Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4Box.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/CSG/src/G4Box.cc (Version 11.3.0) and /geometry/solids/CSG/src/G4Box.cc (Version 9.6.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // $Id: G4Box.cc 69788 2013-05-15 12:06:57Z gcosmo $
                                                   >>  28 //
                                                   >>  29 // 
                                                   >>  30 //
 26 // Implementation for G4Box class                  31 // Implementation for G4Box class
 27 //                                                 32 //
 28 //  30.06.95 - P.Kent: First version           <<  33 //  24.06.98 - V.Grichine: insideEdge in DistanceToIn(p,v)
 29 //  20.09.98 - V.Grichine: new algorithm of Di     34 //  20.09.98 - V.Grichine: new algorithm of DistanceToIn(p,v)
 30 //  18.04.17 - E.Tcherniaev: complete revision <<  35 //  07.05.00 - V.Grichine: d= DistanceToIn(p,v), if d<e/2, d=0
                                                   >>  36 //  09.06.00 - V.Grichine: safety in DistanceToIn(p) against Inside(p)=kOutside
                                                   >>  37 //             and information before exception in DistanceToOut(p,v,...)
                                                   >>  38 //  15.11.00 - D.Williams, V.Grichine: bug fixed in CalculateExtent - change
                                                   >>  39 //                                     algorithm for rotated vertices
 31 // -------------------------------------------     40 // --------------------------------------------------------------------
 32                                                    41 
 33 #include "G4Box.hh"                                42 #include "G4Box.hh"
 34                                                    43 
 35 #if !defined(G4GEOM_USE_UBOX)                  << 
 36                                                << 
 37 #include "G4SystemOfUnits.hh"                      44 #include "G4SystemOfUnits.hh"
 38 #include "G4VoxelLimits.hh"                        45 #include "G4VoxelLimits.hh"
 39 #include "G4AffineTransform.hh"                    46 #include "G4AffineTransform.hh"
 40 #include "G4BoundingEnvelope.hh"               <<  47 #include "Randomize.hh"
 41 #include "G4QuickRand.hh"                      << 
 42                                                    48 
 43 #include "G4VPVParameterisation.hh"                49 #include "G4VPVParameterisation.hh"
 44                                                    50 
 45 #include "G4VGraphicsScene.hh"                     51 #include "G4VGraphicsScene.hh"
                                                   >>  52 #include "G4Polyhedron.hh"
                                                   >>  53 #include "G4NURBS.hh"
                                                   >>  54 #include "G4NURBSbox.hh"
 46 #include "G4VisExtent.hh"                          55 #include "G4VisExtent.hh"
 47                                                    56 
 48 //////////////////////////////////////////////     57 ////////////////////////////////////////////////////////////////////////
 49 //                                                 58 //
 50 // Constructor - check & set half widths           59 // Constructor - check & set half widths
 51                                                    60 
 52 G4Box::G4Box(const G4String& pName,                61 G4Box::G4Box(const G4String& pName,
 53                    G4double pX,                    62                    G4double pX,
 54                    G4double pY,                    63                    G4double pY,
 55                    G4double pZ)                    64                    G4double pZ)
 56   : G4CSGSolid(pName), fDx(pX), fDy(pY), fDz(p     65   : G4CSGSolid(pName), fDx(pX), fDy(pY), fDz(pZ)
 57 {                                                  66 {
 58   delta = 0.5*kCarTolerance;                   <<  67   if ( (pX < 2*kCarTolerance)
 59   if (pX < 2*kCarTolerance ||                  <<  68     && (pY < 2*kCarTolerance)
 60       pY < 2*kCarTolerance ||                  <<  69     && (pZ < 2*kCarTolerance) )  // limit to thickness of surfaces
 61       pZ < 2*kCarTolerance)  // limit to thick << 
 62   {                                                70   {
 63     std::ostringstream message;                    71     std::ostringstream message;
 64     message << "Dimensions too small for Solid     72     message << "Dimensions too small for Solid: " << GetName() << "!" << G4endl
 65             << "     hX, hY, hZ = " << pX << "     73             << "     hX, hY, hZ = " << pX << ", " << pY << ", " << pZ;
 66     G4Exception("G4Box::G4Box()", "GeomSolids0     74     G4Exception("G4Box::G4Box()", "GeomSolids0002", FatalException, message);
 67   }                                                75   }
 68 }                                                  76 }
 69                                                    77 
 70 //////////////////////////////////////////////     78 //////////////////////////////////////////////////////////////////////////
 71 //                                                 79 //
 72 // Fake default constructor - sets only member     80 // Fake default constructor - sets only member data and allocates memory
 73 //                            for usage restri <<  81 //                            for usage restricted to object persistency.
 74                                                    82 
 75 G4Box::G4Box( __void__& a )                        83 G4Box::G4Box( __void__& a )
 76   : G4CSGSolid(a)                              <<  84   : G4CSGSolid(a), fDx(0.), fDy(0.), fDz(0.)
 77 {                                                  85 {
 78 }                                                  86 }
 79                                                    87 
 80 //////////////////////////////////////////////     88 //////////////////////////////////////////////////////////////////////////
 81 //                                                 89 //
 82 // Destructor                                      90 // Destructor
 83                                                    91 
 84 G4Box::~G4Box() = default;                     <<  92 G4Box::~G4Box()
                                                   >>  93 {
                                                   >>  94 }
 85                                                    95 
 86 //////////////////////////////////////////////     96 //////////////////////////////////////////////////////////////////////////
 87 //                                                 97 //
 88 // Copy constructor                                98 // Copy constructor
 89                                                    99 
 90 G4Box::G4Box(const G4Box&) = default;          << 100 G4Box::G4Box(const G4Box& rhs)
                                                   >> 101   : G4CSGSolid(rhs), fDx(rhs.fDx), fDy(rhs.fDy), fDz(rhs.fDz)
                                                   >> 102 {
                                                   >> 103 }
 91                                                   104 
 92 //////////////////////////////////////////////    105 //////////////////////////////////////////////////////////////////////////
 93 //                                                106 //
 94 // Assignment operator                            107 // Assignment operator
 95                                                   108 
 96 G4Box& G4Box::operator = (const G4Box& rhs)    << 109 G4Box& G4Box::operator = (const G4Box& rhs) 
 97 {                                                 110 {
 98    // Check assignment to self                    111    // Check assignment to self
 99    //                                             112    //
100    if (this == &rhs)  { return *this; }           113    if (this == &rhs)  { return *this; }
101                                                   114 
102    // Copy base class data                        115    // Copy base class data
103    //                                             116    //
104    G4CSGSolid::operator=(rhs);                    117    G4CSGSolid::operator=(rhs);
105                                                   118 
106    // Copy data                                   119    // Copy data
107    //                                             120    //
108    fDx = rhs.fDx;                                 121    fDx = rhs.fDx;
109    fDy = rhs.fDy;                                 122    fDy = rhs.fDy;
110    fDz = rhs.fDz;                                 123    fDz = rhs.fDz;
111    delta = rhs.delta;                          << 
112                                                   124 
113    return *this;                                  125    return *this;
114 }                                                 126 }
115                                                   127 
116 ////////////////////////////////////////////// << 128 //////////////////////////////////////////////////////////////////////////////
117 //                                             << 
118 //  Set X dimension                            << 
119                                                   129 
120 void G4Box::SetXHalfLength(G4double dx)           130 void G4Box::SetXHalfLength(G4double dx)
121 {                                                 131 {
122   if(dx > 2*kCarTolerance)  // limit to thickn    132   if(dx > 2*kCarTolerance)  // limit to thickness of surfaces
123   {                                               133   {
124     fDx = dx;                                     134     fDx = dx;
125   }                                               135   }
126   else                                            136   else
127   {                                               137   {
128     std::ostringstream message;                   138     std::ostringstream message;
129     message << "Dimension X too small for soli    139     message << "Dimension X too small for solid: " << GetName() << "!"
