Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm0/DirectAccess 26 /// \file electromagnetic/TestEm0/DirectAccess.cc 27 /// \brief Main program of the electromagnetic 27 /// \brief Main program of the electromagnetic/TestEm0 example 28 // 28 // 29 // 29 // 30 // << 30 // 31 // ------------------------------------------- 31 // ------------------------------------------------------------ 32 // 32 // 33 // To print cross sections per atom and mean 33 // To print cross sections per atom and mean free path for simple material 34 // 34 // 35 #include "G4BetheBlochModel.hh" << 36 #include "G4BetheHeitlerModel.hh" << 37 #include "G4BraggModel.hh" << 38 #include "G4DataVector.hh" << 39 #include "G4Electron.hh" << 40 #include "G4Gamma.hh" << 41 #include "G4KleinNishinaCompton.hh" << 42 #include "G4Material.hh" 35 #include "G4Material.hh" >> 36 >> 37 #include "G4PEEffectFluoModel.hh" >> 38 #include "G4KleinNishinaCompton.hh" >> 39 #include "G4BetheHeitlerModel.hh" >> 40 >> 41 #include "G4eeToTwoGammaModel.hh" >> 42 43 #include "G4MollerBhabhaModel.hh" 43 #include "G4MollerBhabhaModel.hh" >> 44 #include "G4SeltzerBergerModel.hh" >> 45 >> 46 #include "G4BetheBlochModel.hh" >> 47 #include "G4BraggModel.hh" >> 48 44 #include "G4MuBetheBlochModel.hh" 49 #include "G4MuBetheBlochModel.hh" 45 #include "G4MuBremsstrahlungModel.hh" 50 #include "G4MuBremsstrahlungModel.hh" 46 #include "G4MuPairProductionModel.hh" 51 #include "G4MuPairProductionModel.hh" >> 52 >> 53 #include "globals.hh" >> 54 #include "G4UnitsTable.hh" >> 55 #include "G4SystemOfUnits.hh" >> 56 >> 57 #include "G4Gamma.hh" >> 58 #include "G4Positron.hh" >> 59 #include "G4Electron.hh" >> 60 #include "G4Proton.hh" 47 #include "G4MuonPlus.hh" 61 #include "G4MuonPlus.hh" >> 62 >> 63 #include "G4DataVector.hh" 48 #include "G4NistManager.hh" 64 #include "G4NistManager.hh" 49 #include "G4PEEffectFluoModel.hh" << 50 #include "G4ParticleTable.hh" 65 #include "G4ParticleTable.hh" 51 #include "G4Positron.hh" << 52 #include "G4Proton.hh" << 53 #include "G4SeltzerBergerModel.hh" << 54 #include "G4SystemOfUnits.hh" << 55 #include "G4UnitsTable.hh" << 56 #include "G4eeToTwoGammaModel.hh" << 57 #include "globals.hh" << 58 66 59 int main() << 67 int main() { 60 { << 68 61 G4UnitDefinition::BuildUnitsTable(); 69 G4UnitDefinition::BuildUnitsTable(); 62 70 63 G4ParticleDefinition* gamma = G4Gamma::Gamma 71 G4ParticleDefinition* gamma = G4Gamma::Gamma(); 64 G4ParticleDefinition* posit = G4Positron::Po 72 G4ParticleDefinition* posit = G4Positron::Positron(); 65 G4ParticleDefinition* elec = G4Electron::Ele 73 G4ParticleDefinition* elec = G4Electron::Electron(); 66 G4ParticleDefinition* prot = G4Proton::Proto 74 G4ParticleDefinition* prot = G4Proton::Proton(); 67 G4ParticleDefinition* muon = G4MuonPlus::Muo 75 G4ParticleDefinition* muon = G4MuonPlus::MuonPlus(); 68 G4ParticleTable* partTable = G4ParticleTable 76 G4ParticleTable* partTable = G4ParticleTable::GetParticleTable(); 69 partTable->SetReadiness(); 77 partTable->SetReadiness(); 70 78 71 G4DataVector cuts; 