Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4CutTubs implementation << 27 // 26 // >> 27 // $Id: G4CutTubs.cc 83572 2014-09-01 15:23:27Z gcosmo $ >> 28 // >> 29 // >> 30 // class G4CutTubs >> 31 // >> 32 // History: >> 33 // >> 34 // 05.04.12 M.Kelsey - GetPointOnSurface() throw flat in sqrt(r) 28 // 01.06.11 T.Nikitina - Derived from G4Tubs 35 // 01.06.11 T.Nikitina - Derived from G4Tubs 29 // 30.10.16 E.Tcherniaev - reimplemented Calcu << 36 // 30 // removed CreateRotat << 37 ///////////////////////////////////////////////////////////////////////// 31 // ------------------------------------------- << 32 38 33 #include "G4CutTubs.hh" 39 #include "G4CutTubs.hh" 34 40 35 #if !defined(G4GEOM_USE_UCTUBS) << 36 << 37 #include "G4GeomTools.hh" << 38 #include "G4VoxelLimits.hh" 41 #include "G4VoxelLimits.hh" 39 #include "G4AffineTransform.hh" 42 #include "G4AffineTransform.hh" 40 #include "G4GeometryTolerance.hh" 43 #include "G4GeometryTolerance.hh" 41 #include "G4BoundingEnvelope.hh" << 42 44 43 #include "G4VPVParameterisation.hh" 45 #include "G4VPVParameterisation.hh" 44 #include "G4QuickRand.hh" << 45 46 46 #include "G4VGraphicsScene.hh" << 47 #include "Randomize.hh" 47 #include "G4Polyhedron.hh" << 48 48 49 #include "G4AutoLock.hh" << 49 #include "meshdefs.hh" 50 50 51 namespace << 51 #include "G4VGraphicsScene.hh" 52 { << 52 #include "G4Polyhedron.hh" 53 G4Mutex zminmaxMutex = G4MUTEX_INITIALIZER; << 54 } << 55 53 56 using namespace CLHEP; 54 using namespace CLHEP; 57 55 58 ////////////////////////////////////////////// 56 ///////////////////////////////////////////////////////////////////////// 59 // 57 // 60 // Constructor - check parameters, convert ang 58 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI 61 // - note if pdphi>2PI then reset 59 // - note if pdphi>2PI then reset to 2PI 62 60 63 G4CutTubs::G4CutTubs( const G4String &pName, 61 G4CutTubs::G4CutTubs( const G4String &pName, 64 G4double pRMin, G4double 62 G4double pRMin, G4double pRMax, 65 G4double pDz, 63 G4double pDz, 66 G4double pSPhi, G4double 64 G4double pSPhi, G4double pDPhi, 67 G4ThreeVector pLowNorm,G 65 G4ThreeVector pLowNorm,G4ThreeVector pHighNorm ) 68 : G4CSGSolid(pName), fRMin(pRMin), fRMax(pRM << 66 : G4OTubs(pName, pRMin, pRMax, pDz, pSPhi, pDPhi), 69 fSPhi(0.), fDPhi(0.), fZMin(0.), fZMax(0.) << 67 fPhiFullCutTube(true) 70 { 68 { 71 kRadTolerance = G4GeometryTolerance::GetInst 69 kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 72 kAngTolerance = G4GeometryTolerance::GetInst 70 kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance(); 73 71 74 halfCarTolerance = kCarTolerance*0.5; 72 halfCarTolerance = kCarTolerance*0.5; 75 halfRadTolerance = kRadTolerance*0.5; 73 halfRadTolerance = kRadTolerance*0.5; 76 halfAngTolerance = kAngTolerance*0.5; 74 halfAngTolerance = kAngTolerance*0.5; 77 75 78 if (pDz<=0) // Check z-len << 79 { << 80 std::ostringstream message; << 81 message << "Negative Z half-length (" << p << 82 G4Exception("G4CutTubs::G4CutTubs()", "Geo << 83 } << 84 if ( (pRMin >= pRMax) || (pRMin < 0) ) // Ch << 85 { << 86 std::ostringstream message; << 87 message << "Invalid values for radii in so << 88 << G4endl << 89 << " pRMin = " << pRMin << << 90 G4Exception("G4CutTubs::G4CutTubs()", "Geo << 91 } << 92 << 93 // Check angles << 94 // << 95 CheckPhiAngles(pSPhi, pDPhi); << 96 << 97 // Check on Cutted Planes Normals 76 // Check on Cutted Planes Normals 98 // If there is NO CUT, propose to use G4Tubs 77 // If there is NO CUT, propose to use G4Tubs instead 99 // 78 // 100 if ( ( pLowNorm.x() == 0.0) && ( pLowNorm.y( << 79 if(pDPhi<twopi) { fPhiFullCutTube=false; } 101 && ( pHighNorm.x() == 0.0) && (pHighNorm.y << 80 >> 81 if ( ( !pLowNorm.x()) && ( !pLowNorm.y()) >> 82 && ( !pHighNorm.x()) && (!pHighNorm.y()) ) 102 { 83 { 103 std::ostringstream message; 84 std::ostringstream message; 104 message << "Inexisting Low/High Normal to 85 message << "Inexisting Low/High Normal to Z plane or Parallel to Z." 105 << G4endl 86 << G4endl 106 << "Normals to Z plane are " << pL << 87 << "Normals to Z plane are (" << pLowNorm <<" and " 107 << pHighNorm << " in solid: " << G << 88 << pHighNorm << ") in solid: " << GetName(); 108 G4Exception("G4CutTubs::G4CutTubs()", "Geo 89 G4Exception("G4CutTubs::G4CutTubs()", "GeomSolids1001", 109 JustWarning, message, "Should 90 JustWarning, message, "Should use G4Tubs!"); 110 } 91 } 111 92 112 // If Normal is (0,0,0),means parallel to R, 93 // If Normal is (0,0,0),means parallel to R, give it value of (0,0,+/-1) 113 // << 94 // 114 if (pLowNorm.mag2() == 0.) { pLowNorm.setZ( 95 if (pLowNorm.mag2() == 0.) { pLowNorm.setZ(-1.); } 115 if (pHighNorm.mag2()== 0.) { pHighNorm.setZ 96 if (pHighNorm.mag2()== 0.) { pHighNorm.setZ(1.); } 116 97 117 // Given Normals to Cut Planes have to be an << 98 // Given Normals to Cut Planes have to be an unit vectors. 118 // Normalize if it is needed. 99 // Normalize if it is needed. 119 // 100 // 120 if (pLowNorm.mag2() != 1.) { pLowNorm = pL 101 if (pLowNorm.mag2() != 1.) { pLowNorm = pLowNorm.unit(); } 121 if (pHighNorm.mag2()!= 1.) { pHighNorm = pH 102 if (pHighNorm.mag2()!= 1.) { pHighNorm = pHighNorm.unit(); } 122 103 123 // Normals to cutted planes have to point ou 104 // Normals to cutted planes have to point outside Solid 124 // 105 // 125 if( (pLowNorm.mag2() != 0.) && (pHighNorm.ma 106 if( (pLowNorm.mag2() != 0.) && (pHighNorm.mag2()!= 0. ) ) 126 { 107 { 127 if( ( pLowNorm.z()>= 0. ) || ( pHighNorm.z 108 if( ( pLowNorm.z()>= 0. ) || ( pHighNorm.z() <= 0.)) 128 { 109 { 129 std::ostringstream message; 110 std::ostringstream message; 130 message << "Invalid Low or High Normal t 111 message << "Invalid Low or High Normal to Z plane; " 131 "has to point outside Solid." 112 "has to point outside Solid." << G4endl 132 << "Invalid Norm to Z plane (" < 113 << "Invalid Norm to Z plane (" << pLowNorm << " or " 133 << pHighNorm << ") in solid: " < 114 << pHighNorm << ") in solid: " << GetName(); 134 G4Exception("G4CutTubs::G4CutTubs()", "G 115 G4Exception("G4CutTubs::G4CutTubs()", "GeomSolids0002", 135 FatalException, message); 116 FatalException, message); 136 } 117 } 137 } 118 } 138 fLowNorm = pLowNorm; 119 fLowNorm = pLowNorm; 139 fHighNorm = pHighNorm; 120 fHighNorm = pHighNorm; 140 121 141 // Check intersection of cut planes, they MU << 122 // Check Intersection of Cutted planes. They MUST NOT Intersect 142 // each other inside the lateral surface << 143 // 123 // 144 if(IsCrossingCutPlanes()) 124 if(IsCrossingCutPlanes()) 145 { 125 { 146 std::ostringstream message; 126 std::ostringstream message; 147 message << "Invalid normals to Z plane in << 127 message << "Invalid Low or High Normal to Z plane; " 148 << "Cut planes are crossing inside << 128 << "Crossing Cutted Planes." << G4endl 149 << " Solid type: G4CutTubs\n" << 129 << "Invalid Norm to Z plane (" << pLowNorm << " and " 150 << " Parameters: \n" << 130 << pHighNorm << ") in solid: " << GetName(); 151 << " inner radius : " << fRMin/ << 152 << " outer radius : " << fRMax/ << 153 << " half length Z: " << fDz/mm << 154 << " starting phi : " << fSPhi/ << 155 << " delta phi : " << fDPhi/ << 156 << " low Norm : " << fLowNo << 157 << " high Norm : " << fHighN << 158 G4Exception("G4CutTubs::G4CutTubs()", "Geo 131 G4Exception("G4CutTubs::G4CutTubs()", "GeomSolids0002", 159 FatalException, message); 132 FatalException, message); 160 } 133 } 161 } 134 } 162 135 163 ////////////////////////////////////////////// 136 /////////////////////////////////////////////////////////////////////// 164 // 137 // 165 // Fake default constructor - sets only member 138 // Fake default constructor - sets only member data and allocates memory 166 // for usage restri 139 // for usage restricted to object persistency. 167 // 140 // 168 G4CutTubs::G4CutTubs( __void__& a ) 141 G4CutTubs::G4CutTubs( __void__& a ) 169 : G4CSGSolid(a) << 142 : G4OTubs(a), fLowNorm(G4ThreeVector()), >> 143 fHighNorm(G4ThreeVector()), fPhiFullCutTube(false), >> 144 halfCarTolerance(0.), halfRadTolerance(0.), halfAngTolerance(0.) 170 { 145 { 171 } 146 } 172 147 173 ////////////////////////////////////////////// 148 ////////////////////////////////////////////////////////////////////////// 174 // 149 // 175 // Destructor 150 // Destructor 176 151 177 G4CutTubs::~G4CutTubs() = default; << 152 G4CutTubs::~G4CutTubs() >> 153 { >> 154 } 178 155 179 ////////////////////////////////////////////// 156 ////////////////////////////////////////////////////////////////////////// 180 // 157 // 181 // Copy constructor 158 // Copy constructor 182 159 183 G4CutTubs::G4CutTubs(const G4CutTubs&) = defau << 160 G4CutTubs::G4CutTubs(const G4CutTubs& rhs) >> 161 : G4OTubs(rhs), fLowNorm(rhs.fLowNorm), fHighNorm(rhs.fHighNorm), >> 162 fPhiFullCutTube(rhs.fPhiFullCutTube), >> 163 halfCarTolerance(rhs.halfCarTolerance), >> 164 halfRadTolerance(rhs.halfRadTolerance), >> 165 halfAngTolerance(rhs.halfAngTolerance) >> 166 { >> 167 } 184 168 185 ////////////////////////////////////////////// 169 ////////////////////////////////////////////////////////////////////////// 186 // 170 // 187 // Assignment operator 171 // Assignment operator 188 172 189 G4CutTubs& G4CutTubs::operator = (const G4CutT << 173 G4CutTubs& G4CutTubs::operator = (const G4CutTubs& rhs) 190 { 174 { 191 // Check assignment to self 175 // Check assignment to self 192 // 176 // 193 if (this == &rhs) { return *this; } 177 if (this == &rhs) { return *this; } 194 178 195 // Copy base class data 179 // Copy base class data 196 // 180 // 197 G4CSGSolid::operator=(rhs); << 181 G4OTubs::operator=(rhs); 198 182 199 // Copy data 183 // Copy data 200 // 184 // 201 kRadTolerance = rhs.kRadTolerance; kAngTole << 185 fLowNorm = rhs.fLowNorm; fHighNorm = rhs.fHighNorm; 202 fRMin = rhs.fRMin; fRMax = rhs.fRMax; fDz = << 203 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; << 204 fZMin = rhs.fZMin; fZMax = rhs.fZMax; << 205 sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPh << 206 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = r << 207 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPh << 208 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPh << 209 fPhiFullCutTube = rhs.fPhiFullCutTube; 186 fPhiFullCutTube = rhs.fPhiFullCutTube; 210 halfCarTolerance = rhs.halfCarTolerance; 187 halfCarTolerance = rhs.halfCarTolerance; 211 halfRadTolerance = rhs.halfRadTolerance; 188 halfRadTolerance = rhs.halfRadTolerance; 212 halfAngTolerance = rhs.halfAngTolerance; 189 halfAngTolerance = rhs.halfAngTolerance; 213 fLowNorm = rhs.fLowNorm; fHighNorm = rhs.fH << 214 190 215 return *this; 191 return *this; 216 } 192 } 217 193 218 ////////////////////////////////////////////// << 194 //////////////////////////////////////////////////////////////////////// 219 // 195 // 220 // Get volume << 196 // Calculate extent under transform and specified limit 221 197 222 G4double G4CutTubs::GetCubicVolume() << 198 G4bool G4CutTubs::CalculateExtent( const EAxis pAxis, >> 199 const G4VoxelLimits& pVoxelLimit, >> 200 const G4AffineTransform& pTransform, >> 201 G4double& pMin, >> 202 G4double& pMax ) const 223 { 203 { 224 constexpr G4int nphi = 200, nrho = 100; << 204 if ( (!pTransform.IsRotated()) && (fDPhi == twopi) && (fRMin == 0) ) 225 << 226 if (fCubicVolume == 0.) << 227 { 205 { 228 // get parameters << 206 // Special case handling for unrotated solid tubes 229 G4double rmin = GetInnerRadius(); << 207 // Compute x/y/z mins and maxs fro bounding box respecting limits, 230 G4double rmax = GetOuterRadius(); << 208 // with early returns if outside limits. Then switch() on pAxis, 231 G4double dz = GetZHalfLength(); << 209 // and compute exact x and y limit for x/y case 232 G4double sphi = GetStartPhiAngle(); << 210 233 G4double dphi = GetDeltaPhiAngle(); << 211 G4double xoffset, xMin, xMax; >> 212 G4double yoffset, yMin, yMax; >> 213 G4double zoffset, zMin, zMax; >> 214 >> 215 G4double diff1, diff2, maxDiff, newMin, newMax; >> 216 G4double xoff1, xoff2, yoff1, yoff2, delta; >> 217 >> 218 xoffset = pTransform.NetTranslation().x(); >> 219 xMin = xoffset - fRMax; >> 220 xMax = xoffset + fRMax; 234 221 235 // calculate volume << 222 if (pVoxelLimit.IsXLimited()) 236 G4double volume = dz*dphi*(rmax*rmax - rmi << 237 if (dphi < twopi) // make recalculation << 238 { 223 { 239 // set values for calculation of h - dis << 224 if ( (xMin > pVoxelLimit.GetMaxXExtent()) 240 // opposite points on bases << 225 || (xMax < pVoxelLimit.GetMinXExtent()) ) 241 G4ThreeVector nbot = GetLowNorm(); << 226 { 242 G4ThreeVector ntop = GetHighNorm(); << 227 return false; 243 G4double nx = nbot.x()/nbot.z() - ntop.x << 228 } 244 G4double ny = nbot.y()/nbot.z() - ntop.y << 229 else >> 230 { >> 231 if (xMin < pVoxelLimit.GetMinXExtent()) >> 232 { >> 233 xMin = pVoxelLimit.GetMinXExtent(); >> 234 } >> 235 if (xMax > pVoxelLimit.GetMaxXExtent()) >> 236 { >> 237 xMax = pVoxelLimit.GetMaxXExtent(); >> 238 } >> 239 } >> 240 } >> 241 yoffset = pTransform.NetTranslation().y(); >> 242 yMin = yoffset - fRMax; >> 243 yMax = yoffset + fRMax; 245 244 246 // compute volume by integration << 245 if ( pVoxelLimit.IsYLimited() ) 247 G4double delrho = (rmax - rmin)/nrho; << 246 { 248 G4double delphi = dphi/nphi; << 247 if ( (yMin > pVoxelLimit.GetMaxYExtent()) 249 volume = 0.; << 248 || (yMax < pVoxelLimit.GetMinYExtent()) ) 250 for (G4int irho=0; irho<nrho; ++irho) << 251 { 249 { 252 G4double r1 = rmin + delrho*irho; << 250 return false; 253 G4double r2 = rmin + delrho*(irho + 1 << 251 } 254 G4double rho = 0.5*(r1 + r2); << 252 else 255 G4double sector = 0.5*delphi*(r2*r2 - << 253 { 256 for (G4int iphi=0; iphi<nphi; ++iphi) << 254 if (yMin < pVoxelLimit.GetMinYExtent()) >> 255 { >> 256 yMin = pVoxelLimit.GetMinYExtent(); >> 257 } >> 258 if (yMax > pVoxelLimit.GetMaxYExtent()) 257 { 259 { 258 G4double phi = sphi + delphi*(iphi + << 260 yMax=pVoxelLimit.GetMaxYExtent(); 259 G4double h = nx*rho*std::cos(phi) + << 260 volume += sector*h; << 261 } 261 } 262 } 262 } 263 } 263 } 264 fCubicVolume = volume; << 264 zoffset = pTransform.NetTranslation().z(); 265 } << 265 GetMaxMinZ(zMin,zMax); 266 return fCubicVolume; << 266 zMin += zoffset; 267 } << 267 zMax += zoffset; 268 268 269 ////////////////////////////////////////////// << 269 if ( pVoxelLimit.IsZLimited() ) 270 // << 270 { 271 // Get surface area << 271 if ( (zMin > pVoxelLimit.GetMaxZExtent()) >> 272 || (zMax < pVoxelLimit.GetMinZExtent()) ) >> 273 { >> 274 return false; >> 275 } >> 276 else >> 277 { >> 278 if (zMin < pVoxelLimit.GetMinZExtent()) >> 279 { >> 280 zMin = pVoxelLimit.GetMinZExtent(); >> 281 } >> 282 if (zMax > pVoxelLimit.GetMaxZExtent()) >> 283 { >> 284 zMax = pVoxelLimit.GetMaxZExtent(); >> 285 } >> 286 } >> 287 } >> 288 switch ( pAxis ) // Known to cut cylinder >> 289 { >> 290 case kXAxis : >> 291 { >> 292 yoff1 = yoffset - yMin; >> 293 yoff2 = yMax - yoffset; 272 294 273 G4double G4CutTubs::GetSurfaceArea() << 295 if ( (yoff1 >= 0) && (yoff2 >= 0) ) // Y limits cross max/min x 274 { << 296 { // => no change 275 constexpr G4int nphi = 400; << 297 pMin = xMin; >> 298 pMax = xMax; >> 299 } >> 300 else >> 301 { >> 302 // Y limits don't cross max/min x => compute max delta x, >> 303 // hence new mins/maxs 276 304 277 if (fSurfaceArea == 0.) << 305 delta = fRMax*fRMax - yoff1*yoff1; 278 { << 306 diff1 = (delta>0.) ? std::sqrt(delta) : 0.; 279 // get parameters << 307 delta = fRMax*fRMax - yoff2*yoff2; 280 G4double rmin = GetInnerRadius(); << 308 diff2 = (delta>0.) ? std::sqrt(delta) : 0.; 281 G4double rmax = GetOuterRadius(); << 309 maxDiff = (diff1 > diff2) ? diff1:diff2; 282 G4double dz = GetZHalfLength(); << 310 newMin = xoffset - maxDiff; 283 G4double sphi = GetStartPhiAngle(); << 311 newMax = xoffset + maxDiff; 284 G4double dphi = GetDeltaPhiAngle(); << 312 pMin = (newMin < xMin) ? xMin : newMin; 285 G4ThreeVector nbot = GetLowNorm(); << 313 pMax = (newMax > xMax) ? xMax : newMax; 286 G4ThreeVector ntop = GetHighNorm(); << 314 } 287 << 315 break; 288 // calculate lateral surface area << 316 } 289 G4double sinner = 2.