Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/include/G4BetheHeitlerModel.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // -------------------------------------------------------------------
 28 //
 29 // GEANT4 Class header file
 30 //
 31 //
 32 // File name:     G4BetheHeitlerModel
 33 //
 34 // Author:        Vladimir Ivanchenko on base of Michel Maire code
 35 //
 36 // Creation date: 19.04.2005
 37 //
 38 // Modifications by Vladimir Ivanchenko, Michel Maire, Mihaly Novak
 39 //
 40 // Class Description:
 41 //
 42 // Implementation of gamma conversion to e+e- in the field of a nucleus 
 43 // For details see Physics Reference Manual
 44 
 45 // -------------------------------------------------------------------
 46 //
 47 
 48 #ifndef G4BetheHeitlerModel_h
 49 #define G4BetheHeitlerModel_h 1
 50 
 51 #include "G4VEmModel.hh"
 52 #include "G4PhysicsTable.hh"
 53 #include "G4Log.hh"
 54 
 55 #include <vector>
 56 
 57 class G4ParticleChangeForGamma;
 58 class G4Pow;
 59 class G4EmElementXS;
 60 
 61 class G4BetheHeitlerModel : public G4VEmModel
 62 {
 63 
 64 public:
 65 
 66   explicit G4BetheHeitlerModel(const G4ParticleDefinition* p = nullptr,
 67                                const G4String& nam = "BetheHeitler");
 68  
 69   ~G4BetheHeitlerModel() override;
 70 
 71   void Initialise(const G4ParticleDefinition*, const G4DataVector&) override;
 72 
 73   void InitialiseLocal(const G4ParticleDefinition*, 
 74            G4VEmModel* masterModel) override;
 75 
 76   G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
 77               G4double kinEnergy, 
 78               G4double Z, 
 79               G4double A=0., 
 80               G4double cut=0.,
 81               G4double emax=DBL_MAX) override;
 82 
 83   void SampleSecondaries(std::vector<G4DynamicParticle*>*,
 84        const G4MaterialCutsCouple*,
 85        const G4DynamicParticle*,
 86        G4double tmin,
 87        G4double maxEnergy) override;
 88 
 89   // hide assignment operator
 90   G4BetheHeitlerModel & operator=(const G4BetheHeitlerModel &right) = delete;
 91   G4BetheHeitlerModel(const  G4BetheHeitlerModel&) = delete;
 92 
 93 protected:
 94 
 95   inline G4double ScreenFunction1(const G4double delta);
 96 
 97   inline G4double ScreenFunction2(const G4double delta);
 98 
 99   inline void ScreenFunction12(const G4double delta, G4double &f1, G4double &f2);
100 
101   void     InitialiseElementData();
102  
103   struct ElementData {
104     G4double fDeltaMaxLow;
105     G4double fDeltaMaxHigh;
106   };
107   
108   static const G4int                gMaxZet; 
109   
110   G4Pow*                            fG4Calc;
111   const G4ParticleDefinition*       fTheGamma;
112   const G4ParticleDefinition*       fTheElectron;
113   const G4ParticleDefinition*       fThePositron;
114   G4ParticleChangeForGamma*         fParticleChange;
115   G4EmElementXS*                    fXSection{nullptr};
116 
117   G4bool isFirstInstance{false};
118   G4bool useEPICS2017{false};
119 
120   static std::vector<ElementData*>  gElementData;
121 };
122 
123 //
124 // Bethe screening functions for the elastic (coherent) scattering:
125 // Bethe's phi1, phi2 coherent screening functions were computed numerically 
126 // by using (the universal) atomic form factors computed based on the Thomas-
127 // Fermi model of the atom (using numerical solution of the Thomas-Fermi 
128 // screening function instead of Moliere's analytical approximation). The 
129 // numerical results can be well approximated (better than Butcher & Messel 
130 // especially near the delta=1 limit) by:
131 // ## if delta <= 1.4 
132 //  phi1(delta) = 20.806 - delta*(3.190 - 0.5710*delta)   
133 //  phi2(delta) = 20.234 - delta*(2.126 - 0.0903*delta)
134 // ## if delta  > 1.4
135 //  phi1(delta) = phi2(delta) = 21.0190 - 4.145*ln(delta + 0.958)
136 // with delta = 136mc^2kZ^{-1/3}/[E(Eg-E)] = 136Z^{-1/3}eps0/[eps(1-eps)] where 
137 // Eg is the initial photon energy, E is the total energy transferred to one of 
138 // the e-/e+ pair, eps0 = mc^2/Eg and eps = E/Eg.
139 
140 // