Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // ------------------------------------------------------------------- 28 // 29 // GEANT4 Class header file 30 // 31 // 32 // File name: G4SeltzerBergerModel 33 // 34 // Author: Andreas Schaelicke & Vladimir Ivantchenko 35 // 36 // Creation date: 04.10.2011 37 // 38 // Modifications: 39 // 40 // 24.07.2018 Introduced possibility to use sampling tables to sample the 41 // emitted photon energy (instead of using rejectio) from the 42 // Seltzer-Berger scalled DCS for bremsstrahlung photon emission. 43 // Using these sampling tables option gives faster(30-70%) final 44 // state generation than the original rejection but takes some 45 // extra memory (+ ~6MB in the case of the full CMS detector). 46 // (M Novak) 47 // 48 // Class Description: 49 // 50 // Implementation of the bremssrahlung energy spectrum using 51 // 1. S.M. Seltzer and M.J. Berger Nucl. Instr. Meth. B12 (1985) 95 52 // 2. S.M. Seltzer and M.J. Berger Atomic data and Nuclear Data 53 // Tables 35 (1986) 345 54 55 // ------------------------------------------------------------------- 56 // 57 58 #ifndef G4SeltzerBergerModel_h 59 #define G4SeltzerBergerModel_h 1 60 61 #include "G4VEmModel.hh" 62 #include "G4eBremsstrahlungRelModel.hh" 63 #include "globals.hh" 64 65 class G4Physics2DVector; 66 class G4SBBremTable; 67 class G4ParticleChangeForLoss; 68 69 class G4SeltzerBergerModel : public G4VEmModel 70 { 71 72 public: 73 74 explicit G4SeltzerBergerModel(const G4ParticleDefinition* p = nullptr, 75 const G4String& nam = "eBremSB"); 76 77 ~G4SeltzerBergerModel() override; 78 79 void Initialise(const G4ParticleDefinition*, const G4DataVector&) override; 80 81 void InitialiseLocal(const G4ParticleDefinition*, 82 G4VEmModel* masterModel) override; 83 84 G4double ComputeDEDXPerVolume(const G4Material*, 85 const G4ParticleDefinition*, 86 G4double ekin, 87 G4double cutEnergy) override; 88 89 G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 90 G4double ekin, 91 G4double zet, 92 G4double, 93 G4double cutEnergy, 94 G4double maxEnergy = DBL_MAX) override; 95 96 void SampleSecondaries(std::vector<G4DynamicParticle*>*, 97 const G4MaterialCutsCouple*, 98 const G4DynamicParticle*, 99 G4double cutEnergy, 100 G4double maxEnergy) override; 101 102 void SetupForMaterial(const G4ParticleDefinition*, 103 const G4Material*, G4double) override; 104 105 G4double MinPrimaryEnergy(const G4Material*, 106 const G4ParticleDefinition*, 107 G4double cutEnergy) override; 108 109 inline void SetBicubicInterpolationFlag(G4bool val) 110 { fIsUseBicubicInterpolation = val; }; 111 112 // hide assignment operator and cctr 113 G4SeltzerBergerModel & operator=(const G4SeltzerBergerModel &right) = delete; 114 G4SeltzerBergerModel(const G4SeltzerBergerModel&) = delete; 115 116 private: 117 118 void SetParticle(const G4ParticleDefinition* p); 119 120 void ReadData(G4int Z); 121 122 G4double ComputeBremLoss(G4double cutEnergy); 123 124 G4double ComputeXSectionPerAtom(G4double cutEnergy); 125 126 G4double ComputeDXSectionPerAtom(G4double gammaEnergy); 127 128 G4double SampleEnergyTransfer(const G4double kineticEnergy, 129 const G4double logKineticEnergy, 130 const G4double cut, 131 const G4double emax); 132 133 protected: 134 135 G4ParticleChangeForLoss* fParticleChange{nullptr}; 136 137 private: 138 139 static constexpr G4int gMaxZet{101}; 140 static constexpr G4double gExpNumLimit{-12.}; 141 static G4double gYLimitData[gMaxZet]; 142 static G4Physics2DVector* gSBDCSData[gMaxZet]; 143 static G4SBBremTable* gSBSamplingTable; 144 static const G4double gBremFactor; 145 static const G4double gMigdalConstant; 146 147 G4bool fIsUseBicubicInterpolation{false}; 148 G4bool fIsUseSamplingTables{true}; 149 G4bool fIsElectron{true}; 150 G4bool fIsScatOffElectron{false}; 151 G4bool isInitializer{false}; 152 // 153 G4int fCurrentIZ{0}; 154 G4int fNumWarnings{0}; 155 156 const G4ParticleDefinition* fPrimaryParticle{nullptr}; 157 G4ParticleDefinition* fGammaParticle; 158 159 // cash 160 G4double fPrimaryKinEnergy{0.}; 161 G4double fPrimaryTotalEnergy{0.}; 162 G4double fDensityFactor{0.}; 163 G4double fDensityCorr{0.}; 164 G4double fLowestKinEnergy; 165 166 std::size_t fIndx{0}; 167 std::size_t fIndy{0}; 168 }; 169 170 #endif 171