(pt[6]).x())*0.5; 149 fDx4 = ((pt[7]).x()-(pt[6]).x())*0.5; 132 fTalpha2 = ((pt[6]).x()+(pt[7]).x()-(pt[5]). 150 fTalpha2 = ((pt[6]).x()+(pt[7]).x()-(pt[5]).x()-(pt[4]).x())*0.25/fDy2; 133 151 134 fTthetaCphi = ((pt[4]).x()+fDy2*fTalpha2+fDx 152 fTthetaCphi = ((pt[4]).x()+fDy2*fTalpha2+fDx3)/fDz; 135 fTthetaSphi = ((pt[4]).y()+fDy2)/fDz; 153 fTthetaSphi = ((pt[4]).y()+fDy2)/fDz; 136 154 137 CheckParameters(); 155 CheckParameters(); 138 MakePlanes(pt); 156 MakePlanes(pt); 139 } 157 } 140 158 141 ////////////////////////////////////////////// 159 ////////////////////////////////////////////////////////////////////////// 142 // 160 // 143 // Constructor for Right Angular Wedge from ST 161 // Constructor for Right Angular Wedge from STEP 144 162 145 G4Trap::G4Trap( const G4String& pName, 163 G4Trap::G4Trap( const G4String& pName, 146 G4double pZ, 164 G4double pZ, 147 G4double pY, 165 G4double pY, 148 G4double pX, G4double pL 166 G4double pX, G4double pLTX ) 149 : G4CSGSolid(pName), halfCarTolerance(0.5*kC 167 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance) 150 { 168 { 151 fDz = 0.5*pZ; fTthetaCphi = 0; fTthetaSphi 169 fDz = 0.5*pZ; fTthetaCphi = 0; fTthetaSphi = 0; 152 fDy1 = 0.5*pY; fDx1 = 0.5*pX; fDx2 = 0.5*pLT 170 fDy1 = 0.5*pY; fDx1 = 0.5*pX; fDx2 = 0.5*pLTX; fTalpha1 = 0.5*(pLTX - pX)/pY; 153 fDy2 = fDy1; fDx3 = fDx1; fDx4 = fDx2; 171 fDy2 = fDy1; fDx3 = fDx1; fDx4 = fDx2; fTalpha2 = fTalpha1; 154 172 155 CheckParameters(); 173 CheckParameters(); 156 MakePlanes(); 174 MakePlanes(); 157 } 175 } 158 176 159 ////////////////////////////////////////////// 177 ////////////////////////////////////////////////////////////////////////// 160 // 178 // 161 // Constructor for G4Trd 179 // Constructor for G4Trd 162 180 163 G4Trap::G4Trap( const G4String& pName, 181 G4Trap::G4Trap( const G4String& pName, 164 G4double pDx1, G4double 182 G4double pDx1, G4double pDx2, 165 G4double pDy1, G4double 183 G4double pDy1, G4double pDy2, 166 G4double pDz ) 184 G4double pDz ) 167 : G4CSGSolid(pName), halfCarTolerance(0.5*kC 185 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance), fTrapType(0) 168 { 186 { 169 fDz = pDz; fTthetaCphi = 0; fTthetaSphi = 187 fDz = pDz; fTthetaCphi = 0; fTthetaSphi = 0; 170 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx1; fTalp 188 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx1; fTalpha1 = 0; 171 fDy2 = pDy2; fDx3 = pDx2; fDx4 = pDx2; fTalp 189 fDy2 = pDy2; fDx3 = pDx2; fDx4 = pDx2; fTalpha2 = 0; 172 190 173 CheckParameters(); 191 CheckParameters(); 174 MakePlanes(); 192 MakePlanes(); 175 } 193 } 176 194 177 ////////////////////////////////////////////// 195 ////////////////////////////////////////////////////////////////////////// 178 // 196 // 179 // Constructor for G4Para 197 // Constructor for G4Para 180 198 181 G4Trap::G4Trap( const G4String& pName, 199 G4Trap::G4Trap( const G4String& pName, 182 G4double pDx, G4double p 200 G4double pDx, G4double pDy, 183 G4double pDz, 201 G4double pDz, 184 G4double pAlpha, 202 G4double pAlpha, 185 G4double pTheta, G4doubl 203 G4double pTheta, G4double pPhi ) 186 : G4CSGSolid(pName), halfCarTolerance(0.5*kC 204 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance) 187 { 205 { 188 fDz = pDz; 206 fDz = pDz; 189 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi 207 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi); 190 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi 208 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi); 191 209 192 fDy1 = pDy; fDx1 = pDx; fDx2 = pDx; fTalpha1 210 fDy1 = pDy; fDx1 = pDx; fDx2 = pDx; fTalpha1 = std::tan(pAlpha); 193 fDy2 = pDy; fDx3 = pDx; fDx4 = pDx; fTalpha2 211 fDy2 = pDy; fDx3 = pDx; fDx4 = pDx; fTalpha2 = fTalpha1; 194 212 195 CheckParameters(); 213 CheckParameters(); 196 MakePlanes(); 214 MakePlanes(); 197 } 215 } 198 216 199 ////////////////////////////////////////////// 217 ////////////////////////////////////////////////////////////////////////// 200 // 218 // 201 // Nominal constructor for G4Trap whose parame 219 // Nominal constructor for G4Trap whose parameters are to be set by 202 // a G4VParamaterisation later. Check and set 220 // a G4VParamaterisation later. Check and set half-widths as well as 203 // angles: final check of coplanarity 221 // angles: final check of coplanarity 204 222 205 G4Trap::G4Trap( const G4String& pName ) 223 G4Trap::G4Trap( const G4String& pName ) 206 : G4CSGSolid (pName), halfCarTolerance(0.5*k 224 : G4CSGSolid (pName), halfCarTolerance(0.5*kCarTolerance), 207 fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.), 225 fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.), 208 fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.) 226 fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.), 209 fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.) 227 fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.) 210 { 228 { 211 MakePlanes(); 229 MakePlanes(); 212 } 230 } 213 231 214 ////////////////////////////////////////////// 232 ////////////////////////////////////////////////////////////////////////// 215 // 233 // 216 // Fake default constructor - sets only member 234 // Fake default constructor - sets only member data and allocates memory 217 // for usage restri 235 // for usage restricted to object persistency. 218 // 236 // 219 G4Trap::G4Trap( __void__& a ) 237 G4Trap::G4Trap( __void__& a ) 220 : G4CSGSolid(a), halfCarTolerance(0.5*kCarTo 238 : G4CSGSolid(a), halfCarTolerance(0.5*kCarTolerance), 221 fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.), 239 fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.), 222 fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.) 240 fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.), 223 fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.) 241 fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.) 224 { 242 { 225 MakePlanes(); 243 MakePlanes(); 226 } 244 } 227 245 228 ////////////////////////////////////////////// 246 ////////////////////////////////////////////////////////////////////////// 229 // 247 // 230 // Destructor 248 // Destructor 231 249 232 G4Trap::~G4Trap() = default; << 250 G4Trap::~G4Trap() >> 251 { >> 252 } 233 253 234 ////////////////////////////////////////////// 254 ////////////////////////////////////////////////////////////////////////// 235 // 255 // 236 // Copy constructor 256 // Copy constructor 237 257 238 G4Trap::G4Trap(const G4Trap& rhs) 258 G4Trap::G4Trap(const G4Trap& rhs) 239 : G4CSGSolid(rhs), halfCarTolerance(rhs.half 259 : G4CSGSolid(rhs), halfCarTolerance(rhs.halfCarTolerance), 240 fDz(rhs.fDz), fTthetaCphi(rhs.fTthetaCphi) 260 fDz(rhs.fDz), fTthetaCphi(rhs.fTthetaCphi), fTthetaSphi(rhs.fTthetaSphi), 241 fDy1(rhs.fDy1), fDx1(rhs.fDx1), fDx2(rhs.f 261 fDy1(rhs.fDy1), fDx1(rhs.fDx1), fDx2(rhs.fDx2), fTalpha1(rhs.fTalpha1), 242 fDy2(rhs.fDy2), fDx3(rhs.fDx3), fDx4(rhs.f 262 fDy2(rhs.fDy2), fDx3(rhs.fDx3), fDx4(rhs.fDx4), fTalpha2(rhs.fTalpha2) 243 { 263 { 244 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs 264 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs.fPlanes[i]; } 245 for (G4int i=0; i<6; ++i) { fAreas[i] = rhs. << 246 fTrapType = rhs.fTrapType; 265 fTrapType = rhs.fTrapType; 247 } 266 } 248 267 249 ////////////////////////////////////////////// 268 ////////////////////////////////////////////////////////////////////////// 250 // 269 // 251 // Assignment operator 270 // Assignment operator 252 271 253 G4Trap& G4Trap::operator = (const G4Trap& rhs) << 272 G4Trap& G4Trap::operator = (const G4Trap& rhs) 254 { 273 { 255 // Check assignment to self 274 // Check assignment to self 256 // 275 // 257 if (this == &rhs) { return *this; } 276 if (this == &rhs) { return *this; } 258 277 259 // Copy base class data 278 // Copy base class data 260 // 279 // 261 G4CSGSolid::operator=(rhs); 280 G4CSGSolid::operator=(rhs); 262 281 263 // Copy data 282 // Copy data 264 // 283 // 265 halfCarTolerance = rhs.halfCarTolerance; 284 halfCarTolerance = rhs.halfCarTolerance; 266 fDz = rhs.fDz; fTthetaCphi = rhs.fTthetaCphi 285 fDz = rhs.fDz; fTthetaCphi = rhs.fTthetaCphi; fTthetaSphi = rhs.fTthetaSphi; 267 fDy1 = rhs.fDy1; fDx1 = rhs.fDx1; fDx2 = rhs 286 fDy1 = rhs.fDy1; fDx1 = rhs.fDx1; fDx2 = rhs.fDx2; fTalpha1 = rhs.fTalpha1; 268 fDy2 = rhs.fDy2; fDx3 = rhs.fDx3; fDx4 = rhs 287 fDy2 = rhs.fDy2; fDx3 = rhs.fDx3; fDx4 = rhs.fDx4; fTalpha2 = rhs.fTalpha2; 269 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs 288 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs.fPlanes[i]; } 270 for (G4int i=0; i<6; ++i) { fAreas[i] = rhs. << 271 fTrapType = rhs.fTrapType; 289 fTrapType = rhs.fTrapType; 272 return *this; 290 return *this; 273 } 291 } 274 292 275 ////////////////////////////////////////////// 293 ////////////////////////////////////////////////////////////////////////// 276 // 294 // 277 // Set all parameters, as for constructor - ch 295 // Set all parameters, as for constructor - check and set half-widths 278 // as well as angles: final check of coplanari 296 // as well as angles: final check of coplanarity 279 297 280 void G4Trap::SetAllParameters ( G4double pDz, 298 void G4Trap::SetAllParameters ( G4double pDz, 281 G4double pThet 299 G4double pTheta, 282 G4double pPhi, 300 G4double pPhi, 283 G4double pDy1, 301 G4double pDy1, 284 G4double pDx1, 302 G4double pDx1, 285 G4double pDx2, 303 G4double pDx2, 286 G4double pAlp1 304 G4double pAlp1, 287 G4double pDy2, 305 G4double pDy2, 288 G4double pDx3, 306 G4double pDx3, 289 G4double pDx4, 307 G4double pDx4, 290 G4double pAlp2 308 G4double pAlp2 ) 291 { 309 { 292 // Reset data of the base class 310 // Reset data of the base class 293 fCubicVolume = 0; 311 fCubicVolume = 0; 294 fSurfaceArea = 0; 312 fSurfaceArea = 0; 295 fRebuildPolyhedron = true; 313 fRebuildPolyhedron = true; 296 314 297 // Set parameters 315 // Set parameters 298 fDz = pDz; 316 fDz = pDz; 299 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi 317 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi); 300 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi 318 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi); 301 319 302 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalp 320 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalpha1 = std::tan(pAlp1); 303 fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalp 321 fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalpha2 = std::tan(pAlp2); 304 322 305 CheckParameters(); 323 CheckParameters(); 306 MakePlanes(); 324 MakePlanes(); 307 } 325 } 308 326 309 ////////////////////////////////////////////// 327 ////////////////////////////////////////////////////////////////////////// 310 // 328 // 311 // Check length parameters 329 // Check length parameters 312 330 313 void G4Trap::CheckParameters() 331 void G4Trap::CheckParameters() 314 { 332 { 315 if (fDz<=0 || 333 if (fDz<=0 || 316 fDy1<=0 || fDx1<=0 || fDx2<=0 || 334 fDy1<=0 || fDx1<=0 || fDx2<=0 || 317 fDy2<=0 || fDx3<=0 || fDx4<=0) 335 fDy2<=0 || fDx3<=0 || fDx4<=0) 318 { 336 { 319 std::ostringstream message; 337 std::ostringstream message; 320 message << "Invalid Length Parameters for 338 message << "Invalid Length Parameters for Solid: " << GetName() 321 << "\n X - " <<fDx1<<", "<<fDx2<< 339 << "\n X - " <<fDx1<<", "<<fDx2<<", "<<fDx3<<", "<<fDx4 322 << "\n Y - " <<fDy1<<", "<<fDy2 340 << "\n Y - " <<fDy1<<", "<<fDy2 323 << "\n Z - " <<fDz; 341 << "\n Z - " <<fDz; 324 G4Exception("G4Trap::CheckParameters()", " 342 G4Exception("G4Trap::CheckParameters()", "GeomSolids0002", 325 FatalException, message); 343 FatalException, message); 326 } 344 } 327 } 345 } 328 346 329 ////////////////////////////////////////////// 347 ////////////////////////////////////////////////////////////////////////// 330 // 348 // 331 // Compute vertices and set side planes 349 // Compute vertices and set side planes 332 350 333 void G4Trap::MakePlanes() 351 void G4Trap::MakePlanes() 334 { 352 { 335 G4double DzTthetaCphi = fDz*fTthetaCphi; 353 G4double DzTthetaCphi = fDz*fTthetaCphi; 336 G4double DzTthetaSphi = fDz*fTthetaSphi; 354 G4double DzTthetaSphi = fDz*fTthetaSphi; 337 G4double Dy1Talpha1 = fDy1*fTalpha1; 355 G4double Dy1Talpha1 = fDy1*fTalpha1; 338 G4double Dy2Talpha2 = fDy2*fTalpha2; 356 G4double Dy2Talpha2 = fDy2*fTalpha2; 339 357 340 G4ThreeVector pt[8] = 358 G4ThreeVector pt[8] = 341 { 359 { 342 G4ThreeVector(-DzTthetaCphi-Dy1Talpha1-fDx 360 G4ThreeVector(-DzTthetaCphi-Dy1Talpha1-fDx1,-DzTthetaSphi-fDy1,-fDz), 343 G4ThreeVector(-DzTthetaCphi-Dy1Talpha1+fDx 361 G4ThreeVector(-DzTthetaCphi-Dy1Talpha1+fDx1,-DzTthetaSphi-fDy1,-fDz), 344 G4ThreeVector(-DzTthetaCphi+Dy1Talpha1-fDx 362 G4ThreeVector(-DzTthetaCphi+Dy1Talpha1-fDx2,-DzTthetaSphi+fDy1,-fDz), 345 G4ThreeVector(-DzTthetaCphi+Dy1Talpha1+fDx 363 G4ThreeVector(-DzTthetaCphi+Dy1Talpha1+fDx2,-DzTthetaSphi+fDy1,-fDz), 346 G4ThreeVector( DzTthetaCphi-Dy2Talpha2-fDx 364 G4ThreeVector( DzTthetaCphi-Dy2Talpha2-fDx3, DzTthetaSphi-fDy2, fDz), 347 G4ThreeVector( DzTthetaCphi-Dy2Talpha2+fDx 365 G4ThreeVector( DzTthetaCphi-Dy2Talpha2+fDx3, DzTthetaSphi-fDy2, fDz), 348 G4ThreeVector( DzTthetaCphi+Dy2Talpha2-fDx 366 G4ThreeVector( DzTthetaCphi+Dy2Talpha2-fDx4, DzTthetaSphi+fDy2, fDz), 349 G4ThreeVector( DzTthetaCphi+Dy2Talpha2+fDx 367 G4ThreeVector( DzTthetaCphi+Dy2Talpha2+fDx4, DzTthetaSphi+fDy2, fDz) 350 }; 368 }; 351 369 352 MakePlanes(pt); 370 MakePlanes(pt); 353 } 371 } 354 372 355 ////////////////////////////////////////////// 373 ////////////////////////////////////////////////////////////////////////// 356 // 374 // 357 // Set side planes, check planarity 375 // Set side planes, check planarity 358 376 359 void G4Trap::MakePlanes(const G4ThreeVector pt 377 void G4Trap::MakePlanes(const G4ThreeVector pt[8]) 360 { 378 { 361 constexpr G4int iface[4][4] = { {0,4,5,1}, { << 379 G4int iface[4][4] = { {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3} }; 362 const static G4String side[4] = { "~-Y", "~+ << 380 G4String side[4] = { "~-Y", "~+Y", "~-X", "~+X" }; 363 381 364 for (G4int i=0; i<4; ++i) 382 for (G4int i=0; i<4; ++i) 365 { 383 { 366 if (MakePlane(pt[iface[i][0]], 384 if (MakePlane(pt[iface[i][0]], 367 pt[iface[i][1]], 385 pt[iface[i][1]], 368 pt[iface[i][2]], 386 pt[iface[i][2]], 369 pt[iface[i][3]], 387 pt[iface[i][3]], 370 fPlanes[i])) continue; 388 fPlanes[i])) continue; 371 389 372 // Non planar side face 390 // Non planar side face 373 G4ThreeVector normal(fPlanes[i].a,fPlanes[ 391 G4ThreeVector normal(fPlanes[i].a,fPlanes[i].b,fPlanes[i].c); 374 G4double dmax = 0; 392 G4double dmax = 0; 375 for (G4int k=0; k<4; ++k) 393 for (G4int k=0; k<4; ++k) 376 { 394 { 377 G4double dist = normal.dot(pt[iface[i][k 395 G4double dist = normal.dot(pt[iface[i][k]]) + fPlanes[i].d; 378 if (std::abs(dist) > std::abs(dmax)) dma 396 if (std::abs(dist) > std::abs(dmax)) dmax = dist; 379 } 397 } 380 std::ostringstream message; 398 std::ostringstream message; 381 message << "Side face " << side[i] << " is 399 message << "Side face " << side[i] << " is not planar for solid: " 382 << GetName() << "\nDiscrepancy: " 400 << GetName() << "\nDiscrepancy: " << dmax/mm << " mm\n"; 383 StreamInfo(message); 401 StreamInfo(message); 384 G4Exception("G4Trap::MakePlanes()", "GeomS 402 G4Exception("G4Trap::MakePlanes()", "GeomSolids0002", 385 FatalException, message); 403 FatalException, message); 386 } 404 } 387 405 388 // Re-compute parameters << 406 // Define type of trapezoid 389 SetCachedValues(); << 407 fTrapType = 0; >> 408 if (fPlanes[0].b == -1 && fPlanes[1].b == 1 && >> 409 std::abs(fPlanes[0].a) < DBL_EPSILON && >> 410 std::abs(fPlanes[0].c) < DBL_EPSILON && >> 411 std::abs(fPlanes[1].a) < DBL_EPSILON && >> 412 std::abs(fPlanes[1].c) < DBL_EPSILON) >> 413 { >> 414 fTrapType = 1; // YZ section is a rectangle ... >> 415 if (std::abs(fPlanes[2].a + fPlanes[3].a) < DBL_EPSILON && >> 416 std::abs(fPlanes[2].c - fPlanes[3].c) < DBL_EPSILON && >> 417 fPlanes[2].b == 0 && >> 418 fPlanes[3].b == 0) >> 419 { >> 420 fTrapType = 2; // ... and XZ section is a isosceles trapezoid >> 421 fPlanes[2].a = -fPlanes[3].a; >> 422 fPlanes[2].c = fPlanes[3].c; >> 423 } >> 424 if (std::abs(fPlanes[2].a + fPlanes[3].a) < DBL_EPSILON && >> 425 std::abs(fPlanes[2].b - fPlanes[3].b) < DBL_EPSILON && >> 426 fPlanes[2].c == 0 && >> 427 fPlanes[3].c == 0) >> 428 { >> 429 fTrapType = 3; // ... and XY section is a isosceles trapezoid >> 430 fPlanes[2].a = -fPlanes[3].a; >> 431 fPlanes[2].b = fPlanes[3].b; >> 432 } >> 433 } 390 } 434 } 391 435 392 ////////////////////////////////////////////// << 436 /////////////////////////////////////////////////////////////////////// 393 // 437 // 394 // Calculate the coef's of the plane p1->p2->p 438 // Calculate the coef's of the plane p1->p2->p3->p4->p1 395 // where the ThreeVectors 1-4 are in anti-cloc 439 // where the ThreeVectors 1-4 are in anti-clockwise order when viewed 396 // from infront of the plane (i.e. from normal 440 // from infront of the plane (i.e. from normal direction). 