130             << G4endl                             140             << G4endl
131             << "       hX = " << dx;              141             << "       hX = " << dx;
132     G4Exception("G4Box::SetXHalfLength()", "Ge    142     G4Exception("G4Box::SetXHalfLength()", "GeomSolids0002",
133                 FatalException, message);         143                 FatalException, message);
134   }                                               144   }
135   fCubicVolume = 0.;                           << 145   fCubicVolume= 0.;
136   fSurfaceArea = 0.;                           << 146   fSurfaceArea= 0.;
137   fRebuildPolyhedron = true;                   << 147   fpPolyhedron = 0;
138 }                                              << 148 } 
139                                                << 
140 ////////////////////////////////////////////// << 
141 //                                             << 
142 //  Set Y dimension                            << 
143                                                   149 
144 void G4Box::SetYHalfLength(G4double dy)        << 150 void G4Box::SetYHalfLength(G4double dy) 
145 {                                                 151 {
146   if(dy > 2*kCarTolerance)  // limit to thickn    152   if(dy > 2*kCarTolerance)  // limit to thickness of surfaces
147   {                                               153   {
148     fDy = dy;                                     154     fDy = dy;
149   }                                               155   }
150   else                                            156   else
151   {                                               157   {
152     std::ostringstream message;                   158     std::ostringstream message;
153     message << "Dimension Y too small for soli << 159     message << "Dimension Y too small for solid: " << GetName() << "!"
                                                   >> 160             << G4endl
154             << "       hY = " << dy;              161             << "       hY = " << dy;
155     G4Exception("G4Box::SetYHalfLength()", "Ge    162     G4Exception("G4Box::SetYHalfLength()", "GeomSolids0002",
156                 FatalException, message);         163                 FatalException, message);
157   }                                               164   }
158   fCubicVolume = 0.;                           << 165   fCubicVolume= 0.;
159   fSurfaceArea = 0.;                           << 166   fSurfaceArea= 0.;
160   fRebuildPolyhedron = true;                   << 167   fpPolyhedron = 0;
161 }                                              << 168 } 
162                                                   169 
163 ////////////////////////////////////////////// << 170 void G4Box::SetZHalfLength(G4double dz) 
164 //                                             << 
165 //  Set Z dimension                            << 
166                                                << 
167 void G4Box::SetZHalfLength(G4double dz)        << 
168 {                                                 171 {
169   if(dz > 2*kCarTolerance)  // limit to thickn    172   if(dz > 2*kCarTolerance)  // limit to thickness of surfaces
170   {                                               173   {
171     fDz = dz;                                     174     fDz = dz;
172   }                                               175   }
173   else                                            176   else
174   {                                               177   {
175     std::ostringstream message;                   178     std::ostringstream message;
176     message << "Dimension Z too small for soli << 179     message << "Dimension Z too small for solid: " << GetName() << "!"
                                                   >> 180             << G4endl
177             << "       hZ = " << dz;              181             << "       hZ = " << dz;
178     G4Exception("G4Box::SetZHalfLength()", "Ge    182     G4Exception("G4Box::SetZHalfLength()", "GeomSolids0002",
179                 FatalException, message);         183                 FatalException, message);
180   }                                               184   }
181   fCubicVolume = 0.;                           << 185   fCubicVolume= 0.;
182   fSurfaceArea = 0.;                           << 186   fSurfaceArea= 0.;
183   fRebuildPolyhedron = true;                   << 187   fpPolyhedron = 0;
184 }                                              << 188 } 
185                                                   189 
186 ////////////////////////////////////////////// << 190 ////////////////////////////////////////////////////////////////////////
187 //                                                191 //
188 // Dispatch to parameterisation for replicatio    192 // Dispatch to parameterisation for replication mechanism dimension
189 // computation & modification.                    193 // computation & modification.
190                                                   194 
191 void G4Box::ComputeDimensions(G4VPVParameteris    195 void G4Box::ComputeDimensions(G4VPVParameterisation* p,
192                               const G4int n,      196                               const G4int n,
193                               const G4VPhysica    197                               const G4VPhysicalVolume* pRep)
194 {                                                 198 {
195   p->ComputeDimensions(*this,n,pRep);             199   p->ComputeDimensions(*this,n,pRep);
196 }                                                 200 }
197                                                   201 
198 //////////////////////////////////////////////    202 //////////////////////////////////////////////////////////////////////////
199 //                                                203 //
200 // Get bounding box                            << 
201                                                << 
202 void G4Box::BoundingLimits(G4ThreeVector& pMin << 
203 {                                              << 
204   pMin.set(-fDx,-fDy,-fDz);                    << 
205   pMax.set( fDx, fDy, fDz);                    << 
206                                                << 
207   // Check correctness of the bounding box     << 
208   //                                           << 
209   if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 
210   {                                            << 
211     std::ostringstream message;                << 
212     message << "Bad bounding box (min >= max)  << 
213             << GetName() << " !"               << 
214             << "\npMin = " << pMin             << 
215             << "\npMax = " << pMax;            << 
216     G4Exception("G4Box::BoundingLimits()", "Ge << 
217     DumpInfo();                                << 
218   }                                            << 
219 }                                              << 
220                                                << 
221 ////////////////////////////////////////////// << 
222 //                                             << 
223 // Calculate extent under transform and specif    204 // Calculate extent under transform and specified limit
224                                                   205 
225 G4bool G4Box::CalculateExtent(const EAxis pAxi    206 G4bool G4Box::CalculateExtent(const EAxis pAxis,
226                               const G4VoxelLim    207                               const G4VoxelLimits& pVoxelLimit,
227                               const G4AffineTr    208                               const G4AffineTransform& pTransform,
228                                     G4double&     209                                     G4double& pMin, G4double& pMax) const
229 {                                                 210 {
230   G4ThreeVector bmin, bmax;                    << 211   if (!pTransform.IsRotated())
                                                   >> 212   {
                                                   >> 213     // Special case handling for unrotated boxes
                                                   >> 214     // Compute x/y/z mins and maxs respecting limits, with early returns
                                                   >> 215     // if outside limits. Then switch() on pAxis
                                                   >> 216 
                                                   >> 217     G4double xoffset,xMin,xMax;
                                                   >> 218     G4double yoffset,yMin,yMax;
                                                   >> 219     G4double zoffset,zMin,zMax;
                                                   >> 220 
                                                   >> 221     xoffset = pTransform.NetTranslation().x() ;
                                                   >> 222     xMin    = xoffset - fDx ;
                                                   >> 223     xMax    = xoffset + fDx ;
231                                                   224 
232   // Get bounding box                          << 225     if (pVoxelLimit.IsXLimited())
233   BoundingLimits(bmin,bmax);                   << 226     {
                                                   >> 227       if ((xMin > pVoxelLimit.GetMaxXExtent()+kCarTolerance) || 
                                                   >> 228           (xMax < pVoxelLimit.GetMinXExtent()-kCarTolerance)) { return false ; }
                                                   >> 229       else
                                                   >> 230       {
                                                   >> 231         xMin = std::max(xMin, pVoxelLimit.GetMinXExtent());
                                                   >> 232         xMax = std::min(xMax, pVoxelLimit.GetMaxXExtent());
                                                   >> 233       }
                                                   >> 234     }
                                                   >> 235     yoffset = pTransform.NetTranslation().y() ;
                                                   >> 236     yMin    = yoffset - fDy ;
                                                   >> 237     yMax    = yoffset + fDy ;
234                                                   238 
235   // Find extent                               << 239     if (pVoxelLimit.IsYLimited())
236   G4BoundingEnvelope bbox(bmin,bmax);          << 240     {
237   return bbox.CalculateExtent(pAxis,pVoxelLimi << 241       if ((yMin > pVoxelLimit.GetMaxYExtent()+kCarTolerance) ||
238 }                                              << 242           (yMax < pVoxelLimit.GetMinYExtent()-kCarTolerance)) { return false ; }
                                                   >> 243       else
                                                   >> 244       {
                                                   >> 245         yMin = std::max(yMin, pVoxelLimit.GetMinYExtent());
                                                   >> 246         yMax = std::min(yMax, pVoxelLimit.GetMaxYExtent());
                                                   >> 247       }
                                                   >> 248     }
                                                   >> 249     zoffset = pTransform.NetTranslation().z() ;
                                                   >> 250     zMin    = zoffset - fDz ;
                                                   >> 251     zMax    = zoffset + fDz ;
239                                                   252 
240 ////////////////////////////////////////////// << 253     if (pVoxelLimit.IsZLimited())
                                                   >> 254     {
                                                   >> 255       if ((zMin > pVoxelLimit.GetMaxZExtent()+kCarTolerance) ||
                                                   >> 256           (zMax < pVoxelLimit.GetMinZExtent()-kCarTolerance)) { return false ; }
                                                   >> 257       else
                                                   >> 258       {
                                                   >> 259         zMin = std::max(zMin, pVoxelLimit.GetMinZExtent());