*dz*dphi*rmin; << 317 case kYAxis : 290 G4double souter = 2.*dz*dphi*rmax; << 318 { 291 if (dphi < twopi) // make recalculation << 319 xoff1 = xoffset - xMin; 292 { << 320 xoff2 = xMax - xoffset; 293 // set values for calculation of h - dis << 294 // opposite points on bases << 295 G4double nx = nbot.x()/nbot.z() - ntop.x << 296 G4double ny = nbot.y()/nbot.z() - ntop.y << 297 << 298 // compute lateral surface area by integ << 299 G4double delphi = dphi/nphi; << 300 sinner = 0.; << 301 souter = 0.; << 302 for (G4int iphi=0; iphi<nphi; ++iphi) << 303 { << 304 G4double phi = sphi + delphi*(iphi + 0 << 305 G4double cosphi = std::cos(phi); << 306 G4double sinphi = std::sin(phi); << 307 sinner += rmin*(nx*cosphi + ny*sinphi) << 308 souter += rmax*(nx*cosphi + ny*sinphi) << 309 } << 310 sinner *= delphi*rmin; << 311 souter *= delphi*rmax; << 312 } << 313 // set surface area << 314 G4double scut = (dphi == twopi) ? 0. : 2. << 315 G4double szero = 0.5*dphi*(rmax*rmax - rmi << 316 G4double slow = szero/std::abs(nbot.z()); << 317 G4double shigh = szero/std::abs(ntop.z()); << 318 fSurfaceArea = sinner + souter + 2.*scut + << 319 } << 320 return fSurfaceArea; << 321 } << 322 321 323 ////////////////////////////////////////////// << 322 if ( (xoff1 >= 0) && (xoff2 >= 0) ) // X limits cross max/min y 324 // << 323 { // => no change 325 // Get bounding box << 324 pMin = yMin; >> 325 pMax = yMax; >> 326 } >> 327 else >> 328 { >> 329 // X limits don't cross max/min y => compute max delta y, >> 330 // hence new mins/maxs 326 331 327 void G4CutTubs::BoundingLimits(G4ThreeVector& << 332 delta = fRMax*fRMax - xoff1*xoff1; 328 { << 333 diff1 = (delta>0.) ? std::sqrt(delta) : 0.; 329 G4double rmin = GetInnerRadius(); << 334 delta = fRMax*fRMax - xoff2*xoff2; 330 G4double rmax = GetOuterRadius(); << 335 diff2 = (delta>0.) ? std::sqrt(delta) : 0.; 331 G4double dz = GetZHalfLength(); << 336 maxDiff = (diff1 > diff2) ? diff1 : diff2; 332 G4double dphi = GetDeltaPhiAngle(); << 337 newMin = yoffset - maxDiff; 333 << 338 newMax = yoffset + maxDiff; 334 G4double sinSphi = GetSinStartPhi(); << 339 pMin = (newMin < yMin) ? yMin : newMin; 335 G4double cosSphi = GetCosStartPhi(); << 340 pMax = (newMax > yMax) ? yMax : newMax; 336 G4double sinEphi = GetSinEndPhi(); << 341 } 337 G4double cosEphi = GetCosEndPhi(); << 342 break; 338 << 343 } 339 G4ThreeVector norm; << 344 case kZAxis: 340 G4double mag, topx, topy, dists, diste; << 345 { 341 G4bool iftop; << 346 pMin = zMin; 342 << 347 pMax = zMax; 343 // Find Zmin << 348 break; 344 // << 349 } 345 G4double zmin; << 350 default: 346 norm = GetLowNorm(); << 351 break; 347 mag = std::sqrt(norm.x()*norm.x() + norm.y( << 352 } 348 topx = (mag == 0) ? 0 : -rmax*norm.x()/mag; << 353 pMin -= kCarTolerance; 349 topy = (mag == 0) ? 0 : -rmax*norm.y()/mag; << 354 pMax += kCarTolerance; 350 dists = sinSphi*topx - cosSphi*topy; << 355 return true; 351 diste = -sinEphi*topx + cosEphi*topy; << 352 if (dphi > pi) << 353 { << 354 iftop = true; << 355 if (dists > 0 && diste > 0)iftop = false; << 356 } << 357 else << 358 { << 359 iftop = false; << 360 if (dists <= 0 && diste <= 0) iftop = true << 361 } << 362 if (iftop) << 363 { << 364 zmin = -(norm.x()*topx + norm.y()*topy)/no << 365 } << 366 else << 367 { << 368 G4double z1 = -rmin*(norm.x()*cosSphi + no << 369 G4double z2 = -rmin*(norm.x()*cosEphi + no << 370 G4double z3 = -rmax*(norm.x()*cosSphi + no << 371 G4double z4 = -rmax*(norm.x()*cosEphi + no << 372 zmin = std::min(std::min(std::min(z1,z2),z << 373 } << 374 << 375 // Find Zmax << 376 // << 377 G4double zmax; << 378 norm = GetHighNorm(); << 379 mag = std::sqrt(norm.x()*norm.x() + norm.y( << 380 topx = (mag == 0) ? 0 : -rmax*norm.x()/mag; << 381 topy = (mag == 0) ? 0 : -rmax*norm.y()/mag; << 382 dists = sinSphi*topx - cosSphi*topy; << 383 diste = -sinEphi*topx + cosEphi*topy; << 384 if (dphi > pi) << 385 { << 386 iftop = true; << 387 if (dists > 0 && diste > 0) iftop = false; << 388 } << 389 else << 390 { << 391 iftop = false; << 392 if (dists <= 0 && diste <= 0) iftop = true << 393 } << 394 if (iftop) << 395 { << 396 zmax = -(norm.x()*topx + norm.y()*topy)/no << 397 } << 398 else << 399 { << 400 G4double z1 = -rmin*(norm.x()*cosSphi + no << 401 G4double z2 = -rmin*(norm.x()*cosEphi + no << 402 G4double z3 = -rmax*(norm.x()*cosSphi + no << 403 G4double z4 = -rmax*(norm.x()*cosEphi + no << 404 zmax = std::max(std::max(std::max(z1,z2),z << 405 } << 406 << 407 // Find bounding box << 408 // << 409 if (dphi < twopi) << 410 { << 411 G4TwoVector vmin,vmax; << 412 G4GeomTools::DiskExtent(rmin,rmax, << 413 GetSinStartPhi(),G << 414 GetSinEndPhi(),Get << 415 vmin,vmax); << 416 pMin.set(vmin.x(),vmin.y(), zmin); << 417 pMax.set(vmax.x(),vmax.y(), zmax); << 418 } << 419 else << 420 { << 421 pMin.set(-rmax,-rmax, zmin); << 422 pMax.set( rmax, rmax, zmax); << 423 } 356 } 424 << 357 else // Calculate rotated vertex coordinates 425 // Check correctness of the bounding box << 426 // << 427 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 428 { 358 { 429 std::ostringstream message; << 359 G4int i, noEntries, noBetweenSections4; 430 message << "Bad bounding box (min >= max) << 360 G4bool existsAfterClip = false; 431 << GetName() << " !" << 361 G4ThreeVectorList* vertices = CreateRotatedVertices(pTransform); 432 << "\npMin = " << pMin << 433 << "\npMax = " << pMax; << 434 G4Exception("G4CutTubs::BoundingLimits()", << 435 JustWarning, message); << 436 DumpInfo(); << 437 } << 438 } << 439 << 440 ////////////////////////////////////////////// << 441 // << 442 // Calculate extent under transform and specif << 443 << 444 G4bool G4CutTubs::CalculateExtent( const EAxis << 445 const G4Vox << 446 const G4Aff << 447 G4dou << 448 G4dou << 449 { << 450 G4ThreeVector bmin, bmax; << 451 G4bool exist; << 452 362 453 // Get bounding box << 363 pMin = kInfinity; 454 BoundingLimits(bmin,bmax); << 364 pMax = -kInfinity; 455 365 456 // Check bounding box << 366 noEntries = vertices->size(); 457 G4BoundingEnvelope bbox(bmin,bmax); << 367 noBetweenSections4 = noEntries - 4; 458 #ifdef G4BBOX_EXTENT << 368 459 return bbox.CalculateExtent(pAxis,pVoxelLimi << 369 for ( i = 0 ; i < noEntries ; i += 4 ) 460 #endif << 370 { 461 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 371 ClipCrossSection(vertices, i, pVoxelLimit, pAxis, pMin, pMax); 462 { << 372 } 463 return exist = pMin < pMax; << 373 for ( i = 0 ; i < noBetweenSections4 ; i += 4 ) 464 } << 374 { 465 << 375 ClipBetweenSections(vertices, i, pVoxelLimit, pAxis, pMin, pMax); 466 // Get parameters of the solid << 376 } 467 G4double rmin = GetInnerRadius(); << 377 if ( (pMin != kInfinity) || (pMax != -kInfinity) ) 468 G4double rmax = GetOuterRadius(); << 378 { 469 G4double dphi = GetDeltaPhiAngle(); << 379 existsAfterClip = true; 470 G4double zmin = bmin.z(); << 380 pMin -= kCarTolerance; // Add 2*tolerance to avoid precision troubles 471 G4double zmax = bmax.z(); << 381 pMax += kCarTolerance; 472 << 382 } 473 // Find bounding envelope and calculate exte << 383 else 474 // << 384 { 475 const G4int NSTEPS = 24; // numbe << 385 // Check for case where completely enveloping clipping volume 476 G4double astep = twopi/NSTEPS; // max a << 386 // If point inside then we are confident that the solid completely 477 G4int ksteps = (dphi <= astep) ? 1 : (G4i << 387 // envelopes the clipping volume. Hence set min/max extents according 478 G4double ang = dphi/ksteps; << 388 // to clipping volume extents along the specified axis. 479 << 389 480 G4double sinHalf = std::sin(0.5*ang); << 390 G4ThreeVector clipCentre( 481 G4double cosHalf = std::cos(0.5*ang); << 391 (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5, 482 G4double sinStep = 2.*sinHalf*cosHalf; << 392 (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5, 483 G4double cosStep = 1. - 2.*sinHalf*sinHalf; << 393 (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5 ); 484 G4double rext = rmax/cosHalf; << 394 485 << 395 if ( Inside(pTransform.Inverse().TransformPoint(clipCentre)) != kOutside ) 486 // bounding envelope for full cylinder consi << 396 { 487 // in other cases it is a sequence of quadri << 397 existsAfterClip = true; 488 if (rmin == 0 && dphi == twopi) << 398 pMin = pVoxelLimit.GetMinExtent(pAxis); 489 { << 399 pMax = pVoxelLimit.GetMaxExtent(pAxis); 490 G4double sinCur = sinHalf; << 400 } 491 G4double cosCur = cosHalf; << 401 } 492 << 402 delete vertices; 493 G4ThreeVectorList baseA(NSTEPS),baseB(NSTE << 403 return existsAfterClip; 494 for (G4int k=0; k<NSTEPS; ++k) << 495 { << 496 baseA[k].set(rext*cosCur,rext*sinCur,zmi << 497 baseB[k].set(rext*cosCur,rext*sinCur,zma << 498 << 499 G4double sinTmp = sinCur; << 500 sinCur = sinCur*cosStep + cosCur*sinStep << 501 cosCur = cosCur*cosStep - sinTmp*sinStep << 502 } << 503 std::vector<const G4ThreeVectorList *> pol << 504 polygons[0] = &baseA; << 505 polygons[1] = &baseB; << 506 G4BoundingEnvelope benv(bmin,bmax,polygons << 507 exist = benv.CalculateExtent(pAxis,pVoxelL << 508 } << 509 else << 510 { << 511 G4double sinStart = GetSinStartPhi(); << 512 G4double cosStart = GetCosStartPhi(); << 513 G4double sinEnd = GetSinEndPhi(); << 514 G4double cosEnd = GetCosEndPhi(); << 515 G4double sinCur = sinStart*cosHalf + cos << 516 G4double cosCur = cosStart*cosHalf - sin << 517 << 518 // set quadrilaterals << 519 G4ThreeVectorList pols[NSTEPS+2]; << 520 for (G4int k=0; k<ksteps+2; ++k) pols[k].r << 521 pols[0][0].set(rmin*cosStart,rmin*sinStart << 522 pols[0][1].set(rmin*cosStart,rmin*sinStart << 523 pols[0][2].set(rmax*cosStart,rmax*sinStart << 524 pols[0][3].set(rmax*cosStart,rmax*sinStart << 525 for (G4int k=1; k<ksteps+1; ++k) << 526 { << 527 pols[k][0].set(rmin*cosCur,rmin*sinCur,z << 528 pols[k][1].set(rmin*cosCur,rmin*sinCur,z << 529 pols[k][2].set(rext*cosCur,rext*sinCur,z << 530 pols[k][3].set(rext*cosCur,rext*sinCur,z << 531 << 532 G4double sinTmp = sinCur; << 533 sinCur = sinCur*cosStep + cosCur*sinStep << 534 cosCur = cosCur*cosStep - sinTmp*sinStep << 535 } << 536 pols[ksteps+1][0].set(rmin*cosEnd,rmin*sin << 537 pols[ksteps+1][1].set(rmin*cosEnd,rmin*sin << 538 pols[ksteps+1][2].set(rmax*cosEnd,rmax*sin << 539 pols[ksteps+1][3].set(rmax*cosEnd,rmax*sin << 540 << 541 // set envelope and calculate extent << 542 std::vector<const G4ThreeVectorList *> pol << 543 polygons.resize(ksteps+2); << 544 for (G4int k=0; k<ksteps+2; ++k) { polygon << 545 G4BoundingEnvelope benv(bmin,bmax,polygons << 546 exist = benv.CalculateExtent(pAxis,pVoxelL << 547 } 404 } 548 return exist; << 549 } 405 } 550 406 551 ////////////////////////////////////////////// << 407 /////////////////////////////////////////////////////////////////////////// 552 // 408 // 553 // Return whether point inside/outside/on surf 409 // Return whether point inside/outside/on surface 554 410 555 EInside G4CutTubs::Inside( const G4ThreeVector 411 EInside G4CutTubs::Inside( const G4ThreeVector& p ) const 556 { 412 { 557 G4ThreeVector vZ = G4ThreeVector(0,0,fDz); << 413 G4double zinLow,zinHigh,r2,pPhi=0.; >> 414 G4double tolRMin,tolRMax; >> 415 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 558 EInside in = kInside; 416 EInside in = kInside; 559 417 >> 418 // Check if point is contained in the cut plane in -/+ Z >> 419 560 // Check the lower cut plane 420 // Check the lower cut plane 561 // 421 // 562 G4double zinLow =(p+vZ).dot(fLowNorm); << 422 zinLow =(p+vZ).dot(fLowNorm); 563 if (zinLow > halfCarTolerance) { return kOu << 423 if (zinLow>halfCarTolerance) { return kOutside; } 564 424 565 // Check the higher cut plane 425 // Check the higher cut plane 566 // 426 // 567 G4double zinHigh = (p-vZ).dot(fHighNorm); << 427 zinHigh = (p-vZ).dot(fHighNorm); 568 if (zinHigh > halfCarTolerance) { return kO << 428 if (zinHigh>halfCarTolerance) { return kOutside; } 569 429 570 // Check radius 430 // Check radius 571 // 431 // 572 G4double r2 = p.x()*p.x() + p.y()*p.y() ; << 432 r2 = p.x()*p.x() + p.y()*p.y() ; 573 433 574 G4double tolRMin = fRMin - halfRadTolerance; << 434 // First check 'generous' boundaries R+tolerance 575 G4double tolRMax = fRMax + halfRadTolerance; << 435 // >> 436 tolRMin = fRMin - halfRadTolerance ; >> 437 tolRMax = fRMax + halfRadTolerance ; 576 if ( tolRMin < 0 ) { tolRMin = 0; } 438 if ( tolRMin < 0 ) { tolRMin = 0; } 577 << 439 578 if (r2 < tolRMin*tolRMin || r2 > tolRMax*tol << 440 if ( ((r2 < tolRMin*tolRMin) || (r2 > tolRMax*tolRMax)) 579 << 441 && (r2 >=halfRadTolerance*halfRadTolerance) ) { return kOutside; } 580 // Check Phi cut << 442 >> 443 // Check Phi 581 // 444 // 582 if(!fPhiFullCutTube) 445 if(!fPhiFullCutTube) 583 { 446 { 584 if ((tolRMin == 0) && (std::fabs(p.x()) <= << 447 // Try outer tolerant phi boundaries only 585 && (std::fabs(p.y()) <= << 448 >> 449 if ( (tolRMin==0) && (std::fabs(p.x())<=halfCarTolerance) >> 450 && (std::fabs(p.y())<=halfCarTolerance) ) 586 { 451 { 587 return kSurface; 452 return kSurface; 588 } 453 } >> 454 >> 455 pPhi = std::atan2(p.y(),p.x()) ; 589 456 590 G4double phi0 = std::atan2(p.y(),p.x()); << 457 if ( pPhi < -halfAngTolerance) { pPhi += twopi; } // 0<=pPhi<2pi 591 G4double phi1 = phi0 - twopi; << 458 if ( fSPhi >= 0 ) 592 G4double phi2 = phi0 + twopi; << 459 { 593 << 460 if ( (std::fabs(pPhi) < halfAngTolerance) 594 in = kOutside; << 461 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 595 G4double sphi = fSPhi - halfAngTolerance; << 462 { 596 G4double ephi = sphi + fDPhi + kAngToleran << 463 pPhi += twopi ; // 0 <= pPhi < 2pi 597 if ((phi0 >= sphi && phi0 <= ephi) || << 464 } 598 (phi1 >= sphi && phi1 <= ephi) || << 465 if ( (pPhi <= fSPhi - halfAngTolerance) 599 (phi2 >= sphi && phi2 <= ephi)) in = << 466 || (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) 600 if (in == kOutside) { return kOutside; } << 467 { 601 << 468 in = kOutside ; 602 sphi += kAngTolerance; << 469 } 603 ephi -= kAngTolerance; << 470 else if ( (pPhi <= fSPhi + halfAngTolerance) 604 if ((phi0 >= sphi && phi0 <= ephi) || << 471 || (pPhi >= fSPhi + fDPhi - halfAngTolerance) ) 605 (phi1 >= sphi && phi1 <= ephi) || << 472 { 606 (phi2 >= sphi && phi2 <= ephi)) in = << 473 in=kSurface; 607 if (in == kSurface) { return kSurface; } << 474 } >> 475 } >> 476 else // fSPhi < 0 >> 477 { >> 478 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) >> 479 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) >> 480 { >> 481 in = kOutside; >> 482 } >> 483 else >> 484 { >> 485 in = kSurface ; >> 486 } >> 487 } 608 } 488 } 609 489 610 // Check on the Surface for Z 490 // Check on the Surface for Z 611 // 491 // 612 if ((zinLow >= -halfCarTolerance) || (zinHig << 492 if ((zinLow>=-halfCarTolerance) >> 493 || (zinHigh>=-halfCarTolerance)) 613 { 494 { 614 return kSurface; << 495 in=kSurface; 615 } 496 } 616 497 617 // Check on the Surface for R 498 // Check on the Surface for R 618 // 499 // 619 if (fRMin != 0.0) { tolRMin = fRMin + halfRa << 500 if (fRMin) { tolRMin = fRMin + halfRadTolerance ; } 620 else { tolRMin = 0; } << 501 else { tolRMin = 0 ; } 621 tolRMax = fRMax - halfRadTolerance; << 502 tolRMax = fRMax - halfRadTolerance ; 622 if (((r2 <= tolRMin*tolRMin) || (r2 >= tolRM << 503 if ( ((r2 <= tolRMin*tolRMin) || (r2 >= tolRMax*tolRMax))&& 623 (r2 >= halfRadTolerance*halfRadToleranc << 504 (r2 >=halfRadTolerance*halfRadTolerance) ) 624 { 505 { 625 return kSurface; 506 return kSurface; 626 } 507 } 627 508 628 return in; 509 return in; 629 } 510 } 630 511 631 ////////////////////////////////////////////// 512 /////////////////////////////////////////////////////////////////////////// 632 // 513 // 633 // Return unit normal of surface closest to p 514 // Return unit normal of surface closest to p 634 // - note if point on z axis, ignore phi divid 515 // - note if point on z axis, ignore phi divided sides 635 // - unsafe if point close to z axis a rmin=0 516 // - unsafe if point close to z axis a rmin=0 - no explicit checks 636 517 637 G4ThreeVector G4CutTubs::SurfaceNormal( const 518 G4ThreeVector G4CutTubs::SurfaceNormal( const G4ThreeVector& p ) const 638 { 519 { 639 G4int noSurfaces = 0; 520 G4int noSurfaces = 0; 640 G4double rho, pPhi; 521 G4double rho, pPhi; 641 G4double distZLow,distZHigh, distRMin, distR 522 G4double distZLow,distZHigh, distRMin, distRMax; 642 G4double distSPhi = kInfinity, distEPhi = kI 523 G4double distSPhi = kInfinity, distEPhi = kInfinity; 643 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 524 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 644 525 645 G4ThreeVector norm, sumnorm(0.,0.,0.); 526 G4ThreeVector norm, sumnorm(0.,0.,0.); 646 G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0); 527 G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0); 647 G4ThreeVector nR, nPs, nPe; 528 G4ThreeVector nR, nPs, nPe; 648 529 649 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()); 530 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()); 650 531 651 distRMin = std::fabs(rho - fRMin); 532 distRMin = std::fabs(rho - fRMin); 652 distRMax = std::fabs(rho - fRMax); 533 distRMax = std::fabs(rho - fRMax); 653 534 654 // dist to Low Cut 535 // dist to Low Cut 655 // 536 // 656 distZLow =std::fabs((p+vZ).dot(fLowNorm)); 537 distZLow =std::fabs((p+vZ).dot(fLowNorm)); 657 << 538 658 // dist to High Cut 539 // dist to High Cut 659 // 540 // 660 distZHigh = std::fabs((p-vZ).dot(fHighNorm)) 541 distZHigh = std::fabs((p-vZ).dot(fHighNorm)); 661 542 662 if (!fPhiFullCutTube) // Protected agains << 543 if (!fPhiFullCutTube) // Protected against (0,0,z) 663 { 544 { 664 if ( rho > halfCarTolerance ) 545 if ( rho > halfCarTolerance ) 665 { 546 { 666 pPhi = std::atan2(p.y(),p.x()); 547 pPhi = std::atan2(p.y(),p.x()); 667 << 548 668 if(pPhi < fSPhi- halfCarTolerance) 549 if(pPhi < fSPhi- halfCarTolerance) { pPhi += twopi; } 669 else if(pPhi > fSPhi+fDPhi+ halfCarToler 550 else if(pPhi > fSPhi+fDPhi+ halfCarTolerance) { pPhi -= twopi; } 670 551 671 distSPhi = std::fabs(pPhi - fSPhi); << 552 distSPhi = std::fabs(pPhi - fSPhi); 672 distEPhi = std::fabs(pPhi - fSPhi - fDPh << 553 distEPhi = std::fabs(pPhi - fSPhi - fDPhi); 673 } 554 } 674 else if( fRMin == 0.0 ) << 555 else if( !fRMin ) 675 { 556 { 676 distSPhi = 0.; << 557 distSPhi = 0.; 677 distEPhi = 0.; << 558 distEPhi = 0.; 678 } 559 } 679 nPs = G4ThreeVector( sinSPhi, -cosSPhi, 0 << 560 nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0); 680 nPe = G4ThreeVector( -sinEPhi, cosEPhi, 0 << 561 nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0); 681 } 562 } 682 if ( rho > halfCarTolerance ) { nR = G4Three 563 if ( rho > halfCarTolerance ) { nR = G4ThreeVector(p.x()/rho,p.y()/rho,0); } 683 564 684 if( distRMax <= halfCarTolerance ) << 565 if( distRMax <= halfCarTolerance ) 685 { 566 { 686 ++noSurfaces; << 567 noSurfaces ++; 687 sumnorm += nR; 568 sumnorm += nR; 688 } 569 } 689 if( (fRMin != 0.0) && (distRMin <= halfCarTo << 570 if( fRMin && (distRMin <= halfCarTolerance) ) 690 { 571 { 691 ++noSurfaces; << 572 noSurfaces ++; 692 sumnorm -= nR; 573 sumnorm -= nR; 693 } 574 } 694 if( fDPhi < twopi ) << 575 if( fDPhi < twopi ) 695 { 576 { 696 if (distSPhi <= halfAngTolerance) << 577 if (distSPhi <= halfAngTolerance) 697 { 578 { 698 ++noSurfaces; << 579 noSurfaces ++; 699 sumnorm += nPs; 580 sumnorm += nPs; 700 } 581 } 701 if (distEPhi <= halfAngTolerance) << 582 if (distEPhi <= halfAngTolerance) 702 { 583 { 703 ++noSurfaces; << 584 noSurfaces ++; 704 sumnorm += nPe; 585 sumnorm += nPe; 705 } 586 } 706 } 587 } 707 if (distZLow <= halfCarTolerance) << 588 if (distZLow <= halfCarTolerance) 708 { 589 { 709 ++noSurfaces; << 590 noSurfaces ++; 710 sumnorm += fLowNorm; 591 sumnorm += fLowNorm; 711 } 592 } 712 if (distZHigh <= halfCarTolerance) << 593 if (distZHigh <= halfCarTolerance) 713 { 594 { 714 ++noSurfaces; << 595 noSurfaces ++; 715 sumnorm += fHighNorm; 596 sumnorm += fHighNorm; 716 } 597 } 717 if ( noSurfaces == 0 ) 598 if ( noSurfaces == 0 ) 718 { 599 { 719 #ifdef G4CSGDEBUG 600 #ifdef G4CSGDEBUG 720 G4Exception("G4CutTubs::SurfaceNormal(p)", 601 G4Exception("G4CutTubs::SurfaceNormal(p)", "GeomSolids1002", 721 JustWarning, "Point p is not o 602 JustWarning, "Point p is not on surface !?" ); 722 G4int oldprc = G4cout.precision(20); 603 G4int oldprc = G4cout.precision(20); 723 G4cout<< "G4CutTubs::SN ( "<<p.x()<<", "<< 604 G4cout<< "G4CutTubs::SN ( "<<p.x()<<", "<<p.y()<<", "<<p.z()<<" ); " 724 << G4endl << G4endl; 605 << G4endl << G4endl; 725 G4cout.precision(oldprc) ; 606 G4cout.precision(oldprc) ; 726 #endif << 607 #endif 727 norm = ApproxSurfaceNormal(p); 608 norm = ApproxSurfaceNormal(p); 728 } 609 } 729 else if ( noSurfaces == 1 ) { norm = sumnor 610 else if ( noSurfaces == 1 ) { norm = sumnorm; } 730 else { norm = sumnor 611 else { norm = sumnorm.unit(); } 731 612 732 return norm; 613 return norm; 733 } 614 } 734 615 735 ////////////////////////////////////////////// 616 ///////////////////////////////////////////////////////////////////////////// 736 // 617 // 737 // Algorithm for SurfaceNormal() following the 618 // Algorithm for SurfaceNormal() following the original specification 738 // for points not on the surface 619 // for points not on the surface 739 620 740 G4ThreeVector G4CutTubs::ApproxSurfaceNormal( 621 G4ThreeVector G4CutTubs::ApproxSurfaceNormal( const G4ThreeVector& p ) const 741 { 622 { 742 enum ENorm {kNRMin,kNRMax,kNSPhi,kNEPhi,kNZ} << 743 << 744 ENorm side ; 623 ENorm side ; 745 G4ThreeVector norm ; 624 G4ThreeVector norm ; 746 G4double rho, phi ; 625 G4double rho, phi ; 747 G4double distZLow,distZHigh,distZ; 626 G4double distZLow,distZHigh,distZ; 748 G4double distRMin, distRMax, distSPhi, distE 627 G4double distRMin, distRMax, distSPhi, distEPhi, distMin ; 749 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 628 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 750 629 751 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 630 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 752 631 753 distRMin = std::fabs(rho - fRMin) ; 632 distRMin = std::fabs(rho - fRMin) ; 754 distRMax = std::fabs(rho - fRMax) ; 633 distRMax = std::fabs(rho - fRMax) ; 755 634 756 //dist to Low Cut 635 //dist to Low Cut 757 // 636 // 758 distZLow =std::fabs((p+vZ).dot(fLowNorm)); 637 distZLow =std::fabs((p+vZ).dot(fLowNorm)); 759 638 760 //dist to High Cut 639 //dist to High Cut 761 // 640 // 762 distZHigh = std::fabs((p-vZ).dot(fHighNorm)) 641 distZHigh = std::fabs((p-vZ).dot(fHighNorm)); 763 distZ=std::min(distZLow,distZHigh); 642 distZ=std::min(distZLow,distZHigh); 764 643 765 if (distRMin < distRMax) // First minimum 644 if (distRMin < distRMax) // First minimum 766 { 645 { 767 if ( distZ < distRMin ) 646 if ( distZ < distRMin ) 768 { 647 { 769 distMin = distZ ; 648 distMin = distZ ; 770 side = kNZ ; 649 side = kNZ ; 771 } 650 } 772 else 651 else 773 { 652 { 774 distMin = distRMin ; 653 distMin = distRMin ; 775 side = kNRMin ; 654 side = kNRMin ; 776 } 655 } 777 } 656 } 778 else 657 else 779 { 658 { 780 if ( distZ < distRMax ) 659 if ( distZ < distRMax ) 781 { 660 { 782 distMin = distZ ; 661 distMin = distZ ; 783 side = kNZ ; 662 side = kNZ ; 784 } 663 } 785 else 664 else 786 { 665 { 787 distMin = distRMax ; 666 distMin = distRMax ; 788 side = kNRMax ; 667 side = kNRMax ; 789 } 668 } 790 } << 669 } 791 if (!fPhiFullCutTube && (rho != 0.0) ) // << 670 if (!fPhiFullCutTube && rho ) // Protected against (0,0,z) 792 { 671 { 793 phi = std::atan2(p.y(),p.x()) ; 672 phi = std::atan2(p.y(),p.x()) ; 794 673 795 if ( phi < 0 ) { phi += twopi; } 674 if ( phi < 0 ) { phi += twopi; } 796 675 797 if ( fSPhi < 0 ) 676 if ( fSPhi < 0 ) 798 { 677 { 799 distSPhi = std::fabs(phi - (fSPhi + twop 678 distSPhi = std::fabs(phi - (fSPhi + twopi))*rho ; 800 } 679 } 801 else 680 else 802 { 681 { 803 distSPhi = std::fabs(phi - fSPhi)*rho ; 682 distSPhi = std::fabs(phi - fSPhi)*rho ; 804 } 683 } 805 distEPhi = std::fabs(phi - fSPhi - fDPhi)* 684 distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ; 806 << 685 807 if (distSPhi < distEPhi) // Find new minim 686 if (distSPhi < distEPhi) // Find new minimum 808 { 687 { 809 if ( distSPhi < distMin ) 688 if ( distSPhi < distMin ) 810 { 689 { 811 side = kNSPhi ; 690 side = kNSPhi ; 812 } 691 } 813 } 692 } 814 else 693 else 815 { 694 { 816 if ( distEPhi < distMin ) 695 if ( distEPhi < distMin ) 817 { 696 { 818 side = kNEPhi ; 697 side = kNEPhi ; 819 } 698 } 820 } 699 } 821 } << 700 } 822 switch ( side ) 701 switch ( side ) 823 { 702 { 824 case kNRMin : // Inner radius 703 case kNRMin : // Inner radius 825 { << 704 { 826 norm = G4ThreeVector(-p.x()/rho, -p.y()/ 705 norm = G4ThreeVector(-p.x()/rho, -p.y()/rho, 0) ; 827 break ; 706 break ; 828 } 707 } 829 case kNRMax : // Outer radius 708 case kNRMax : // Outer radius 830 { << 709 { 831 norm = G4ThreeVector(p.x()/rho, p.y()/rh 710 norm = G4ThreeVector(p.x()/rho, p.y()/rho, 0) ; 832 break ; 711 break ; 833 } 712 } 834 case kNZ : // + or - dz 713 case kNZ : // + or - dz 835 { << 714 { 836 if ( distZHigh > distZLow ) { norm = fH 715 if ( distZHigh > distZLow ) { norm = fHighNorm ; } 837 else { norm = fL 716 else { norm = fLowNorm; } 838 break ; 717 break ; 839 } 718 } 840 case kNSPhi: 719 case kNSPhi: 841 { 720 { 842 norm = G4ThreeVector(sinSPhi, -cosSPhi, << 721 norm = G4ThreeVector(std::sin(fSPhi), -std::cos(fSPhi), 0) ; 843 break ; 722 break ; 844 } 723 } 845 case kNEPhi: 724 case kNEPhi: 846 { 725 { 847 norm = G4ThreeVector(-sinEPhi, cosEPhi, << 726 norm = G4ThreeVector(-std::sin(fSPhi+fDPhi), std::cos(fSPhi+fDPhi), 0) ; 848 break; 727 break; 849 } 728 } 850 default: // Should never reach this c 729 default: // Should never reach this case ... 