397 // 441 // 398 // Return true if the points are coplanar, fal 442 // Return true if the points are coplanar, false otherwise 399 443 400 G4bool G4Trap::MakePlane( const G4ThreeVector& 444 G4bool G4Trap::MakePlane( const G4ThreeVector& p1, 401 const G4ThreeVector& 445 const G4ThreeVector& p2, 402 const G4ThreeVector& 446 const G4ThreeVector& p3, 403 const G4ThreeVector& 447 const G4ThreeVector& p4, 404 TrapSidePlane& 448 TrapSidePlane& plane ) 405 { 449 { 406 G4ThreeVector normal = ((p4 - p2).cross(p3 - 450 G4ThreeVector normal = ((p4 - p2).cross(p3 - p1)).unit(); 407 if (std::abs(normal.x()) < DBL_EPSILON) norm << 451 if (std::abs(normal.x()) < DBL_EPSILON) normal.setX(0); 408 if (std::abs(normal.y()) < DBL_EPSILON) norm << 452 if (std::abs(normal.y()) < DBL_EPSILON) normal.setY(0); 409 if (std::abs(normal.z()) < DBL_EPSILON) norm << 453 if (std::abs(normal.z()) < DBL_EPSILON) normal.setZ(0); 410 normal = normal.unit(); 454 normal = normal.unit(); 411 455 412 G4ThreeVector centre = (p1 + p2 + p3 + p4)*0 456 G4ThreeVector centre = (p1 + p2 + p3 + p4)*0.25; 413 plane.a = normal.x(); 457 plane.a = normal.x(); 414 plane.b = normal.y(); 458 plane.b = normal.y(); 415 plane.c = normal.z(); 459 plane.c = normal.z(); 416 plane.d = -normal.dot(centre); 460 plane.d = -normal.dot(centre); 417 461 418 // compute distances and check planarity 462 // compute distances and check planarity 419 G4double d1 = std::abs(normal.dot(p1) + plan 463 G4double d1 = std::abs(normal.dot(p1) + plane.d); 420 G4double d2 = std::abs(normal.dot(p2) + plan 464 G4double d2 = std::abs(normal.dot(p2) + plane.d); 421 G4double d3 = std::abs(normal.dot(p3) + plan 465 G4double d3 = std::abs(normal.dot(p3) + plane.d); 422 G4double d4 = std::abs(normal.dot(p4) + plan 466 G4double d4 = std::abs(normal.dot(p4) + plane.d); 423 G4double dmax = std::max(std::max(std::max(d 467 G4double dmax = std::max(std::max(std::max(d1,d2),d3),d4); 424 << 468 425 return dmax <= 1000 * kCarTolerance; << 469 return (dmax > 1000 * kCarTolerance) ? false : true; 426 } 470 } 427 471 428 ////////////////////////////////////////////// << 472 /////////////////////////////////////////////////////////////////////// 429 // << 430 // Recompute parameters using planes << 431 << 432 void G4Trap::SetCachedValues() << 433 { << 434 // Set indeces << 435 constexpr G4int iface[6][4] = << 436 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2, << 437 << 438 // Get vertices << 439 G4ThreeVector pt[8]; << 440 GetVertices(pt); << 441 << 442 // Set face areas << 443 for (G4int i=0; i<6; ++i) << 444 { << 445 fAreas[i] = G4GeomTools::QuadAreaNormal(pt << 446 pt << 447 pt << 448 pt << 449 } << 450 for (G4int i=1; i<6; ++i) { fAreas[i] += fAr << 451 << 452 // Define type of trapezoid << 453 fTrapType = 0; << 454 if (fPlanes[0].b == -1 && fPlanes[1].b == 1 << 455 std::abs(fPlanes[0].a) < DBL_EPSILON && << 456 std::abs(fPlanes[0].c) < DBL_EPSILON && << 457 std::abs(fPlanes[1].a) < DBL_EPSILON && << 458 std::abs(fPlanes[1].c) < DBL_EPSILON) << 459 { << 460 fTrapType = 1; // YZ section is a rectangl << 461 if (std::abs(fPlanes[2].a + fPlanes[3].a) << 462 std::abs(fPlanes[2].c - fPlanes[3].c) << 463 fPlanes[2].b == 0 && << 464 fPlanes[3].b == 0) << 465 { << 466 fTrapType = 2; // ... and XZ section is << 467 fPlanes[2].a = -fPlanes[3].a; << 468 fPlanes[2].c = fPlanes[3].c; << 469 } << 470 if (std::abs(fPlanes[2].a + fPlanes[3].a) << 471 std::abs(fPlanes[2].b - fPlanes[3].b) << 472 fPlanes[2].c == 0 && << 473 fPlanes[3].c == 0) << 474 { << 475 fTrapType = 3; // ... and XY section is << 476 fPlanes[2].a = -fPlanes[3].a; << 477 fPlanes[2].b = fPlanes[3].b; << 478 } << 479 } << 480 } << 481 << 482 ////////////////////////////////////////////// << 483 // 473 // 484 // Get volume 474 // Get volume 485 475 486 G4double G4Trap::GetCubicVolume() 476 G4double G4Trap::GetCubicVolume() 487 { 477 { 488 if (fCubicVolume == 0) 478 if (fCubicVolume == 0) 489 { 479 { 490 G4ThreeVector pt[8]; 480 G4ThreeVector pt[8]; 491 GetVertices(pt); 481 GetVertices(pt); 492 << 482 493 G4double dz = pt[4].z() - pt[0].z(); 483 G4double dz = pt[4].z() - pt[0].z(); 494 G4double dy1 = pt[2].y() - pt[0].y(); 484 G4double dy1 = pt[2].y() - pt[0].y(); 495 G4double dx1 = pt[1].x() - pt[0].x(); 485 G4double dx1 = pt[1].x() - pt[0].x(); 496 G4double dx2 = pt[3].x() - pt[2].x(); 486 G4double dx2 = pt[3].x() - pt[2].x(); 497 G4double dy2 = pt[6].y() - pt[4].y(); 487 G4double dy2 = pt[6].y() - pt[4].y(); 498 G4double dx3 = pt[5].x() - pt[4].x(); 488 G4double dx3 = pt[5].x() - pt[4].x(); 499 G4double dx4 = pt[7].x() - pt[6].x(); 489 G4double dx4 = pt[7].x() - pt[6].x(); 500 490 501 fCubicVolume = ((dx1 + dx2 + dx3 + dx4)*(d 491 fCubicVolume = ((dx1 + dx2 + dx3 + dx4)*(dy1 + dy2) + 502 (dx4 + dx3 - dx2 - dx1)*(d 492 (dx4 + dx3 - dx2 - dx1)*(dy2 - dy1)/3)*dz*0.125; 503 } 493 } 504 return fCubicVolume; 494 return fCubicVolume; 505 } 495 } 506 496 507 ////////////////////////////////////////////// << 497 /////////////////////////////////////////////////////////////////////// 508 // 498 // 509 // Get surface area 499 // Get surface area 510 500 511 G4double G4Trap::GetSurfaceArea() 501 G4double G4Trap::GetSurfaceArea() 512 { 502 { 513 if (fSurfaceArea == 0) 503 if (fSurfaceArea == 0) 514 { 504 { 515 G4ThreeVector pt[8]; 505 G4ThreeVector pt[8]; 516 G4int iface [6][4] = 506 G4int iface [6][4] = 517 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2, 507 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3}, {4,6,7,5} }; 518 508 519 GetVertices(pt); 509 GetVertices(pt); 520 for (const auto & i : iface) << 510 for (G4int i=0; i<6; ++i) 521 { 511 { 522 fSurfaceArea += G4GeomTools::QuadAreaNor << 512 fSurfaceArea += G4GeomTools::QuadAreaNormal(pt[iface[i][0]], 523 << 513 pt[iface[i][1]], 524 << 514 pt[iface[i][2]], 525 << 515 pt[iface[i][3]]).mag(); 526 } 516 } 527 } 517 } 528 return fSurfaceArea; 518 return fSurfaceArea; 529 } 519 } 530 520 531 ////////////////////////////////////////////// << 521 /////////////////////////////////////////////////////////////////////// 532 // 522 // 533 // Dispatch to parameterisation for replicatio 523 // Dispatch to parameterisation for replication mechanism dimension 534 // computation & modification. 524 // computation & modification. 535 525 536 void G4Trap::ComputeDimensions( G4VPVPar 526 void G4Trap::ComputeDimensions( G4VPVParameterisation* p, 537 const G4int n, 527 const G4int n, 538 const G4VPhysi 528 const G4VPhysicalVolume* pRep ) 539 { 529 { 540 p->ComputeDimensions(*this,n,pRep); 530 p->ComputeDimensions(*this,n,pRep); 541 } 531 } 542 532 543 ////////////////////////////////////////////// << 533 /////////////////////////////////////////////////////////////////////// 544 // 534 // 545 // Get bounding box 535 // Get bounding box 546 536 547 void G4Trap::BoundingLimits(G4ThreeVector& pMi 537 void G4Trap::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const 548 { 538 { 549 G4ThreeVector pt[8]; 539 G4ThreeVector pt[8]; 550 GetVertices(pt); 540 GetVertices(pt); 551 541 552 G4double xmin = kInfinity, xmax = -kInfinity 542 G4double xmin = kInfinity, xmax = -kInfinity; 553 G4double ymin = kInfinity, ymax = -kInfinity 543 G4double ymin = kInfinity, ymax = -kInfinity; 554 for (const auto & i : pt) << 544 for (G4int i=0; i<8; ++i) 555 { 545 { 556 G4double x = i.x(); << 546 G4double x = pt[i].x(); 557 if (x < xmin) xmin = x; 547 if (x < xmin) xmin = x; 558 if (x > xmax) xmax = x; 548 if (x > xmax) xmax = x; 559 G4double y = i.y(); << 549 G4double y = pt[i].y(); 560 if (y < ymin) ymin = y; 550 if (y < ymin) ymin = y; 561 if (y > ymax) ymax = y; 551 if (y > ymax) ymax = y; 562 } 552 } 563 553 564 G4double dz = GetZHalfLength(); 554 G4double dz = GetZHalfLength(); 565 pMin.set(xmin,ymin,-dz); 555 pMin.set(xmin,ymin,-dz); 566 pMax.set(xmax,ymax, dz); 556 pMax.set(xmax,ymax, dz); 567 557 568 // Check correctness of the bounding box 558 // Check correctness of the bounding box 569 // 559 // 570 if (pMin.x() >= pMax.x() || pMin.y() >= pMax 560 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 571 { 561 { 572 std::ostringstream message; 562 std::ostringstream message; 573 message << "Bad bounding box (min >= max) 563 message << "Bad bounding box (min >= max) for solid: " 574 << GetName() << " !" 