                                                   >> 260         zMax = std::min(zMax, pVoxelLimit.GetMaxZExtent());
                                                   >> 261       }
                                                   >> 262     }
                                                   >> 263     switch (pAxis)
                                                   >> 264     {
                                                   >> 265       case kXAxis:
                                                   >> 266         pMin = xMin ;
                                                   >> 267         pMax = xMax ;
                                                   >> 268         break ;
                                                   >> 269       case kYAxis:
                                                   >> 270         pMin=yMin;
                                                   >> 271         pMax=yMax;
                                                   >> 272         break;
                                                   >> 273       case kZAxis:
                                                   >> 274         pMin=zMin;
                                                   >> 275         pMax=zMax;
                                                   >> 276         break;
                                                   >> 277       default:
                                                   >> 278         break;
                                                   >> 279     }
                                                   >> 280     pMin -= kCarTolerance ;
                                                   >> 281     pMax += kCarTolerance ;
                                                   >> 282 
                                                   >> 283     return true;
                                                   >> 284   }
                                                   >> 285   else  // General rotated case - create and clip mesh to boundaries
                                                   >> 286   {
                                                   >> 287     G4bool existsAfterClip = false ;
                                                   >> 288     G4ThreeVectorList* vertices ;
                                                   >> 289 
                                                   >> 290     pMin = +kInfinity ;
                                                   >> 291     pMax = -kInfinity ;
                                                   >> 292 
                                                   >> 293     // Calculate rotated vertex coordinates
                                                   >> 294 
                                                   >> 295     vertices = CreateRotatedVertices(pTransform) ;
                                                   >> 296     ClipCrossSection(vertices,0,pVoxelLimit,pAxis,pMin,pMax) ;
                                                   >> 297     ClipCrossSection(vertices,4,pVoxelLimit,pAxis,pMin,pMax) ;
                                                   >> 298     ClipBetweenSections(vertices,0,pVoxelLimit,pAxis,pMin,pMax) ;
                                                   >> 299 
                                                   >> 300     if (pVoxelLimit.IsLimited(pAxis) == false) 
                                                   >> 301     {  
                                                   >> 302       if ( (pMin != kInfinity) || (pMax != -kInfinity) ) 
                                                   >> 303       {
                                                   >> 304         existsAfterClip = true ;
                                                   >> 305 
                                                   >> 306         // Add 2*tolerance to avoid precision troubles
                                                   >> 307 
                                                   >> 308         pMin -= kCarTolerance;
                                                   >> 309         pMax += kCarTolerance;
                                                   >> 310       }
                                                   >> 311     }      
                                                   >> 312     else
                                                   >> 313     {
                                                   >> 314       G4ThreeVector clipCentre(
                                                   >> 315        ( pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5,
                                                   >> 316        ( pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5,
                                                   >> 317        ( pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5);
                                                   >> 318 
                                                   >> 319       if ( (pMin != kInfinity) || (pMax != -kInfinity) )
                                                   >> 320       {
                                                   >> 321         existsAfterClip = true ;
                                                   >> 322   
                                                   >> 323 
                                                   >> 324         // Check to see if endpoints are in the solid
                                                   >> 325 
                                                   >> 326         clipCentre(pAxis) = pVoxelLimit.GetMinExtent(pAxis);
                                                   >> 327 
                                                   >> 328         if (Inside(pTransform.Inverse().TransformPoint(clipCentre)) != kOutside)
                                                   >> 329         {
                                                   >> 330           pMin = pVoxelLimit.GetMinExtent(pAxis);
                                                   >> 331         }
                                                   >> 332         else
                                                   >> 333         {
                                                   >> 334           pMin -= kCarTolerance;
                                                   >> 335         }
                                                   >> 336         clipCentre(pAxis) = pVoxelLimit.GetMaxExtent(pAxis);
                                                   >> 337 
                                                   >> 338         if (Inside(pTransform.Inverse().TransformPoint(clipCentre)) != kOutside)
                                                   >> 339         {
                                                   >> 340           pMax = pVoxelLimit.GetMaxExtent(pAxis);
                                                   >> 341         }
                                                   >> 342         else
                                                   >> 343         {
                                                   >> 344           pMax += kCarTolerance;
                                                   >> 345         }
                                                   >> 346       }
                                                   >> 347 
                                                   >> 348       // Check for case where completely enveloping clipping volume
                                                   >> 349       // If point inside then we are confident that the solid completely
                                                   >> 350       // envelopes the clipping volume. Hence set min/max extents according
                                                   >> 351       // to clipping volume extents along the specified axis.
                                                   >> 352         
                                                   >> 353       else if (Inside(pTransform.Inverse().TransformPoint(clipCentre))
                                                   >> 354                       != kOutside)
                                                   >> 355       {
                                                   >> 356         existsAfterClip = true ;
                                                   >> 357         pMin            = pVoxelLimit.GetMinExtent(pAxis) ;
                                                   >> 358         pMax            = pVoxelLimit.GetMaxExtent(pAxis) ;
                                                   >> 359       }
                                                   >> 360     } 
                                                   >> 361     delete vertices;
                                                   >> 362     return existsAfterClip;
                                                   >> 363   } 
                                                   >> 364 } 
                                                   >> 365 
                                                   >> 366 /////////////////////////////////////////////////////////////////////////
241 //                                                367 //
242 // Return whether point inside/outside/on surf    368 // Return whether point inside/outside/on surface, using tolerance
243                                                   369 
244 EInside G4Box::Inside(const G4ThreeVector& p)     370 EInside G4Box::Inside(const G4ThreeVector& p) const
245 {                                                 371 {
246   G4double dist = std::max(std::max(           << 372   static const G4double delta=0.5*kCarTolerance;
247                   std::abs(p.x())-fDx,         << 373   EInside in = kOutside ;
248                   std::abs(p.y())-fDy),        << 374   G4ThreeVector q(std::fabs(p.x()), std::fabs(p.y()), std::fabs(p.z()));
249                   std::abs(p.z())-fDz);        << 375 
250   return (dist > delta) ? kOutside :           << 376   if ( q.x() <= (fDx - delta) )
251     ((dist > -delta) ? kSurface : kInside);    << 377   {
                                                   >> 378     if (q.y() <= (fDy - delta) )
                                                   >> 379     {
                                                   >> 380       if      ( q.z() <= (fDz - delta) ) { in = kInside ;  }
                                                   >> 381       else if ( q.z() <= (fDz + delta) ) { in = kSurface ; }
                                                   >> 382     }
                                                   >> 383     else if ( q.y() <= (fDy + delta) )
                                                   >> 384     {
                                                   >> 385       if ( q.z() <= (fDz + delta) ) { in = kSurface ; }
                                                   >> 386     }
                                                   >> 387   }
                                                   >> 388   else if ( q.x() <= (fDx + delta) )
                                                   >> 389   {
                                                   >> 390     if ( q.y() <= (fDy + delta) )
                                                   >> 391     {
                                                   >> 392       if ( q.z() <= (fDz + delta) ) { in = kSurface ; }
                                                   >> 393     }
                                                   >> 394   }
                                                   >> 395   return in ;
252 }                                                 396 }
253                                                   397 
254 ////////////////////////////////////////////// << 398 ///////////////////////////////////////////////////////////////////////
255 //                                                399 //
256 // Detect the side(s) and return corresponding << 400 // Calculate side nearest to p, and return normal
                                                   >> 401 // If two sides are equidistant, normal of first side (x/y/z) 
                                                   >> 402 // encountered returned
257                                                   403 
