Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm7/src/Detector 26 /// \file electromagnetic/TestEm7/src/DetectorConstruction.cc 27 /// \brief Implementation of the DetectorConst 27 /// \brief Implementation of the DetectorConstruction class 28 // 28 // 29 // 29 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 32 33 #include "DetectorConstruction.hh" 33 #include "DetectorConstruction.hh" 34 << 35 #include "DetectorMessenger.hh" 34 #include "DetectorMessenger.hh" 36 35 >> 36 #include "G4Material.hh" 37 #include "G4Box.hh" 37 #include "G4Box.hh" 38 #include "G4FieldManager.hh" << 39 #include "G4GeometryManager.hh" << 40 #include "G4LogicalVolume.hh" 38 #include "G4LogicalVolume.hh" 41 #include "G4LogicalVolumeStore.hh" << 42 #include "G4Material.hh" << 43 #include "G4NistManager.hh" << 44 #include "G4PVPlacement.hh" 39 #include "G4PVPlacement.hh" 45 #include "G4PhysicalConstants.hh" << 40 #include "G4UniformMagField.hh" >> 41 >> 42 #include "G4GeometryManager.hh" 46 #include "G4PhysicalVolumeStore.hh" 43 #include "G4PhysicalVolumeStore.hh" 47 #include "G4RunManager.hh" << 44 #include "G4LogicalVolumeStore.hh" 48 #include "G4SolidStore.hh" 45 #include "G4SolidStore.hh" 49 #include "G4SystemOfUnits.hh" << 46 50 #include "G4TransportationManager.hh" << 47 #include "G4NistManager.hh" 51 #include "G4UniformMagField.hh" << 52 #include "G4UnitsTable.hh" 48 #include "G4UnitsTable.hh" 53 49 >> 50 #include "G4FieldManager.hh" >> 51 #include "G4TransportationManager.hh" >> 52 #include "G4RunManager.hh" >> 53 >> 54 #include "G4PhysicalConstants.hh" >> 55 #include "G4SystemOfUnits.hh" >> 56 54 //....oooOO0OOooo........oooOO0OOooo........oo 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 58 56 DetectorConstruction::DetectorConstruction() 59 DetectorConstruction::DetectorConstruction() 57 : G4VUserDetectorConstruction(), fMagField(n << 60 : G4VUserDetectorConstruction(), >> 61 fMagField(nullptr), >> 62 fLAbsor(nullptr), >> 63 fLWorld(nullptr) 58 { 64 { 59 // default parameter values 65 // default parameter values 60 fAbsorSizeX = fAbsorSizeYZ = 20 * cm; << 66 fAbsorSizeX = fAbsorSizeYZ = 20*cm; 61 fWorldSizeX = fWorldSizeYZ = 1.2 * fAbsorSiz << 67 fWorldSizeX = fWorldSizeYZ = 1.2*fAbsorSizeX; 62 << 68 63 fTallyNumber = 0; 69 fTallyNumber = 0; 64 for (G4int j = 0; j < kMaxTally; j++) { << 70 for (G4int j=0; j<kMaxTally; j++) { 65 fTallySize[j] = fTallyPosition[j] = G4Thre << 71 fTallySize[j] = fTallyPosition[j] = G4ThreeVector(0.,0.,0.); 66 fTallyMass[j] = 0.; << 72 fTallyMass[j] = 0.; 67 fLTally[j] = nullptr; << 73 fLTally[j] = nullptr; 68 } 74 } 69 << 75 70 DefineMaterials(); 76 DefineMaterials(); 71 77 72 // create commands for interactive definitio << 78 // create commands for interactive definition of the detector 73 fDetectorMessenger = new DetectorMessenger(t 79 fDetectorMessenger = new DetectorMessenger(this); 74 } 80 } 75 81 76 //....oooOO0OOooo........oooOO0OOooo........oo 82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 77 83 78 DetectorConstruction::~DetectorConstruction() 84 DetectorConstruction::~DetectorConstruction() 79 { << 85 { 80 delete fDetectorMessenger; 86 delete fDetectorMessenger; 81 } 87 } 82 88 83 //....oooOO0OOooo........oooOO0OOooo........oo 89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 84 90 85 void DetectorConstruction::DefineMaterials() 91 void DetectorConstruction::DefineMaterials() 86 { << 92 { 87 // 93 // 88 // define Elements 94 // define Elements 89 // 95 // 90 G4double z, a; 96 G4double z, a; 91 97 92 G4Element* H = new G4Element("Hydrogen", "H" << 98 G4Element* H = new G4Element("Hydrogen", "H", z= 1, a= 1.008*g/mole); 93 G4Element* N = new G4Element("Nitrogen", "N" << 99 G4Element* N = new G4Element("Nitrogen", "N", z= 7, a= 14.01*g/mole); 94 G4Element* O = new G4Element("Oxygen", "O", << 100 G4Element* O = new G4Element("Oxygen" , "O", z= 8, a= 16.00*g/mole); 95 101 96 // 102 // 97 // define Materials. 103 // define Materials. 98 // 104 // 99 G4double density, temperature, pressure; 105 G4double density, temperature, pressure; 100 G4int ncomponents, natoms; << 106 G4int ncomponents, natoms; 101 G4double fractionmass; 107 G4double fractionmass; 102 << 108 103 G4Material* H2O = new G4Material("Water", de << 109 G4Material* H2O = 104 H2O->AddElement(H, natoms = 2); << 110 new G4Material("Water", density= 1.0*g/cm3, ncomponents=2); 105 H2O->AddElement(O, natoms = 1); << 111 H2O->AddElement(H, natoms=2); 106 H2O->GetIonisation()->SetMeanExcitationEnerg << 112 H2O->AddElement(O, natoms=1); >> 113 H2O->GetIonisation()->SetMeanExcitationEnergy(78.0*eV); 107 114 108 // In this line both G4_WATER and Water_1.05 115 // In this line both G4_WATER and Water_1.05 will be constructed 109 G4NistManager::Instance()->BuildMaterialWith << 116 G4NistManager::Instance()-> >> 117 BuildMaterialWithNewDensity("Water_1.05","G4_WATER",1.05*g/cm3); 110 118 111 G4Material* Air = new G4Material("Air", dens << 119 G4Material* Air = 112 Air->AddElement(N, fractionmass = 0.7); << 120 new G4Material("Air" , density= 1.290*mg/cm3, ncomponents=2); 113 Air->AddElement(O, fractionmass = 0.3); << 121 Air->AddElement(N, fractionmass=0.7); >> 122 Air->AddElement(O, fractionmass=0.3); 114 123 115 density = 1.e-5 * g / cm3; << 124 density = 1.e-5*g/cm3; 116 pressure = 2.e-2 * bar; << 125 pressure = 2.e-2*bar; 117 temperature = STP_Temperature; // From Phys 126 temperature = STP_Temperature; // From PhysicalConstants.h . 118 G4Material* vac = new G4Material("TechVacuum << 127 G4Material* vac = new G4Material( "TechVacuum", density, 1, 119 vac->AddMaterial(Air, 1.); << 128 kStateGas, temperature, pressure ); >> 129 vac->AddMaterial( Air, 1. ); >> 130 >> 131 density = universe_mean_density; //from PhysicalConstants.h >> 132 pressure = 3.e-18*pascal; >> 133 temperature = 2.73*kelvin; >> 134 G4Material* vacuum = >> 135 new G4Material("Galactic",z= 1,a= 1.008*g/mole,density, >> 136 kStateGas,temperature,pressure); 120 137 121 density = universe_mean_density; // from Ph << 138 //default materials 122 pressure = 3.e-18 * pascal; << 123 temperature = 2.73 * kelvin; << 124 G4Material* vacuum = new G4Material("Galacti << 125 temperat << 126 << 127 // default materials << 128 fAbsorMaterial = H2O; 139 fAbsorMaterial = H2O; 129 fWorldMaterial = vacuum; 140 fWorldMaterial = vacuum; 130 } 141 } 131 142 132 //....oooOO0OOooo........oooOO0OOooo........oo 143 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 