Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm7/src/Detector << 26 // $Id: DetectorConstruction.cc,v 1.8 2007/01/11 15:41:46 vnivanch Exp $ 27 /// \brief Implementation of the DetectorConst << 27 // GEANT4 tag $Name: geant4-08-02-patch-01 $ 28 // << 29 // 28 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 29 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 31 33 #include "DetectorConstruction.hh" 32 #include "DetectorConstruction.hh" 34 << 35 #include "DetectorMessenger.hh" 33 #include "DetectorMessenger.hh" 36 34 >> 35 #include "G4Material.hh" 37 #include "G4Box.hh" 36 #include "G4Box.hh" 38 #include "G4FieldManager.hh" << 39 #include "G4GeometryManager.hh" << 40 #include "G4LogicalVolume.hh" 37 #include "G4LogicalVolume.hh" 41 #include "G4LogicalVolumeStore.hh" << 42 #include "G4Material.hh" << 43 #include "G4NistManager.hh" << 44 #include "G4PVPlacement.hh" 38 #include "G4PVPlacement.hh" 45 #include "G4PhysicalConstants.hh" << 39 #include "G4UniformMagField.hh" >> 40 >> 41 #include "G4GeometryManager.hh" 46 #include "G4PhysicalVolumeStore.hh" 42 #include "G4PhysicalVolumeStore.hh" 47 #include "G4RunManager.hh" << 43 #include "G4LogicalVolumeStore.hh" 48 #include "G4SolidStore.hh" 44 #include "G4SolidStore.hh" 49 #include "G4SystemOfUnits.hh" << 45 50 #include "G4TransportationManager.hh" << 46 #include "G4NistManager.hh" 51 #include "G4UniformMagField.hh" << 47 52 #include "G4UnitsTable.hh" 48 #include "G4UnitsTable.hh" 53 49 54 //....oooOO0OOooo........oooOO0OOooo........oo 50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 51 56 DetectorConstruction::DetectorConstruction() 52 DetectorConstruction::DetectorConstruction() 57 : G4VUserDetectorConstruction(), fMagField(n << 58 { 53 { 59 // default parameter values 54 // default parameter values 60 fAbsorSizeX = fAbsorSizeYZ = 20 * cm; << 55 absorSizeX = absorSizeYZ = 20*cm; 61 fWorldSizeX = fWorldSizeYZ = 1.2 * fAbsorSiz << 56 worldSizeX = worldSizeYZ = 1.2*absorSizeX; 62 << 57 63 fTallyNumber = 0; << 58 worldMaterial = absorMaterial = 0; 64 for (G4int j = 0; j < kMaxTally; j++) { << 59 magField = 0; 65 fTallySize[j] = fTallyPosition[j] = G4Thre << 60 lAbsor = 0; 66 fTallyMass[j] = 0.; << 61 67 fLTally[j] = nullptr; << 62 tallySize = G4ThreeVector(); 68 } << 63 tallyMaterial = 0; 69 << 64 tallyMass = 0.; >> 65 tallyNumber = 0; >> 66 tallyPosition = new G4ThreeVector[MaxTally]; >> 67 lTally = 0; >> 68 70 DefineMaterials(); 69 DefineMaterials(); >> 70 SetMaterial("Water"); >> 71 SetTallyMaterial("Water"); 71 72 72 // create commands for interactive definitio << 73 // create commands for interactive definition of the detector 73 fDetectorMessenger = new DetectorMessenger(t << 74 detectorMessenger = new DetectorMessenger(this); 74 } 75 } 75 76 76 //....oooOO0OOooo........oooOO0OOooo........oo 77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 77 78 78 DetectorConstruction::~DetectorConstruction() 79 DetectorConstruction::~DetectorConstruction() >> 80 { delete [] tallyPosition; delete detectorMessenger;} >> 81 >> 82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 83 >> 84 G4VPhysicalVolume* DetectorConstruction::Construct() 79 { 85 { 80 delete fDetectorMessenger; << 86 return ConstructVolumes(); 81 } 87 } 82 88 83 //....oooOO0OOooo........oooOO0OOooo........oo 89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 84 90 85 void DetectorConstruction::DefineMaterials() 91 void DetectorConstruction::DefineMaterials() 86 { << 92 { 87 // 93 // 88 // define Elements 94 // define Elements 89 // 95 // 90 G4double z, a; 96 G4double z, a; 91 97 92 G4Element* H = new G4Element("Hydrogen", "H" << 98 G4Element* H = new G4Element("Hydrogen", "H", z= 1, a= 1.008*g/mole); 93 G4Element* N = new G4Element("Nitrogen", "N" << 99 G4Element* N = new G4Element("Nitrogen", "N", z= 7, a= 14.01*g/mole); 94 G4Element* O = new G4Element("Oxygen", "O", << 100 G4Element* O = new G4Element("Oxygen" , "O", z= 8, a= 16.00*g/mole); 95 101 96 // 102 // 97 // define Materials. 