258 G4ThreeVector G4Box::SurfaceNormal( const G4Th    404 G4ThreeVector G4Box::SurfaceNormal( const G4ThreeVector& p) const
259 {                                                 405 {
260   G4ThreeVector norm(0,0,0);                   << 406   G4double distx, disty, distz ;
261   G4double px = p.x();                         << 407   G4ThreeVector norm(0.,0.,0.);
262   if (std::abs(std::abs(px) - fDx) <= delta) n << 408 
263   G4double py = p.y();                         << 409   // Calculate distances as if in 1st octant
264   if (std::abs(std::abs(py) - fDy) <= delta) n << 410 
265   G4double pz = p.z();                         << 411   distx = std::fabs(std::fabs(p.x()) - fDx) ;
266   if (std::abs(std::abs(pz) - fDz) <= delta) n << 412   disty = std::fabs(std::fabs(p.y()) - fDy) ;
267                                                << 413   distz = std::fabs(std::fabs(p.z()) - fDz) ;
268   G4double nside = norm.mag2(); // number of s << 414 
269   if (nside == 1)                              << 415   // New code for particle on surface including edges and corners with specific
270     return norm;                               << 416   // normals
271   else if (nside > 1)                          << 417 
272     return norm.unit(); // edge or corner      << 418   static const G4double delta    = 0.5*kCarTolerance;
                                                   >> 419   const G4ThreeVector nX  = G4ThreeVector( 1.0, 0,0  );
                                                   >> 420   const G4ThreeVector nmX = G4ThreeVector(-1.0, 0,0  );
                                                   >> 421   const G4ThreeVector nY  = G4ThreeVector( 0, 1.0,0  );
                                                   >> 422   const G4ThreeVector nmY = G4ThreeVector( 0,-1.0,0  );
                                                   >> 423   const G4ThreeVector nZ  = G4ThreeVector( 0, 0,  1.0);
                                                   >> 424   const G4ThreeVector nmZ = G4ThreeVector( 0, 0,- 1.0);
                                                   >> 425 
                                                   >> 426   G4ThreeVector normX(0.,0.,0.), normY(0.,0.,0.), normZ(0.,0.,0.);
                                                   >> 427   G4ThreeVector sumnorm(0., 0., 0.);
                                                   >> 428   G4int noSurfaces=0; 
                                                   >> 429 
                                                   >> 430   if (distx <= delta)         // on X/mX surface and around
                                                   >> 431   {
                                                   >> 432     noSurfaces ++; 
                                                   >> 433     if ( p.x() >= 0. )  { normX= nX ; }       // on +X surface : (1,0,0)
                                                   >> 434     else                { normX= nmX; }       //                 (-1,0,0)
                                                   >> 435     sumnorm= normX; 
                                                   >> 436   }
                                                   >> 437 
                                                   >> 438   if (disty <= delta)    // on one of the +Y or -Y surfaces
                                                   >> 439   {
                                                   >> 440     noSurfaces ++; 
                                                   >> 441     if ( p.y() >= 0. )  { normY= nY;  }       // on +Y surface
                                                   >> 442     else                { normY= nmY; }
                                                   >> 443     sumnorm += normY; 
                                                   >> 444   }
                                                   >> 445 
                                                   >> 446   if (distz <= delta)    // on one of the +Z or -Z surfaces
                                                   >> 447   {
                                                   >> 448     noSurfaces ++; 
                                                   >> 449     if ( p.z() >= 0. )  { normZ= nZ;  }       // on +Z surface
                                                   >> 450     else                { normZ= nmZ; }
                                                   >> 451     sumnorm += normZ;
                                                   >> 452   }
                                                   >> 453 
                                                   >> 454   static const G4double invSqrt2 = 1.0 / std::sqrt(2.0); 
                                                   >> 455   static const G4double invSqrt3 = 1.0 / std::sqrt(3.0); 
                                                   >> 456 
                                                   >> 457   if( noSurfaces > 0 )
                                                   >> 458   { 
                                                   >> 459     if( noSurfaces == 1 )
                                                   >> 460     { 
                                                   >> 461       norm= sumnorm; 
                                                   >> 462     }
                                                   >> 463     else
                                                   >> 464     {
                                                   >> 465       // norm = sumnorm . unit(); 
                                                   >> 466       if( noSurfaces == 2 )
                                                   >> 467       { 
                                                   >> 468         // 2 surfaces -> on edge 
                                                   >> 469         norm = invSqrt2 * sumnorm; 
                                                   >> 470       }
                                                   >> 471       else
                                                   >> 472       { 
                                                   >> 473         // 3 surfaces (on corner)
                                                   >> 474         norm = invSqrt3 * sumnorm; 
                                                   >> 475       }
                                                   >> 476     }
                                                   >> 477   }
273   else                                            478   else
274   {                                               479   {
275     // Point is not on the surface             << 
276     //                                         << 
277 #ifdef G4CSGDEBUG                                 480 #ifdef G4CSGDEBUG
278     std::ostringstream message;                << 481      G4Exception("G4Box::SurfaceNormal(p)", "Notification", JustWarning, 
279     G4int oldprc = message.precision(16);      << 482                  "Point p is not on surface !?" );
280     message << "Point p is not on surface (!?) << 483 #endif 
281             << GetName() << G4endl;            << 484      norm = ApproxSurfaceNormal(p);
282     message << "Position:\n";                  << 
283     message << "   p.x() = " << p.x()/mm << "  << 
284     message << "   p.y() = " << p.y()/mm << "  << 
285     message << "   p.z() = " << p.z()/mm << "  << 
286     G4cout.precision(oldprc);                  << 
287     G4Exception("G4Box::SurfaceNormal(p)", "Ge << 
288                 JustWarning, message );        << 
289     DumpInfo();                                << 
290 #endif                                         << 
291     return ApproxSurfaceNormal(p);             << 
292   }                                               485   }
                                                   >> 486   
                                                   >> 487   return norm;
293 }                                                 488 }
294                                                   489 
295 //////////////////////////////////////////////    490 //////////////////////////////////////////////////////////////////////////
296 //                                                491 //
297 // Algorithm for SurfaceNormal() following the    492 // Algorithm for SurfaceNormal() following the original specification
298 // for points not on the surface                  493 // for points not on the surface
299                                                   494 
300 G4ThreeVector G4Box::ApproxSurfaceNormal(const << 495 G4ThreeVector G4Box::ApproxSurfaceNormal( const G4ThreeVector& p ) const
301 {                                                 496 {
302   G4double distx = std::abs(p.x()) - fDx;      << 497   G4double distx, disty, distz ;
303   G4double disty = std::abs(p.y()) - fDy;      << 498   G4ThreeVector norm(0.,0.,0.);
304   G4double distz = std::abs(p.z()) - fDz;      << 499 
305                                                << 500   // Calculate distances as if in 1st octant
306   if (distx >= disty && distx >= distz)        << 501 
307     return {std::copysign(1.,p.x()), 0., 0.};  << 502   distx = std::fabs(std::fabs(p.x()) - fDx) ;
308   if (disty >= distx && disty >= distz)        << 503   disty = std::fabs(std::fabs(p.y()) - fDy) ;
309     return {0., std::copysign(1.,p.y()), 0.};  << 504   distz = std::fabs(std::fabs(p.z()) - fDz) ;
                                                   >> 505 
                                                   >> 506   if ( distx <= disty )
                                                   >> 507   {
                                                   >> 508     if ( distx <= distz )     // Closest to X
                                                   >> 509     {
                                                   >> 510       if ( p.x() < 0 ) { norm = G4ThreeVector(-1.0,0,0) ; }
                                                   >> 511       else             { norm = G4ThreeVector( 1.0,0,0) ; }
                                                   >> 512     }
                                                   >> 513     else                      // Closest to Z
                                                   >> 514     {
                                                   >> 515       if ( p.z() < 0 ) { norm = G4ThreeVector(0,0,-1.0) ; }
                                                   >> 516       else             { norm = G4ThreeVector(0,0, 1.0) ; }
                                                   >> 517     }
                                                   >> 518   }
310   else                                            519   else
311     return {0., 0., std::copysign(1.,p.z())};  << 520   {
                                                   >> 521     if ( disty <= distz )      // Closest to Y
                                                   >> 522     {
                                                   >> 523       if ( p.y() < 0 ) { norm = G4ThreeVector(0,-1.0,0) ; }
                                                   >> 524       else             { norm = G4ThreeVector(0, 1.0,0) ; }
                                                   >> 525     }
                                                   >> 526     else                       // Closest to Z
                                                   >> 527     {
                                                   >> 528       if ( p.z() < 0 ) { norm = G4ThreeVector(0,0,-1.0) ; }
                                                   >> 529       else             { norm = G4ThreeVector(0,0, 1.0) ; }
                                                   >> 530     }
                                                   >> 531   }
                                                   >> 532   return norm;
312 }                                                 533 }
313                                                   534 
314 ////////////////////////////////////////////// << 535 ///////////////////////////////////////////////////////////////////////////
315 //                                                536 //
316 // Calculate distance to box from an outside p    537 // Calculate distance to box from an outside point
317 // - return kInfinity if no intersection       << 538 // - return kInfinity if no intersection.