79 G4DataVector cuts; 72 cuts.push_back(1 * keV); << 80 cuts.push_back(1*keV); 73 81 74 // define materials 82 // define materials 75 // 83 // 76 G4Material* material = G4NistManager::Instan << 84 G4Material* material = >> 85 G4NistManager::Instance()->FindOrBuildMaterial("G4_Fe"); 77 86 78 G4cout << *(G4Material::GetMaterialTable()) 87 G4cout << *(G4Material::GetMaterialTable()) << G4endl; 79 88 80 G4MaterialCutsCouple* couple = new G4Materia 89 G4MaterialCutsCouple* couple = new G4MaterialCutsCouple(material); 81 couple->SetIndex(0); 90 couple->SetIndex(0); 82 91 83 // work only for simple materials 92 // work only for simple materials 84 G4double Z = material->GetZ(); 93 G4double Z = material->GetZ(); 85 G4double A = material->GetA(); 94 G4double A = material->GetA(); 86 95 87 // initialise gamma processes (models) 96 // initialise gamma processes (models) 88 // << 97 // 89 G4VEmModel* phot = new G4PEEffectFluoModel() 98 G4VEmModel* phot = new G4PEEffectFluoModel(); 90 G4VEmModel* comp = new G4KleinNishinaCompton 99 G4VEmModel* comp = new G4KleinNishinaCompton(); 91 G4VEmModel* conv = new G4BetheHeitlerModel() << 100 G4VEmModel* conv = new G4BetheHeitlerModel(); 92 phot->Initialise(gamma, cuts); 101 phot->Initialise(gamma, cuts); 93 comp->Initialise(gamma, cuts); 102 comp->Initialise(gamma, cuts); 94 conv->Initialise(gamma, cuts); 103 conv->Initialise(gamma, cuts); 95 104 96 // valid pointer to a couple is needed for t 105 // valid pointer to a couple is needed for this model 97 phot->SetCurrentCouple(couple); 106 phot->SetCurrentCouple(couple); 98 107 99 // compute CrossSection per atom and MeanFre 108 // compute CrossSection per atom and MeanFreePath 100 // 109 // 101 G4double Emin = 1.01 * MeV, Emax = 2.01 * Me << 110 G4double Emin = 1.01*MeV, Emax = 2.01*MeV, dE = 100*keV; 102 111 103 G4cout << "\n #### Gamma : CrossSectionPerAt << 112 G4cout << "\n #### Gamma : CrossSectionPerAtom and MeanFreePath for " 104 << G4endl; << 113 << material->GetName() << G4endl; 105 G4cout << "\n Energy \t PhotoElec \t Compton 114 G4cout << "\n Energy \t PhotoElec \t Compton \t Conversion \t"; 106 G4cout << "\t PhotoElec \t Compton \t Conver << 115 G4cout << "\t PhotoElec \t Compton \t Conversion" << G4endl; 107 << 116 108 for (G4double Energy = Emin; Energy <= Emax; 117 for (G4double Energy = Emin; Energy <= Emax; Energy += dE) { 109 G4cout << "\n " << G4BestUnit(Energy, "Ene << 118 G4cout << "\n " << G4BestUnit (Energy, "Energy") 110 << G4BestUnit(phot->ComputeCrossSec << 119 << "\t" 111 << G4BestUnit(comp->ComputeCrossSec << 120 << G4BestUnit (phot->ComputeCrossSectionPerAtom(gamma,Energy,Z),"Surface") 112 << G4BestUnit(conv->ComputeCrossSec << 121 << "\t" 113 << G4BestUnit(phot->ComputeMeanFree << 122 << G4BestUnit (comp->ComputeCrossSectionPerAtom(gamma,Energy,Z),"Surface") 114 << G4BestUnit(comp->ComputeMeanFree << 123 << "\t" 115 << G4BestUnit(conv->ComputeMeanFree << 124 << G4BestUnit (conv->ComputeCrossSectionPerAtom(gamma,Energy,Z),"Surface") >> 125 << "\t \t" >> 126 << G4BestUnit (phot->ComputeMeanFreePath(gamma,Energy,material),"Length") >> 127 << "\t" >> 128 << G4BestUnit (comp->ComputeMeanFreePath(gamma,Energy,material),"Length") >> 129 << "\t" >> 130 << G4BestUnit (conv->ComputeMeanFreePath(gamma,Energy,material),"Length"); 116 } 131 } 117 132 118 G4cout << G4endl; 133 G4cout << G4endl; 119 134 120 // initialise positron annihilation (model) 135 // initialise positron annihilation (model) 121 // << 136 // 122 G4VEmModel* anni = new G4eeToTwoGammaModel() 137 G4VEmModel* anni = new G4eeToTwoGammaModel(); 123 anni->Initialise(posit, cuts); 138 anni->Initialise(posit, cuts); 124 << 139 125 // compute CrossSection per atom and MeanFre 140 // compute CrossSection per atom and MeanFreePath 126 // 141 // 127 Emin = 1.01 * MeV; << 142 Emin = 1.01*MeV; Emax = 2.01*MeV; dE = 100*keV; 128 Emax = 2.01 * MeV; << 129 dE = 100 * keV; << 130 143 131 G4cout << "\n #### e+ annihilation : CrossSe 144 G4cout << "\n #### e+ annihilation : CrossSectionPerAtom and MeanFreePath" 132 << " for " << material->GetName() << 145 << " for " << material->GetName() << G4endl; 133 G4cout << "\n Energy \t e+ annihil \t"; 146 G4cout << "\n Energy \t e+ annihil \t"; 134 G4cout << "\t e+ annihil" << G4endl; << 147 G4cout << "\t e+ annihil" << G4endl; 135 << 148 136 for (G4double Energy = Emin; Energy <= Emax; 149 for (G4double Energy = Emin; Energy <= Emax; Energy += dE) { 137 G4cout << "\n " << G4BestUnit(Energy, "Ene << 150 G4cout << "\n " << G4BestUnit (Energy, "Energy") 138 << G4BestUnit(anni->ComputeCrossSec << 151 << "\t" 139 << G4BestUnit(anni->ComputeMeanFree << 152 << G4BestUnit (anni->ComputeCrossSectionPerAtom(posit,Energy,Z),"Surface") >> 153 << "\t \t" >> 154 << G4BestUnit (anni->ComputeMeanFreePath(posit,Energy,material),"Length"); 140 } 155 } 141 156 142 G4cout << G4endl; 157 G4cout << G4endl; 143 158 144 // initialise electron processes (models) 159 // initialise electron processes (models) 145 // << 160 // 146 G4VEmModel* ioni = new G4MollerBhabhaModel() 161 G4VEmModel* ioni = new G4MollerBhabhaModel(); 147 G4VEmModel* brem = new G4SeltzerBergerModel( 162 G4VEmModel* brem = new G4SeltzerBergerModel(); 148 ioni->Initialise(elec, cuts); 163 ioni->Initialise(elec, cuts); 149 brem->Initialise(elec, cuts); 164 brem->Initialise(elec, cuts); 150 165 151 // compute CrossSection per atom and MeanFre 166 // compute CrossSection per atom and MeanFreePath 152 // 167 // 153 Emin = 1.01 * MeV; << 168 Emin = 1.01*MeV; Emax = 101.01*MeV; dE = 10*MeV; 154 Emax = 101.01 * MeV; << 169 G4double Ecut = 100*keV; 155 dE = 10 * MeV; << 156 G4double Ecut = 100 * keV; << 157 170 158 G4cout << "\n ####electron: CrossSection, Me 171 G4cout << "\n ####electron: CrossSection, MeanFreePath and StoppingPower" 159 << " for " << material->GetName() << << 172 << " for " << material->GetName() 160 << G4endl; << 173 << ";\tEnergy cut = " << G4BestUnit (Ecut, "Energy") << G4endl; 161 << 174 162 G4cout << "\n Energy \t ionization \t bremss 175 G4cout << "\n Energy \t ionization \t bremsstra \t"; 163 G4cout << "\t ionization \t