103 // define Materials. 98 // 104 // 99 G4double density, temperature, pressure; 105 G4double density, temperature, pressure; 100 G4int ncomponents, natoms; << 106 G4int ncomponents, natoms; 101 G4double fractionmass; 107 G4double fractionmass; 102 << 108 103 G4Material* H2O = new G4Material("Water", de << 109 G4Material* H2O = 104 H2O->AddElement(H, natoms = 2); << 110 new G4Material("Water", density= 1.0*g/cm3, ncomponents=2); 105 H2O->AddElement(O, natoms = 1); << 111 H2O->AddElement(H, natoms=2); 106 H2O->GetIonisation()->SetMeanExcitationEnerg << 112 H2O->AddElement(O, natoms=1); 107 << 113 H2O->GetIonisation()->SetMeanExcitationEnergy(75.0*eV); 108 // In this line both G4_WATER and Water_1.05 << 114 109 G4NistManager::Instance()->BuildMaterialWith << 115 G4Material* Air = 110 << 116 new G4Material("Air" , density= 1.290*mg/cm3, ncomponents=2); 111 G4Material* Air = new G4Material("Air", dens << 117 Air->AddElement(N, fractionmass=0.7); 112 Air->AddElement(N, fractionmass = 0.7); << 118 Air->AddElement(O, fractionmass=0.3); 113 Air->AddElement(O, fractionmass = 0.3); << 119 114 << 120 density = universe_mean_density; //from PhysicalConstants.h 115 density = 1.e-5 * g / cm3; << 121 pressure = 3.e-18*pascal; 116 pressure = 2.e-2 * bar; << 122 temperature = 2.73*kelvin; 117 temperature = STP_Temperature; // From Phys << 123 G4Material* vacuum = 118 G4Material* vac = new G4Material("TechVacuum << 124 new G4Material("Galactic",z= 1,a= 1.008*g/mole,density, 119 vac->AddMaterial(Air, 1.); << 125 kStateGas,temperature,pressure); 120 << 126 121 density = universe_mean_density; // from Ph << 127 //default materials 122 pressure = 3.e-18 * pascal; << 128 worldMaterial = vacuum; 123 temperature = 2.73 * kelvin; << 124 G4Material* vacuum = new G4Material("Galacti << 125 temperat << 126 << 127 // default materials << 128 fAbsorMaterial = H2O; << 129 fWorldMaterial = vacuum; << 130 } 129 } 131 130 132 //....oooOO0OOooo........oooOO0OOooo........oo 131 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 132 >> 133 G4VPhysicalVolume* DetectorConstruction::ConstructVolumes() >> 134 { >> 135 G4GeometryManager::GetInstance()->OpenGeometry(); >> 136 G4PhysicalVolumeStore::GetInstance()->Clean(); >> 137 G4LogicalVolumeStore::GetInstance()->Clean(); >> 138 G4SolidStore::GetInstance()->Clean(); 133 139 134 G4VPhysicalVolume* DetectorConstruction::Const << 135 { << 136 // World 140 // World 137 // 141 // 138 G4Box* sWorld = new G4Box("World", // name << 142 G4Box* 139 fWorldSizeX / 2, f << 143 sWorld = new G4Box("World", //name 140 << 144 worldSizeX/2,worldSizeYZ/2,worldSizeYZ/2); //dimensions 141 fLWorld = new G4LogicalVolume(sWorld, // sh << 145 142 fWorldMaterial << 146 G4LogicalVolume* 143 "World"); // << 147 lWorld = new G4LogicalVolume(sWorld, //shape 144 << 148 worldMaterial, //material 145 G4VPhysicalVolume* pWorld = new G4PVPlacemen << 149 "World"); //name 146 << 150 147 << 151 G4VPhysicalVolume* 148 << 152 pWorld = new G4PVPlacement(0, //no