851 { 730 { 852 DumpInfo(); 731 DumpInfo(); 853 G4Exception("G4CutTubs::ApproxSurfaceNor 732 G4Exception("G4CutTubs::ApproxSurfaceNormal()", 854 "GeomSolids1002", JustWarnin 733 "GeomSolids1002", JustWarning, 855 "Undefined side for valid su 734 "Undefined side for valid surface normal to solid."); 856 break ; 735 break ; 857 } << 736 } 858 } << 737 } 859 return norm; 738 return norm; 860 } 739 } 861 740 862 ////////////////////////////////////////////// 741 //////////////////////////////////////////////////////////////////// 863 // 742 // 864 // 743 // 865 // Calculate distance to shape from outside, a 744 // Calculate distance to shape from outside, along normalised vector 866 // - return kInfinity if no intersection, or i 745 // - return kInfinity if no intersection, or intersection distance <= tolerance 867 // 746 // 868 // - Compute the intersection with the z plane << 747 // - Compute the intersection with the z planes 869 // - if at valid r, phi, return 748 // - if at valid r, phi, return 870 // 749 // 871 // -> If point is outer outer radius, compute 750 // -> If point is outer outer radius, compute intersection with rmax 872 // - if at valid phi,z return 751 // - if at valid phi,z return 873 // 752 // 874 // -> Compute intersection with inner radius, 753 // -> Compute intersection with inner radius, taking largest +ve root 875 // - if valid (in z,phi), save intersct 754 // - if valid (in z,phi), save intersction 876 // 755 // 877 // -> If phi segmented, compute intersectio 756 // -> If phi segmented, compute intersections with phi half planes 878 // - return smallest of valid phi inter 757 // - return smallest of valid phi intersections and 879 // inner radius intersection 758 // inner radius intersection 880 // 759 // 881 // NOTE: 760 // NOTE: 882 // - 'if valid' implies tolerant checking of i 761 // - 'if valid' implies tolerant checking of intersection points 883 762 884 G4double G4CutTubs::DistanceToIn( const G4Thre 763 G4double G4CutTubs::DistanceToIn( const G4ThreeVector& p, 885 const G4Thre 764 const G4ThreeVector& v ) const 886 { 765 { 887 G4double snxt = kInfinity ; // snxt = d 766 G4double snxt = kInfinity ; // snxt = default return value 888 G4double tolORMin2, tolIRMax2 ; // 'generou 767 G4double tolORMin2, tolIRMax2 ; // 'generous' radii squared 889 G4double tolORMax2, tolIRMin2; 768 G4double tolORMax2, tolIRMin2; 890 const G4double dRmax = 100.*fRMax; 769 const G4double dRmax = 100.*fRMax; 891 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 770 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 892 << 771 893 // Intersection point variables 772 // Intersection point variables 894 // 773 // 895 G4double Dist, sd=0, xi, yi, zi, rho2, inum, 774 G4double Dist, sd=0, xi, yi, zi, rho2, inum, iden, cosPsi, Comp,calf ; 896 G4double t1, t2, t3, b, c, d ; // Quadra << 775 G4double t1, t2, t3, b, c, d ; // Quadratic solver variables 897 G4double distZLow,distZHigh; 776 G4double distZLow,distZHigh; 898 // Calculate tolerant rmin and rmax 777 // Calculate tolerant rmin and rmax 899 778 900 if (fRMin > kRadTolerance) 779 if (fRMin > kRadTolerance) 901 { 780 { 902 tolORMin2 = (fRMin - halfRadTolerance)*(fR 781 tolORMin2 = (fRMin - halfRadTolerance)*(fRMin - halfRadTolerance) ; 903 tolIRMin2 = (fRMin + halfRadTolerance)*(fR 782 tolIRMin2 = (fRMin + halfRadTolerance)*(fRMin + halfRadTolerance) ; 904 } 783 } 905 else 784 else 906 { 785 { 907 tolORMin2 = 0.0 ; 786 tolORMin2 = 0.0 ; 908 tolIRMin2 = 0.0 ; 787 tolIRMin2 = 0.0 ; 909 } 788 } 910 tolORMax2 = (fRMax + halfRadTolerance)*(fRMa 789 tolORMax2 = (fRMax + halfRadTolerance)*(fRMax + halfRadTolerance) ; 911 tolIRMax2 = (fRMax - halfRadTolerance)*(fRMa 790 tolIRMax2 = (fRMax - halfRadTolerance)*(fRMax - halfRadTolerance) ; 912 791 913 // Intersection with ZCut surfaces 792 // Intersection with ZCut surfaces 914 793 915 // dist to Low Cut 794 // dist to Low Cut 916 // 795 // 917 distZLow =(p+vZ).dot(fLowNorm); 796 distZLow =(p+vZ).dot(fLowNorm); 918 797 919 // dist to High Cut 798 // dist to High Cut 920 // 799 // 921 distZHigh = (p-vZ).dot(fHighNorm); 800 distZHigh = (p-vZ).dot(fHighNorm); 922 801 923 if ( distZLow >= -halfCarTolerance ) 802 if ( distZLow >= -halfCarTolerance ) 924 { 803 { 925 calf = v.dot(fLowNorm); 804 calf = v.dot(fLowNorm); 926 if (calf<0) 805 if (calf<0) 927 { 806 { 928 sd = -distZLow/calf; 807 sd = -distZLow/calf; 929 if(sd < 0.0) { sd = 0.0; } 808 if(sd < 0.0) { sd = 0.0; } 930 809 931 xi = p.x() + sd*v.x() ; 810 xi = p.x() + sd*v.x() ; // Intersection coords 932 yi = p.y() + sd*v.y() ; 811 yi = p.y() + sd*v.y() ; 933 rho2 = xi*xi + yi*yi ; 812 rho2 = xi*xi + yi*yi ; 934 813 935 // Check validity of intersection 814 // Check validity of intersection 936 815 937 if ((tolIRMin2 <= rho2) && (rho2 <= tolI 816 if ((tolIRMin2 <= rho2) && (rho2 <= tolIRMax2)) 938 { 817 { 939 if (!fPhiFullCutTube && (rho2 != 0.0)) << 818 if (!fPhiFullCutTube && rho2) 940 { 819 { 941 // Psi = angle made with central (av 820 // Psi = angle made with central (average) phi of shape 942 // 821 // 943 inum = xi*cosCPhi + yi*sinCPhi ; 822 inum = xi*cosCPhi + yi*sinCPhi ; 944 iden = std::sqrt(rho2) ; 823 iden = std::sqrt(rho2) ; 945 cosPsi = inum/iden ; 824 cosPsi = inum/iden ; 946 if (cosPsi >= cosHDPhiIT) { return 825 if (cosPsi >= cosHDPhiIT) { return sd ; } 947 } 826 } 948 else 827 else 949 { 828 { 950 return sd ; 829 return sd ; 951 } 830 } 952 } 831 } 953 } 832 } 954 else 833 else 955 { 834 { 956 if ( sd<halfCarTolerance ) 835 if ( sd<halfCarTolerance ) 957 { 836 { 958 if(calf>=0) { sd=kInfinity; } 837 if(calf>=0) { sd=kInfinity; } 959 return sd ; // On/outside extent, and 838 return sd ; // On/outside extent, and heading away 960 } // -> cannot intersect 839 } // -> cannot intersect 961 } 840 } 962 } 841 } 963 842 964 if(distZHigh >= -halfCarTolerance ) 843 if(distZHigh >= -halfCarTolerance ) 965 { 844 { 966 calf = v.dot(fHighNorm); 845 calf = v.dot(fHighNorm); 967 if (calf<0) 846 if (calf<0) 968 { 847 { 969 sd = -distZHigh/calf; 848 sd = -distZHigh/calf; 970 849 971 if(sd < 0.0) { sd = 0.0; } 850 if(sd < 0.0) { sd = 0.0; } 972 851 973 xi = p.x() + sd*v.x() ; 852 xi = p.x() + sd*v.x() ; // Intersection coords 974 yi = p.y() + sd*v.y() ; 853 yi = p.y() + sd*v.y() ; 975 rho2 = xi*xi + yi*yi ; 854 rho2 = xi*xi + yi*yi ; 976 855 977 // Check validity of intersection 856 // Check validity of intersection 978 857 979 if ((tolIRMin2 <= rho2) && (rho2 <= tolI 858 if ((tolIRMin2 <= rho2) && (rho2 <= tolIRMax2)) 980 { 859 { 981 if (!fPhiFullCutTube && (rho2 != 0.0)) << 860 if (!fPhiFullCutTube && rho2) 982 { 861 { 983 // Psi = angle made with central (av 862 // Psi = angle made with central (average) phi of shape 984 // 863 // 985 inum = xi*cosCPhi + yi*sinCPhi ; 864 inum = xi*cosCPhi + yi*sinCPhi ; 986 iden = std::sqrt(rho2) ; 865 iden = std::sqrt(rho2) ; 987 cosPsi = inum/iden ; 866 cosPsi = inum/iden ; 988 if (cosPsi >= cosHDPhiIT) { return 867 if (cosPsi >= cosHDPhiIT) { return sd ; } 989 } 868 } 990 else 869 else 991 { 870 { 992 return sd ; 871 return sd ; 993 } 872 } 994 } 873 } 995 } 874 } 996 else 875 else 997 { 876 { 998 if ( sd<halfCarTolerance ) 877 if ( sd<halfCarTolerance ) 999 { << 878 { 1000 if(calf>=0) { sd=kInfinity; } 879 if(calf>=0) { sd=kInfinity; } 1001 return sd ; // On/outside extent, an 880 return sd ; // On/outside extent, and heading away 1002 } // -> cannot intersect 881 } // -> cannot intersect 1003 } 882 } 1004 } 883 } 1005 884 1006 // -> Can not intersect z surfaces 885 // -> Can not intersect z surfaces 1007 // 886 // 1008 // Intersection with rmax (possible return) 887 // Intersection with rmax (possible return) and rmin (must also check phi) 1009 // 888 // 1010 // Intersection point (xi,yi,zi) on line x= 889 // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc. 1011 // 890 // 1012 // Intersects with x^2+y^2=R^2 891 // Intersects with x^2+y^2=R^2 1013 // 892 // 1014 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v 893 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0 1015 // t1 t2 894 // t1 t2 t3 1016 895 1017 t1 = 1.0 - v.z()*v.z() ; 896 t1 = 1.0 - v.z()*v.z() ; 1018 t2 = p.x()*v.x() + p.y()*v.y() ; 897 t2 = p.x()*v.x() + p.y()*v.y() ; 1019 t3 = p.x()*p.x() + p.y()*p.y() ; 898 t3 = p.x()*p.x() + p.y()*p.y() ; 1020 if ( t1 > 0 ) // Check not || to z a 899 if ( t1 > 0 ) // Check not || to z axis 1021 { 900 { 1022 b = t2/t1 ; 901 b = t2/t1 ; 1023 c = t3 - fRMax*fRMax ; 902 c = t3 - fRMax*fRMax ; 1024 << 903 1025 if ((t3 >= tolORMax2) && (t2<0)) // Thi 904 if ((t3 >= tolORMax2) && (t2<0)) // This also handles the tangent case 1026 { 905 { 1027 // Try outer cylinder intersection, c=( 906 // Try outer cylinder intersection, c=(t3-fRMax*fRMax)/t1; 1028 907 1029 c /= t1 ; 908 c /= t1 ; 1030 d = b*b - c ; 909 d = b*b - c ; 1031 910 1032 if (d >= 0) // If real root 911 if (d >= 0) // If real root 1033 { 912 { 1034 sd = c/(-b+std::sqrt(d)); 913 sd = c/(-b+std::sqrt(d)); 1035 if (sd >= 0) // If 'forwards' 914 if (sd >= 0) // If 'forwards' 1036 { 915 { 1037 if ( sd>dRmax ) // Avoid rounding e 916 if ( sd>dRmax ) // Avoid rounding errors due to precision issues on 1038 { // 64 bits systems. 917 { // 64 bits systems. Split long distances and recompute 1039 G4double fTerm = sd-std::fmod(sd, 918 G4double fTerm = sd-std::fmod(sd,dRmax); 1040 sd = fTerm + DistanceToIn(p+fTerm 919 sd = fTerm + DistanceToIn(p+fTerm*v,v); 1041 } << 920 } 1042 // Check z intersection 921 // Check z intersection 1043 // 922 // 1044 zi = p.z() + sd*v.z() ; 923 zi = p.z() + sd*v.z() ; 1045 xi = p.x() + sd*v.x() ; 924 xi = p.x() + sd*v.x() ; 1046 yi = p.y() + sd*v.y() ; 925 yi = p.y() + sd*v.y() ; 1047 if ((-xi*fLowNorm.x()-yi*fLowNorm.y 926 if ((-xi*fLowNorm.x()-yi*fLowNorm.y() 1048 -(zi+fDz)*fLowNorm.z())>-halfC 927 -(zi+fDz)*fLowNorm.z())>-halfCarTolerance) 1049 { 928 { 1050 if ((-xi*fHighNorm.x()-yi*fHighNo 929 if ((-xi*fHighNorm.x()-yi*fHighNorm.y() 1051 +(fDz-zi)*fHighNorm.z())>-ha 930 +(fDz-zi)*fHighNorm.z())>-halfCarTolerance) 1052 { 931 { 1053 // Z ok. Check phi intersection 932 // Z ok. Check phi intersection if reqd 1054 // 933 // 1055 if (fPhiFullCutTube) 934 if (fPhiFullCutTube) 1056 { 935 { 1057 return sd ; 936 return sd ; 1058 } 937 } 1059 else 938 else 1060 { 939 { 1061 xi = p.x() + sd*v.x() ; 940 xi = p.x() + sd*v.x() ; 1062 yi = p.y() + sd*v.y() ; 941 yi = p.y() + sd*v.y() ; 1063 cosPsi = (xi*cosCPhi + yi*sin 942 cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMax ; 1064 if (cosPsi >= cosHDPhiIT) { 943 if (cosPsi >= cosHDPhiIT) { return sd ; } 1065 } 944 } 1066 } // end if std::fabs(zi) 945 } // end if std::fabs(zi) 1067 } 946 } 1068 } // end if (sd>=0) 947 } // end if (sd>=0) 1069 } // end if (d>=0) 948 } // end if (d>=0) 1070 } // end if (r>=fRMax) 949 } // end if (r>=fRMax) 1071 else << 950 else 1072 { 951 { 1073 // Inside outer radius : 952 // Inside outer radius : 1074 // check not inside, and heading throug 953 // check not inside, and heading through tubs (-> 0 to in) 1075 if ((t3 > tolIRMin2) && (t2 < 0) 954 if ((t3 > tolIRMin2) && (t2 < 0) 1076 && (std::fabs(p.z()) <= std::fabs(GetC 955 && (std::fabs(p.z()) <= std::fabs(GetCutZ(p))-halfCarTolerance )) 1077 { 956 { 1078 // Inside both radii, delta r -ve, in 957 // Inside both radii, delta r -ve, inside z extent 1079 958 1080 if (!fPhiFullCutTube) 959 if (!fPhiFullCutTube) 1081 { 960 { 1082 inum = p.x()*cosCPhi + p.y()*sinC 961 inum = p.x()*cosCPhi + p.y()*sinCPhi ; 1083 iden = std::sqrt(t3) ; 962 iden = std::sqrt(t3) ; 1084 cosPsi = inum/iden ; 963 cosPsi = inum/iden ; 1085 if (cosPsi >= cosHDPhiIT) 964 if (cosPsi >= cosHDPhiIT) 1086 { 965 { 1087 // In the old version, the small 966 // In the old version, the small negative tangent for the point 1088 // on surface was not taken in ac 967 // on surface was not taken in account, and returning 0.0 ... 1089 // New version: check the tangent << 968 // New version: check the tangent for the point on surface and 1090 // if no intersection, return kIn 969 // if no intersection, return kInfinity, if intersection instead 1091 // return sd. 970 // return sd. 1092 // 971 // 1093 c = t3-fRMax*fRMax; << 972 c = t3-fRMax*fRMax; 1094 if ( c<=0.0 ) 973 if ( c<=0.0 ) 1095 { 974 { 1096 return 0.0; 975 return 0.0; 1097 } 976 } 1098 else 977 else 1099 { 978 { 1100 c = c/t1 ; 979 c = c/t1 ; 1101 d = b*b-c; 980 d = b*b-c; 1102 if ( d>=0.0 ) 981 if ( d>=0.0 ) 1103 { 982 { 1104 snxt = c/(-b+std::sqrt(d)); / 983 snxt = c/(-b+std::sqrt(d)); // using safe solution 1105 / << 984 // for quadratic equation 1106 if ( snxt < halfCarTolerance 985 if ( snxt < halfCarTolerance ) { snxt=0; } 1107 return snxt ; 986 return snxt ; 1108 } << 987 } 1109 else 988 else 1110 { 989 { 1111 return kInfinity; 990 return kInfinity; 1112 } 991 } 1113 } 992 } 1114 } << 993 } 1115 } 994 } 1116 else 995 else 1117 { << 996 { 1118 // In the old version, the small ne 997 // In the old version, the small negative tangent for the point 1119 // on surface was not taken in acco 998 // on surface was not taken in account, and returning 0.0 ... 