                                                   >> 539 //
                                                   >> 540 // ALGORITHM:
                                                   >> 541 //
                                                   >> 542 // Check that if point lies outside x/y/z extent of box, travel is towards
                                                   >> 543 // the box (ie. there is a possibility of an intersection)
                                                   >> 544 //
                                                   >> 545 // Calculate pairs of minimum and maximum distances for x/y/z travel for
                                                   >> 546 // intersection with the box's x/y/z extent.
                                                   >> 547 // If there is a valid intersection, it is given by the maximum min distance
                                                   >> 548 // (ie. distance to satisfy x/y/z intersections) *if* <= minimum max distance
                                                   >> 549 // (ie. distance after which 1+ of x/y/z intersections not satisfied)
318 //                                                550 //
                                                   >> 551 // NOTE:
                                                   >> 552 //
                                                   >> 553 // `Inside' safe - meaningful answers given if point is inside the exact
                                                   >> 554 // shape.
319                                                   555 
320 G4double G4Box::DistanceToIn(const G4ThreeVect    556 G4double G4Box::DistanceToIn(const G4ThreeVector& p,
321                              const G4ThreeVect    557                              const G4ThreeVector& v) const
322 {                                                 558 {
323   // Check if point is on the surface and trav << 559   G4double safx, safy, safz ;
324   //                                           << 560   G4double smin=0.0, sminy, sminz ; // , sminx ;
325   if ((std::abs(p.x()) - fDx) >= -delta && p.x << 561   G4double smax=kInfinity, smaxy, smaxz ; // , smaxx ;  // they always > 0
326   if ((std::abs(p.y()) - fDy) >= -delta && p.y << 562   G4double stmp ;
327   if ((std::abs(p.z()) - fDz) >= -delta && p.z << 563   G4double sOut=kInfinity, sOuty=kInfinity, sOutz=kInfinity ;
328                                                << 564 
329   // Find intersection                         << 565   static const G4double delta = 0.5*kCarTolerance;
330   //                                           << 566 
331   G4double invx = (v.x() == 0) ? DBL_MAX : -1. << 567   safx = std::fabs(p.x()) - fDx ;     // minimum distance to x surface of shape
332   G4double dx = std::copysign(fDx,invx);       << 568   safy = std::fabs(p.y()) - fDy ;
333   G4double txmin = (p.x() - dx)*invx;          << 569   safz = std::fabs(p.z()) - fDz ;
334   G4double txmax = (p.x() + dx)*invx;          << 570 
335                                                << 571   // Will we intersect?
336   G4double invy = (v.y() == 0) ? DBL_MAX : -1. << 572   // If safx/y/z is >-tol/2 the point is outside/on the box's x/y/z extent.
337   G4double dy = std::copysign(fDy,invy);       << 573   // If both p.x/y/z and v.x/y/z repectively are both positive/negative,
338   G4double tymin = std::max(txmin,(p.y() - dy) << 574   // travel is in a direction away from the shape.
339   G4double tymax = std::min(txmax,(p.y() + dy) << 575 
340                                                << 576   if (    ((p.x()*v.x() >= 0.0) && (safx > -delta)) 
341   G4double invz = (v.z() == 0) ? DBL_MAX : -1. << 577        || ((p.y()*v.y() >= 0.0) && (safy > -delta))
342   G4double dz = std::copysign(fDz,invz);       << 578        || ((p.z()*v.z() >= 0.0) && (safz > -delta))   ) 
343   G4double tmin = std::max(tymin,(p.z() - dz)* << 579   {
344   G4double tmax = std::min(tymax,(p.z() + dz)* << 580     return kInfinity ;  // travel away or parallel within tolerance
                                                   >> 581   }
                                                   >> 582 
                                                   >> 583   // Compute min / max distances for x/y/z travel:
                                                   >> 584   // X Planes
                                                   >> 585 
                                                   >> 586   if ( v.x() )  // != 0
                                                   >> 587   {
                                                   >> 588     stmp = 1.0/std::fabs(v.x()) ;
345                                                   589 
346   if (tmax <= tmin + delta) return kInfinity;  << 590     if (safx >= 0.0)
347   return (tmin < delta) ? 0. : tmin;           << 591     {
                                                   >> 592       smin = safx*stmp ;
                                                   >> 593       smax = (fDx+std::fabs(p.x()))*stmp ;
                                                   >> 594     }
                                                   >> 595     else
                                                   >> 596     {
                                                   >> 597       if (v.x() < 0)  { sOut = (fDx + p.x())*stmp ; }
                                                   >> 598       else            { sOut = (fDx - p.x())*stmp ; }
                                                   >> 599     }
                                                   >> 600   }
                                                   >> 601 
                                                   >> 602   // Y Planes
                                                   >> 603 
                                                   >> 604   if ( v.y() )  // != 0
                                                   >> 605   {
                                                   >> 606     stmp = 1.0/std::fabs(v.y()) ;
                                                   >> 607 
                                                   >> 608     if (safy >= 0.0)
                                                   >> 609     {
                                                   >> 610       sminy = safy*stmp ;
                                                   >> 611       smaxy = (fDy+std::fabs(p.y()))*stmp ;
                                                   >> 612 
                                                   >> 613       if (sminy > smin) { smin=sminy ; }
                                                   >> 614       if (smaxy < smax) { smax=smaxy ; }
                                                   >> 615 
                                                   >> 616       if (smin >= (smax-delta))
                                                   >> 617       {
                                                   >> 618         return kInfinity ;  // touch XY corner
                                                   >> 619       }
                                                   >> 620     }
                                                   >> 621     else
                                                   >> 622     {
                                                   >> 623       if (v.y() < 0)  { sOuty = (fDy + p.y())*stmp ; }
                                                   >> 624       else            { sOuty = (fDy - p.y())*stmp ; }
                                                   >> 625       if( sOuty < sOut ) { sOut = sOuty ; }
                                                   >> 626     }     
                                                   >> 627   }
                                                   >> 628 
                                                   >> 629   // Z planes
                                                   >> 630 
                                                   >> 631   if ( v.z() )  // != 0
                                                   >> 632   {
                                                   >> 633     stmp = 1.0/std::fabs(v.z()) ;
                                                   >> 634 
                                                   >> 635     if ( safz >= 0.0 )
                                                   >> 636     {
                                                   >> 637       sminz = safz*stmp ;
                                                   >> 638       smaxz = (fDz+std::fabs(p.z()))*stmp ;
                                                   >> 639 
                                                   >> 640       if (sminz > smin) { smin = sminz ; }
                                                   >> 641       if (smaxz < smax) { smax = smaxz ; }
                                                   >> 642 
                                                   >> 643       if (smin >= (smax-delta))
                                                   >> 644       { 
                                                   >> 645         return kInfinity ;    // touch ZX or ZY corners
                                                   >> 646       }
                                                   >> 647     }
                                                   >> 648     else
                                                   >> 649     {
                                                   >> 650       if (v.z() < 0)  { sOutz = (fDz + p.z())*stmp ; }
                                                   >> 651       else            { sOutz = (fDz - p.z())*stmp ; }
                                                   >> 652       if( sOutz < sOut ) { sOut = sOutz ; }
                                                   >> 653     }
                                                   >> 654   }
                                                   >> 655 
                                                   >> 656   if (sOut <= (smin + delta)) // travel over edge
                                                   >> 657   {
                                                   >> 658     return kInfinity ;
                                                   >> 659   }
                                                   >> 660   if (smin < delta)  { smin = 0.0 ; }
                                                   >> 661 
                                                   >> 662   return smin ;
348 }                                                 663 }
349                                                   664 
350 //////////////////////////////////////////////    665 //////////////////////////////////////////////////////////////////////////
351 //                                             << 666 // 
352 // Appoximate distance to box.                    667 // Appoximate distance to box.