bremsstra \t"; << 176 G4cout << "\t ionization \t bremsstra \t"; 164 G4cout << "\t ionization \t bremsstra" << G4 << 177 G4cout << "\t ionization \t bremsstra" << G4endl; 165 << 178 166 for (G4double Energy = Emin; Energy <= Emax; 179 for (G4double Energy = Emin; Energy <= Emax; Energy += dE) { 167 G4cout << "\n " << G4BestUnit(Energy, "Ene << 180 G4cout << "\n " << G4BestUnit (Energy, "Energy") 168 << G4BestUnit(ioni->ComputeCrossSec << 181 << "\t" 169 << "\t" << 182 << G4BestUnit (ioni->ComputeCrossSectionPerAtom(elec,Energy,Z,A,Ecut), 170 << G4BestUnit(brem->ComputeCrossSec << 183 "Surface") 171 << "\t \t" << 184 << "\t" 172 << G4BestUnit(ioni->ComputeMeanFree << 185 << G4BestUnit (brem->ComputeCrossSectionPerAtom(elec,Energy,Z,A,Ecut), 173 << G4BestUnit(brem->ComputeMeanFree << 186 "Surface") 174 << "\t \t" << 187 << "\t \t" 175 << G4BestUnit(ioni->ComputeDEDXPerV << 188 << G4BestUnit (ioni->ComputeMeanFreePath(elec,Energy,material,Ecut), 176 << "\t" << 189 "Length") 177 << G4BestUnit(brem->ComputeDEDXPerV << 190 << "\t" >> 191 << G4BestUnit (brem->ComputeMeanFreePath(elec,Energy,material,Ecut), >> 192 "Length") >> 193 << "\t \t" >> 194 << G4BestUnit (ioni->ComputeDEDXPerVolume(material,elec,Energy,Ecut), >> 195 "Energy/Length") >> 196 << "\t" >> 197 << G4BestUnit (brem->ComputeDEDXPerVolume(material,elec,Energy,Ecut), >> 198 "Energy/Length"); 178 } 199 } 179 << 200 180 G4cout << G4endl; 201 G4cout << G4endl; 181 202 182 // initialise proton processes (models) 203 // initialise proton processes (models) 183 // << 204 // 184 ioni = new G4BetheBlochModel(); 205 ioni = new G4BetheBlochModel(); 185 ioni->Initialise(prot, cuts); 206 ioni->Initialise(prot, cuts); 186 << 207 187 // compute CrossSection per atom and MeanFre 208 // compute CrossSection per atom and MeanFreePath 188 // 209 // 189 Emin = 1.01 * MeV; << 210 Emin = 1.01*MeV; Emax = 102.01*MeV; dE = 10*MeV; 190 Emax = 102.01 * MeV; << 211 Ecut = 100*keV; 191 dE = 10 * MeV; << 192 Ecut = 100 * keV; << 193 212 194 G4cout << "\n #### proton : CrossSection, Me 213 G4cout << "\n #### proton : CrossSection, MeanFreePath and StoppingPower" 195 << " for " << material->GetName() << << 214 << " for " << material->GetName() 196 << G4endl; << 215 << ";\tEnergy cut = " << G4BestUnit (Ecut, "Energy") << G4endl; 197 << 216 198 G4cout << "\n Energy \t ionization \t"; 217 G4cout << "\n Energy \t ionization \t"; 199 G4cout << "\t ionization \t"; << 218 G4cout << "\t ionization \t"; 200 G4cout << "\t ionization" << G4endl; << 219 G4cout << "\t ionization" << G4endl; 201 << 220 202 for (G4double Energy = Emin; Energy <= Emax; 221 for (G4double Energy = Emin; Energy <= Emax; Energy += dE) { 203 G4cout << "\n " << G4BestUnit(Energy, "Ene << 222 G4cout << "\n " << G4BestUnit (Energy, "Energy") 204 << G4BestUnit(ioni->ComputeCrossSec << 223 << "\t" 205 << "\t \t" << 224 << G4BestUnit (ioni->ComputeCrossSectionPerAtom(prot,Energy,Z,A,Ecut), 206 << G4BestUnit(ioni->ComputeMeanFree << 225 "Surface") 207 << "\t \t" << 226 << "\t \t" 208 << G4BestUnit(ioni->ComputeDEDXPerV << 227 << G4BestUnit (ioni->ComputeMeanFreePath(prot,Energy,material,Ecut), >> 228 "Length") >> 229 << "\t \t" >> 230 << G4BestUnit (ioni->ComputeDEDXPerVolume(material,prot,Energy,Ecut), >> 231 "Energy/Length"); 209 } 232 } 210 << 233 211 G4cout << G4endl; 234 G4cout << G4endl; 212 << 235 213 // low energy : Bragg Model 236 // low energy : Bragg Model 214 ioni = new G4BraggModel(prot); 237 ioni = new G4BraggModel(prot); 215 ioni->Initialise(prot, cuts); 238 ioni->Initialise(prot, cuts); 216 << 239 217 // compute CrossSection per atom and MeanFre 240 // compute CrossSection per atom and MeanFreePath 218 // 241 // 219 Emin = 1.1 * keV; << 242 Emin = 1.1*keV; Emax = 2.01*MeV; dE = 300*keV; 220 Emax = 2.01 * MeV; << 243 Ecut = 10*keV; 221 dE = 300 * keV; << 244 222 Ecut = 10 * keV; << 223 << 224 G4cout << "\n #### proton : low energy model 245 G4cout << "\n #### proton : low energy model (Bragg) " 225 << ";\tEnergy cut = " << G4BestUnit(E << 246 << ";\tEnergy cut = " << G4BestUnit (Ecut, "Energy") << G4endl; 226 << 247 227 G4cout << "\n Energy \t ionization \t"; 248 G4cout << "\n Energy \t ionization \t"; 228 G4cout << "\t ionization \t"; << 249 G4cout << "\t ionization \t"; 229 G4cout << "\t ionization" << G4endl; << 250 G4cout << "\t ionization" << G4endl; 230 << 251 231 for (G4double Energy = Emin; Energy <= Emax; 252 for (G4double Energy = Emin; Energy <= Emax; Energy += dE) { 232 G4cout << "\n " << G4BestUnit(Energy, "Ene << 253 G4cout << "\n " << G4BestUnit (Energy, "Energy") 233 << G4BestUnit(ioni->ComputeCrossSec << 254 << "\t" 234 << "\t \t" << 255 << G4BestUnit (ioni->ComputeCrossSectionPerAtom(prot,Energy,Z,A,Ecut), 235 << G4BestUnit(ioni->ComputeMeanFree << 256 "Surface") 236 << "\t \t" << 257 << "\t \t" 237 << G4BestUnit(ioni->ComputeDEDXPerV << 258 << G4BestUnit (ioni->ComputeMeanFreePath(prot,Energy,material,Ecut), >> 259 "Length") >> 260 << "\t \t" >> 261 << G4BestUnit (ioni->ComputeDEDXPerVolume(material,prot,Energy,Ecut), >> 262 "Energy/Length"); 238 } 263 } 239 << 264 240 G4cout << G4endl; 265 G4cout << G4endl; 241 << 266 242 // initialise muon processes (models) 267 // initialise muon processes (models) 243 // << 268 // 244 ioni = new G4MuBetheBlochModel(); 269 ioni = new G4MuBetheBlochModel(); 245 brem = new G4MuBremsstrahlungModel(); 270 brem = new G4MuBremsstrahlungModel(); 246 G4VEmModel* pair = new G4MuPairProductionMod 271 G4VEmModel* pair = new G4MuPairProductionModel(); 247 ioni->Initialise(muon, cuts); 272 ioni->Initialise(muon, cuts); 248 brem->Initialise(muon, cuts); 273 brem->Initialise(muon, cuts); 249 pair->Initialise(muon, cuts); 274 pair->Initialise(muon, cuts); 250 << 275 251 // compute CrossSection per atom and MeanFre 276 // compute CrossSection per atom and MeanFreePath 252 // 277 // 253 Emin = 1.01 * GeV; << 278 Emin = 1.01*GeV; Emax = 101.01*GeV; dE = 10*GeV; 254 Emax = 101.01 * GeV; << 279 Ecut = 10*MeV; 255 dE = 10 * GeV; << 256 Ecut = 10 * MeV; << 257 << 258 G4cout << "\n ####muon: CrossSection and Mea << 259 << ";\tEnergy cut = " << G4BestUnit(E << 260 280 >> 281 G4cout << "\n ####muon: CrossSection and MeanFreePath for " >> 282 << material->GetName() >> 283 << ";\tEnergy cut = " << G4BestUnit (Ecut, "Energy") << G4endl; >> 284 261 G4cout << "\n Energy \t ionization \t bremss 285 G4cout << "\n Energy \t ionization \t bremsstra \t pair_prod \t"; 262 G4cout << "\t ionization \t bremsstra \t pai << 286 G4cout << "\t ionization \t bremsstra \t pair_prod" << G4endl; 263 << 287 264 for (G4double Energy = Emin; Energy <= Emax; 288 for (G4double Energy = Emin; Energy <= Emax; Energy += dE) { 265 G4cout << "\n " << G4BestUnit(Energy, "Ene << 289 G4cout << "\n " << G4BestUnit (Energy, "Energy") 266 << G4BestUnit(ioni->ComputeCrossSec << 290 << "\t" 267 << "\t" << 291 << G4BestUnit (ioni->ComputeCrossSectionPerAtom(muon,Energy,Z,A,Ecut), 268 << G4BestUnit(brem->ComputeCrossSec << 292 "Surface") 269 << "\t" << 293 << "\t" 270 << G4BestUnit(pair->ComputeCrossSec << 294 << G4BestUnit (brem->ComputeCrossSectionPerAtom(muon,Energy,Z,A,Ecut), 271 << "\t \t" << 295 "Surface") 272 << G4BestUnit(ioni->ComputeMeanFree << 296 << "\t" 273 << G4BestUnit(brem->ComputeMeanFree << 297 << G4BestUnit (pair->ComputeCrossSectionPerAtom(muon,Energy,Z,A,Ecut), 274 << G4BestUnit(pair->ComputeMeanFree << 298 "Surface") >> 299 << "\t \t" >> 300 << G4BestUnit (ioni->ComputeMeanFreePath(muon,Energy,material,Ecut), >> 301 "Length") >> 302 << "\t" >> 303 << G4BestUnit (brem->ComputeMeanFreePath(muon,Energy,material,Ecut), >> 304 "Length") >> 305 << "\t" >> 306 << G4BestUnit (pair->ComputeMeanFreePath(muon,Energy,material,Ecut), >> 307 "Length"); 275 } 308 } 276 << 309 277 G4cout << G4endl; 310 G4cout << G4endl; 278 << 311 279 G4cout << "\n ####muon: StoppingPower for " << 312 G4cout << "\n ####muon: StoppingPower for " 280 << ";\tEnergy cut = " << G4BestUnit(E << 313 << material->GetName() 281 << 314 << ";\tEnergy cut = " << G4BestUnit (Ecut, "Energy") << G4endl; >> 315 282 G4cout << "\n Energy \t ionization \t bremss 316 G4cout << "\n Energy \t ionization \t bremsstra \t pair_prod \t" << G4endl; 283 << 317 284 for (G4double Energy = Emin; Energy <= Emax; 318 for (G4double Energy = Emin; Energy <= Emax; Energy += dE) { 285 G4cout << "\n " << G4BestUnit(Energy, "Ene << 319 G4cout << "\n " << G4BestUnit (Energy, "Energy") 286 << G4BestUnit(ioni->ComputeDEDXPerV << 320 << "\t" 287 << "\t" << 321 << G4BestUnit (ioni->ComputeDEDXPerVolume(material,muon,Energy,Ecut), 288 << G4BestUnit(brem->ComputeDEDXPerV << 322 "Energy/Length") 289 << "\t" << 323 << "\t" 290 << G4BestUnit(pair->ComputeDEDXPerV << 324 << G4BestUnit (brem->ComputeDEDXPerVolume(material,muon,Energy,Ecut), >> 325 "Energy/Length") >> 326 << "\t" >> 327 << G4BestUnit (pair->ComputeDEDXPerVolume(material,muon,Energy,Ecut), >> 328 "Energy/Length"); 291 } 329 } 292 << 330 293 G4cout << G4endl; << 331 G4cout << G4endl; 294 return EXIT_SUCCESS; 332 return EXIT_SUCCESS; 295 } 333 } 296 334 297 //....oooOO0OOooo........oooOO0OOooo........oo 335 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 298 336