1120 // New version: check the tangent f << 999 // New version: check the tangent for the point on surface and 1121 // if no intersection, return kInfi 1000 // if no intersection, return kInfinity, if intersection instead 1122 // return sd. 1001 // return sd. 1123 // 1002 // 1124 c = t3 - fRMax*fRMax; << 1003 c = t3 - fRMax*fRMax; 1125 if ( c<=0.0 ) 1004 if ( c<=0.0 ) 1126 { 1005 { 1127 return 0.0; 1006 return 0.0; 1128 } 1007 } 1129 else 1008 else 1130 { 1009 { 1131 c = c/t1 ; 1010 c = c/t1 ; 1132 d = b*b-c; 1011 d = b*b-c; 1133 if ( d>=0.0 ) 1012 if ( d>=0.0 ) 1134 { 1013 { 1135 snxt= c/(-b+std::sqrt(d)); // u 1014 snxt= c/(-b+std::sqrt(d)); // using safe solution 1136 // f << 1015 // for quadratic equation 1137 if ( snxt < halfCarTolerance ) 1016 if ( snxt < halfCarTolerance ) { snxt=0; } 1138 return snxt ; 1017 return snxt ; 1139 } << 1018 } 1140 else 1019 else 1141 { 1020 { 1142 return kInfinity; 1021 return kInfinity; 1143 } 1022 } 1144 } 1023 } 1145 } // end if (!fPhiFullCutTube) 1024 } // end if (!fPhiFullCutTube) 1146 } // end if (t3>tolIRMin2) 1025 } // end if (t3>tolIRMin2) 1147 } // end if (Inside Outer Radius) << 1026 } // end if (Inside Outer Radius) 1148 << 1027 1149 if ( fRMin != 0.0 ) // Try inner cylin << 1028 if ( fRMin ) // Try inner cylinder intersection 1150 { 1029 { 1151 c = (t3 - fRMin*fRMin)/t1 ; 1030 c = (t3 - fRMin*fRMin)/t1 ; 1152 d = b*b - c ; 1031 d = b*b - c ; 1153 if ( d >= 0.0 ) // If real root 1032 if ( d >= 0.0 ) // If real root 1154 { 1033 { 1155 // Always want 2nd root - we are outs 1034 // Always want 2nd root - we are outside and know rmax Hit was bad 1156 // - If on surface of rmin also need 1035 // - If on surface of rmin also need farthest root 1157 << 1036 1158 sd =( b > 0. )? c/(-b - std::sqrt(d)) 1037 sd =( b > 0. )? c/(-b - std::sqrt(d)) : (-b + std::sqrt(d)); 1159 if (sd >= -10*halfCarTolerance) // c 1038 if (sd >= -10*halfCarTolerance) // check forwards 1160 { 1039 { 1161 // Check z intersection 1040 // Check z intersection 1162 // 1041 // 1163 if (sd < 0.0) { sd = 0.0; } 1042 if (sd < 0.0) { sd = 0.0; } 1164 if (sd>dRmax) // Avoid rounding err 1043 if (sd>dRmax) // Avoid rounding errors due to precision issues seen 1165 { // 64 bits systems. S 1044 { // 64 bits systems. Split long distances and recompute 1166 G4double fTerm = sd-std::fmod(sd, 1045 G4double fTerm = sd-std::fmod(sd,dRmax); 1167 sd = fTerm + DistanceToIn(p+fTerm 1046 sd = fTerm + DistanceToIn(p+fTerm*v,v); 1168 } << 1047 } 1169 zi = p.z() + sd*v.z() ; 1048 zi = p.z() + sd*v.z() ; 1170 xi = p.x() + sd*v.x() ; 1049 xi = p.x() + sd*v.x() ; 1171 yi = p.y() + sd*v.y() ; 1050 yi = p.y() + sd*v.y() ; 1172 if ((-xi*fLowNorm.x()-yi*fLowNorm.y 1051 if ((-xi*fLowNorm.x()-yi*fLowNorm.y() 1173 -(zi+fDz)*fLowNorm.z())>-halfC 1052 -(zi+fDz)*fLowNorm.z())>-halfCarTolerance) 1174 { 1053 { 1175 if ((-xi*fHighNorm.x()-yi*fHighNo 1054 if ((-xi*fHighNorm.x()-yi*fHighNorm.y() 1176 +(fDz-zi)*fHighNorm.z())>-ha 1055 +(fDz-zi)*fHighNorm.z())>-halfCarTolerance) 1177 { 1056 { 1178 // Z ok. Check phi 1057 // Z ok. Check phi 1179 // 1058 // 1180 if ( fPhiFullCutTube ) 1059 if ( fPhiFullCutTube ) 1181 { 1060 { 1182 return sd ; << 1061 return sd ; 1183 } 1062 } 1184 else 1063 else 1185 { 1064 { 1186 cosPsi = (xi*cosCPhi + yi*sin 1065 cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMin ; 1187 if (cosPsi >= cosHDPhiIT) 1066 if (cosPsi >= cosHDPhiIT) 1188 { 1067 { 1189 // Good inner radius isect 1068 // Good inner radius isect 1190 // - but earlier phi isect 1069 // - but earlier phi isect still possible 1191 // 1070 // 1192 snxt = sd ; 1071 snxt = sd ; 1193 } 1072 } 1194 } 1073 } 1195 } // end if std::fabs(zi) 1074 } // end if std::fabs(zi) 1196 } 1075 } 1197 } // end if (sd>=0) 1076 } // end if (sd>=0) 1198 } // end if (d>=0) 1077 } // end if (d>=0) 1199 } // end if (fRMin) 1078 } // end if (fRMin) 1200 } 1079 } 1201 1080 1202 // Phi segment intersection 1081 // Phi segment intersection 1203 // 1082 // 1204 // o Tolerant of points inside phi planes b 1083 // o Tolerant of points inside phi planes by up to kCarTolerance*0.5 1205 // 1084 // 1206 // o NOTE: Large duplication of code betwee 1085 // o NOTE: Large duplication of code between sphi & ephi checks 1207 // -> only diffs: sphi -> ephi, Com 1086 // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane 1208 // intersection check <=0 -> >=0 1087 // intersection check <=0 -> >=0 1209 // -> use some form of loop Constru 1088 // -> use some form of loop Construct ? 1210 // 1089 // 1211 if ( !fPhiFullCutTube ) 1090 if ( !fPhiFullCutTube ) 1212 { 1091 { 1213 // First phi surface (Starting phi) 1092 // First phi surface (Starting phi) 1214 // 1093 // 1215 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 1094 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 1216 << 1095 1217 if ( Comp < 0 ) // Component in outwards 1096 if ( Comp < 0 ) // Component in outwards normal dirn 1218 { 1097 { 1219 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) 1098 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 1220 1099 1221 if ( Dist < halfCarTolerance ) 1100 if ( Dist < halfCarTolerance ) 1222 { 1101 { 1223 sd = Dist/Comp ; 1102 sd = Dist/Comp ; 1224 1103 1225 if (sd < snxt) 1104 if (sd < snxt) 1226 { 1105 { 1227 if ( sd < 0 ) { sd = 0.0; } 1106 if ( sd < 0 ) { sd = 0.0; } 1228 zi = p.z() + sd*v.z() ; 1107 zi = p.z() + sd*v.z() ; 1229 xi = p.x() + sd*v.x() ; 1108 xi = p.x() + sd*v.x() ; 1230 yi = p.y() + sd*v.y() ; 1109 yi = p.y() + sd*v.y() ; 1231 if ((-xi*fLowNorm.x()-yi*fLowNorm.y 1110 if ((-xi*fLowNorm.x()-yi*fLowNorm.y() 1232 -(zi+fDz)*fLowNorm.z())>-halfC 1111 -(zi+fDz)*fLowNorm.z())>-halfCarTolerance) 1233 { 1112 { 1234 if ((-xi*fHighNorm.x()-yi*fHighNo 1113 if ((-xi*fHighNorm.x()-yi*fHighNorm.y() 1235 +(fDz-zi)*fHighNorm.z())>-ha << 1114 +(fDz-zi)*fHighNorm.z())>-halfCarTolerance) 1236 { 1115 { 1237 rho2 = xi*xi + yi*yi ; 1116 rho2 = xi*xi + yi*yi ; 1238 if ( ( (rho2 >= tolIRMin2) && ( 1117 if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) ) 1239 || ( (rho2 > tolORMin2) && ( 1118 || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2) 1240 && ( v.y()*cosSPhi - v.x()* 1119 && ( v.y()*cosSPhi - v.x()*sinSPhi > 0 ) 1241 && ( v.x()*cosSPhi + v.y()* 1120 && ( v.x()*cosSPhi + v.y()*sinSPhi >= 0 ) ) 1242 || ( (rho2 > tolIRMax2) && (r 1121 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2) 1243 && (v.y()*cosSPhi - v.x()*s 1122 && (v.y()*cosSPhi - v.x()*sinSPhi > 0) 1244 && (v.x()*cosSPhi + v.y()*s 1123 && (v.x()*cosSPhi + v.y()*sinSPhi < 0) ) ) 1245 { 1124 { 1246 // z and r intersections good 1125 // z and r intersections good 1247 // - check intersecting with 1126 // - check intersecting with correct half-plane 1248 // 1127 // 1249 if ((yi*cosCPhi-xi*sinCPhi) < 1128 if ((yi*cosCPhi-xi*sinCPhi) <= halfCarTolerance) { snxt = sd; } 1250 } 1129 } 1251 } //two Z conditions 1130 } //two Z conditions 1252 } 1131 } 1253 } 1132 } 1254 } << 1133 } 1255 } 1134 } 1256 << 1135 1257 // Second phi surface (Ending phi) 1136 // Second phi surface (Ending phi) 1258 // 1137 // 1259 Comp = -(v.x()*sinEPhi - v.y()*cosEPhi) ; 1138 Comp = -(v.x()*sinEPhi - v.y()*cosEPhi) ; 1260 << 1139 1261 if (Comp < 0 ) // Component in outwards 1140 if (Comp < 0 ) // Component in outwards normal dirn 1262 { 1141 { 1263 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) 1142 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ; 1264 1143 1265 if ( Dist < halfCarTolerance ) 1144 if ( Dist < halfCarTolerance ) 1266 { 1145 { 1267 sd = Dist/Comp ; 1146 sd = Dist/Comp ; 1268 1147 1269 if (sd < snxt) 1148 if (sd < snxt) 1270 { 1149 { 1271 if ( sd < 0 ) { sd = 0; } 1150 if ( sd < 0 ) { sd = 0; } 1272 zi = p.z() + sd*v.z() ; 1151 zi = p.z() + sd*v.z() ; 1273 xi = p.x() + sd*v.x() ; 1152 xi = p.x() + sd*v.x() ; 1274 yi = p.y() + sd*v.y() ; 1153 yi = p.y() + sd*v.y() ; 1275 if ((-xi*fLowNorm.x()-yi*fLowNorm.y 1154 if ((-xi*fLowNorm.x()-yi*fLowNorm.y() 1276 -(zi+fDz)*fLowNorm.z())>-halfC 1155 -(zi+fDz)*fLowNorm.z())>-halfCarTolerance) 1277 { 1156 { 1278 if ((-xi*fHighNorm.x()-yi*fHighNo 1157 if ((-xi*fHighNorm.x()-yi*fHighNorm.y() 1279 +(fDz-zi)*fHighNorm.z())>-ha 1158 +(fDz-zi)*fHighNorm.z())>-halfCarTolerance) 1280 { 1159 { 1281 xi = p.x() + sd*v.x() ; 1160 xi = p.x() + sd*v.x() ; 1282 yi = p.y() + sd*v.y() ; 1161 yi = p.y() + sd*v.y() ; 1283 rho2 = xi*xi + yi*yi ; 1162 rho2 = xi*xi + yi*yi ; 1284 if ( ( (rho2 >= tolIRMin2) && ( 1163 if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) ) 1285 || ( (rho2 > tolORMin2) && 1164 || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2) 1286 && (v.x()*sinEPhi - v.y() 1165 && (v.x()*sinEPhi - v.y()*cosEPhi > 0) 1287 && (v.x()*cosEPhi + v.y() 1166 && (v.x()*cosEPhi + v.y()*sinEPhi >= 0) ) 1288 || ( (rho2 > tolIRMax2) && 1167 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2) 1289 && (v.x()*sinEPhi - v.y() 1168 && (v.x()*sinEPhi - v.y()*cosEPhi > 0) 1290 && (v.x()*cosEPhi + v.y() 1169 && (v.x()*cosEPhi + v.y()*sinEPhi < 0) ) ) 1291 { 1170 { 1292 // z and r intersections good 1171 // z and r intersections good 1293 // - check intersecting with 1172 // - check intersecting with correct half-plane 1294 // 1173 // 1295 if ( (yi*cosCPhi-xi*sinCPhi) 1174 if ( (yi*cosCPhi-xi*sinCPhi) >= -halfCarTolerance ) 1296 { 1175 { 1297 snxt = sd; 1176 snxt = sd; 1298 } 1177 } 1299 } //?? >=-halfCarTolerance 1178 } //?? >=-halfCarTolerance 1300 } 1179 } 1301 } // two Z conditions 1180 } // two Z conditions 1302 } 1181 } 1303 } 1182 } 1304 } // Comp < 0 1183 } // Comp < 0 1305 } // !fPhiFullTube << 1184 } // !fPhiFullTube 1306 if ( snxt<halfCarTolerance ) { snxt=0; } 1185 if ( snxt<halfCarTolerance ) { snxt=0; } 1307 1186 1308 return snxt ; 1187 return snxt ; 1309 } 1188 } 1310 << 1189 1311 ///////////////////////////////////////////// 1190 ////////////////////////////////////////////////////////////////// 1312 // 1191 // 1313 // Calculate distance to shape from outside, 1192 // Calculate distance to shape from outside, along normalised vector 1314 // - return kInfinity if no intersection, or 1193 // - return kInfinity if no intersection, or intersection distance <= tolerance 1315 // 1194 // 1316 // - Compute the intersection with the z plan << 1195 // - Compute the intersection with the z planes 1317 // - if at valid r, phi, return 1196 // - if at valid r, phi, return 1318 // 1197 // 1319 // -> If point is outer outer radius, compute 1198 // -> If point is outer outer radius, compute intersection with rmax 1320 // - if at valid phi,z return 1199 // - if at valid phi,z return 1321 // 1200 // 1322 // -> Compute intersection with inner radius, 1201 // -> Compute intersection with inner radius, taking largest +ve root 1323 // - if valid (in z,phi), save intersc 1202 // - if valid (in z,phi), save intersction 1324 // 1203 // 1325 // -> If phi segmented, compute intersecti 1204 // -> If phi segmented, compute intersections with phi half planes 1326 // - return smallest of valid phi inte 1205 // - return smallest of valid phi intersections and 1327 // inner radius intersection 1206 // inner radius intersection 1328 // 1207 // 1329 // NOTE: 1208 // NOTE: 1330 // - Precalculations for phi trigonometry are 1209 // - Precalculations for phi trigonometry are Done `just in time' 1331 // - `if valid' implies tolerant checking of 1210 // - `if valid' implies tolerant checking of intersection points 1332 // Calculate distance (<= actual) to closes 1211 // Calculate distance (<= actual) to closest surface of shape from outside 1333 // - Calculate distance to z, radial planes 1212 // - Calculate distance to z, radial planes 1334 // - Only to phi planes if outside phi extent 1213 // - Only to phi planes if outside phi extent 1335 // - Return 0 if point inside 1214 // - Return 0 if point inside 1336 1215 1337 G4double G4CutTubs::DistanceToIn( const G4Thr 1216 G4double G4CutTubs::DistanceToIn( const G4ThreeVector& p ) const 1338 { 1217 { 1339 G4double safRMin,safRMax,safZLow,safZHigh,s 1218 G4double safRMin,safRMax,safZLow,safZHigh,safePhi,safe,rho,cosPsi; 1340 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 1219 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 1341 1220 1342 // Distance to R 1221 // Distance to R 1343 // 1222 // 1344 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) 1223 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 1345 1224 1346 safRMin = fRMin- rho ; 1225 safRMin = fRMin- rho ; 1347 safRMax = rho - fRMax ; 1226 safRMax = rho - fRMax ; 1348 1227 1349 // Distances to ZCut(Low/High) 1228 // Distances to ZCut(Low/High) 1350 1229 1351 // Dist to Low Cut 1230 // Dist to Low Cut 1352 // 1231 // 1353 safZLow = (p+vZ).dot(fLowNorm); 1232 safZLow = (p+vZ).dot(fLowNorm); 1354 1233 1355 // Dist to High Cut 1234 // Dist to High Cut 1356 // 1235 // 1357 safZHigh = (p-vZ).dot(fHighNorm); 1236 safZHigh = (p-vZ).dot(fHighNorm); 1358 1237 1359 safe = std::max(safZLow,safZHigh); 1238 safe = std::max(safZLow,safZHigh); 1360 1239 1361 if ( safRMin > safe ) { safe = safRMin; } 1240 if ( safRMin > safe ) { safe = safRMin; } 1362 if ( safRMax> safe ) { safe = safRMax; } 1241 if ( safRMax> safe ) { safe = safRMax; } 1363 1242 1364 // Distance to Phi 1243 // Distance to Phi 1365 // 1244 // 1366 if ( (!fPhiFullCutTube) && ((rho) != 0.0) ) << 1245 if ( (!fPhiFullCutTube) && (rho) ) 1367 { 1246 { 1368 // Psi=angle from central phi to point 1247 // Psi=angle from central phi to point 1369 // 1248 // 1370 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi) 1249 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/rho ; 1371 << 1250 1372 if ( cosPsi < cosHDPhi ) << 1251 if ( cosPsi < std::cos(fDPhi*0.5) ) 1373 { 1252 { 1374 // Point lies outside phi range 1253 // Point lies outside phi range 1375 << 1254 1376 if ( (p.y()*cosCPhi - p.x()*sinCPhi) < 1255 if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= 0 ) 1377 { 1256 { 1378 safePhi = std::fabs(p.x()*sinSPhi - 1257 safePhi = std::fabs(p.x()*sinSPhi - p.y()*cosSPhi) ; 1379 } 1258 } 1380 else 1259 else 1381 { 1260 { 1382 safePhi = std::fabs(p.x()*sinEPhi - 1261 safePhi = std::fabs(p.x()*sinEPhi - p.y()*cosEPhi) ; 1383 } 1262 } 1384 if ( safePhi > safe ) { safe = safePh 1263 if ( safePhi > safe ) { safe = safePhi; } 1385 } 1264 } 1386 } 1265 } 1387 if ( safe < 0 ) { safe = 0; } 1266 if ( safe < 0 ) { safe = 0; } 1388 1267 1389 return safe ; 1268 return safe ; 1390 } 1269 } 1391 1270 1392 ///////////////////////////////////////////// 1271 ////////////////////////////////////////////////////////////////////////////// 1393 // 1272 // 1394 // Calculate distance to surface of shape fro 1273 // Calculate distance to surface of shape from `inside', allowing for tolerance 1395 // - Only Calc rmax intersection if no valid 1274 // - Only Calc rmax intersection if no valid rmin intersection 1396 1275 1397 G4double G4CutTubs::DistanceToOut( const G4Th 1276 G4double G4CutTubs::DistanceToOut( const G4ThreeVector& p, 1398 const G4Th 1277 const G4ThreeVector& v, 1399 const G4bo 1278 const G4bool calcNorm, 1400 G4bo << 1279 G4bool *validNorm, 1401 G4Th << 1280 G4ThreeVector *n ) const 1402 { << 1281 { 1403 enum ESide {kNull,kRMin,kRMax,kSPhi,kEPhi,k << 1404 << 1405 ESide side=kNull , sider=kNull, sidephi=kNu 1282 ESide side=kNull , sider=kNull, sidephi=kNull ; 1406 G4double snxt=kInfinity, srd=kInfinity,sz=k 1283 G4double snxt=kInfinity, srd=kInfinity,sz=kInfinity, sphi=kInfinity ; 1407 G4double deltaR, t1, t2, t3, b, c, d2, roMi 1284 G4double deltaR, t1, t2, t3, b, c, d2, roMin2 ; 1408 G4double distZLow,distZHigh,calfH,calfL; 1285 G4double distZLow,distZHigh,calfH,calfL; 1409 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 1286 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 1410 << 1287 1411 // Vars for phi intersection: 1288 // Vars for phi intersection: 1412 // 1289 // 1413 G4double pDistS, compS, pDistE, compE, sphi 1290 