133 << 144 134 G4VPhysicalVolume* DetectorConstruction::Const 145 G4VPhysicalVolume* DetectorConstruction::Construct() 135 { 146 { 136 // World 147 // World 137 // 148 // 138 G4Box* sWorld = new G4Box("World", // name << 149 G4Box* 139 fWorldSizeX / 2, f << 150 sWorld = new G4Box("World", //name 140 << 151 fWorldSizeX/2,fWorldSizeYZ/2,fWorldSizeYZ/2); //dimensions 141 fLWorld = new G4LogicalVolume(sWorld, // sh << 152 142 fWorldMaterial << 153 fLWorld = new G4LogicalVolume(sWorld, //shape 143 "World"); // << 154 fWorldMaterial, //material 144 << 155 "World"); //name 145 G4VPhysicalVolume* pWorld = new G4PVPlacemen << 156 146 << 157 G4VPhysicalVolume* 147 << 158 pWorld = new G4PVPlacement(0, //no rotation 148 << 159 G4ThreeVector(0.,0.,0.), //at (0,0,0) 149 << 160 fLWorld, //logical volume 150 << 161 "World", //name 151 << 162 0, //mother volume 152 // << 163 false, //no boolean operation >> 164 0); //copy number >> 165 // 153 // Absorber 166 // Absorber 154 // << 167 // 155 G4Box* sAbsor = new G4Box("Absorber", // na << 168 G4Box* 156 fAbsorSizeX / 2, f << 169 sAbsor = new G4Box("Absorber", //name 157 << 170 fAbsorSizeX/2,fAbsorSizeYZ/2,fAbsorSizeYZ/2); //dimensions 158 fLAbsor = new G4LogicalVolume(sAbsor, // sh << 171 159 fAbsorMaterial << 172 fLAbsor = new G4LogicalVolume(sAbsor, //shape 160 "Absorber"); << 173 fAbsorMaterial, //material 161 << 174 "Absorber"); //name 162 new G4PVPlacement(0, // no rotation << 175 163 G4ThreeVector(0., 0., 0.), << 176 164 fLAbsor, // logical volum << 177 new G4PVPlacement(0, //no rotation 165 "Absorber", // name << 178 G4ThreeVector(0.,0.,0.), //at (0,0,0) 166 fLWorld, // mother volum << 179 fLAbsor, //logical volume 167 false, // no boolean oper << 180 "Absorber", //name 168 0); // copy number << 181 fLWorld, //mother volume >> 182 false, //no boolean operation >> 183 0); //copy number 169 // 184 // 170 // Tallies (optional) 185 // Tallies (optional) 171 // 186 // 172 if (fTallyNumber > 0) { 187 if (fTallyNumber > 0) { 173 for (G4int j = 0; j < fTallyNumber; ++j) { << 188 for (G4int j=0; j<fTallyNumber; ++j) { 174 G4Box* sTally = << 189 175 new G4Box("Tally", fTallySize[j].x() / << 190 G4Box* sTally = new G4Box("Tally", 176 << 191 fTallySize[j].x()/2,fTallySize[j].y()/2,fTallySize[j].z()/2); 177 fLTally[j] = new G4LogicalVolume(sTally, << 192 178 << 193 fLTally[j] = new G4LogicalVolume(sTally,fAbsorMaterial,"Tally"); 179 new G4PVPlacement(0, // no rotation << 194 180 fTallyPosition[j], // << 195 new G4PVPlacement(0, //no rotation 181 fLTally[j], // logica << 196 fTallyPosition[j], //position 182 "Tally", // name << 197 fLTally[j], //logical volume 183 fLAbsor, // mother v << 198 "Tally", //name 184 false, // no boolean << 199 fLAbsor, //mother volume 185 j + 1); // copy numbe << 200 false, //no boolean operation 186 << 201 j+1); //copy number 187 fTallyMass[j] = << 202 188 fTallySize[j].x() * fTallySize[j].y() << 203 fTallyMass[j] = fTallySize[j].x()*fTallySize[j].y()*fTallySize[j].z() 189 } << 204 *(fAbsorMaterial->GetDensity()); 190 } << 205 } >> 206 } 191 207 192 PrintParameters(); 208 PrintParameters(); 193 << 209 194 // << 195 // always return the World volume << 196 // 210 // >> 