Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 /// \file electromagnetic/TestEm10/src/Detecto 27 /// \brief Implementation of the DetectorBari0 28 // 29 // 30 // 31 // 32 33 #include "DetectorBari05.hh" 34 35 #include "Materials.hh" 36 #include "SensitiveDetector.hh" 37 38 #include "G4Box.hh" 39 #include "G4FieldManager.hh" 40 #include "G4LogicalVolume.hh" 41 #include "G4Material.hh" 42 #include "G4PVPlacement.hh" 43 #include "G4Region.hh" 44 #include "G4SDManager.hh" 45 #include "G4SystemOfUnits.hh" 46 #include "G4TransportationManager.hh" 47 #include "G4UniformMagField.hh" 48 #include "G4UnitsTable.hh" 49 #include "G4ios.hh" 50 51 //....oooOO0OOooo........oooOO0OOooo........oo 52 53 DetectorBari05::DetectorBari05() : fRadiatorDe 54 55 //....oooOO0OOooo........oooOO0OOooo........oo 56 57 DetectorBari05::~DetectorBari05() 58 { 59 // delete fRadiatorDescription; 60 // the description is deleted in detector co 61 } 62 63 //....oooOO0OOooo........oooOO0OOooo........oo 64 65 G4VPhysicalVolume* DetectorBari05::Construct() 66 { 67 // Geometry parameters 68 // 69 70 G4cout << "DetectorBari05 setup" << G4endl; 71 72 G4double worldSizeZ = 600. * cm; 73 G4double worldSizeR = 22. * cm; 74 75 // Radiator and detector parameters 76 77 G4double radThickness = 0.0055 * mm; // Reg 78 G4double gasGap = 0.23 * mm; // Reg2 79 G4double foilGasRatio = radThickness / (radT 80 G4double foilNumber = 191; // Reg2 81 82 G4double absorberThickness = 0.4 * mm; 83 G4double absorberRadius = 100. * mm; 84 85 G4double electrodeThick = 100.0 * micrometer 86 G4double pipeLength = 50.0 * cm; 87 G4double mylarThick = 20.0 * micrometer; 88 G4double detGap = 0.01 * mm; 89 90 G4double startZ = 100.0 * mm; 91 92 // Preparation of mixed radiator material 93 94 // Materials 95 // 96 97 // Change to create materials using NIST 98 G4Material* air = Materials::GetInstance()-> 99 G4Material* ch2 = Materials::GetInstance()-> 100 G4Material* he = Materials::GetInstance()->G 101 G4Material* si = Materials::GetInstance()->G 102 103 G4double foilDensity = ch2->GetDensity(); 104 G4double gasDensity = air->GetDensity(); 105 G4double totDensity = foilDensity * foilGasR 106 107 G4double fractionFoil = foilDensity * foilGa 108 G4double fractionGas = gasDensity * (1.0 - f 109 G4Material* radiatorMat = new G4Material("ra 110 radiatorMat->AddMaterial(ch2, fractionFoil); 111 radiatorMat->AddMaterial(air, fractionGas); 112 113 // Radiator description 114 fRadiatorDescription = new RadiatorDescripti 115 fRadiatorDescription->fFoilMaterial = ch2; 116 fRadiatorDescription->fGasMaterial = air; / 117 fRadiatorDescription->fFoilThickness = radTh 118 fRadiatorDescription->fGasThickness = gasGap 119 fRadiatorDescription->fFoilNumber = foilNumb 120 121 // pipe material is assumed to be He + small 122 foilGasRatio = 0.99999; 123 foilDensity = 1.2928 * mg / cm3; // Air 124 gasDensity = 0.178 * mg / cm3; // He 125 totDensity = foilDensity * foilGasRatio + ga 126 127 fractionFoil = foilDensity * foilGasRatio / 128 fractionGas = gasDensity * (1.0 - foilGasRat 129 130 G4Material* pipeMat = new G4Material("pipeMa 131 pipeMat->AddMaterial(air, fractionFoil); 132 pipeMat->AddMaterial(he, fractionGas); 133 134 G4Material* worldMaterial = air; // CO2; 135 