564 << GetName() << " !" 575 << "\npMin = " << pMin 565 << "\npMin = " << pMin 576 << "\npMax = " << pMax; 566 << "\npMax = " << pMax; 577 G4Exception("G4Trap::BoundingLimits()", "G 567 G4Exception("G4Trap::BoundingLimits()", "GeomMgt0001", 578 JustWarning, message); 568 JustWarning, message); 579 DumpInfo(); 569 DumpInfo(); 580 } 570 } 581 } 571 } 582 572 583 ////////////////////////////////////////////// << 573 /////////////////////////////////////////////////////////////////////// 584 // 574 // 585 // Calculate extent under transform and specif 575 // Calculate extent under transform and specified limit 586 576 587 G4bool G4Trap::CalculateExtent( const EAxis pA 577 G4bool G4Trap::CalculateExtent( const EAxis pAxis, 588 const G4VoxelL 578 const G4VoxelLimits& pVoxelLimit, 589 const G4Affine 579 const G4AffineTransform& pTransform, 590 G4double 580 G4double& pMin, G4double& pMax) const 591 { 581 { 592 G4ThreeVector bmin, bmax; 582 G4ThreeVector bmin, bmax; 593 G4bool exist; 583 G4bool exist; 594 584 595 // Check bounding box (bbox) 585 // Check bounding box (bbox) 596 // 586 // 597 BoundingLimits(bmin,bmax); 587 BoundingLimits(bmin,bmax); 598 G4BoundingEnvelope bbox(bmin,bmax); 588 G4BoundingEnvelope bbox(bmin,bmax); 599 #ifdef G4BBOX_EXTENT 589 #ifdef G4BBOX_EXTENT 600 return bbox.CalculateExtent(pAxis,pVoxelLimi << 590 if (true) return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 601 #endif 591 #endif 602 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox 592 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax)) 603 { 593 { 604 return exist = pMin < pMax; << 594 return exist = (pMin < pMax) ? true : false; 605 } 595 } 606 596 607 // Set bounding envelope (benv) and calculat 597 // Set bounding envelope (benv) and calculate extent 608 // 598 // 609 G4ThreeVector pt[8]; 599 G4ThreeVector pt[8]; 610 GetVertices(pt); 600 GetVertices(pt); 611 601 612 G4ThreeVectorList baseA(4), baseB(4); 602 G4ThreeVectorList baseA(4), baseB(4); 613 baseA[0] = pt[0]; 603 baseA[0] = pt[0]; 614 baseA[1] = pt[1]; 604 baseA[1] = pt[1]; 615 baseA[2] = pt[3]; 605 baseA[2] = pt[3]; 616 baseA[3] = pt[2]; 606 baseA[3] = pt[2]; 617 607 618 baseB[0] = pt[4]; 608 baseB[0] = pt[4]; 619 baseB[1] = pt[5]; 609 baseB[1] = pt[5]; 620 baseB[2] = pt[7]; 610 baseB[2] = pt[7]; 621 baseB[3] = pt[6]; 611 baseB[3] = pt[6]; 622 612 623 std::vector<const G4ThreeVectorList *> polyg 613 std::vector<const G4ThreeVectorList *> polygons(2); 624 polygons[0] = &baseA; 614 polygons[0] = &baseA; 625 polygons[1] = &baseB; 615 polygons[1] = &baseB; 626 616 627 G4BoundingEnvelope benv(bmin,bmax,polygons); 617 G4BoundingEnvelope benv(bmin,bmax,polygons); 628 exist = benv.CalculateExtent(pAxis,pVoxelLim 618 exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 629 return exist; 619 return exist; 630 } 620 } 631 621 632 ////////////////////////////////////////////// << 622 /////////////////////////////////////////////////////////////////////// 633 // 623 // 634 // Return whether point is inside/outside/on_s 624 // Return whether point is inside/outside/on_surface 635 625 636 EInside G4Trap::Inside( const G4ThreeVector& p 626 EInside G4Trap::Inside( const G4ThreeVector& p ) const 637 { 627 { >> 628 G4double dz = std::abs(p.z())-fDz; >> 629 if (dz > halfCarTolerance) return kOutside; >> 630 638 switch (fTrapType) 631 switch (fTrapType) 639 { 632 { 640 case 0: // General case 633 case 0: // General case 641 { 634 { 642 G4double dz = std::abs(p.z())-fDz; << 643 G4double dy1 = fPlanes[0].b*p.y()+fPlane 635 G4double dy1 = fPlanes[0].b*p.y()+fPlanes[0].c*p.z()+fPlanes[0].d; 644 G4double dy2 = fPlanes[1].b*p.y()+fPlane 636 G4double dy2 = fPlanes[1].b*p.y()+fPlanes[1].c*p.z()+fPlanes[1].d; 645 G4double dy = std::max(dz,std::max(dy1,d 637 G4double dy = std::max(dz,std::max(dy1,dy2)); 646 638 647 G4double dx1 = fPlanes[2].a*p.x()+fPlane 639 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 648 + fPlanes[2].c*p.z()+fPlane 640 + fPlanes[2].c*p.z()+fPlanes[2].d; 649 G4double dx2 = fPlanes[3].a*p.x()+fPlane 641 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 650 + fPlanes[3].c*p.z()+fPlane 642 + fPlanes[3].c*p.z()+fPlanes[3].d; 651 G4double dist = std::max(dy,std::max(dx1 643 G4double dist = std::max(dy,std::max(dx1,dx2)); 652 644 653 return (dist > halfCarTolerance) ? kOuts << 645 if (dist > halfCarTolerance) return kOutside; 654 ((dist > -halfCarTolerance) ? kSurface << 646 return (dist > -halfCarTolerance) ? kSurface : kInside; 655 } 647 } 656 case 1: // YZ section is a rectangle 648 case 1: // YZ section is a rectangle 657 { 649 { 658 G4double dz = std::abs(p.z())-fDz; << 659 G4double dy = std::max(dz,std::abs(p.y() 650 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 660 G4double dx1 = fPlanes[2].a*p.x()+fPlane 651 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 661 + fPlanes[2].c*p.z()+fPlane 652 + fPlanes[2].c*p.z()+fPlanes[2].d; 662 G4double dx2 = fPlanes[3].a*p.x()+fPlane 653 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 663 + fPlanes[3].c*p.z()+fPlane 654 + fPlanes[3].c*p.z()+fPlanes[3].d; 664 G4double dist = std::max(dy,std::max(dx1 655 G4double dist = std::max(dy,std::max(dx1,dx2)); 665 656 666 return (dist > halfCarTolerance) ? kOuts << 657 if (dist > halfCarTolerance) return kOutside; 667 ((dist > -halfCarTolerance) ? kSurface << 658 return (dist > -halfCarTolerance) ? kSurface : kInside; 668 } 659 } 669 case 2: // YZ section is a rectangle and 660 case 2: // YZ section is a rectangle and 670 { // XZ section is an isosceles trap 661 { // XZ section is an isosceles trapezoid 671 G4double dz = std::abs(p.z())-fDz; << 672 G4double dy = std::max(dz,std::abs(p.y() 662 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 673 G4double dx = fPlanes[3].a*std::abs(p.x( 663 G4double dx = fPlanes[3].a*std::abs(p.x()) 674 + fPlanes[3].c*p.z()+fPlanes 664 + fPlanes[3].c*p.z()+fPlanes[3].d; 675 G4double dist = std::max(dy,dx); 665 G4double dist = std::max(dy,dx); 676 666 677 return (dist > halfCarTolerance) ? kOuts << 667 if (dist > halfCarTolerance) return kOutside; 678 ((dist > -halfCarTolerance) ? kSurface << 668 return (dist > -halfCarTolerance) ? kSurface : kInside; 679 } 669 } 680 case 3: // YZ section is a rectangle and 670 case 3: // YZ section is a rectangle and 681 { // XY section is an isosceles trap 671 { // XY section is an isosceles trapezoid 682 G4double dz = std::abs(p.z())-fDz; << 683 G4double dy = std::max(dz,std::abs(p.y() 672 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 684 G4double dx = fPlanes[3].a*std::abs(p.x( 673 G4double dx = fPlanes[3].a*std::abs(p.x()) 685 + fPlanes[3].b*p.y()+fPlanes 674 + fPlanes[3].b*p.y()+fPlanes[3].d; 686 G4double dist = std::max(dy,dx); 675 G4double dist = std::max(dy,dx); 687 676 688 return (dist > halfCarTolerance) ? kOuts << 677 if (dist > halfCarTolerance) return kOutside; 689 ((dist > -halfCarTolerance) ? kSurface << 678 return (dist > -halfCarTolerance) ? kSurface : kInside; 690 } 679 } 691 } 680 } 692 return kOutside; << 681 return kOutside; 693 } 682 } 694 683 695 ////////////////////////////////////////////// << 684 /////////////////////////////////////////////////////////////////////// 696 // 685 // 697 // Determine side, and return corresponding no 686 // Determine side, and return corresponding normal 698 687 699 G4ThreeVector G4Trap::SurfaceNormal( const G4T 688 G4ThreeVector G4Trap::SurfaceNormal( const G4ThreeVector& p ) const 700 { 689 { >> 690 G4int nsurf = 0; // number of surfaces where p is placed 701 G4double nx = 0, ny = 0, nz = 0; 691 G4double nx = 0, ny = 0, nz = 0; 702 G4double dz = std::abs(p.z()) - fDz; 692 G4double dz = std::abs(p.z()) - fDz; 703 nz = std::copysign(G4double(std::abs(dz) <= << 693 if (std::abs(dz) <= halfCarTolerance) >> 694 { >> 695 nz = (p.z() < 0) ? -1 : 1; >> 696 ++nsurf; >> 697 } 704 698 705 switch (fTrapType) 699 switch (fTrapType) 706 { 700 { 707 case 0: // General case 701 case 0: // General case 708 { 702 { 709 for (G4int i=0; i<2; ++i) 703 for (G4int i=0; i<2; ++i) 710 { 704 { 711 G4double dy = fPlanes[i].b*p.y() + fPl 705 G4double dy = fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 712 if (std::abs(dy) > halfCarTolerance) c 706 if (std::abs(dy) > halfCarTolerance) continue; 713 ny = fPlanes[i].b; 707 ny = fPlanes[i].b; 714 nz += fPlanes[i].c; 708 nz += fPlanes[i].c; >> 709 ++nsurf; 715 break; 710 break; 716 } 711 } 717 for (G4int i=2; i<4; ++i) 712 for (G4int i=2; i<4; ++i) 718 { 713 { 719 G4double dx = fPlanes[i].a*p.x() + 714 G4double dx = fPlanes[i].a*p.x() + 720 fPlanes[i].b*p.y() + fPl 715 fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 721 if (std::abs(dx) > halfCarTolerance) c 716 if (std::abs(dx) > halfCarTolerance) continue; 722 nx = fPlanes[i].a; 717 nx = fPlanes[i].a; 723 ny += fPlanes[i].b; 718 ny += fPlanes[i].b; 724 nz += fPlanes[i].c; 719 nz += fPlanes[i].c; >> 720 ++nsurf; 725 break; 721 break; 726 } 722 } 727 break; 723 break; 728 } 724 } 729 case 1: // YZ section - rectangle << 725 case 1: // YZ section is a rectangle 730 { 726 { 731 G4double dy = std::abs(p.y()) + fPlanes[ 727 G4double dy = std::abs(p.y()) + fPlanes[1].d; 732 ny = std::copysign(G4double(std::abs(dy) << 728 if (std::abs(dy) <= halfCarTolerance) ny = (p.y() < 0) ? -1 : 1; 733 for (G4int i=2; i<4; ++i) 729 for (G4int i=2; i<4; ++i) 734 { 730 { 735 G4double dx = fPlanes[i].a*p.x() + 731 G4double dx = fPlanes[i].a*p.x() + 736 fPlanes[i].b*p.y() + fPl 732 fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 737 if (std::abs(dx) > halfCarTolerance) c 733 if (std::abs(dx) > halfCarTolerance) continue; 738 nx = fPlanes[i].a; 734 nx = fPlanes[i].a; 739 ny += fPlanes[i].b; 735 ny += fPlanes[i].b; 740 nz += fPlanes[i].c; 736 nz += fPlanes[i].c; >> 737 ++nsurf; 741 break; 738 break; 742 } 739 } 743 break; 740 break; 744 } 741 } 745 case 2: // YZ section - rectangle, XZ sect << 742 case 2: // YZ section is a rectangle and 746 { << 743 { // XZ section is an isosceles trapezoid 747 G4double dy = std::abs(p.y()) + fPlanes[ 744 G4double dy = std::abs(p.y()) + fPlanes[1].d; 748 ny = std::copysign(G4double(std::abs(dy) << 745 if (std::abs(dy) <= halfCarTolerance) ny = (p.y() < 0) ? -1 : 1; 749 G4double dx = fPlanes[3].a*std::abs(p.x( 746 G4double dx = fPlanes[3].a*std::abs(p.x()) + 750 fPlanes[3].c*p.z() + fPlan 747 fPlanes[3].c*p.z() + fPlanes[3].d; 751 G4double k = std::abs(dx) <= halfCarTole << 748 if (std::abs(dx) <= halfCarTolerance) 752 nx = std::copysign(k, p.x())*fPlanes[3] << 749 { 753 nz += k*fPlanes[3].c; << 750 nx = (p.x() < 0) ? -fPlanes[3].a : fPlanes[3].a; >> 751 nz += fPlanes[3].c; >> 752 ++nsurf; >> 753 } 754 break; 754 break; 755 } 755 } 756 case 3: // YZ section - rectangle, XY sect << 756 case 3: // YZ section is a rectangle and 757 { << 757 { // XY section is an isosceles trapezoid 758 G4double dy = std::abs(p.y()) + fPlanes[ 758 G4double dy = std::abs(p.y()) + fPlanes[1].d; 759 ny = std::copysign(G4double(std::abs(dy) << 759 if (std::abs(dy) <= halfCarTolerance) ny = (p.y() < 0) ? -1 : 1; 760 G4double dx = fPlanes[3].a*std::abs(p.x( 760 G4double dx = fPlanes[3].a*std::abs(p.x()) + 761 fPlanes[3].b*p.y() + fPlan 761 fPlanes[3].b*p.y() + fPlanes[3].d; 762 G4double k = std::abs(dx) <= halfCarTole << 762 if (std::abs(dx) <= halfCarTolerance) 763 nx = std::copysign(k, p.x())*fPlanes[3] << 763 { 764 ny += k*fPlanes[3].b; << 764 nx = (p.x() < 0) ? -fPlanes[3].a : fPlanes[3].a; >> 765 ny += fPlanes[3].b; >> 766 ++nsurf; >> 767 } 765 break; 768 break; 766 } 769 } 767 } 770 } 768 771 769 // Return normal 772 // Return normal 770 // 773 // 771 G4double mag2 = nx*nx + ny*ny + nz*nz; << 774 if (nsurf == 1) return G4ThreeVector(nx,ny,nz); 772 if (mag2 == 1) return { nx,ny,nz }; << 775 else if (nsurf != 0) return G4ThreeVector(nx,ny,nz).unit(); // edge or corner 773 else if (mag2 != 0) return G4ThreeVector(nx, << 774 else 776 else 775 { 777 { 776 // Point is not on the surface 778 // Point is not on the surface 777 // 779 // 778 #ifdef G4CSGDEBUG 780 #ifdef G4CSGDEBUG 779 std::ostringstream message; 781 std::ostringstream message; 780 G4long oldprc = message.precision(16); << 782 G4int oldprc = message.precision(16); 781 message << "Point p is not on surface (!?) 783 message << "Point p is not on surface (!?) of solid: " 782 << GetName() << G4endl; 784 << GetName() << G4endl; 783 message << "Position:\n"; 785 message << "Position:\n"; 784 message << " p.x() = " << p.x()/mm << " 786 message << " p.x() = " << p.x()/mm << " mm\n"; 785 message << " p.y() = " << p.y()/mm << " 787 message << " p.y() = " << p.y()/mm << " mm\n"; 786 message << " p.z() = " << p.z()/mm << " 788 message << " p.z() = " << p.z()/mm << " mm"; 787 G4cout.precision(oldprc) ; 789 G4cout.precision(oldprc) ; 788 G4Exception("G4Trap::SurfaceNormal(p)", "G 790 G4Exception("G4Trap::SurfaceNormal(p)", "GeomSolids1002", 789 JustWarning, message ); 791 JustWarning, message ); 790 DumpInfo(); 792 DumpInfo(); 791 #endif 793 #endif 792 return ApproxSurfaceNormal(p); 794 return ApproxSurfaceNormal(p); 793 } 795 } 794 } 796 } 795 797 796 ////////////////////////////////////////////// << 798 /////////////////////////////////////////////////////////////////////// 797 // 799 // 798 // Algorithm for SurfaceNormal() following the 800 // Algorithm for SurfaceNormal() following the original specification 799 // for points not on the surface 801 // for points not on the surface 800 802 801 G4ThreeVector G4Trap::ApproxSurfaceNormal( con 803 G4ThreeVector G4Trap::ApproxSurfaceNormal( const G4ThreeVector& p ) const 802 { 804 { 803 G4double dist = -DBL_MAX; 805 G4double dist = -DBL_MAX; 804 G4int iside = 0; 806 G4int iside = 0; 805 for (G4int i=0; i<4; ++i) 807 for (G4int i=0; i<4; ++i) 806 { 808 { 807 G4double d = fPlanes[i].a*p.x() + 809 G4double d = fPlanes[i].a*p.x() + 808 fPlanes[i].b*p.y() + 810 fPlanes[i].b*p.y() + 809 fPlanes[i].c*p.z() + fPlanes[ 811 fPlanes[i].c*p.z() + fPlanes[i].d; 810 if (d > dist) { dist = d; iside = i; } 812 if (d > dist) { dist = d; iside = i; } 811 } 813 } 812 814 813 G4double distz = std::abs(p.z()) - fDz; 815 G4double distz = std::abs(p.z()) - fDz; 814 if (dist > distz) 816 if (dist > distz) 815 return { fPlanes[iside].a, fPlanes[iside]. << 817 return G4ThreeVector(fPlanes[iside].a, fPlanes[iside].b, fPlanes[iside].c); 816 else 818 else 817 return { 0, 0, (G4double)((p.z() < 0) ? -1 << 819 return G4ThreeVector(0, 0, (p.z() < 0) ? -1 : 1); 818 } 820 } 819 821 820 ////////////////////////////////////////////// << 822 /////////////////////////////////////////////////////////////////////// 821 // 823 // 822 // Calculate distance to shape from outside 824 // Calculate distance to shape from outside 823 // - return kInfinity if no intersection 825 // - return kInfinity if no intersection 824 826 825 G4double G4Trap::DistanceToIn(const G4ThreeVec 827 G4double G4Trap::DistanceToIn(const G4ThreeVector& p, 826 const G4ThreeVec 828 const G4ThreeVector& v ) const 827 { 829 { 828 // Z intersections 830 // Z intersections 829 // 831 // 830 if ((std::abs(p.z()) - fDz) >= -halfCarToler 832 if ((std::abs(p.z()) - fDz) >= -halfCarTolerance && p.z()*v.z() >= 0) 831 return kInfinity; 833 return kInfinity; 832 G4double invz = (-v.z() == 0) ? DBL_MAX : -1 834 G4double invz = (-v.z() == 0) ? DBL_MAX : -1./v.z(); 833 G4double dz = (invz < 0) ? fDz : -fDz; << 835 