rotation 149 << 153 G4ThreeVector(), //at (0,0,0) 150 << 154 lWorld, //logical volume 151 << 155 "World", //name 152 // << 156 0, //mother volume >> 157 false, //no boolean operation >> 158 0); //copy number >> 159 // 153 // Absorber 160 // Absorber 154 // << 161 // 155 G4Box* sAbsor = new G4Box("Absorber", // na << 162 G4Box* 156 fAbsorSizeX / 2, f << 163 sAbsor = new G4Box("Absorber", //name 157 << 164 absorSizeX/2,absorSizeYZ/2,absorSizeYZ/2); //dimensions 158 fLAbsor = new G4LogicalVolume(sAbsor, // sh << 165 159 fAbsorMaterial << 166 lAbsor = new G4LogicalVolume(sAbsor, //shape 160 "Absorber"); << 167 absorMaterial, //material 161 << 168 "Absorber"); //name 162 new G4PVPlacement(0, // no rotation << 169 163 G4ThreeVector(0., 0., 0.), << 170 164 fLAbsor, // logical volum << 171 new G4PVPlacement(0, //no rotation 165 "Absorber", // name << 172 G4ThreeVector(), //at (0,0,0) 166 fLWorld, // mother volum << 173 lAbsor, //logical volume 167 false, // no boolean oper << 174 "Absorber", //name 168 0); // copy number << 175 lWorld, //mother volume >> 176 false, //no boolean operation >> 177 0); //copy number 169 // 178 // 170 // Tallies (optional) 179 // Tallies (optional) 171 // 180 // 172 if (fTallyNumber > 0) { << 181 if (tallyNumber > 0) { 173 for (G4int j = 0; j < fTallyNumber; ++j) { << 182 G4Box* 174 G4Box* sTally = << 183 sTally = new G4Box("Tally",tallySize.x()/2,tallySize.y()/2,tallySize.z()/2); 175 new G4Box("Tally", fTallySize[j].x() / << 184 lTally = new G4LogicalVolume(sTally,tallyMaterial,"Tally"); 176 << 185 177 fLTally[j] = new G4LogicalVolume(sTally, << 186 for (G4int j=0; j<tallyNumber; j++) 178 << 187 { 179 new G4PVPlacement(0, // no rotation << 188 new G4PVPlacement(0, //no rotation 180 fTallyPosition[j], // << 189 tallyPosition[j], //position 181 fLTally[j], // logica << 190 lTally, //logical volume 182 "Tally", // name << 191 "Tally", //name 183 fLAbsor, // mother v << 192 lAbsor, //mother volume 184 false, // no boolean << 193 false, //no boolean operation 185 j + 1); // copy numbe << 194 j); //copy number 186 << 195 } 187 fTallyMass[j] = << 196 188 fTallySize[j].x() * fTallySize[j].y() << 197 tallyMass = tallySize.x()*tallySize.y()*tallySize.z() 189 } << 198 *(tallyMaterial->GetDensity()); 190 } << 199 } 191 200 192 PrintParameters(); 201 PrintParameters(); 193 << 202 194 // << 195 // always return the World volume << 196 // 203 // >> 204 //always return the World volume >> 205 // 197 return pWorld; 206 return pWorld; 198 } 207 } 199 208 200 //....oooOO0OOooo........oooOO0OOooo........oo 209 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 201 210 202 void DetectorConstruction::PrintParameters() c << 211 void DetectorConstruction::PrintParameters() 203 { 212 { 204 G4cout << *(G4Material::GetMaterialTable()) 213 G4cout << *(G4Material::GetMaterialTable()) << G4endl; 205 G4cout << "\n------------------------------- 214 G4cout << "\n---------------------------------------------------------\n"; 206 G4cout << "---> The Absorber is " << G4BestU << 215 G4cout << "---> The Absorber is " << G4BestUnit(absorSizeX,"Length") 207 << fAbsorMaterial->GetName() << G4end << 216 << " of " << absorMaterial->GetName() << G4endl; 208 G4cout << "\n------------------------------- 217 G4cout << "\n---------------------------------------------------------\n"; 209 << 218 210 if (fTallyNumber > 0) { << 219 if (tallyNumber > 0) { 211 G4cout << "---> There are " << fTallyNumbe << 220 G4cout << "---> There are " << tallyNumber << " tallies : " 212 for (G4int j = 0; j < fTallyNumber; ++j) { << 221 << G4BestUnit(tallySize,"Length") 213 G4cout << "fTally " << j << ": " << fAbs << 222 << " of " << tallyMaterial->GetName() 214 << ", mass = " << G4BestUnit(fTa << 223 << " (mass : " << G4BestUnit(tallyMass,"Mass") << ")" << G4endl; 215 << " size = " << G4BestUnit(fTall << 224 216 << " position = " << G4BestUnit(f << 225 for (G4int j=0; j<tallyNumber; j++) 217 } << 226 G4cout << "tally " << j << ": " >> 227 << "position = " << G4BestUnit(tallyPosition[j],"Length") << G4endl; 218 G4cout << "\n----------------------------- 228 G4cout << "\n---------------------------------------------------------\n"; 219 } << 229 } 220 } 230 } 221 231 222 //....oooOO0OOooo........oooOO0OOooo........oo 232 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 223 233 224 void DetectorConstruction::SetSizeX(G4double v 234 void DetectorConstruction::SetSizeX(G4double value) 225 { 235 { 226 fAbsorSizeX = value; << 236 absorSizeX = value; worldSizeX = 1.2*absorSizeX; 227 fWorldSizeX = 1.2 * fAbsorSizeX; << 228 } 237 } 229 << 238 230 //....oooOO0OOooo........oooOO0OOooo........oo 239 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 231 240 232 void DetectorConstruction::SetSizeYZ(G4double 241 void DetectorConstruction::SetSizeYZ(G4double value) 233 { 242 { 234 fAbsorSizeYZ = value; << 243 absorSizeYZ = value; 235 fWorldSizeYZ = 1.2 * fAbsorSizeYZ; << 244 worldSizeYZ = 1.2*absorSizeYZ; 236 } << 245 } 237 246 238 //....oooOO0OOooo........oooOO0OOooo........oo 247 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 239 248 240 void DetectorConstruction::SetMaterial(const G << 249 void DetectorConstruction::SetMaterial(G4String materialChoice) 241 { 250 { 242 // search the material by its name << 251 // search the material by its name 243 G4Material* pttoMaterial = G4NistManager::In << 252 G4Material* pttoMaterial = 244 if (pttoMaterial && pttoMaterial != fAbsorMa << 253 G4NistManager::Instance()->FindOrBuildMaterial(materialChoice); 245 // change target material everywhere << 254 if (pttoMaterial) absorMaterial = pttoMaterial; 246 fAbsorMaterial = pttoMaterial; << 247 for (G4int j = 0; j < fTallyNumber; ++j) { << 248 if (fLTally[j]) { << 249 fLTally[j]->SetMaterial(pttoMaterial); << 250 fTallyMass[j] = << 251 fTallySize[j].x() * fTallySize[j].y( << 252 } << 253 } << 254 if (fLAbsor) { << 255 fLAbsor->SetMaterial(fAbsorMaterial); << 256 G4RunManager::GetRunManager()->PhysicsHa << 257 } << 258 } << 259 } 255 } 260 256 261 //....oooOO0OOooo........oooOO0OOooo........oo 257 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 262 258 263 void DetectorConstruction::SetWorldMaterial(co << 259 #include "G4FieldManager.hh" 264 { << 260 #include "G4TransportationManager.hh" 265 // search the material by its name << 266 G4Material* pttoMaterial = G4NistManager::In << 267 if (pttoMaterial && pttoMaterial != fWorldMa << 268 fWorldMaterial = pttoMaterial; << 269 if (fLWorld) { << 270 fLWorld->SetMaterial(fAbsorMaterial); << 271 G4RunManager::GetRunManager()->PhysicsHa << 272 } << 273 } << 274 } << 275 << 276 //....oooOO0OOooo........oooOO0OOooo........oo << 277 261 278 void DetectorConstruction::SetMagField(G4doubl 262 void DetectorConstruction::SetMagField(G4double fieldValue) 279 { 263 { 280 // apply a global uniform magnetic field alo << 264 //apply a global uniform magnetic field along Z axis 281 G4FieldManager* fieldMgr = G4TransportationM << 265 G4FieldManager* fieldMgr 282 << 266 = G4TransportationManager::GetTransportationManager()->GetFieldManager(); 283 if (fMagField) delete fMagField; // delete << 267 284 << 268 if (magField) delete magField; //delete the existing magn field 285 if (fieldValue != 0.) // create a new one i << 269 286 { << 270 if (fieldValue!