G4Material* absorberMaterial = si; 136 137 // Volumes 138 // 139 140 G4VSolid* solidWorld = new G4Box("World", wo 141 142 G4LogicalVolume* logicWorld = new G4LogicalV 143 144 G4VPhysicalVolume* physicsWorld = 145 new G4PVPlacement(0, G4ThreeVector(), "Wor 146 147 // TR radiator envelope 148 149 G4double radThick = foilNumber * (radThickne 150 G4double radZ = startZ + 0.5 * radThick; 151 152 G4VSolid* solidRadiator = 153 new G4Box("Radiator", 1.1 * absorberRadius 154 155 G4LogicalVolume* logicRadiator = new G4Logic 156 157 new G4PVPlacement(0, G4ThreeVector(0, 0, rad 158 0); 159 160 fRadiatorDescription->fLogicalVolume = logic 161 162 // create region for window inside windowR f 163 164 G4Region* radRegion = new G4Region("XTRradia 165 radRegion->AddRootLogicalVolume(logicRadiato 166 167 // Drift Electrode on both sides of Radiator 168 // (not placed) 169 170 G4double zElectrode1 = radZ - radThick / 2. 171 G4double zElectrode2 = radZ + radThick / 2. 172 173 G4cout << "zElectrode1 = " << zElectrode1 / 174 G4cout << "zElectrode2 = " << zElectrode2 / 175 G4cout << "electrodeThick = " << electrodeTh 176 177 // Helium Pipe 178 // (not placed) 179 180 G4double pipeDist = 1. * cm; // Distance be 181 G4double zPipe = zElectrode2 + electrodeThic 182 183 G4cout << "zPipe = " << zPipe / mm << " mm" 184 G4cout << "pipeLength = " << pipeLength / mm 185 186 // Mylar Foil on both sides of helium pipe 187 // (not placed) 188 189 G4double zMylar1 = zPipe - pipeLength / 2. - 190 G4double zMylar2 = zPipe + pipeLength / 2. + 191 192 G4cout << "zMylar1 = " << zMylar1 / mm << " 193 G4cout << "zMylar2 = " << zMylar2 / mm << " 194 G4cout << "fMylarThick = " << mylarThick / m 195 196 // Mylar Foil on Chamber 197 // (not placed) 198 199 G4double zMylar = zElectrode2 + electrodeThi 200 zMylar += (pipeLength + pipeDist); 201 202 G4cout << "zMylar = " << zMylar / mm << " mm 203 G4cout << "mylarThick = " << mylarThick / mm 204 205 // Absorber 206 207 G4double absorberZ = zMylar + mylarThick / 2 208 209 G4VSolid* solidAbsorber = new G4Box("Absorbe 210 211 G4LogicalVolume* logicAbsorber = new G4Logic 212 213 new G4PVPlacement(0, G4ThreeVector(0., 0., a 214 false, 0); 215 216 // Create region for radiator 217 218 G4Region* regGasDet = new G4Region("XTRdEdxD 219 regGasDet->AddRootLogicalVolume(logicAbsorbe 220 221 // Sensitive Detectors: Absorber 222 223 SensitiveDetector* sd = new SensitiveDetecto 224 G4SDManager::GetSDMpointer()->AddNewDetector 225 logicAbsorber->SetSensitiveDetector(sd); 226 227 // Print geometry parameters 228 229 G4cout << "\n The WORLD is made of " << w 230 << worldMaterial->GetName(); 231 G4cout << ", the transverse size (R) of the 232 G4cout << " The ABSORBER is made of " << abs 233 << absorberMaterial->GetName(); 234 G4cout << ", the transverse size (R) is " << 235 G4cout << " Z position of the (middle of the 236 237 G4cout << "radZ = " << radZ / mm << " mm" << 238 G4cout << "startZ = " << startZ / mm << " mm 239 240 G4cout << "fRadThick = " << radThick / mm << 241 G4cout << "fFoilNumber = " << foilNumber << 242 G4cout << "fRadiatorMat = " << radiatorMat-> 243 G4cout << "WorldMaterial = " << worldMateria 244 G4cout << G4endl; 245 246 return physicsWorld; 247 } 248 249 //....oooOO0OOooo........oooOO0OOooo........oo 250