353 // Returns largest perpendicular distance to t    668 // Returns largest perpendicular distance to the closest x/y/z sides of
354 // the box, which is the most fast estimation     669 // the box, which is the most fast estimation of the shortest distance to box
355 // - If inside return 0                           670 // - If inside return 0
356                                                   671 
357 G4double G4Box::DistanceToIn(const G4ThreeVect    672 G4double G4Box::DistanceToIn(const G4ThreeVector& p) const
358 {                                                 673 {
359   G4double dist = std::max(std::max(           << 674   G4double safex, safey, safez, safe = 0.0 ;
360                   std::abs(p.x())-fDx,         << 675 
361                   std::abs(p.y())-fDy),        << 676   safex = std::fabs(p.x()) - fDx ;
362                   std::abs(p.z())-fDz);        << 677   safey = std::fabs(p.y()) - fDy ;
363   return (dist > 0) ? dist : 0.;               << 678   safez = std::fabs(p.z()) - fDz ;
                                                   >> 679 
                                                   >> 680   if (safex > safe) { safe = safex ; }
                                                   >> 681   if (safey > safe) { safe = safey ; }
                                                   >> 682   if (safez > safe) { safe = safez ; }
                                                   >> 683 
                                                   >> 684   return safe ;
364 }                                                 685 }
365                                                   686 
366 ////////////////////////////////////////////// << 687 /////////////////////////////////////////////////////////////////////////
367 //                                                688 //
368 // Calculate distance to surface of the box fr << 689 // Calculate distance to surface of box from inside
369 // find normal at exit point, if required      << 690 // by calculating distances to box's x/y/z planes.
370 // - when leaving the surface, return 0        << 691 // Smallest distance is exact distance to exiting.
                                                   >> 692 // - Eliminate one side of each pair by considering direction of v
                                                   >> 693 // - when leaving a surface & v.close, return 0
371                                                   694 
372 G4double G4Box::DistanceToOut( const G4ThreeVe << 695 G4double G4Box::DistanceToOut( const G4ThreeVector& p,const G4ThreeVector& v,
373                                const G4ThreeVe << 
374                                const G4bool ca    696                                const G4bool calcNorm,
375                                G4bool* validNo << 697                                      G4bool *validNorm,G4ThreeVector *n) const
376 {                                                 698 {
377   // Check if point is on the surface and trav << 699   ESide side = kUndefined ;
378   //                                           << 700   G4double pdist,stmp,snxt=kInfinity;
379   if ((std::abs(p.x()) - fDx) >= -delta && p.x << 701 
                                                   >> 702   static const G4double delta = 0.5*kCarTolerance;
                                                   >> 703 
                                                   >> 704   if (calcNorm) { *validNorm = true ; }  // All normals are valid
                                                   >> 705 
                                                   >> 706   if (v.x() > 0)   // X planes
380   {                                               707   {
381     if (calcNorm)                              << 708     pdist = fDx - p.x() ;
                                                   >> 709 
                                                   >> 710     if (pdist > delta)
382     {                                             711     {
383       *validNorm = true;                       << 712       snxt = pdist/v.x() ;
384       n->set((p.x() < 0) ? -1. : 1., 0., 0.);  << 713       side = kPX ;
                                                   >> 714     }
                                                   >> 715     else
                                                   >> 716     {
                                                   >> 717       if (calcNorm) { *n   = G4ThreeVector(1,0,0) ; }
                                                   >> 718       return        snxt = 0 ;
385     }                                             719     }
386     return 0.;                                 << 
387   }                                               720   }
388   if ((std::abs(p.y()) - fDy) >= -delta && p.y << 721   else if (v.x() < 0)
389   {                                               722   {
390     if (calcNorm)                              << 723     pdist = fDx + p.x() ;
                                                   >> 724 
                                                   >> 725     if (pdist > delta)
391     {                                             726     {
392       *validNorm = true;                       << 727       snxt = -pdist/v.x() ;
393       n->set(0., (p.y() < 0) ? -1. : 1., 0.);  << 728       side = kMX ;
                                                   >> 729     }
                                                   >> 730     else
                                                   >> 731     {
                                                   >> 732       if (calcNorm) { *n   = G4ThreeVector(-1,0,0) ; }
                                                   >> 733       return        snxt = 0 ;
394     }                                             734     }
395     return 0.;                                 << 
396   }                                               735   }
397   if ((std::abs(p.z()) - fDz) >= -delta && p.z << 736 
                                                   >> 737   if (v.y() > 0)   // Y planes
398   {                                               738   {
399     if (calcNorm)                              << 739     pdist = fDy-p.y();
                                                   >> 740 
                                                   >> 741     if (pdist > delta)
                                                   >> 742     {
                                                   >> 743       stmp = pdist/v.y();
                                                   >> 744 
                                                   >> 745       if (stmp < snxt)
                                                   >> 746       {
                                                   >> 747         snxt = stmp;
                                                   >> 748         side = kPY;
                                                   >> 749       }
                                                   >> 750     }
                                                   >> 751     else
400     {                                             752     {
401       *validNorm = true;                       << 753       if (calcNorm) { *n   = G4ThreeVector(0,1,0) ; }
402       n->set(0., 0., (p.z() < 0) ? -1. : 1.);  << 754       return        snxt = 0 ;
403     }                                             755     }
404     return 0.;                                 << 
405   }                                               756   }
                                                   >> 757   else if (v.y() < 0)
                                                   >> 758   {
                                                   >> 759     pdist = fDy + p.y() ;
406                                                   760 
407   // Find intersection                         << 761     if (pdist > delta)
408   //                                           << 762     {
409   G4double vx = v.x();                         << 763       stmp = -pdist/v.y();
410   G4double tx = (vx == 0) ? DBL_MAX : (std::co << 
411                                                   764 
412   G4double vy = v.y();                         << 765       if ( stmp < snxt )
413   G4double ty = (vy == 0) ? tx : (std::copysig << 766       {
414   G4double txy = std::min(tx,ty);              << 767         snxt = stmp;
                                                   >> 768         side = kMY;
                                                   >> 769       }
                                                   >> 770     }
                                                   >> 771     else
                                                   >> 772     {
                                                   >> 773       if (calcNorm) { *n   = G4ThreeVector(0,-1,0) ; }
                                                   >> 774       return        snxt = 0 ;
                                                   >> 775     }
                                                   >> 776   }
415                                                   777 
416   G4double vz = v.z();                         << 778   if (v.z() > 0)        // Z planes
417   G4double tz = (vz == 0) ? txy : (std::copysi << 779   {
418   G4double tmax = std::min(txy,tz);            << 780     pdist = fDz-p.z();
419                                                   781 
420   // Set normal, if required, and return dista << 782     if ( pdist > delta )
421   //                                           << 783     {
422   if (calcNorm)                                << 784       stmp = pdist/v.z();
                                                   >> 785 
                                                   >> 786       if ( stmp < snxt )
                                                   >> 787       {
                                                   >> 788         snxt = stmp;
                                                   >> 789         side = kPZ;
                                                   >> 790       }
                                                   >> 791     }
                                                   >> 792     else
                                                   >> 793     {
                                                   >> 794       if (calcNorm) { *n   = G4ThreeVector(0,0,1) ; } 
                                                   >> 795       return        snxt = 0 ;
                                                   >> 796     }
                                                   >> 797   }
                                                   >> 798   else if (v.z() < 0)
423   {                                               799   {
424     *validNorm = true;                         << 800     pdist = fDz + p.z();
425     if (tmax == tx)      n->set((v.x() < 0) ?  << 801 
426     else if (tmax == ty) n->set(0., (v.y() < 0 << 802     if ( pdist > delta )
427     else                 n->set(0., 0., (v.z() << 803     {
                                                   >> 804       stmp = -pdist/v.z();
                                                   >> 805 
                                                   >> 806       if ( stmp < snxt )
                                                   >> 807       {
                                                   >> 808         snxt = stmp;
                                                   >> 809         side = kMZ;
                                                   >> 810       }
                                                   >> 811     }
                                                   >> 812     else
                                                   >> 813     {
                                                   >> 814       if (calcNorm) { *n   = G4ThreeVector(0,0,-1) ; }
                                                   >> 815       return        snxt = 0 ;
                                                   >> 816     }
428   }                                               817   }
429   return tmax;                                 << 818 
                                                   >> 819   if (calcNorm)
                                                   >> 820   {      
                                                   >> 821     switch (side)
                                                   >> 822     {
                                                   >> 823       case kPX:
                                                   >> 824         *n=G4ThreeVector(1,0,0);
                                                   >> 825         break;
                                                   >> 826       case kMX:
                                                   >> 827         *n=G4ThreeVector(-1,0,0);
                                                   >> 828         break;
                                                   >> 829       case kPY:
                                                   >> 830         *n=G4ThreeVector(0,1,0);
                                                   >> 831         break;
                                                   >> 832       case kMY:
                                                   >> 833         *n=G4ThreeVector(0,-1,0);
                                                   >> 834         break;
                                                   >> 835       case kPZ:
                                                   >> 836         *n=G4ThreeVector(0,0,1);
                                                   >> 837         break;
                                                   >> 838       case kMZ:
                                                   >> 839         *n=G4ThreeVector(0,0,-1);
                                                   >> 840         break;
                                                   >> 841       default:
                                                   >> 842         G4cout << G4endl;
                                                   >> 843         DumpInfo();
                                                   >> 844         std::ostringstream message;
                                                   >> 845         G4int oldprc = message.precision(16);
                                                   >> 846         message << "Undefined side for valid surface normal to solid."