211 //always return the World volume >> 212 // 197 return pWorld; 213 return pWorld; 198 } 214 } 199 215 200 //....oooOO0OOooo........oooOO0OOooo........oo 216 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 201 217 202 void DetectorConstruction::PrintParameters() c 218 void DetectorConstruction::PrintParameters() const 203 { 219 { 204 G4cout << *(G4Material::GetMaterialTable()) 220 G4cout << *(G4Material::GetMaterialTable()) << G4endl; 205 G4cout << "\n------------------------------- 221 G4cout << "\n---------------------------------------------------------\n"; 206 G4cout << "---> The Absorber is " << G4BestU << 222 G4cout << "---> The Absorber is " << G4BestUnit(fAbsorSizeX,"Length") 207 << fAbsorMaterial->GetName() << G4end << 223 << " of " << fAbsorMaterial->GetName() << G4endl; 208 G4cout << "\n------------------------------- 224 G4cout << "\n---------------------------------------------------------\n"; 209 << 225 210 if (fTallyNumber > 0) { 226 if (fTallyNumber > 0) { 211 G4cout << "---> There are " << fTallyNumbe << 227 G4cout << "---> There are " << fTallyNumber << " tallies : " << G4endl; 212 for (G4int j = 0; j < fTallyNumber; ++j) { << 228 for (G4int j=0; j<fTallyNumber; ++j) { 213 G4cout << "fTally " << j << ": " << fAbs << 229 G4cout << "fTally " << j << ": " 214 << ", mass = " << G4BestUnit(fTa << 230 << fAbsorMaterial->GetName() 215 << " size = " << G4BestUnit(fTall << 231 << ", mass = " << G4BestUnit(fTallyMass[j],"Mass") 216 << " position = " << G4BestUnit(f << 232 << " size = " << G4BestUnit(fTallySize[j],"Length") 217 } << 233 << " position = " << G4BestUnit(fTallyPosition[j],"Length") >> 234 << G4endl; >> 235 } 218 G4cout << "\n----------------------------- 236 G4cout << "\n---------------------------------------------------------\n"; 219 } << 237 } 220 } 238 } 221 239 222 //....oooOO0OOooo........oooOO0OOooo........oo 240 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 223 241 224 void DetectorConstruction::SetSizeX(G4double v 242 void DetectorConstruction::SetSizeX(G4double value) 225 { 243 { 226 fAbsorSizeX = value; << 244 fAbsorSizeX = value; 227 fWorldSizeX = 1.2 * fAbsorSizeX; << 245 fWorldSizeX = 1.2*fAbsorSizeX; 228 } 246 } 229 << 247 230 //....oooOO0OOooo........oooOO0OOooo........oo 248 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 231 249 232 void DetectorConstruction::SetSizeYZ(G4double 250 void DetectorConstruction::SetSizeYZ(G4double value) 233 { 251 { 234 fAbsorSizeYZ = value; << 252 fAbsorSizeYZ = value; 235 fWorldSizeYZ = 1.2 * fAbsorSizeYZ; << 253 fWorldSizeYZ = 1.2*fAbsorSizeYZ; 236 } << 254 } 237 255 238 //....oooOO0OOooo........oooOO0OOooo........oo 256 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 239 257 240 void DetectorConstruction::SetMaterial(const G 258 void DetectorConstruction::SetMaterial(const G4String& materialChoice) 241 { 259 { 242 // search the material by its name << 260 // search the material by its name 243 G4Material* pttoMaterial = G4NistManager::In << 261 G4Material* pttoMaterial = >> 262 G4NistManager::Instance()->FindOrBuildMaterial(materialChoice); 244 if (pttoMaterial && pttoMaterial != fAbsorMa 263 if (pttoMaterial && pttoMaterial != fAbsorMaterial) { 