=0.) // create a new one if non nul 287 fMagField = new G4UniformMagField(G4ThreeV << 271 { 288 fieldMgr->SetDetectorField(fMagField); << 272 magField = new G4UniformMagField(G4ThreeVector(0.,0.,fieldValue)); 289 fieldMgr->CreateChordFinder(fMagField); << 273 fieldMgr->SetDetectorField(magField); 290 } << 274 fieldMgr->CreateChordFinder(magField); 291 else { << 275 } 292 fMagField = nullptr; << 276 else 293 fieldMgr->SetDetectorField(fMagField); << 277 { 294 } << 278 magField = 0; >> 279 fieldMgr->SetDetectorField(magField); >> 280 } 295 } 281 } 296 //....oooOO0OOooo........oooOO0OOooo........oo 282 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 297 283 298 void DetectorConstruction::SetTallyNumber(G4in << 284 void DetectorConstruction::SetTallySize(G4ThreeVector value) 299 { 285 { 300 if (value >= 0 && value < kMaxTally) { << 286 tallySize = value; 301 fTallyNumber = value; << 287 } 302 } << 303 else { << 304 G4cout << "### DetectorConstruction::SetTa << 305 << "number " << value << " is ignor << 306 } << 307 } << 308 288 309 //....oooOO0OOooo........oooOO0OOooo........oo 289 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 310 290 311 void DetectorConstruction::SetTallySize(G4int << 291 void DetectorConstruction::SetTallyMaterial(G4String materialChoice) 312 { 292 { 313 if (j >= 0 && j < kMaxTally) { << 293 // search the material by its name 314 fTallySize[j] = value; << 294 G4Material* pttoMaterial = 315 } << 295 G4NistManager::Instance()->FindOrBuildMaterial(materialChoice); 316 else { << 296 if (pttoMaterial) tallyMaterial = pttoMaterial; 317 G4cout << "### DetectorConstruction::SetTa << 318 << "number " << j << " is ignored" << 319 } << 320 } 297 } 321 298 322 //....oooOO0OOooo........oooOO0OOooo........oo 299 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 323 300 324 void DetectorConstruction::SetTallyPosition(G4 << 301 void DetectorConstruction::SetTallyPosition(G4ThreeVector value) 325 { 302 { 326 if (j >= 0 && j < kMaxTally) { << 303 if (tallyNumber < MaxTally) { 327 fTallyPosition[j] = value; << 304 tallyPosition[tallyNumber] = value; >> 305 tallyNumber++; 328 } 306 } 329 else { << 307 } 330 G4cout << "### DetectorConstruction::SetTa << 331 << "number " << j << " is ignored" << 332 } << 333 } << 334 308 335 G4double DetectorConstruction::GetTallyMass(G4 << 309 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 336 { << 337 if (j >= 0 && j < kMaxTally) { << 338 return fTallyMass[j]; << 339 } << 340 else { << 341 G4cout << "### DetectorConstruction::GetTa << 342 << "number " << j << " is ignored" << 343 return 0.0; << 344 } << 345 } << 346 310 347 const G4LogicalVolume* DetectorConstruction::G << 311 #include "G4RunManager.hh" >> 312 >> 313 void DetectorConstruction::UpdateGeometry() 348 { 314 { 349 if (j >= 0 && j < kMaxTally) { << 315 G4RunManager::GetRunManager()->DefineWorldVolume(ConstructVolumes()); 350 return fLTally[j]; << 351 } << 352 else { << 353 G4cout << "### DetectorConstruction::GetLO << 354 << "number " << j << " is ignored" << 355 return nullptr; << 356 } << 357 } 316 } 358 317 359 //....oooOO0OOooo........oooOO0OOooo........oo 318 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 360 319