                                                   >> 847                 << G4endl
                                                   >> 848                 << "Position:"  << G4endl << G4endl
                                                   >> 849                 << "p.x() = "   << p.x()/mm << " mm" << G4endl
                                                   >> 850                 << "p.y() = "   << p.y()/mm << " mm" << G4endl
                                                   >> 851                 << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl
                                                   >> 852                 << "Direction:" << G4endl << G4endl
                                                   >> 853                 << "v.x() = "   << v.x() << G4endl
                                                   >> 854                 << "v.y() = "   << v.y() << G4endl
                                                   >> 855                 << "v.z() = "   << v.z() << G4endl << G4endl
                                                   >> 856                 << "Proposed distance :" << G4endl << G4endl
                                                   >> 857                 << "snxt = "    << snxt/mm << " mm" << G4endl;
                                                   >> 858         message.precision(oldprc);
                                                   >> 859         G4Exception("G4Box::DistanceToOut(p,v,..)", "GeomSolids1002",
                                                   >> 860                     JustWarning, message);
                                                   >> 861         break;
                                                   >> 862     }
                                                   >> 863   }
                                                   >> 864   return snxt;
430 }                                                 865 }
431                                                   866 
432 //////////////////////////////////////////////    867 ////////////////////////////////////////////////////////////////////////////
433 //                                                868 //
434 // Calculate exact shortest distance to any bo    869 // Calculate exact shortest distance to any boundary from inside
435 // - if outside return 0                       << 870 // - If outside return 0
436                                                   871 
437 G4double G4Box::DistanceToOut(const G4ThreeVec    872 G4double G4Box::DistanceToOut(const G4ThreeVector& p) const
438 {                                                 873 {
                                                   >> 874   G4double safx1,safx2,safy1,safy2,safz1,safz2,safe=0.0;
                                                   >> 875 
439 #ifdef G4CSGDEBUG                                 876 #ifdef G4CSGDEBUG
440   if( Inside(p) == kOutside )                     877   if( Inside(p) == kOutside )
441   {                                               878   {
442     std::ostringstream message;                << 879      G4int oldprc = G4cout.precision(16) ;
443     G4int oldprc = message.precision(16);      << 880      G4cout << G4endl ;
444     message << "Point p is outside (!?) of sol << 881      DumpInfo();
445     message << "Position:\n";                  << 882      G4cout << "Position:"  << G4endl << G4endl ;
446     message << "   p.x() = " << p.x()/mm << "  << 883      G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl ;
447     message << "   p.y() = " << p.y()/mm << "  << 884      G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl ;
448     message << "   p.z() = " << p.z()/mm << "  << 885      G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl ;
449     G4cout.precision(oldprc);                  << 886      G4cout.precision(oldprc) ;
450     G4Exception("G4Box::DistanceToOut(p)", "Ge << 887      G4Exception("G4Box::DistanceToOut(p)", "GeomSolids1002",
451                 JustWarning, message );        << 888                  JustWarning, "Point p is outside !?" );
452     DumpInfo();                                << 
453   }                                               889   }
454 #endif                                            890 #endif
455   G4double dist = std::min(std::min(           << 891 
456                   fDx-std::abs(p.x()),         << 892   safx1 = fDx - p.x() ;
457                   fDy-std::abs(p.y())),        << 893   safx2 = fDx + p.x() ;
458                   fDz-std::abs(p.z()));        << 894   safy1 = fDy - p.y() ;
459   return (dist > 0) ? dist : 0.;               << 895   safy2 = fDy + p.y() ;
                                                   >> 896   safz1 = fDz - p.z() ;
                                                   >> 897   safz2 = fDz + p.z() ;  
                                                   >> 898   
                                                   >> 899   // shortest Dist to any boundary now MIN(safx1,safx2,safy1..)
                                                   >> 900 
                                                   >> 901   if (safx2 < safx1) { safe = safx2; }
                                                   >> 902   else               { safe = safx1; }
                                                   >> 903   if (safy1 < safe)  { safe = safy1; }
                                                   >> 904   if (safy2 < safe)  { safe = safy2; }
                                                   >> 905   if (safz1 < safe)  { safe = safz1; }
                                                   >> 906   if (safz2 < safe)  { safe = safz2; }
                                                   >> 907 
                                                   >> 908   if (safe < 0) { safe = 0 ; }
                                                   >> 909   return safe ;  
460 }                                                 910 }
461                                                   911 
462 ////////////////////////////////////////////// << 912 ////////////////////////////////////////////////////////////////////////
463 //                                                913 //
464 // GetEntityType                               << 914 // Create a List containing the transformed vertices
                                                   >> 915 // Ordering [0-3] -fDz cross section
                                                   >> 916 //          [4-7] +fDz cross section such that [0] is below [4],
                                                   >> 917 //                                             [1] below [5] etc.