245 // change target material everywhere 264 // change target material everywhere 246 fAbsorMaterial = pttoMaterial; 265 fAbsorMaterial = pttoMaterial; 247 for (G4int j = 0; j < fTallyNumber; ++j) { << 266 for (G4int j=0; j<fTallyNumber; ++j) { 248 if (fLTally[j]) { << 267 if(fLTally[j]) { 249 fLTally[j]->SetMaterial(pttoMaterial); << 268 fLTally[j]->SetMaterial(pttoMaterial); 250 fTallyMass[j] = << 269 fTallyMass[j] = fTallySize[j].x()*fTallySize[j].y()*fTallySize[j].z() 251 fTallySize[j].x() * fTallySize[j].y( << 270 *(pttoMaterial->GetDensity()); 252 } 271 } 253 } << 272 } 254 if (fLAbsor) { << 273 if(fLAbsor) { 255 fLAbsor->SetMaterial(fAbsorMaterial); 274 fLAbsor->SetMaterial(fAbsorMaterial); 256 G4RunManager::GetRunManager()->PhysicsHa 275 G4RunManager::GetRunManager()->PhysicsHasBeenModified(); 257 } 276 } 258 } 277 } 259 } 278 } 260 279 261 //....oooOO0OOooo........oooOO0OOooo........oo 280 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 262 281 263 void DetectorConstruction::SetWorldMaterial(co 282 void DetectorConstruction::SetWorldMaterial(const G4String& materialChoice) 264 { 283 { 265 // search the material by its name << 284 // search the material by its name 266 G4Material* pttoMaterial = G4NistManager::In << 285 G4Material* pttoMaterial = >> 286 G4NistManager::Instance()->FindOrBuildMaterial(materialChoice); 267 if (pttoMaterial && pttoMaterial != fWorldMa 287 if (pttoMaterial && pttoMaterial != fWorldMaterial) { 268 fWorldMaterial = pttoMaterial; 288 fWorldMaterial = pttoMaterial; 269 if (fLWorld) { << 289 if(fLWorld) { 270 fLWorld->SetMaterial(fAbsorMaterial); 290 fLWorld->SetMaterial(fAbsorMaterial); 271 G4RunManager::GetRunManager()->PhysicsHa 291 G4RunManager::GetRunManager()->PhysicsHasBeenModified(); 272 } 292 } 273 } 293 } 274 } 294 } 275 295 276 //....oooOO0OOooo........oooOO0OOooo........oo 296 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 277 297 278 void DetectorConstruction::SetMagField(G4doubl 298 void DetectorConstruction::SetMagField(G4double fieldValue) 279 { 299 { 280 // apply a global uniform magnetic field alo << 300 //apply a global uniform magnetic field along Z axis 281 G4FieldManager* fieldMgr = G4TransportationM << 301 G4FieldManager* fieldMgr 282 << 302 = G4TransportationManager::GetTransportationManager()->GetFieldManager(); 283 if (fMagField) delete fMagField; // delete << 303 284 << 304 if (fMagField) delete fMagField; //delete the existing magn field 285 if (fieldValue != 0.) // create a new one i << 305 286 { << 306 if (fieldValue!=0.) // create a new one if non nul 287 fMagField = new G4UniformMagField(G4ThreeV << 307 { 288 fieldMgr->SetDetectorField(fMagField); << 308 fMagField = new G4UniformMagField(G4ThreeVector(0.,0.,fieldValue)); 289 fieldMgr->CreateChordFinder(fMagField); << 309 fieldMgr->SetDetectorField(fMagField); 290 } << 310 fieldMgr->CreateChordFinder(fMagField); 291 else { << 311 } 292 fMagField = nullptr; << 312 else 293 fieldMgr->SetDetectorField(fMagField); << 313 { 294 } << 314 fMagField = nullptr; >> 315 fieldMgr->SetDetectorField(fMagField); >> 316 } 295 } 317 } 296 //....oooOO0OOooo........oooOO0OOooo........oo 318 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 