G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, vphi, roi2 ; 1414 << 1291 1415 // Z plane intersection 1292 // Z plane intersection 1416 // Distances to ZCut(Low/High) 1293 // Distances to ZCut(Low/High) 1417 1294 1418 // dist to Low Cut 1295 // dist to Low Cut 1419 // 1296 // 1420 distZLow =(p+vZ).dot(fLowNorm); 1297 distZLow =(p+vZ).dot(fLowNorm); 1421 1298 1422 // dist to High Cut 1299 // dist to High Cut 1423 // 1300 // 1424 distZHigh = (p-vZ).dot(fHighNorm); 1301 distZHigh = (p-vZ).dot(fHighNorm); 1425 1302 1426 calfH = v.dot(fHighNorm); 1303 calfH = v.dot(fHighNorm); 1427 calfL = v.dot(fLowNorm); 1304 calfL = v.dot(fLowNorm); 1428 1305 1429 if (calfH > 0 ) 1306 if (calfH > 0 ) 1430 { 1307 { 1431 if ( distZHigh < halfCarTolerance ) 1308 if ( distZHigh < halfCarTolerance ) 1432 { 1309 { 1433 snxt = -distZHigh/calfH ; 1310 snxt = -distZHigh/calfH ; 1434 side = kPZ ; 1311 side = kPZ ; 1435 } 1312 } 1436 else 1313 else 1437 { 1314 { 1438 if (calcNorm) 1315 if (calcNorm) 1439 { 1316 { 1440 *n = G4ThreeVector(0,0,1) ; 1317 *n = G4ThreeVector(0,0,1) ; 1441 *validNorm = true ; 1318 *validNorm = true ; 1442 } 1319 } 1443 return snxt = 0 ; 1320 return snxt = 0 ; 1444 } 1321 } 1445 } 1322 } 1446 if ( calfL>0) 1323 if ( calfL>0) 1447 { 1324 { 1448 << 1325 1449 if ( distZLow < halfCarTolerance ) 1326 if ( distZLow < halfCarTolerance ) 1450 { 1327 { 1451 sz = -distZLow/calfL ; 1328 sz = -distZLow/calfL ; 1452 if(sz<snxt){ 1329 if(sz<snxt){ 1453 snxt=sz; 1330 snxt=sz; 1454 side = kMZ ; 1331 side = kMZ ; 1455 } 1332 } 1456 << 1333 1457 } 1334 } 1458 else 1335 else 1459 { 1336 { 1460 if (calcNorm) 1337 if (calcNorm) 1461 { 1338 { 1462 *n = G4ThreeVector(0,0,-1) ; 1339 *n = G4ThreeVector(0,0,-1) ; 1463 *validNorm = true ; 1340 *validNorm = true ; 1464 } 1341 } 1465 return snxt = 0.0 ; 1342 return snxt = 0.0 ; 1466 } 1343 } 1467 } 1344 } 1468 if((calfH<=0)&&(calfL<=0)) 1345 if((calfH<=0)&&(calfL<=0)) 1469 { 1346 { 1470 snxt = kInfinity ; // Travel perpendic 1347 snxt = kInfinity ; // Travel perpendicular to z axis 1471 side = kNull; 1348 side = kNull; 1472 } 1349 } 1473 // Radial Intersections 1350 // Radial Intersections 1474 // 1351 // 1475 // Find intersection with cylinders at rmax 1352 // Find intersection with cylinders at rmax/rmin 1476 // Intersection point (xi,yi,zi) on line x= 1353 // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc. 1477 // 1354 // 1478 // Intersects with x^2+y^2=R^2 1355 // Intersects with x^2+y^2=R^2 1479 // 1356 // 1480 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v 1357 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0 1481 // 1358 // 1482 // t1 t2 1359 // t1 t2 t3 1483 1360 1484 t1 = 1.0 - v.z()*v.z() ; // since v 1361 t1 = 1.0 - v.z()*v.z() ; // since v normalised 1485 t2 = p.x()*v.x() + p.y()*v.y() ; 1362 t2 = p.x()*v.x() + p.y()*v.y() ; 1486 t3 = p.x()*p.x() + p.y()*p.y() ; 1363 t3 = p.x()*p.x() + p.y()*p.y() ; 1487 1364 1488 if ( snxt > 10*(fDz+fRMax) ) { roi2 = 2*fR 1365 if ( snxt > 10*(fDz+fRMax) ) { roi2 = 2*fRMax*fRMax; } 1489 else { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t 1366 else { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t3; } // radius^2 on +-fDz 1490 1367 1491 if ( t1 > 0 ) // Check not parallel 1368 if ( t1 > 0 ) // Check not parallel 1492 { 1369 { 1493 // Calculate srd, r exit distance 1370 // Calculate srd, r exit distance 1494 << 1371 1495 if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax 1372 if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax + kRadTolerance)) ) 1496 { 1373 { 1497 // Delta r not negative => leaving via 1374 // Delta r not negative => leaving via rmax 1498 1375 1499 deltaR = t3 - fRMax*fRMax ; 1376 deltaR = t3 - fRMax*fRMax ; 1500 1377 1501 // NOTE: Should use rho-fRMax<-kRadTole 1378 // NOTE: Should use rho-fRMax<-kRadTolerance*0.5 1502 // - avoid sqrt for efficiency 1379 // - avoid sqrt for efficiency 1503 1380 1504 if ( deltaR < -kRadTolerance*fRMax ) 1381 if ( deltaR < -kRadTolerance*fRMax ) 1505 { 1382 { 1506 b = t2/t1 ; 1383 b = t2/t1 ; 1507 c = deltaR/t1 ; 1384 c = deltaR/t1 ; 1508 d2 = b*b-c; 1385 d2 = b*b-c; 1509 if( d2 >= 0 ) { srd = c/( -b - std::s 1386 if( d2 >= 0 ) { srd = c/( -b - std::sqrt(d2)); } 1510 else { srd = 0.; } 1387 else { srd = 0.; } 1511 sider = kRMax ; 1388 sider = kRMax ; 1512 } 1389 } 1513 else 1390 else 1514 { 1391 { 1515 // On tolerant boundary & heading out 1392 // On tolerant boundary & heading outwards (or perpendicular to) 1516 // outer radial surface -> leaving im 1393 // outer radial surface -> leaving immediately 1517 1394 1518 if ( calcNorm ) << 1395 if ( calcNorm ) 1519 { 1396 { 1520 *n = G4ThreeVector(p.x()/fR 1397 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1521 *validNorm = true ; 1398 *validNorm = true ; 1522 } 1399 } 1523 return snxt = 0 ; // Leaving by rmax 1400 return snxt = 0 ; // Leaving by rmax immediately 1524 } 1401 } 1525 } << 1402 } 1526 else if ( t2 < 0. ) // i.e. t2 < 0; Poss 1403 else if ( t2 < 0. ) // i.e. t2 < 0; Possible rmin intersection 1527 { 1404 { 1528 roMin2 = t3 - t2*t2/t1 ; // min ro2 of << 1405 roMin2 = t3 - t2*t2/t1 ; // min ro2 of the plane of movement 1529 1406 1530 if ( (fRMin != 0.0) && (roMin2 < fRMin* << 1407 if ( fRMin && (roMin2 < fRMin*(fRMin - kRadTolerance)) ) 1531 { 1408 { 1532 deltaR = t3 - fRMin*fRMin ; 1409 deltaR = t3 - fRMin*fRMin ; 1533 b = t2/t1 ; 1410 b = t2/t1 ; 1534 c = deltaR/t1 ; 1411 c = deltaR/t1 ; 1535 d2 = b*b - c ; 1412 d2 = b*b - c ; 1536 1413 1537 if ( d2 >= 0 ) // Leaving via rmin 1414 if ( d2 >= 0 ) // Leaving via rmin 1538 { 1415 { 1539 // NOTE: SHould use rho-rmin>kRadTo 1416 // NOTE: SHould use rho-rmin>kRadTolerance*0.5 1540 // - avoid sqrt for efficiency 1417 // - avoid sqrt for efficiency 1541 1418 1542 if (deltaR > kRadTolerance*fRMin) 1419 if (deltaR > kRadTolerance*fRMin) 1543 { 1420 { 1544 srd = c/(-b+std::sqrt(d2)); << 1421 srd = c/(-b+std::sqrt(d2)); 1545 sider = kRMin ; 1422 sider = kRMin ; 1546 } 1423 } 1547 else 1424 else 1548 { 1425 { 1549 if ( calcNorm ) { *validNorm = fa 1426 if ( calcNorm ) { *validNorm = false; } // Concave side 1550 return snxt = 0.0; 1427 return snxt = 0.0; 1551 } 1428 } 1552 } 1429 } 1553 else // No rmin intersect -> must 1430 else // No rmin intersect -> must be rmax intersect 1554 { 1431 { 1555 deltaR = t3 - fRMax*fRMax ; 1432 deltaR = t3 - fRMax*fRMax ; 1556 c = deltaR/t1 ; 1433 c = deltaR/t1 ; 1557 d2 = b*b-c; 1434 d2 = b*b-c; 1558 if( d2 >=0. ) 1435 if( d2 >=0. ) 1559 { 1436 { 1560 srd = -b + std::sqrt(d2) ; 1437 srd = -b + std::sqrt(d2) ; 1561 sider = kRMax ; 1438 sider = kRMax ; 1562 } 1439 } 1563 else // Case: On the border+t2<kRad 1440 else // Case: On the border+t2<kRadTolerance 1564 // (v is perpendicular t 1441 // (v is perpendicular to the surface) 1565 { 1442 { 1566 if (calcNorm) 1443 if (calcNorm) 1567 { 1444 { 1568 *n = G4ThreeVector(p.x()/fRMax, 1445 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1569 *validNorm = true ; 1446 *validNorm = true ; 1570 } 1447 } 1571 return snxt = 0.0; 1448 return snxt = 0.0; 1572 } 1449 } 1573 } 1450 } 1574 } 1451 } 1575 else if ( roi2 > fRMax*(fRMax + kRadTol 1452 else if ( roi2 > fRMax*(fRMax + kRadTolerance) ) 1576 // No rmin intersect -> must be rm 1453 // No rmin intersect -> must be rmax intersect 1577 { 1454 { 1578 deltaR = t3 - fRMax*fRMax ; 1455 deltaR = t3 - fRMax*fRMax ; 1579 b = t2/t1 ; 1456 b = t2/t1 ; 1580 c = deltaR/t1; 1457 c = deltaR/t1; 1581 d2 = b*b-c; 1458 d2 = b*b-c; 1582 if( d2 >= 0 ) 1459 if( d2 >= 0 ) 1583 { 1460 { 1584 srd = -b + std::sqrt(d2) ; 1461 srd = -b + std::sqrt(d2) ; 1585 sider = kRMax ; 1462 sider = kRMax ; 1586 } 1463 } 1587 else // Case: On the border+t2<kRadTo 1464 else // Case: On the border+t2<kRadTolerance 1588 // (v is perpendicular to 1465 // (v is perpendicular to the surface) 1589 { 1466 { 1590 if (calcNorm) 1467 if (calcNorm) 1591 { 1468 { 1592 *n = G4ThreeVector(p.x()/fRMax,p. 1469 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1593 *validNorm = true ; 1470 *validNorm = true ; 1594 } 1471 } 1595 return snxt = 0.0; 1472 return snxt = 0.0; 1596 } 1473 } 1597 } 1474 } 1598 } 1475 } 1599 // Phi Intersection 1476 // Phi Intersection 1600 1477 1601 if ( !fPhiFullCutTube ) 1478 if ( !fPhiFullCutTube ) 1602 { 1479 { 1603 // add angle calculation with correctio << 1480 // add angle calculation with correction 1604 // of the difference in domain of atan2 1481 // of the difference in domain of atan2 and Sphi 1605 // 1482 // 1606 vphi = std::atan2(v.y(),v.x()) ; 1483 vphi = std::atan2(v.y(),v.x()) ; 1607 << 1484 1608 if ( vphi < fSPhi - halfAngTolerance ) 1485 if ( vphi < fSPhi - halfAngTolerance ) { vphi += twopi; } 1609 else if ( vphi > fSPhi + fDPhi + halfAn 1486 else if ( vphi > fSPhi + fDPhi + halfAngTolerance ) { vphi -= twopi; } 1610 1487 1611 1488 1612 if ( (p.x() != 0.0) || (p.y() != 0.0) ) << 1489 if ( p.x() || p.y() ) // Check if on z axis (rho not needed later) 1613 { 1490 { 1614 // pDist -ve when inside 1491 // pDist -ve when inside 1615 1492 1616 pDistS = p.x()*sinSPhi - p.y()*cosSPh 1493 pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; 1617 pDistE = -p.x()*sinEPhi + p.y()*cosEP 1494 pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ; 1618 1495 1619 // Comp -ve when in direction of outw 1496 // Comp -ve when in direction of outwards normal 1620 1497 1621 compS = -sinSPhi*v.x() + cosSPhi*v. 1498 compS = -sinSPhi*v.x() + cosSPhi*v.y() ; 1622 compE = sinEPhi*v.x() - cosEPhi*v. 1499 compE = sinEPhi*v.x() - cosEPhi*v.y() ; 1623 << 1500 1624 sidephi = kNull; 1501 sidephi = kNull; 1625 << 1502 1626 if( ( (fDPhi <= pi) && ( (pDistS <= h 1503 if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance) 1627 && (pDistE <= h 1504 && (pDistE <= halfCarTolerance) ) ) 1628 || ( (fDPhi > pi) && ((pDistS <= h << 1505 || ( (fDPhi > pi) && !((pDistS > halfCarTolerance) 1629 || (pDistE <= << 1506 && (pDistE > halfCarTolerance) ) ) ) 1630 { 1507 { 1631 // Inside both phi *full* planes 1508 // Inside both phi *full* planes 1632 << 1509 1633 if ( compS < 0 ) 1510 if ( compS < 0 ) 1634 { 1511 { 1635 sphi = pDistS/compS ; 1512 sphi = pDistS/compS ; 1636 << 1513 1637 if (sphi >= -halfCarTolerance) 1514 if (sphi >= -halfCarTolerance) 1638 { 1515 { 1639 xi = p.x() + sphi*v.x() ; 1516 xi = p.x() + sphi*v.x() ; 1640 yi = p.y() + sphi*v.y() ; 1517 yi = p.y() + sphi*v.y() ; 1641 << 1518 1642 // Check intersecting with corr 1519 // Check intersecting with correct half-plane 1643 // (if not -> no intersect) 1520 // (if not -> no intersect) 1644 // 1521 // 1645 if( (std::fabs(xi)<=kCarToleran 1522 if( (std::fabs(xi)<=kCarTolerance) 1646 && (std::fabs(yi)<=kCarToleran 1523 && (std::fabs(yi)<=kCarTolerance) ) 1647 { 1524 { 1648 sidephi = kSPhi; 1525 sidephi = kSPhi; 1649 if (((fSPhi-halfAngTolerance) 1526 if (((fSPhi-halfAngTolerance)<=vphi) 1650 &&((fSPhi+fDPhi+halfAngTol 1527 &&((fSPhi+fDPhi+halfAngTolerance)>=vphi)) 1651 { 1528 { 1652 sphi = kInfinity; 1529 sphi = kInfinity; 1653 } 1530 } 1654 } 1531 } 1655 else if ( yi*cosCPhi-xi*sinCPhi 1532 else if ( yi*cosCPhi-xi*sinCPhi >=0 ) 1656 { 1533 { 1657 sphi = kInfinity ; 1534 sphi = kInfinity ; 1658 } 1535 } 1659 else 1536 else 1660 { 1537 { 1661 sidephi = kSPhi ; 1538 sidephi = kSPhi ; 1662 if ( pDistS > -halfCarToleran 1539 if ( pDistS > -halfCarTolerance ) 1663 { 1540 { 1664 sphi = 0.0 ; // Leave by sp 1541 sphi = 0.0 ; // Leave by sphi immediately 1665 } << 1542 } 1666 } << 1543 } 1667 } 1544 } 1668 else 1545 else 1669 { 1546 { 1670 sphi = kInfinity ; 1547 sphi = kInfinity ; 1671 } 1548 } 1672 } 1549 } 1673 else 1550 else 1674 { 1551 { 1675 sphi = kInfinity ; 1552 sphi = kInfinity ; 1676 } 1553 } 1677 1554 1678 if ( compE < 0 ) 1555 if ( compE < 0 ) 1679 { 1556 { 1680 sphi2 = pDistE/compE ; 1557 sphi2 = pDistE/compE ; 1681 << 1558 1682 // Only check further if < starti 1559 // Only check further if < starting phi intersection 1683 // 1560 // 1684 if ( (sphi2 > -halfCarTolerance) 1561 if ( (sphi2 > -halfCarTolerance) && (sphi2 < sphi) ) 1685 { 1562 { 1686 xi = p.x() + sphi2*v.x() ; 1563 xi = p.x() + sphi2*v.x() ; 1687 yi = p.y() + sphi2*v.y() ; 1564 yi = p.y() + sphi2*v.y() ; 1688 << 1565 1689 if ((std::fabs(xi)<=kCarToleran 1566 if ((std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance)) 1690 { 1567 { 1691 // Leaving via ending phi 1568 // Leaving via ending phi 1692 // 1569 // 1693 if( (fSPhi-halfAngTolerance > << 1570 if( !((fSPhi-halfAngTolerance <= vphi) 1694 ||(fSPhi+fDPhi+halfAngTo << 1571 &&(fSPhi+fDPhi+halfAngTolerance >= vphi)) ) 1695 { 1572 { 1696 sidephi = kEPhi ; 1573 sidephi = kEPhi ; 1697 if ( pDistE <= -halfCarTole 1574 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; } 1698 else 1575 else { sphi = 0.0 ; } 1699 } 1576 } 1700 } << 1577 } 1701 else // Check intersecting w << 1578 else // Check intersecting with correct half-plane 1702 1579 1703 if ( (yi*cosCPhi-xi*sinCPhi) >= 1580 if ( (yi*cosCPhi-xi*sinCPhi) >= 0) 1704 { 1581 { 1705 // Leaving via ending phi 1582 // Leaving via ending phi 1706 // 1583 // 1707 sidephi = kEPhi ; 1584 sidephi = kEPhi ; 1708 if ( pDistE <= -halfCarTolera 1585 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; } 1709 else 1586 else { sphi = 0.0 ; } 1710 } 1587 } 1711 } 1588 } 1712 } 1589 } 1713 } 1590 } 1714 else 1591 else 1715 { 1592 { 1716 sphi = kInfinity ; 1593 sphi = kInfinity ; 1717 } 1594 } 1718 } 1595 } 1719 else 1596 else 1720 { 1597 { 1721 // On z axis + travel not || to z axi 1598 // On z axis + travel not || to z axis -> if phi of vector direction 1722 // within phi of shape, Step limited 1599 // within phi of shape, Step limited by rmax, else Step =0 1723 << 1600 1724 if ( (fSPhi - halfAngTolerance <= vph 1601 if ( (fSPhi - halfAngTolerance <= vphi) 1725 && (vphi <= fSPhi + fDPhi + halfAn 1602 && (vphi <= fSPhi + fDPhi + halfAngTolerance ) ) 1726 { 1603 { 1727 sphi = kInfinity ; 1604 sphi = kInfinity ; 1728 } 1605 } 1729 else 1606 else 1730 { 1607 { 1731 sidephi = kSPhi ; // arbitrary << 1608 sidephi = kSPhi ; // arbitrary 1732 sphi = 0.0 ; 1609 sphi = 0.0 ; 1733 } 1610 } 1734 } 1611 } 1735 if (sphi < snxt) // Order intersecttio 1612 if (sphi < snxt) // Order intersecttions 1736 { 1613 { 1737 snxt = sphi ; 1614 snxt = sphi ; 1738 side = sidephi ; 1615 side = sidephi ; 1739 } 1616 } 1740 } 1617 } 1741 if (srd < snxt) // Order intersections 1618 if (srd < snxt) // Order intersections 1742 { 1619 { 1743 snxt = srd ; 1620 snxt = srd ; 1744 side = sider ; 1621 side = sider ; 1745 } 1622 } 1746 } 1623 } 1747 if (calcNorm) 1624 if (calcNorm) 1748 { 1625 { 1749 switch(side) 1626 switch(side) 1750 { 1627 { 1751 case kRMax: 1628 case kRMax: 1752 // Note: returned vector not normalis 1629 // Note: returned vector not normalised 1753 // (divide by fRMax for unit vector) 1630 // (divide by fRMax for unit vector) 1754 // 1631 // 1755 xi = p.x() + snxt*v.x() ; 1632 xi = p.x() + snxt*v.x() ; 1756 yi = p.y() + snxt*v.y() ; 1633 yi = p.y() + snxt*v.y() ; 1757 *n = G4ThreeVector(xi/fRMax,yi/fRMax, 1634 *n = G4ThreeVector(xi/fRMax,yi/fRMax,0) ; 1758 *validNorm = true ; 1635 *validNorm = true ; 1759 break ; 1636 break ; 1760 1637 1761 case kRMin: 1638 case kRMin: 1762 *validNorm = false ; // Rmin is inco 1639 *validNorm = false ; // Rmin is inconvex 1763 break ; 1640 break ; 1764 1641 1765 case kSPhi: 1642 case kSPhi: 1766 if ( fDPhi <= pi ) 1643 if ( fDPhi <= pi ) 1767 { 1644 { 1768 *n = G4ThreeVector(sinSPhi, 1645 *n = G4ThreeVector(sinSPhi,-cosSPhi,0) ; 1769 *validNorm = true ; 1646 *validNorm = true ; 1770 } 1647 } 1771 else 1648 else 1772 { 1649 { 1773 *validNorm = false ; 1650 *validNorm = false ; 1774 } 1651 } 1775 break ; 1652 break ; 1776 1653 1777 case kEPhi: 1654 case kEPhi: 1778 if (fDPhi <= pi) 1655 if (fDPhi <= pi) 1779 { 1656 { 1780 *n = G4ThreeVector(-sinEPhi,cosEPhi 1657 *n = G4ThreeVector(-sinEPhi,cosEPhi,0) ; 1781 *validNorm = true ; 1658 *validNorm = true ; 1782 } 1659 } 1783 else 1660 else 1784 { 1661 { 1785 *validNorm = false ; 1662 *validNorm = false ; 1786 } 1663 } 1787 break ; 1664 break ; 1788 1665 1789 case kPZ: 1666 case kPZ: 1790 *n = fHighNorm ; 1667 *n = fHighNorm ; 1791 *validNorm = true ; 1668 *validNorm = true ; 1792 break ; 1669 break ; 1793 1670 1794 case kMZ: 1671 case kMZ: 1795 *n = fLowNorm ; 1672 *n = fLowNorm ; 1796 *validNorm = true ; 1673 *validNorm = true ; 1797 break ; 1674 break ; 1798 1675 1799 default: 1676 default: 1800 G4cout << G4endl ; 1677 G4cout << G4endl ; 1801 DumpInfo(); 1678 DumpInfo(); 1802 std::ostringstream message; 1679 std::ostringstream message; 1803 G4long oldprc = message.precision(16) << 1680 G4int oldprc = message.precision(16); 1804 message << "Undefined side for valid 1681 message << "Undefined side for valid surface normal to solid." 1805 << G4endl 1682 << G4endl 1806 << "Position:" << G4endl << 1683 << "Position:" << G4endl << G4endl 1807 << "p.x() = " << p.x()/mm < 1684 << "p.x() = " << p.x()/mm << " mm" << G4endl 1808 << "p.y() = " << p.y()/mm < 1685 << "p.y() = " << p.y()/mm << " mm" << G4endl 1809 << "p.z() = " << p.z()/mm < 1686 << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl 1810 << "Direction:" << G4endl << 1687 << "Direction:" << G4endl << G4endl 1811 << "v.x() = " << v.x() << G 1688 << "v.x() = " << v.x() << G4endl 1812 << "v.y() = " << v.y() << G 1689 << "v.y() = " << v.y() << G4endl 1813 << "v.z() = " << v.z() << G 1690 << "v.z() = " << v.z() << G4endl << G4endl 1814 << "Proposed distance :" << G 1691 << "Proposed distance :" << G4endl << G4endl 1815 << "snxt = " << snxt/mm << 1692 << "snxt = " << snxt/mm << " mm" << G4endl ; 1816 message.precision(oldprc) ; 1693 message.precision(oldprc) ; 1817 G4Exception("G4CutTubs::DistanceToOut 1694 G4Exception("G4CutTubs::DistanceToOut(p,v,..)", "GeomSolids1002", 1818 JustWarning, message); 1695 JustWarning, message); 1819 break ; 1696 break ; 1820 } 1697 } 1821 } 1698 } 1822 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1699 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1823 return snxt ; 1700 return snxt ; 1824 } 1701 } 1825 1702 1826 ///////////////////////////////////////////// 1703 ////////////////////////////////////////////////////////////////////////// 1827 // 1704 // 1828 // Calculate distance (<=actual) to closest s 1705 // Calculate distance (<=actual) to closest surface of shape from inside 1829 1706 1830 G4double G4CutTubs::DistanceToOut( const G4Th 1707 G4double G4CutTubs::DistanceToOut( const G4ThreeVector& p ) const 1831 { 1708 { 1832 G4double safRMin,safRMax,safZLow,safZHigh,s 1709 G4double safRMin,safRMax,safZLow,safZHigh,safePhi,safe,rho; 1833 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 1710 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 1834 1711 1835 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) 1712 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; // Distance to R 1836 1713 1837 safRMin = rho - fRMin ; 1714 safRMin = rho - fRMin ; 1838 safRMax = fRMax - rho ; 1715 safRMax = fRMax - rho ; 1839 1716 1840 // Distances to ZCut(Low/High) 1717 // Distances to ZCut(Low/High) 1841 1718 1842 // Dist to Low Cut 1719 // Dist to Low Cut 1843 // 1720 // 1844 safZLow = std::fabs((p+vZ).dot(fLowNorm)); 1721 safZLow = std::fabs((p+vZ).dot(fLowNorm)); 1845 1722 1846 // Dist to High Cut 1723 // Dist to High Cut 1847 // 1724 // 1848 safZHigh = std::fabs((p-vZ).dot(fHighNorm)) 1725 safZHigh = std::fabs((p-vZ).dot(fHighNorm)); 1849 safe = std::min(safZLow,safZHigh); 1726 safe = std::min(safZLow,safZHigh); 1850 1727 1851 if ( safRMin < safe ) { safe = safRMin; } 1728 if ( safRMin < safe ) { safe = safRMin; } 1852 if ( safRMax< safe ) { safe = safRMax; } 1729 if ( safRMax< safe ) { safe = safRMax; } 1853 1730 1854 // Check if phi divided, Calc distances clo 1731 // Check if phi divided, Calc distances closest phi plane 1855 // 1732 // 1856 if ( !fPhiFullCutTube ) 1733 if ( !fPhiFullCutTube ) 1857 { 1734 { 1858 if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 ) 1735 if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 ) 1859 { 1736 { 1860 safePhi = -(p.x()*sinSPhi - p.y()*cosSP 1737 safePhi = -(p.x()*sinSPhi - p.y()*cosSPhi) ; 1861 } 1738 } 1862 else 1739 else 1863 { 1740 { 1864 safePhi = (p.x()*sinEPhi - p.y()*cosEPh 1741 safePhi = (p.x()*sinEPhi - p.y()*cosEPhi) ; 1865 } 1742 } 1866 if (safePhi < safe) { safe = safePhi ; } 1743 if (safePhi < safe) { safe = safePhi ; } 1867 } 1744 } 1868 if ( safe < 0 ) { safe = 0; } 1745 if ( safe < 0 ) { safe = 0; } 1869 1746 1870 return safe ; 1747 return safe ; 1871 } 1748 } 1872 1749 >> 1750 ///////////////////////////////////////////////////////////////////////// >> 1751 // >> 1752 // Create a List containing the transformed vertices >> 1753 // Ordering [0-3] -fDz cross section >> 1754 // [4-7] +fDz cross section such that [0] is below [4], >> 1755 // [1] below [5] etc. >> 1756 // Note: >> 1757 // Caller has deletion resposibility >> 1758 >> 1759 G4ThreeVectorList* >> 1760 G4CutTubs::CreateRotatedVertices( const G4AffineTransform& pTransform ) const >> 1761 { >> 1762 G4ThreeVectorList* vertices ; >> 1763 G4ThreeVector vertex0, vertex1, vertex2, vertex3 ; >> 1764 G4double meshAngle, meshRMax, crossAngle, >> 1765 cosCrossAngle, sinCrossAngle, sAngle; >> 1766 G4double rMaxX, rMaxY, rMinX, rMinY, meshRMin ; >> 1767 G4int crossSection, noCrossSections; >> 1768 >> 1769 // Compute no of cross-sections necessary to mesh tube >> 1770 // >> 1771 noCrossSections = G4int(fDPhi/kMeshAngleDefault) + 1 ; >> 1772 >> 1773 if ( noCrossSections < kMinMeshSections ) >> 1774 { >> 1775 noCrossSections = kMinMeshSections ; >> 1776 } >> 1777 else if (noCrossSections>kMaxMeshSections) >> 1778 { >> 1779 noCrossSections = kMaxMeshSections ; >> 1780 } >> 1781 // noCrossSections = 4 ; >> 1782 >> 1783 meshAngle = fDPhi/(noCrossSections - 1) ; >> 1784 // meshAngle = fDPhi/(noCrossSections) ; >> 1785 >> 1786 meshRMax = (fRMax+100*kCarTolerance)/std::cos(meshAngle*0.5) ; >> 1787 meshRMin = fRMin - 100*kCarTolerance ; >> 1788 >> 1789 // If complete in phi, set start angle such that mesh will be at fRMax >> 1790 // on the x axis. Will give better extent calculations when not rotated. >> 1791 >> 1792 if (fPhiFullCutTube && (fSPhi == 0) ) { sAngle = -meshAngle*0.5 ; } >> 1793 else { sAngle = fSPhi ; } >> 1794 >> 1795 vertices = new G4ThreeVectorList(); >> 1796 >> 1797 if ( vertices ) >> 1798 { >> 1799 vertices->reserve(noCrossSections*4); >> 1800 for (crossSection = 0 ; crossSection < noCrossSections ; crossSection++ ) >> 1801 { >> 1802 // Compute coordinates of cross section at section crossSection >> 1803 >> 1804 crossAngle = sAngle + crossSection*meshAngle ; >> 1805 cosCrossAngle = std::cos(crossAngle) ; >> 1806 sinCrossAngle = std::sin(crossAngle) ; >> 1807 >> 1808 rMaxX = meshRMax*cosCrossAngle ; >> 1809 rMaxY = meshRMax*sinCrossAngle ; >> 1810 >> 1811 if(meshRMin <= 0.0) >> 1812 { >> 1813 rMinX = 0.0 ; >> 1814 rMinY = 0.0 ; >> 1815 } >> 1816 else >> 1817 { >> 1818 rMinX = meshRMin*cosCrossAngle ; >> 1819 rMinY = meshRMin*sinCrossAngle ; >> 1820 } >> 1821 vertex0 = G4ThreeVector(rMinX,rMinY,GetCutZ(G4ThreeVector(rMinX,rMinY,-fDz))) ; >> 1822 vertex1 = G4ThreeVector(rMaxX,rMaxY,GetCutZ(G4ThreeVector(rMaxX,rMaxY,-fDz))) ; >> 1823 vertex2 = G4ThreeVector(rMaxX,rMaxY,GetCutZ(G4ThreeVector(rMaxX,rMaxY,+fDz))) ; >> 1824 vertex3 = G4ThreeVector(rMinX,rMinY,GetCutZ(G4ThreeVector(rMinX,rMinY,+fDz))) ; >> 1825 >> 1826 vertices->push_back(pTransform.TransformPoint(vertex0)) ; >> 1827 vertices->push_back(pTransform.TransformPoint(vertex1)) ; >> 1828 vertices->push_back(pTransform.TransformPoint(vertex2)) ; >> 1829 vertices->push_back(pTransform.TransformPoint(vertex3)) ; >> 1830 } >> 1831 } >> 1832 else >> 1833 { >> 1834 DumpInfo(); >> 1835 G4Exception("G4CutTubs::CreateRotatedVertices()", >> 1836 "GeomSolids0003", FatalException, >> 1837 "Error in allocation of vertices. Out of memory !"); >> 1838 } >> 1839 return vertices ; >> 1840 } >> 1841 1873 ///////////////////////////////////////////// 1842 ////////////////////////////////////////////////////////////////////////// 1874 // 1843 // 1875 // Stream object contents to an output stream 1844 // Stream object contents to an output stream 1876 1845 1877 G4GeometryType G4CutTubs::GetEntityType() con 1846 G4GeometryType G4CutTubs::GetEntityType() const 1878 { 1847 { 1879 return {"G4CutTubs"}; << 1848 return G4String("G4CutTubs"); 1880 } 1849 } 1881 1850 1882 ///////////////////////////////////////////// 1851 ////////////////////////////////////////////////////////////////////////// 1883 // 1852 // 1884 // Make a clone of the object 1853 // Make a clone of the object 1885 // 1854 // 1886 G4VSolid* G4CutTubs::Clone() const 1855 G4VSolid* G4CutTubs::Clone() const 1887 { 1856 { 1888 return new G4CutTubs(*this); 1857 return new G4CutTubs(*this); 1889 } 1858 } 1890 1859 1891 ///////////////////////////////////////////// 1860 ////////////////////////////////////////////////////////////////////////// 1892 // 1861 // 1893 // Stream object contents to an output stream 1862 // Stream object contents to an output stream 1894 1863 1895 std::ostream& G4CutTubs::StreamInfo( std::ost 1864 std::ostream& G4CutTubs::StreamInfo( std::ostream& os ) const 1896 { 1865 { 1897 G4long oldprc = os.precision(16); << 1866 G4int oldprc = os.precision(16); 1898 os << "------------------------------------ 1867 os << "-----------------------------------------------------------\n" 1899 << " *** Dump for solid - " << GetNam 1868 << " *** Dump for solid - " << GetName() << " ***\n" 1900 << " ================================ 1869 << " ===================================================\n" 1901 << " Solid type: G4CutTubs\n" 1870 << " Solid type: G4CutTubs\n" 1902 << " Parameters: \n" 1871 << " Parameters: \n" 1903 << " inner radius : " << fRMin/mm << 1872 << " inner radius : " << fRMin/mm << " mm \n" 1904 << " outer radius : " << fRMax/mm << 1873 << " outer radius : " << fRMax/mm << " mm \n" 1905 << " half length Z: " << fDz/mm << " 1874 << " half length Z: " << fDz/mm << " mm \n" 1906 << " starting phi : " << fSPhi/degree 1875 << " starting phi : " << fSPhi/degree << " degrees \n" 1907 << " delta phi : " << fDPhi/degree 1876 << " delta phi : " << fDPhi/degree << " degrees \n" 1908 << " low Norm : " << fLowNorm << 1877 << " low Norm : " << fLowNorm << " \n" 1909 << " high Norm : " <<fHighNorm 1878 << " high Norm : " <<fHighNorm << " \n" 1910 << "------------------------------------ 1879 << "-----------------------------------------------------------\n"; 1911 os.precision(oldprc); 1880 os.precision(oldprc); 1912 1881 1913 return os; 1882 return os; 1914 } 1883 } 1915 1884 1916 ///////////////////////////////////////////// 1885 ///////////////////////////////////////////////////////////////////////// 1917 // 1886 // 1918 // GetPointOnSurface 1887 // GetPointOnSurface 1919 1888 1920 G4ThreeVector G4CutTubs::GetPointOnSurface() 1889 G4ThreeVector G4CutTubs::GetPointOnSurface() const 1921 { 1890 { 1922 // Set min and max z << 1891 G4double xRand, yRand, zRand, phi, cosphi, sinphi, chose, 1923 if (fZMin == 0. && fZMax == 0.) << 1892 aOne, aTwo, aThr, aFou; >> 1893 G4double rRand; >> 1894 >> 1895 aOne = 2.*fDz*fDPhi*fRMax; >> 1896 aTwo = 2.*fDz*fDPhi*fRMin; >> 1897 aThr = 0.5*fDPhi*(fRMax*fRMax-fRMin*fRMin); >> 1898 aFou = 2.*fDz*(fRMax-fRMin); >> 1899 >> 1900 phi = RandFlat::shoot(fSPhi, fSPhi+fDPhi); >> 1901 cosphi = std::cos(phi); >> 1902 sinphi = std::sin(phi); >> 1903 >> 1904 rRand = GetRadiusInRing(fRMin,fRMax); >> 1905 >> 1906 if( (fSPhi == 0) && (fDPhi == twopi) ) { aFou = 0; } >> 1907 >> 1908 chose = RandFlat::shoot(0.,aOne+aTwo+2.*aThr+2.*aFou); >> 1909 >> 1910 if( (chose >=0) && (chose < aOne) ) >> 1911 { >> 1912 xRand = fRMax*cosphi; >> 1913 yRand = fRMax*sinphi; >> 1914 zRand = RandFlat::shoot(GetCutZ(G4ThreeVector(xRand,yRand,-fDz)), >> 1915 GetCutZ(G4ThreeVector(xRand,yRand,fDz))); >> 1916 return G4ThreeVector (xRand, yRand, zRand); >> 1917 } >> 1918 else if( (chose >= aOne) && (chose < aOne + aTwo) ) >> 1919 { >> 1920 xRand = fRMin*cosphi; >> 1921 yRand = fRMin*sinphi; >> 1922 zRand = RandFlat::shoot(GetCutZ(G4ThreeVector(xRand,yRand,-fDz)), >> 1923 GetCutZ(G4ThreeVector(xRand,yRand,fDz))); >> 1924 return G4ThreeVector (xRand, yRand, zRand); >> 1925 } >> 1926 else if( (chose >= aOne + aTwo) && (chose < aOne + aTwo + aThr) ) >> 1927 { >> 1928 xRand = rRand*cosphi; >> 1929 yRand = rRand*sinphi; >> 1930 zRand = GetCutZ(G4ThreeVector(xRand,yRand,fDz)); >> 1931 return G4ThreeVector (xRand, yRand, zRand); >> 1932 } >> 1933 else if( (chose >= aOne + aTwo + aThr) && (chose < aOne + aTwo + 2.