                                                   >> 918 // Note:
                                                   >> 919 //  Caller has deletion resposibility
465                                                   920 
466 G4GeometryType G4Box::GetEntityType() const    << 921 G4ThreeVectorList*
                                                   >> 922 G4Box::CreateRotatedVertices(const G4AffineTransform& pTransform) const
467 {                                                 923 {
468   return {"G4Box"};                            << 924   G4ThreeVectorList* vertices = new G4ThreeVectorList();
                                                   >> 925 
                                                   >> 926   if (vertices)
                                                   >> 927   {
                                                   >> 928     vertices->reserve(8);
                                                   >> 929     G4ThreeVector vertex0(-fDx,-fDy,-fDz) ;
                                                   >> 930     G4ThreeVector vertex1(fDx,-fDy,-fDz) ;
                                                   >> 931     G4ThreeVector vertex2(fDx,fDy,-fDz) ;
                                                   >> 932     G4ThreeVector vertex3(-fDx,fDy,-fDz) ;
                                                   >> 933     G4ThreeVector vertex4(-fDx,-fDy,fDz) ;
                                                   >> 934     G4ThreeVector vertex5(fDx,-fDy,fDz) ;
                                                   >> 935     G4ThreeVector vertex6(fDx,fDy,fDz) ;
                                                   >> 936     G4ThreeVector vertex7(-fDx,fDy,fDz) ;
                                                   >> 937 
                                                   >> 938     vertices->push_back(pTransform.TransformPoint(vertex0));
                                                   >> 939     vertices->push_back(pTransform.TransformPoint(vertex1));
                                                   >> 940     vertices->push_back(pTransform.TransformPoint(vertex2));
                                                   >> 941     vertices->push_back(pTransform.TransformPoint(vertex3));
                                                   >> 942     vertices->push_back(pTransform.TransformPoint(vertex4));
                                                   >> 943     vertices->push_back(pTransform.TransformPoint(vertex5));
                                                   >> 944     vertices->push_back(pTransform.TransformPoint(vertex6));
                                                   >> 945     vertices->push_back(pTransform.TransformPoint(vertex7));
                                                   >> 946   }
                                                   >> 947   else
                                                   >> 948   {
                                                   >> 949     DumpInfo();
                                                   >> 950     G4Exception("G4Box::CreateRotatedVertices()",
                                                   >> 951                 "GeomSolids0003", FatalException,
                                                   >> 952                 "Error in allocation of vertices. Out of memory !");
                                                   >> 953   }
                                                   >> 954   return vertices;
469 }                                                 955 }
470                                                   956 
471 //////////////////////////////////////////////    957 //////////////////////////////////////////////////////////////////////////
472 //                                                958 //
473 // IsFaceted                                   << 959 // GetEntityType
474                                                   960 
475 G4bool G4Box::IsFaceted() const                << 961 G4GeometryType G4Box::GetEntityType() const
476 {                                                 962 {
477   return true;                                 << 963   return G4String("G4Box");
478 }                                                 964 }
479                                                   965 
480 //////////////////////////////////////////////    966 //////////////////////////////////////////////////////////////////////////
481 //                                                967 //
482 // Stream object contents to an output stream     968 // Stream object contents to an output stream
483                                                   969 
484 std::ostream& G4Box::StreamInfo(std::ostream&     970 std::ostream& G4Box::StreamInfo(std::ostream& os) const
485 {                                                 971 {
486   G4long oldprc = os.precision(16);            << 972   G4int oldprc = os.precision(16);
487   os << "-------------------------------------    973   os << "-----------------------------------------------------------\n"
488      << "    *** Dump for solid - " << GetName    974      << "    *** Dump for solid - " << GetName() << " ***\n"
489      << "    =================================    975      << "    ===================================================\n"
490      << "Solid type: G4Box\n"                  << 976      << " Solid type: G4Box\n"
491      << "Parameters: \n"                       << 977      << " Parameters: \n"
492      << "   half length X: " << fDx/mm << " mm << 978      << "    half length X: " << fDx/mm << " mm \n"
493      << "   half length Y: " << fDy/mm << " mm << 979      << "    half length Y: " << fDy/mm << " mm \n"
494      << "   half length Z: " << fDz/mm << " mm << 980      << "    half length Z: " << fDz/mm << " mm \n"
495      << "-------------------------------------    981      << "-----------------------------------------------------------\n";
496   os.precision(oldprc);                           982   os.precision(oldprc);
                                                   >> 983 
497   return os;                                      984   return os;
498 }                                                 985 }
499                                                   986 
500 ////////////////////////////////////////////// << 987 /////////////////////////////////////////////////////////////////////////////////////
                                                   >> 988 //
                                                   >> 989 // GetPointOnSurface
501 //                                                990 //
502 // Return a point randomly and uniformly selec << 991 // Return a point (G4ThreeVector) randomly and uniformly selected
                                                   >> 992 // on the solid surface
503                                                   993 
504 G4ThreeVector G4Box::GetPointOnSurface() const    994 G4ThreeVector G4Box::GetPointOnSurface() const
505 {                                                 995 {
506   G4double sxy = fDx*fDy, sxz = fDx*fDz, syz = << 996   G4double px, py, pz, select, sumS;
507   G4double select = (sxy + sxz + syz)*G4QuickR << 997   G4double Sxy = fDx*fDy, Sxz = fDx*fDz, Syz = fDy*fDz;
508   G4double u = 2.*G4QuickRand() - 1.;          << 998 
509   G4double v = 2.*G4QuickRand() - 1.;          << 999   sumS   = Sxy + Sxz + Syz;
510                                                << 1000   select = sumS*G4UniformRand();
511   if (select < sxy)                            << 1001  
512     return { u*fDx, v*fDy, ((select < 0.5*sxy) << 1002   if( select < Sxy )
513   else if (select < sxy + sxz)                 << 1003   {
514     return { u*fDx, ((select < sxy + 0.5*sxz)  << 1004     px = -fDx +2*fDx*G4UniformRand();
515   else                                         << 1005     py = -fDy +2*fDy*G4UniformRand();
516     return { ((select < sxy + sxz + 0.5*syz) ? << 1006 
                                                   >> 1007     if(G4UniformRand() > 0.5) { pz =  fDz; }
                                                   >> 1008     else                      { pz = -fDz; }
                                                   >> 1009   }
                                                   >> 1010   else if ( ( select - Sxy ) < Sxz ) 
                                                   >> 1011   {
                                                   >> 1012     px = -fDx +2*fDx*G4UniformRand();
                                                   >> 1013     pz = -fDz +2*fDz*G4UniformRand();
                                                   >> 1014 
                                                   >> 1015     if(G4UniformRand() > 0.5) { py =  fDy; }
                                                   >> 1016     else                      { py = -fDy; }
                                                   >> 1017   }
                                                   >> 1018   else  
                                                   >> 1019   {
                                                   >> 1020     py = -fDy +2*fDy*G4UniformRand();
                                                   >> 1021     pz = -fDz +2*fDz*G4UniformRand();
                                                   >> 1022 
                                                   >> 1023     if(G4UniformRand() > 0.5) { px =  fDx; }
                                                   >> 1024     else                      { px = -fDx; }
                                                   >> 1025   } 
                                                   >> 1026   return G4ThreeVector(px,py,pz);
517 }                                                 1027 }
518                                                   1028 
519 //////////////////////////////////////////////    1029 //////////////////////////////////////////////////////////////////////////
520 //                                                1030 //
521 // Make a clone of the object                     1031 // Make a clone of the object
522 //                                                1032 //
523 G4VSolid* G4Box::Clone() const                    1033 G4VSolid* G4Box::Clone() const
524 {                                                 1034 {
525   return new G4Box(*this);                        1035   return new G4Box(*this);
526 }                                                 1036 }
527                                                   1037 
528 //////////////////////////////////////////////    1038 //////////////////////////////////////////////////////////////////////////
529 //                                                1039 //
530 // Methods for visualisation                      1040 // Methods for visualisation
531                                                   1041 
532 void G4Box::DescribeYourselfTo (G4VGraphicsSce << 1042 void G4Box::DescribeYourselfTo (G4VGraphicsScene& scene) const 
533 {                                                 1043 {
534   scene.AddSolid (*this);                         1044   scene.AddSolid (*this);
535 }                                                 1045 }
536                                                   1046 
537 G4VisExtent G4Box::GetExtent() const           << 1047 G4VisExtent G4Box::GetExtent() const 
538 {                                                 1048 {
539   return { -fDx, fDx, -fDy, fDy, -fDz, fDz };  << 1049   return G4VisExtent (-fDx, fDx, -fDy, fDy, -fDz, fDz);
540 }                                                 1050 }
541                                                   1051 
542 G4Polyhedron* G4Box::CreatePolyhedron () const << 1052 G4Polyhedron* G4Box::CreatePolyhedron () const 
543 {                                                 1053 {
544   return new G4PolyhedronBox (fDx, fDy, fDz);     1054   return new G4PolyhedronBox (fDx, fDy, fDz);
545 }                                                 1055 }
546 #endif                                         << 1056 
                                                   >> 1057 G4NURBS* G4Box::CreateNURBS () const 
                                                   >> 1058 {
                                                   >> 1059   return new G4NURBSbox (fDx, fDy, fDz);
                                                   >> 1060 }
547                                                   1061