G4double dz = (invz < 0) ? fDz : -fDz; 834 G4double tzmin = (p.z() + dz)*invz; 836 G4double tzmin = (p.z() + dz)*invz; 835 G4double tzmax = (p.z() - dz)*invz; 837 G4double tzmax = (p.z() - dz)*invz; 836 838 837 // Y intersections 839 // Y intersections 838 // 840 // 839 G4double tymin = 0, tymax = DBL_MAX; 841 G4double tymin = 0, tymax = DBL_MAX; 840 G4int i = 0; 842 G4int i = 0; 841 for ( ; i<2; ++i) 843 for ( ; i<2; ++i) 842 { << 844 { 843 G4double cosa = fPlanes[i].b*v.y() + fPlan 845 G4double cosa = fPlanes[i].b*v.y() + fPlanes[i].c*v.z(); 844 G4double dist = fPlanes[i].b*p.y() + fPlan 846 G4double dist = fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 845 if (dist >= -halfCarTolerance) 847 if (dist >= -halfCarTolerance) 846 { 848 { 847 if (cosa >= 0) return kInfinity; 849 if (cosa >= 0) return kInfinity; 848 G4double tmp = -dist/cosa; 850 G4double tmp = -dist/cosa; 849 if (tymin < tmp) tymin = tmp; 851 if (tymin < tmp) tymin = tmp; 850 } 852 } 851 else if (cosa > 0) 853 else if (cosa > 0) 852 { 854 { 853 G4double tmp = -dist/cosa; 855 G4double tmp = -dist/cosa; 854 if (tymax > tmp) tymax = tmp; 856 if (tymax > tmp) tymax = tmp; 855 } << 857 } 856 } 858 } 857 859 858 // Z intersections 860 // Z intersections 859 // 861 // 860 G4double txmin = 0, txmax = DBL_MAX; 862 G4double txmin = 0, txmax = DBL_MAX; 861 for ( ; i<4; ++i) 863 for ( ; i<4; ++i) 862 { << 864 { 863 G4double cosa = fPlanes[i].a*v.x()+fPlanes 865 G4double cosa = fPlanes[i].a*v.x()+fPlanes[i].b*v.y()+fPlanes[i].c*v.z(); 864 G4double dist = fPlanes[i].a*p.x()+fPlanes 866 G4double dist = fPlanes[i].a*p.x()+fPlanes[i].b*p.y()+fPlanes[i].c*p.z() + 865 fPlanes[i].d; 867 fPlanes[i].d; 866 if (dist >= -halfCarTolerance) 868 if (dist >= -halfCarTolerance) 867 { 869 { 868 if (cosa >= 0) return kInfinity; 870 if (cosa >= 0) return kInfinity; 869 G4double tmp = -dist/cosa; 871 G4double tmp = -dist/cosa; 870 if (txmin < tmp) txmin = tmp; 872 if (txmin < tmp) txmin = tmp; 871 } 873 } 872 else if (cosa > 0) 874 else if (cosa > 0) 873 { 875 { 874 G4double tmp = -dist/cosa; 876 G4double tmp = -dist/cosa; 875 if (txmax > tmp) txmax = tmp; 877 if (txmax > tmp) txmax = tmp; 876 } << 878 } 877 } 879 } 878 880 879 // Find distance 881 // Find distance 880 // 882 // 881 G4double tmin = std::max(std::max(txmin,tymi 883 G4double tmin = std::max(std::max(txmin,tymin),tzmin); 882 G4double tmax = std::min(std::min(txmax,tyma 884 G4double tmax = std::min(std::min(txmax,tymax),tzmax); 883 << 885 884 if (tmax <= tmin + halfCarTolerance) return 886 if (tmax <= tmin + halfCarTolerance) return kInfinity; // touch or no hit 885 return (tmin < halfCarTolerance ) ? 0. : tmi 887 return (tmin < halfCarTolerance ) ? 0. : tmin; 886 } 888 } 887 889 888 ////////////////////////////////////////////// << 890 //////////////////////////////////////////////////////////////////////////// 889 // 891 // 890 // Calculate exact shortest distance to any bo 892 // Calculate exact shortest distance to any boundary from outside 891 // This is the best fast estimation of the sho 893 // This is the best fast estimation of the shortest distance to trap 892 // - return 0 if point is inside 894 // - return 0 if point is inside 893 895 894 G4double G4Trap::DistanceToIn( const G4ThreeVe 896 G4double G4Trap::DistanceToIn( const G4ThreeVector& p ) const 895 { 897 { 896 switch (fTrapType) 898 switch (fTrapType) 897 { 899 { 898 case 0: // General case 900 case 0: // General case 899 { 901 { 900 G4double dz = std::abs(p.z())-fDz; 902 G4double dz = std::abs(p.z())-fDz; 901 G4double dy1 = fPlanes[0].b*p.y()+fPlane 903 G4double dy1 = fPlanes[0].b*p.y()+fPlanes[0].c*p.z()+fPlanes[0].d; 902 G4double dy2 = fPlanes[1].b*p.y()+fPlane 904 G4double dy2 = fPlanes[1].b*p.y()+fPlanes[1].c*p.z()+fPlanes[1].d; 903 G4double dy = std::max(dz,std::max(dy1,d 905 G4double dy = std::max(dz,std::max(dy1,dy2)); 904 906 905 G4double dx1 = fPlanes[2].a*p.x()+fPlane 907 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 906 + fPlanes[2].c*p.z()+fPlane 908 + fPlanes[2].c*p.z()+fPlanes[2].d; 907 G4double dx2 = fPlanes[3].a*p.x()+fPlane 909 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 908 + fPlanes[3].c*p.z()+fPlane 910 + fPlanes[3].c*p.z()+fPlanes[3].d; 909 G4double dist = std::max(dy,std::max(dx1 911 G4double dist = std::max(dy,std::max(dx1,dx2)); 910 return (dist > 0) ? dist : 0.; 912 return (dist > 0) ? dist : 0.; 911 } 913 } 912 case 1: // YZ section is a rectangle 914 case 1: // YZ section is a rectangle 913 { 915 { 914 G4double dz = std::abs(p.z())-fDz; 916 G4double dz = std::abs(p.z())-fDz; 915 G4double dy = std::max(dz,std::abs(p.y() 917 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 916 G4double dx1 = fPlanes[2].a*p.x()+fPlane 918 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 917 + fPlanes[2].c*p.z()+fPlane 919 + fPlanes[2].c*p.z()+fPlanes[2].d; 918 G4double dx2 = fPlanes[3].a*p.x()+fPlane 920 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 919 + fPlanes[3].c*p.z()+fPlane 921 + fPlanes[3].c*p.z()+fPlanes[3].d; 920 G4double dist = std::max(dy,std::max(dx1 922 G4double dist = std::max(dy,std::max(dx1,dx2)); 921 return (dist > 0) ? dist : 0.; 923 return (dist > 0) ? dist : 0.; 922 } 924 } 923 case 2: // YZ section is a rectangle and 925 case 2: // YZ section is a rectangle and 924 { // XZ section is an isosceles trap 926 { // XZ section is an isosceles trapezoid 925 G4double dz = std::abs(p.z())-fDz; 927 G4double dz = std::abs(p.z())-fDz; 926 G4double dy = std::max(dz,std::abs(p.y() 928 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 927 G4double dx = fPlanes[3].a*std::abs(p.x( 929 G4double dx = fPlanes[3].a*std::abs(p.x()) 928 + fPlanes[3].c*p.z()+fPlanes 930 + fPlanes[3].c*p.z()+fPlanes[3].d; 929 G4double dist = std::max(dy,dx); 931 G4double dist = std::max(dy,dx); 930 return (dist > 0) ? dist : 0.; 932 return (dist > 0) ? dist : 0.; 931 } 933 } 932 case 3: // YZ section is a rectangle and 934 case 3: // YZ section is a rectangle and 933 { // XY section is an isosceles trap 935 { // XY section is an isosceles trapezoid 934 G4double dz = std::abs(p.z())-fDz; 936 G4double dz = std::abs(p.z())-fDz; 935 G4double dy = std::max(dz,std::abs(p.y() 937 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 936 G4double dx = fPlanes[3].a*std::abs(p.x( 938 G4double dx = fPlanes[3].a*std::abs(p.x()) 937 + fPlanes[3].b*p.y()+fPlanes 939 + fPlanes[3].b*p.y()+fPlanes[3].d; 938 G4double dist = std::max(dy,dx); 940 G4double dist = std::max(dy,dx); 939 return (dist > 0) ? dist : 0.; 941 return (dist > 0) ? dist : 0.; 940 } 942 } 941 } 943 } 942 return 0.; 944 return 0.; 943 } 945 } 944 946 945 ////////////////////////////////////////////// << 947 //////////////////////////////////////////////////////////////////////////// 946 // 948 // 947 // Calculate distance to surface of shape from 949 // Calculate distance to surface of shape from inside and 948 // find normal at exit point, if required 950 // find normal at exit point, if required 949 // - when leaving the surface, return 0 951 // - when leaving the surface, return 0 950 952 951 G4double G4Trap::DistanceToOut(const G4ThreeVe 953 G4double G4Trap::DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v, 952 const G4bool ca 954 const G4bool calcNorm, 953 G4bool* v << 955 G4bool *validNorm, G4ThreeVector *n) const 954 { 956 { 955 // Z intersections 957 // Z intersections 956 // 958 // 957 if ((std::abs(p.z()) - fDz) >= -halfCarToler 959 if ((std::abs(p.z()) - fDz) >= -halfCarTolerance && p.z()*v.z() > 0) 958 { 960 { 959 if (calcNorm) 961 if (calcNorm) 960 { 962 { 961 *validNorm = true; 963 *validNorm = true; 962 n->set(0, 0, (p.z() < 0) ? -1 : 1); 964 n->set(0, 0, (p.z() < 0) ? -1 : 1); 963 } 965 } 964 return 0; 966 return 0; 965 } 967 } 966 G4double vz = v.z(); 968 G4double vz = v.z(); 967 G4double tmax = (vz == 0) ? DBL_MAX : (std:: 969 G4double tmax = (vz == 0) ? DBL_MAX : (std::copysign(fDz,vz) - p.z())/vz; 968 G4int iside = (vz < 0) ? -4 : -2; // little 970 G4int iside = (vz < 0) ? -4 : -2; // little trick: (-4+3)=-1, (-2+3)=+1 969 971 970 // Y intersections 972 // Y intersections 