*aThr) ) >> 1934 { >> 1935 xRand = rRand*cosphi; >> 1936 yRand = rRand*sinphi; >> 1937 zRand = GetCutZ(G4ThreeVector(xRand,yRand,-fDz)); >> 1938 return G4ThreeVector (xRand, yRand, zRand); >> 1939 } >> 1940 else if( (chose >= aOne + aTwo + 2.*aThr) >> 1941 && (chose < aOne + aTwo + 2.*aThr + aFou) ) >> 1942 { >> 1943 xRand = rRand*std::cos(fSPhi); >> 1944 yRand = rRand*std::sin(fSPhi); >> 1945 zRand = RandFlat::shoot(GetCutZ(G4ThreeVector(xRand,yRand,-fDz)), >> 1946 GetCutZ(G4ThreeVector(xRand,yRand,fDz))); >> 1947 return G4ThreeVector (xRand, yRand, zRand); >> 1948 } >> 1949 else 1924 { 1950 { 1925 G4AutoLock l(&zminmaxMutex); << 1951 xRand = rRand*std::cos(fSPhi+fDPhi); 1926 G4ThreeVector bmin, bmax; << 1952 yRand = rRand*std::sin(fSPhi+fDPhi); 1927 BoundingLimits(bmin,bmax); << 1953 zRand = RandFlat::shoot(GetCutZ(G4ThreeVector(xRand,yRand,-fDz)), 1928 fZMin = bmin.z(); << 1954 GetCutZ(G4ThreeVector(xRand,yRand,fDz))); 1929 fZMax = bmax.z(); << 1955 return G4ThreeVector (xRand, yRand, zRand); 1930 l.unlock(); << 1956 } 1931 } << 1932 << 1933 // Set parameters << 1934 G4double hmax = fZMax - fZMin; << 1935 G4double sphi = fSPhi; << 1936 G4double dphi = fDPhi; << 1937 G4double rmin = fRMin; << 1938 G4double rmax = fRMax; << 1939 G4double rrmax = rmax*rmax; << 1940 G4double rrmin = rmin*rmin; << 1941 << 1942 G4ThreeVector nbot = GetLowNorm(); << 1943 G4ThreeVector ntop = GetHighNorm(); << 1944 << 1945 // Set array of surface areas << 1946 G4double sbase = 0.5*dphi*(rrmax - rrmin); << 1947 G4double sbot = sbase/std::abs(nbot.z()); << 1948 G4double stop = sbase/std::abs(ntop.z()); << 1949 G4double scut = (dphi == twopi) ? 0. : hmax << 1950 G4double ssurf[6] = { scut, scut, sbot, sto << 1951 ssurf[1] += ssurf[0]; << 1952 ssurf[2] += ssurf[1]; << 1953 ssurf[3] += ssurf[2]; << 1954 ssurf[4] += ssurf[3]; << 1955 ssurf[5] += ssurf[4]; << 1956 << 1957 constexpr G4int ntry = 100000; << 1958 for (G4int i=0; i<ntry; ++i) << 1959 { << 1960 // Select surface << 1961 G4double select = ssurf[5]*G4QuickRand(); << 1962 G4int k = 5; << 1963 k -= (G4int)(select <= ssurf[4]); << 1964 k -= (G4int)(select <= ssurf[3]); << 1965 k -= (G4int)(select <= ssurf[2]); << 1966 k -= (G4int)(select <= ssurf[1]); << 1967 k -= (G4int)(select <= ssurf[0]); << 1968 << 1969 // Generate point on selected surface (re << 1970 G4ThreeVector p(0,0,0); << 1971 switch(k) << 1972 { << 1973 case 0: // cut at start phi << 1974 { << 1975 G4double r = rmin + (rmax - rmin)*G4Q << 1976 p.set(r*cosSPhi, r*sinSPhi, fZMin + h << 1977 break; << 1978 } << 1979 case 1: // cut at end phi << 1980 { << 1981 G4double r = rmin + (rmax - rmin)*G4Q << 1982 p.set(r*cosEPhi, r*sinEPhi, fZMin + h << 1983 break; << 1984 } << 1985 case 2: // base at low z << 1986 { << 1987 G4double r = std::sqrt(rrmin + (rrmax << 1988 G4double phi = sphi + dphi*G4QuickRan << 1989 G4double x = r*std::cos(phi); << 1990 G4double y = r*std::sin(phi); << 1991 G4double z = -fDz - (x*nbot.x() + y*n << 1992 return {x, y, z}; << 1993 } << 1994 case 3: // base at high z << 1995 { << 1996 G4double r = std::sqrt(rrmin + (rrmax << 1997 G4double phi = sphi + dphi*G4QuickRan << 1998 G4double x = r*std::cos(phi); << 1999 G4double y = r*std::sin(phi); << 2000 G4double z = fDz - (x*ntop.x() + y*nt << 2001 return {x, y, z}; << 2002 } << 2003 case 4: // external lateral surface << 2004 { << 2005 G4double phi = sphi + dphi*G4QuickRan << 2006 G4double z = fZMin + hmax*G4QuickRand << 2007 G4double x = rmax*std::cos(phi); << 2008 G4double y = rmax*std::sin(phi); << 2009 p.set(x, y, z); << 2010 break; << 2011 } << 2012 case 5: // internal lateral surface << 2013 { << 2014 G4double phi = sphi + dphi*G4QuickRan << 2015 G4double z = fZMin + hmax*G4QuickRand << 2016 G4double x = rmin*std::cos(phi); << 2017 G4double y = rmin*std::sin(phi); << 2018 p.set(x, y, z); << 2019 break; << 2020 } << 2021 } << 2022 if ((ntop.dot(p) - fDz*ntop.z()) > 0.) co << 2023 if ((nbot.dot(p) + fDz*nbot.z()) > 0.) co << 2024 return p; << 2025 } << 2026 // Just in case, if all attempts to generat << 2027 // Normally should never happen << 2028 G4double x = rmax*std::cos(sphi + 0.5*dphi) << 2029 G4double y = rmax*std::sin(sphi + 0.5*dphi) << 2030 G4double z = fDz - (x*ntop.x() + y*ntop.y() << 2031 return {x, y, z}; << 2032 } 1957 } 2033 1958 2034 ///////////////////////////////////////////// 1959 /////////////////////////////////////////////////////////////////////////// 2035 // 1960 // 2036 // Methods for visualisation 1961 // Methods for visualisation 2037 1962 2038 void G4CutTubs::DescribeYourselfTo ( G4VGraph << 1963 void G4CutTubs::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 2039 { 1964 { 2040 scene.AddSolid (*this) ; 1965 scene.AddSolid (*this) ; 2041 } 1966 } 2042 1967 2043 G4Polyhedron* G4CutTubs::CreatePolyhedron () << 1968 G4Polyhedron* G4CutTubs::CreatePolyhedron () const 2044 { 1969 { 2045 typedef G4double G4double3[3]; 1970 typedef G4double G4double3[3]; 2046 typedef G4int G4int4[4]; 1971 typedef G4int G4int4[4]; 2047 1972 2048 auto ph = new G4Polyhedron; << 1973 G4Polyhedron *ph = new G4Polyhedron; 2049 G4Polyhedron *ph1 = new G4PolyhedronTubs (f << 1974 G4Polyhedron *ph1 = G4OTubs::CreatePolyhedron(); 2050 G4int nn=ph1->GetNoVertices(); 1975 G4int nn=ph1->GetNoVertices(); 2051 G4int nf=ph1->GetNoFacets(); 1976 G4int nf=ph1->GetNoFacets(); 2052 auto xyz = new G4double3[nn]; // number of << 1977 G4double3* xyz = new G4double3[nn]; // number of nodes 2053 auto faces = new G4int4[nf] ; // number of << 1978 G4int4* faces = new G4int4[nf] ; // number of faces 2054 1979 2055 for(G4int i=0; i<nn; ++i) << 1980 for(G4int i=0;i<nn;i++) 2056 { 1981 { 2057 xyz[i][0]=ph1->GetVertex(i+1).x(); 1982 xyz[i][0]=ph1->GetVertex(i+1).x(); 2058 xyz[i][1]=ph1->GetVertex(i+1).y(); 1983 xyz[i][1]=ph1->GetVertex(i+1).y(); 2059 G4double tmpZ=ph1->GetVertex(i+1).z(); 1984 G4double tmpZ=ph1->GetVertex(i+1).z(); 2060 if(tmpZ>=fDz-kCarTolerance) 1985 if(tmpZ>=fDz-kCarTolerance) 2061 { 1986 { 2062 xyz[i][2]=GetCutZ(G4ThreeVector(xyz[i][ 1987 xyz[i][2]=GetCutZ(G4ThreeVector(xyz[i][0],xyz[i][1],fDz)); 2063 } 1988 } 2064 else if(tmpZ<=-fDz+kCarTolerance) 1989 else if(tmpZ<=-fDz+kCarTolerance) 2065 { 1990 { 2066 xyz[i][2]=GetCutZ(G4ThreeVector(xyz[i][ 1991 xyz[i][2]=GetCutZ(G4ThreeVector(xyz[i][0],xyz[i][1],-fDz)); 2067 } 1992 } 2068 else 1993 else 2069 { 1994 { 2070 xyz[i][2]=tmpZ; 1995 xyz[i][2]=tmpZ; 2071 } 1996 } 2072 } 1997 } 2073 G4int iNodes[4]; 1998 G4int iNodes[4]; 2074 G4int* iEdge = nullptr; << 1999 G4int *iEdge=0; 2075 G4int n; 2000 G4int n; 2076 for(G4int i=0; i<nf ; ++i) << 2001 for(G4int i=0;i<nf;i++) 2077 { 2002 { 2078 ph1->GetFacet(i+1,n,iNodes,iEdge); 2003 ph1->GetFacet(i+1,n,iNodes,iEdge); 2079 for(G4int k=0; k<n; ++k) << 2004 for(G4int k=0;k<n;k++) 2080 { 2005 { 2081 faces[i][k]=iNodes[k]; 2006 faces[i][k]=iNodes[k]; 2082 } 2007 } 2083 for(G4int k=n; k<4; ++k) << 2008 for(G4int k=n;k<4;k++) 2084 { 2009 { 2085 faces[i][k]=0; 2010 faces[i][k]=0; 2086 } 2011 } 2087 } 2012 } 2088 ph->createPolyhedron(nn,nf,xyz,faces); 2013 ph->createPolyhedron(nn,nf,xyz,faces); 2089 2014 2090 delete [] xyz; 2015 delete [] xyz; 2091 delete [] faces; 2016 delete [] faces; 2092 delete ph1; 2017 delete ph1; 2093 2018 2094 return ph; 2019 return ph; 2095 } 2020 } 2096 2021 2097 // Auxilary Methods for Solid 2022 // Auxilary Methods for Solid 2098 << 2023 2099 ///////////////////////////////////////////// << 2024 /////////////////////////////////////////////////////////////////////////// 2100 // << 2025 // Return true if Cutted planes are crossing 2101 // Check set of points on the outer lateral s << 2026 // Check Intersection Points on OX and OY axes 2102 // if the cut planes are crossing inside the << 2103 // << 2104 2027 2105 G4bool G4CutTubs::IsCrossingCutPlanes() const 2028 G4bool G4CutTubs::IsCrossingCutPlanes() const 2106 { 2029 { 2107 constexpr G4int npoints = 30; << 2030 G4double zXLow1,zXLow2,zYLow1,zYLow2; >> 2031 G4double zXHigh1,zXHigh2,zYHigh1,zYHigh2; >> 2032 >> 2033 zXLow1 = GetCutZ(G4ThreeVector(-fRMax, 0,-fDz)); >> 2034 zXLow2 = GetCutZ(G4ThreeVector( fRMax, 0,-fDz)); >> 2035 zYLow1 = GetCutZ(G4ThreeVector( 0,-fRMax,-fDz)); >> 2036 zYLow2 = GetCutZ(G4ThreeVector( 0, fRMax,-fDz)); >> 2037 zXHigh1 = GetCutZ(G4ThreeVector(-fRMax, 0, fDz)); >> 2038 zXHigh2 = GetCutZ(G4ThreeVector( fRMax, 0, fDz)); >> 2039 zYHigh1 = GetCutZ(G4ThreeVector( 0,-fRMax, fDz)); >> 2040 zYHigh2 = GetCutZ(G4ThreeVector( 0, fRMax, fDz)); >> 2041 if ( (zXLow1>zXHigh1) ||(zXLow2>zXHigh2) >> 2042 || (zYLow1>zYHigh1) ||(zYLow2>zYHigh2)) { return true; } 2108 2043 2109 // set values for calculation of h - distan << 2110 // opposite points on bases << 2111 G4ThreeVector nbot = GetLowNorm(); << 2112 G4ThreeVector ntop = GetHighNorm(); << 2113 if (std::abs(nbot.z()) < kCarTolerance) ret << 2114 if (std::abs(ntop.z()) < kCarTolerance) ret << 2115 G4double nx = nbot.x()/nbot.z() - ntop.x()/ << 2116 G4double ny = nbot.y()/nbot.z() - ntop.y()/ << 2117 << 2118 // check points << 2119 G4double cosphi = GetCosStartPhi(); << 2120 G4double sinphi = GetSinStartPhi(); << 2121 G4double delphi = GetDeltaPhiAngle()/npoint << 2122 G4double cosdel = std::cos(delphi); << 2123 G4double sindel = std::sin(delphi); << 2124 G4double hzero = 2.*GetZHalfLength()/GetOut << 2125 for (G4int i=0; i<npoints+1; ++i) << 2126 { << 2127 G4double h = nx*cosphi + ny*sinphi + hzer << 2128 if (h < 0.) return true; << 2129 G4double sintmp = sinphi; << 2130 sinphi = sintmp*cosdel + cosphi*sindel; << 2131 cosphi = cosphi*cosdel - sintmp*sindel; << 2132 } << 2133 return false; 2044 return false; 2134 } 2045 } 2135 2046 2136 ///////////////////////////////////////////// 2047 /////////////////////////////////////////////////////////////////////////// 2137 // 2048 // 2138 // Return real Z coordinate of point on Cutte 2049 // Return real Z coordinate of point on Cutted +/- fDZ plane 2139 2050 2140 G4double G4CutTubs::GetCutZ(const G4ThreeVect 2051 G4double G4CutTubs::GetCutZ(const G4ThreeVector& p) const 2141 { 2052 { 2142 G4double newz = p.z(); // p.z() should be 2053 G4double newz = p.z(); // p.z() should be either +fDz or -fDz 2143 if (p.z()<0) 2054 if (p.z()<0) 2144 { 2055 { 2145 if(fLowNorm.z()!=0.) 2056 if(fLowNorm.z()!=0.) 2146 { 2057 { 2147 newz = -fDz-(p.x()*fLowNorm.x()+p.y()* 2058 newz = -fDz-(p.x()*fLowNorm.x()+p.y()*fLowNorm.y())/fLowNorm.z(); 2148 } 2059 } 2149 } 2060 } 2150 else 2061 else 2151 { 2062 { 2152 if(fHighNorm.z()!=0.) 2063 if(fHighNorm.z()!=0.) 2153 { 2064 { 2154 newz = fDz-(p.x()*fHighNorm.x()+p.y()* 2065 newz = fDz-(p.x()*fHighNorm.x()+p.y()*fHighNorm.y())/fHighNorm.z(); 2155 } 2066 } 2156 } 2067 } 2157 return newz; 2068 return newz; 2158 } 2069 } 2159 #endif << 2070 >> 2071 /////////////////////////////////////////////////////////////////////////// >> 2072 // >> 2073 // Calculate Min and Max Z for CutZ >> 2074 >> 2075 void G4CutTubs::GetMaxMinZ(G4double& zmin,G4double& zmax)const >> 2076 >> 2077 { >> 2078 G4double phiLow = std::atan2(fLowNorm.y(),fLowNorm.x()); >> 2079 G4double phiHigh= std::atan2(fHighNorm.y(),fHighNorm.x()); >> 2080 >> 2081 G4double xc=0, yc=0,z1; >> 2082 G4double z[8]; >> 2083 G4bool in_range_low = false; >> 2084 G4bool in_range_hi = false; >> 2085 >> 2086 G4int i; >> 2087 for (i=0; i<2; i++) >> 2088 { >> 2089 if (phiLow<0) { phiLow+=twopi; } >> 2090 G4double ddp = phiLow-fSPhi; >> 2091 if (ddp<0) { ddp += twopi; } >> 2092 if (ddp <= fDPhi) >> 2093 { >> 2094 xc = fRMin*std::cos(phiLow); >> 2095 yc = fRMin*std::sin(phiLow); >> 2096 z1 = GetCutZ(G4ThreeVector(xc, yc, -fDz)); >> 2097 xc = fRMax*std::cos(phiLow); >> 2098 yc = fRMax*std::sin(phiLow); >> 2099 z1 = std::min(z1, GetCutZ(G4ThreeVector(xc, yc, -fDz))); >> 2100 if (in_range_low) { zmin = std::min(zmin, z1); } >> 2101 else { zmin = z1; } >> 2102 in_range_low = true; >> 2103 } >> 2104 phiLow += pi; >> 2105 if (phiLow>twopi) { phiLow-=twopi; } >> 2106 } >> 2107 for (i=0; i<2; i++) >> 2108 { >> 2109 if (phiHigh<0) { phiHigh+=twopi; } >> 2110 G4double ddp = phiHigh-fSPhi; >> 2111 if (ddp<0) { ddp += twopi; } >> 2112 if (ddp <= fDPhi) >> 2113 { >> 2114 xc = fRMin*std::cos(phiHigh); >> 2115 yc = fRMin*std::sin(phiHigh); >> 2116 z1 = GetCutZ(G4ThreeVector(xc, yc, fDz)); >> 2117 xc = fRMax*std::cos(phiHigh); >> 2118 yc = fRMax*std::sin(phiHigh); >> 2119 z1 = std::min(z1, GetCutZ(G4ThreeVector(xc, yc, fDz))); >> 2120 if (in_range_hi) { zmax = std::min(zmax, z1); } >> 2121 else { zmax = z1; } >> 2122 in_range_hi = true; >> 2123 } >> 2124 phiHigh += pi; >> 2125 if (phiLow>twopi) { phiHigh-=twopi; } >> 2126 } >> 2127 >> 2128 xc = fRMin*std::cos(fSPhi); >> 2129 yc = fRMin*std::sin(fSPhi); >> 2130 z[0] = GetCutZ(G4ThreeVector(xc, yc, -fDz)); >> 2131 z[4] = GetCutZ(G4ThreeVector(xc, yc, fDz)); >> 2132 >> 2133 xc = fRMin*std::cos(fSPhi+fDPhi); >> 2134 yc = fRMin*std::sin(fSPhi+fDPhi); >> 2135 z[1] = GetCutZ(G4ThreeVector(xc, yc, -fDz)); >> 2136 z[5] = GetCutZ(G4ThreeVector(xc, yc, fDz)); >> 2137 >> 2138 xc = fRMax*std::cos(fSPhi); >> 2139 yc = fRMax*std::sin(fSPhi); >> 2140 z[2] = GetCutZ(G4ThreeVector(xc, yc, -fDz)); >> 2141 z[6] = GetCutZ(G4ThreeVector(xc, yc, fDz)); >> 2142 >> 2143 xc = fRMax*std::cos(fSPhi+fDPhi); >> 2144 yc = fRMax*std::sin(fSPhi+fDPhi); >> 2145 z[3] = GetCutZ(G4ThreeVector(xc, yc, -fDz)); >> 2146 z[7] = GetCutZ(G4ThreeVector(xc, yc, fDz)); >> 2147 >> 2148 // Find min/max >> 2149 >> 2150 z1=z[0]; >> 2151 for (i = 1; i < 4; i++) >> 2152 { >> 2153 if(z[i] < z[i-1])z1=z[i]; >> 2154 } >> 2155 >> 2156 if (in_range_low) >> 2157 { >> 2158 zmin = std::min(zmin, z1); >> 2159 } >> 2160 else >> 2161 { >> 2162 zmin = z1; >> 2163 } >> 2164 z1=z[4]; >> 2165 for (i = 1; i < 4; i++) >> 2166 { >> 2167 if(z[4+i] > z[4+i-1]) { z1=z[4+i]; } >> 2168 } >> 2169 >> 2170 if (in_range_hi) { zmax = std::max(zmax, z1); } >> 2171 else { zmax = z1; } >> 2172 } 2160 2173