297 319 298 void DetectorConstruction::SetTallyNumber(G4in 320 void DetectorConstruction::SetTallyNumber(G4int value) 299 { 321 { 300 if (value >= 0 && value < kMaxTally) { << 322 if(value >= 0 && value <kMaxTally) { 301 fTallyNumber = value; 323 fTallyNumber = value; 302 } << 324 } else { 303 else { << 304 G4cout << "### DetectorConstruction::SetTa 325 G4cout << "### DetectorConstruction::SetTallyNumber WARNING: wrong tally " 305 << "number " << value << " is ignor 326 << "number " << value << " is ignored" << G4endl; 306 } 327 } 307 } 328 } 308 329 309 //....oooOO0OOooo........oooOO0OOooo........oo 330 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 310 331 311 void DetectorConstruction::SetTallySize(G4int 332 void DetectorConstruction::SetTallySize(G4int j, const G4ThreeVector& value) 312 { 333 { 313 if (j >= 0 && j < kMaxTally) { << 334 if(j >= 0 && j < kMaxTally) { 314 fTallySize[j] = value; 335 fTallySize[j] = value; 315 } << 336 } else { 316 else { << 317 G4cout << "### DetectorConstruction::SetTa 337 G4cout << "### DetectorConstruction::SetTallyNumber WARNING: wrong tally " 318 << "number " << j << " is ignored" 338 << "number " << j << " is ignored" << G4endl; 319 } << 339 } 320 } << 340 } 321 341 322 //....oooOO0OOooo........oooOO0OOooo........oo 342 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 323 343 324 void DetectorConstruction::SetTallyPosition(G4 344 void DetectorConstruction::SetTallyPosition(G4int j, const G4ThreeVector& value) 325 { 345 { 326 if (j >= 0 && j < kMaxTally) { << 346 if(j >= 0 && j < kMaxTally) { 327 fTallyPosition[j] = value; << 347 fTallyPosition[j] = value; 328 } << 348 } else { 329 else { << 330 G4cout << "### DetectorConstruction::SetTa 349 G4cout << "### DetectorConstruction::SetTallyPosition WARNING: wrong tally " 331 << "number " << j << " is ignored" 350 << "number " << j << " is ignored" << G4endl; 332 } << 351 } 333 } << 352 } 334 353 335 G4double DetectorConstruction::GetTallyMass(G4 354 G4double DetectorConstruction::GetTallyMass(G4int j) const 336 { 355 { 337 if (j >= 0 && j < kMaxTally) { << 356 if(j >= 0 && j < kMaxTally) { 338 return fTallyMass[j]; 357 return fTallyMass[j]; 339 } << 358 } else { 340 else { << 341 G4cout << "### DetectorConstruction::GetTa 359 G4cout << "### DetectorConstruction::GetTallyMass WARNING: wrong tally " 342 << "number " << j << " is ignored" 360 << "number " << j << " is ignored" << G4endl; 343 return 0.0; 361 return 0.0; 344 } << 362 } 345 } 363 } 346 364 347 const G4LogicalVolume* DetectorConstruction::G << 365 const G4LogicalVolume* DetectorConstruction::GetLogicalTally(G4int j) const 348 { 366 { 349 if (j >= 0 && j < kMaxTally) { << 367 if(j >= 0 && j < kMaxTally) { 350 return fLTally[j]; 368 return fLTally[j]; 351 } << 369 } else { 352 else { << 353 G4cout << "### DetectorConstruction::GetLO 370 G4cout << "### DetectorConstruction::GetLOgicalTally WARNING: wrong tally " 354 << "number " << j << " is ignored" 371 << "number " << j << " is ignored" << G4endl; 355 return nullptr; 372 return nullptr; 356 } << 373 } 357 } 374 } 358 375 359 //....oooOO0OOooo........oooOO0OOooo........oo 376 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 360 377