971 // 973 // 972 G4int i = 0; 974 G4int i = 0; 973 for ( ; i<2; ++i) 975 for ( ; i<2; ++i) 974 { 976 { 975 G4double cosa = fPlanes[i].b*v.y() + fPlan 977 G4double cosa = fPlanes[i].b*v.y() + fPlanes[i].c*v.z(); 976 if (cosa > 0) 978 if (cosa > 0) 977 { 979 { 978 G4double dist = fPlanes[i].b*p.y() + fPl 980 G4double dist = fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 979 if (dist >= -halfCarTolerance) 981 if (dist >= -halfCarTolerance) 980 { 982 { 981 if (calcNorm) 983 if (calcNorm) 982 { 984 { 983 *validNorm = true; 985 *validNorm = true; 984 n->set(0, fPlanes[i].b, fPlanes[i].c 986 n->set(0, fPlanes[i].b, fPlanes[i].c); 985 } 987 } 986 return 0; 988 return 0; 987 } 989 } 988 G4double tmp = -dist/cosa; 990 G4double tmp = -dist/cosa; 989 if (tmax > tmp) { tmax = tmp; iside = i; 991 if (tmax > tmp) { tmax = tmp; iside = i; } 990 } 992 } 991 } 993 } 992 994 993 // X intersections 995 // X intersections 994 // 996 // 995 for ( ; i<4; ++i) 997 for ( ; i<4; ++i) 996 { 998 { 997 G4double cosa = fPlanes[i].a*v.x()+fPlanes 999 G4double cosa = fPlanes[i].a*v.x()+fPlanes[i].b*v.y()+fPlanes[i].c*v.z(); 998 if (cosa > 0) 1000 if (cosa > 0) 999 { 1001 { 1000 G4double dist = fPlanes[i].a*p.x() + 1002 G4double dist = fPlanes[i].a*p.x() + 1001 fPlanes[i].b*p.y() + fP 1003 fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 1002 if (dist >= -halfCarTolerance) 1004 if (dist >= -halfCarTolerance) 1003 { 1005 { 1004 if (calcNorm) 1006 if (calcNorm) 1005 { 1007 { 1006 *validNorm = true; 1008 *validNorm = true; 1007 n->set(fPlanes[i].a, fPlanes[i].b, 1009 n->set(fPlanes[i].a, fPlanes[i].b, fPlanes[i].c); 1008 } 1010 } 1009 return 0; 1011 return 0; 1010 } 1012 } 1011 G4double tmp = -dist/cosa; 1013 G4double tmp = -dist/cosa; 1012 if (tmax > tmp) { tmax = tmp; iside = i 1014 if (tmax > tmp) { tmax = tmp; iside = i; } 1013 } 1015 } 1014 } 1016 } 1015 1017 1016 // Set normal, if required, and return dist 1018 // Set normal, if required, and return distance 1017 // 1019 // 1018 if (calcNorm) << 1020 if (calcNorm) 1019 { 1021 { 1020 *validNorm = true; 1022 *validNorm = true; 1021 if (iside < 0) 1023 if (iside < 0) 1022 n->set(0, 0, iside + 3); // (-4+3)=-1, 1024 n->set(0, 0, iside + 3); // (-4+3)=-1, (-2+3)=+1 1023 else 1025 else 1024 n->set(fPlanes[iside].a, fPlanes[iside] 1026 n->set(fPlanes[iside].a, fPlanes[iside].b, fPlanes[iside].c); 1025 } 1027 } 1026 return tmax; 1028 return tmax; 1027 } 1029 } 1028 1030 1029 ///////////////////////////////////////////// << 1031 //////////////////////////////////////////////////////////////////////////// 1030 // 1032 // 1031 // Calculate exact shortest distance to any b 1033 // Calculate exact shortest distance to any boundary from inside 1032 // - Returns 0 is ThreeVector outside 1034 // - Returns 0 is ThreeVector outside 1033 1035 1034 G4double G4Trap::DistanceToOut( const G4Three 1036 G4double G4Trap::DistanceToOut( const G4ThreeVector& p ) const 1035 { 1037 { 1036 #ifdef G4CSGDEBUG 1038 #ifdef G4CSGDEBUG 1037 if( Inside(p) == kOutside ) 1039 if( Inside(p) == kOutside ) 1038 { 1040 { 1039 std::ostringstream message; 1041 std::ostringstream message; 1040 G4long oldprc = message.precision(16); << 1042 G4int oldprc = message.precision(16); 1041 message << "Point p is outside (!?) of so 1043 message << "Point p is outside (!?) of solid: " << GetName() << G4endl; 1042 message << "Position:\n"; 1044 message << "Position:\n"; 1043 message << " p.x() = " << p.x()/mm << " 1045 message << " p.x() = " << p.x()/mm << " mm\n"; 1044 message << " p.y() = " << p.y()/mm << " 1046 message << " p.y() = " << p.y()/mm << " mm\n"; 1045 message << " p.z() = " << p.z()/mm << " 1047 message << " p.z() = " << p.z()/mm << " mm"; 1046 G4cout.precision(oldprc); << 1048 G4cout.precision(oldprc) ; 1047 G4Exception("G4Trap::DistanceToOut(p)", " 1049 G4Exception("G4Trap::DistanceToOut(p)", "GeomSolids1002", 1048 JustWarning, message ); 1050 JustWarning, message ); 1049 DumpInfo(); 1051 DumpInfo(); 1050 } 1052 } 1051 #endif 1053 #endif 1052 switch (fTrapType) 1054 switch (fTrapType) 1053 { 1055 { 1054 case 0: // General case 1056 case 0: // General case 1055 { 1057 { 1056 G4double dz = std::abs(p.z())-fDz; 1058 G4double dz = std::abs(p.z())-fDz; 1057 G4double dy1 = fPlanes[0].b*p.y()+fPlan 1059 G4double dy1 = fPlanes[0].b*p.y()+fPlanes[0].c*p.z()+fPlanes[0].d; 1058 G4double dy2 = fPlanes[1].b*p.y()+fPlan 1060 G4double dy2 = fPlanes[1].b*p.y()+fPlanes[1].c*p.z()+fPlanes[1].d; 1059 G4double dy = std::max(dz,std::max(dy1, 1061 G4double dy = std::max(dz,std::max(dy1,dy2)); 1060 1062 1061 G4double dx1 = fPlanes[2].a*p.x()+fPlan 1063 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 1062 + fPlanes[2].c*p.z()+fPlan 1064 + fPlanes[2].c*p.z()+fPlanes[2].d; 1063 G4double dx2 = fPlanes[3].a*p.x()+fPlan 1065 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 1064 + fPlanes[3].c*p.z()+fPlan 1066 + fPlanes[3].c*p.z()+fPlanes[3].d; 1065 G4double dist = std::max(dy,std::max(dx 1067 G4double dist = std::max(dy,std::max(dx1,dx2)); 1066 return (dist < 0) ? -dist : 0.; 1068 return (dist < 0) ? -dist : 0.; 1067 } 1069 } 1068 case 1: // YZ section is a rectangle 1070 case 1: // YZ section is a rectangle 1069 { 1071 { 1070 G4double dz = std::abs(p.z())-fDz; 1072 G4double dz = std::abs(p.z())-fDz; 1071 G4double dy = std::max(dz,std::abs(p.y( 1073 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 1072 G4double dx1 = fPlanes[2].a*p.x()+fPlan 1074 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 1073 + fPlanes[2].c*p.z()+fPlan 1075 + fPlanes[2].c*p.z()+fPlanes[2].d; 1074 G4double dx2 = fPlanes[3].a*p.x()+fPlan 1076 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 1075 + fPlanes[3].c*p.z()+fPlan 1077 + fPlanes[3].c*p.z()+fPlanes[3].d; 1076 G4double dist = std::max(dy,std::max(dx 1078 G4double dist = std::max(dy,std::max(dx1,dx2)); 1077 return (dist < 0) ? -dist : 0.; 1079 return (dist < 0) ? -dist : 0.; 1078 } 1080 } 1079 case 2: // YZ section is a rectangle and 1081 case 2: // YZ section is a rectangle and 1080 { // XZ section is an isosceles tra 1082 { // XZ section is an isosceles trapezoid 1081 G4double dz = std::abs(p.z())-fDz; 1083 G4double dz = std::abs(p.z())-fDz; 1082 G4double dy = std::max(dz,std::abs(p.y( 1084 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 1083 G4double dx = fPlanes[3].a*std::abs(p.x 1085 G4double dx = fPlanes[3].a*std::abs(p.x()) 1084 + fPlanes[3].c*p.z()+fPlane 1086 + fPlanes[3].c*p.z()+fPlanes[3].d; 1085 G4double dist = std::max(dy,dx); 1087 G4double dist = std::max(dy,dx); 1086 return (dist < 0) ? -dist : 0.; 1088 return (dist < 0) ? -dist : 0.; 1087 } 1089 } 1088 case 3: // YZ section is a rectangle and 1090 case 3: // YZ section is a rectangle and 1089 { // XY section is an isosceles tra 1091 { // XY section is an isosceles trapezoid 1090 G4double dz = std::abs(p.z())-fDz; 1092 G4double dz = std::abs(p.z())-fDz; 1091 G4double dy = std::max(dz,std::abs(p.y( 1093 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 1092 G4double dx = fPlanes[3].a*std::abs(p.x 1094 G4double dx = fPlanes[3].a*std::abs(p.x()) 1093 + fPlanes[3].b*p.y()+fPlane 1095 + fPlanes[3].b*p.y()+fPlanes[3].d; 1094 G4double dist = std::max(dy,dx); 1096 G4double dist = std::max(dy,dx); 1095 return (dist < 0) ? -dist : 0.; 1097 return (dist < 0) ? -dist : 0.; 1096 } 1098 } 1097 } 1099 } 1098 return 0.; 1100 return 0.; 1099 } 1101 } 1100 1102 1101 ///////////////////////////////////////////// << 1103 //////////////////////////////////////////////////////////////////////////// 1102 // 1104 // 1103 // GetEntityType 1105 // GetEntityType 1104 1106 1105 G4GeometryType G4Trap::GetEntityType() const 1107 G4GeometryType G4Trap::GetEntityType() const 1106 { 1108 { 1107 return {"G4Trap"}; << 1109 return G4String("G4Trap"); 1108 } << 1109 << 1110 ///////////////////////////////////////////// << 1111 // << 1112 // IsFaceted << 1113 << 1114 G4bool G4Trap::IsFaceted() const << 1115 { << 1116 return true; << 1117 } 1110 } 1118 1111 1119 ///////////////////////////////////////////// 1112 ////////////////////////////////////////////////////////////////////////// 1120 // 1113 // 1121 // Make a clone of the object 1114 // Make a clone of the object 1122 // 1115 // 1123 G4VSolid* G4Trap::Clone() const 1116 G4VSolid* G4Trap::Clone() const 1124 { 1117 { 1125 return new G4Trap(*this); 1118 return new G4Trap(*this); 1126 } 1119 } 1127 1120 1128 ///////////////////////////////////////////// 1121 ////////////////////////////////////////////////////////////////////////// 1129 // 1122 // 1130 // Stream object contents to an output stream 1123 // Stream object contents to an output stream 1131 1124 1132 std::ostream& G4Trap::StreamInfo( std::ostrea 1125 std::ostream& G4Trap::StreamInfo( std::ostream& os ) const 1133 { 1126 { 1134 G4double phi = GetPhi(); << 1127 G4double phi = std::atan2(fTthetaSphi,fTthetaCphi); 1135 G4double theta = GetTheta(); << 1128 G4double theta = std::atan(std::sqrt(fTthetaCphi*fTthetaCphi 1136 G4double alpha1 = GetAlpha1(); << 1129 +fTthetaSphi*fTthetaSphi)); 1137 G4double alpha2 = GetAlpha2(); << 1130 G4double alpha1 = std::atan(fTalpha1); >> 1131 G4double alpha2 = std::atan(fTalpha2); >> 1132 G4String signDegree = "\u00B0"; 1138 1133 1139 G4long oldprc = os.precision(16); << 1134 G4int oldprc = os.precision(16); 1140 os << "------------------------------------ 1135 os << "-----------------------------------------------------------\n" 1141 << " *** Dump for solid: " << GetName 1136 << " *** Dump for solid: " << GetName() << " ***\n" 1142 << " ================================ 1137 << " ===================================================\n" 1143 << " Solid type: G4Trap\n" 1138 << " Solid type: G4Trap\n" 1144 << " Parameters:\n" 1139 << " Parameters:\n" 1145 << " half length Z: " << fDz/mm << " 1140 << " half length Z: " << fDz/mm << " mm\n" 1146 << " half length Y, face -Dz: " << fD 1141 << " half length Y, face -Dz: " << fDy1/mm << " mm\n" 1147 << " half length X, face -Dz, side -D 1142 << " half length X, face -Dz, side -Dy1: " << fDx1/mm << " mm\n" 1148 << " half length X, face -Dz, side +D 1143 << " half length X, face -Dz, side +Dy1: " << fDx2/mm << " mm\n" 1149 << " half length Y, face +Dz: " << fD 1144 << " half length Y, face +Dz: " << fDy2/mm << " mm\n" 1150 << " half length X, face +Dz, side -D 1145 << " half length X, face +Dz, side -Dy2: " << fDx3/mm << " mm\n" 1151 << " half length X, face +Dz, side +D 1146 << " half length X, face +Dz, side +Dy2: " << fDx4/mm << " mm\n" 1152 << " theta: " << theta/degree << " de << 1147 << " theta: " << theta/degree << signDegree << "\n" 1153 << " phi: " << phi/degree << " degr << 1148 << " phi: " << phi/degree << signDegree << "\n" 1154 << " alpha, face -Dz: " << alpha1/deg << 1149 << " alpha, face -Dz: " << alpha1/degree << signDegree << "\n" 1155 << " alpha, face +Dz: " << alpha2/deg << 1150 << " alpha, face +Dz: " << alpha2/degree << signDegree << "\n" 1156 << "------------------------------------ 1151 << "-----------------------------------------------------------\n"; 1157 os.precision(oldprc); 1152 os.precision(oldprc); 1158 1153 1159 return os; 1154 return os; 1160 } 1155 } 1161 1156 1162 ///////////////////////////////////////////// 1157 ////////////////////////////////////////////////////////////////////////// 1163 // 1158 // 1164 // Compute vertices from planes 1159 // Compute vertices from planes 1165 1160 1166 void G4Trap::GetVertices(G4ThreeVector pt[8]) 1161 void G4Trap::GetVertices(G4ThreeVector pt[8]) const 1167 { 1162 { 1168 for (G4int i=0; i<8; ++i) 1163 for (G4int i=0; i<8; ++i) 1169 { 1164 { 1170 G4int iy = (i==0 || i==1 || i==4 || i==5) 1165 G4int iy = (i==0 || i==1 || i==4 || i==5) ? 0 : 1; 1171 G4int ix = (i==0 || i==2 || i==4 || i==6) 1166 G4int ix = (i==0 || i==2 || i==4 || i==6) ? 2 : 3; 1172 G4double z = (i < 4) ? -fDz : fDz; 1167 G4double z = (i < 4) ? -fDz : fDz; 1173 G4double y = -(fPlanes[iy].c*z + fPlanes[ 1168 G4double y = -(fPlanes[iy].c*z + fPlanes[iy].d)/fPlanes[iy].b; 1174 G4double x = -(fPlanes[ix].b*y + fPlanes[ 1169 G4double x = -(fPlanes[ix].b*y + fPlanes[ix].c*z 1175 + fPlanes[ix].d)/fPlanes[i 1170 + fPlanes[ix].d)/fPlanes[ix].a; 1176 pt[i].set(x,y,z); 1171 pt[i].set(x,y,z); 1177 } 1172 } 1178 } 1173 } 1179 1174 1180 ///////////////////////////////////////////// << 1175 ///////////////////////////////////////////////////////////////////////// 1181 // 1176 // 1182 // Generate random point on the surface 1177 // Generate random point on the surface 1183 1178 1184 G4ThreeVector G4Trap::GetPointOnSurface() con 1179 G4ThreeVector G4Trap::GetPointOnSurface() const 1185 { 1180 { 1186 // Set indeces << 1187 constexpr G4int iface [6][4] = << 1188 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6 << 1189 << 1190 // Set vertices << 1191 G4ThreeVector pt[8]; 1181 G4ThreeVector pt[8]; >> 1182 G4int iface [6][4] = >> 1183 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3}, {4,6,7,5} }; >> 1184 G4double sface[6]; >> 1185 1192 GetVertices(pt); 1186 GetVertices(pt); >> 1187 G4double stotal = 0; >> 1188 for (G4int i=0; i<6; ++i) >> 1189 { >> 1190 G4double ss = G4GeomTools::QuadAreaNormal(pt[iface[i][0]], >> 1191 pt[iface[i][1]], >> 1192 pt[iface[i][2]], >> 1193 pt[iface[i][3]]).mag(); >> 1194 stotal += ss; >> 1195 sface[i] = stotal; >> 1196 } 1193 1197 1194 // Select face 1198 // Select face 1195 // 1199 // 1196 G4double select = fAreas[5]*G4QuickRand(); << 1200 G4double select = stotal*G4UniformRand(); 1197 G4int k = 5; 1201 G4int k = 5; 1198 k -= (G4int)(select <= fAreas[4]); << 1202 if (select <= sface[4]) k = 4; 1199 k -= (G4int)(select <= fAreas[3]); << 1203 if (select <= sface[3]) k = 3; 1200 k -= (G4int)(select <= fAreas[2]); << 1204 if (select <= sface[2]) k = 2; 1201 k -= (G4int)(select <= fAreas[1]); << 1205 if (select <= sface[1]) k = 1; 1202 k -= (G4int)(select <= fAreas[0]); << 1206 if (select <= sface[0]) k = 0; 1203 1207 1204 // Select sub-triangle 1208 // Select sub-triangle 1205 // 1209 // 1206 G4int i0 = iface[k][0]; 1210 G4int i0 = iface[k][0]; 1207 G4int i1 = iface[k][1]; 1211 G4int i1 = iface[k][1]; 1208 G4int i2 = iface[k][2]; 1212 G4int i2 = iface[k][2]; 1209 G4int i3 = iface[k][3]; 1213 G4int i3 = iface[k][3]; >> 1214 G4double s1 = G4GeomTools::TriangleAreaNormal(pt[i0],pt[i1],pt[i3]).mag(); 1210 G4double s2 = G4GeomTools::TriangleAreaNorm 1215 G4double s2 = G4GeomTools::TriangleAreaNormal(pt[i2],pt[i1],pt[i3]).mag(); 1211 if (select > fAreas[k] - s2) i0 = i2; << 1216 if ((s1+s2)*G4UniformRand() > s1) i0 = i2; 1212 1217 1213 // Generate point 1218 // Generate point 1214 // 1219 // 1215 G4double u = G4QuickRand(); << 1220 G4double u = G4UniformRand(); 1216 G4double v = G4QuickRand(); << 1221 G4double v = G4UniformRand(); 1217 if (u + v > 1.) { u = 1. - u; v = 1. - v; } 1222 if (u + v > 1.) { u = 1. - u; v = 1. - v; } 1218 return (1.-u-v)*pt[i0] + u*pt[i1] + v*pt[i3 1223 return (1.-u-v)*pt[i0] + u*pt[i1] + v*pt[i3]; 1219 } 1224 } 1220 1225 1221 ///////////////////////////////////////////// 1226 ////////////////////////////////////////////////////////////////////////// 1222 // 1227 // 1223 // Methods for visualisation 1228 // Methods for visualisation 1224 1229 1225 void G4Trap::DescribeYourselfTo ( G4VGraphics 1230 void G4Trap::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 1226 { 1231 { 1227 scene.AddSolid (*this); 1232 scene.AddSolid (*this); 1228 } 1233 } 1229 1234 1230 G4Polyhedron* G4Trap::CreatePolyhedron () con 1235 G4Polyhedron* G4Trap::CreatePolyhedron () const 1231 { 1236 { 1232 G4double phi = std::atan2(fTthetaSphi, fTth 1237 G4double phi = std::atan2(fTthetaSphi, fTthetaCphi); 1233 G4double alpha1 = std::atan(fTalpha1); 1238 G4double alpha1 = std::atan(fTalpha1); 1234 G4double alpha2 = std::atan(fTalpha2); 1239 G4double alpha2 = std::atan(fTalpha2); 1235 G4double theta = std::atan(std::sqrt(fTthet 1240 G4double theta = std::atan(std::sqrt(fTthetaCphi*fTthetaCphi 1236 +fTthet 1241 +fTthetaSphi*fTthetaSphi)); 1237 1242 1238 return new G4PolyhedronTrap(fDz, theta, phi 1243 return new G4PolyhedronTrap(fDz, theta, phi, 1239 fDy1, fDx1, fDx 1244 fDy1, fDx1, fDx2, alpha1, 1240 fDy2, fDx3, fDx 1245 fDy2, fDx3, fDx4, alpha2); 1241 } 1246 } 1242 1247 1243 #endif 1248 #endif 1244 1249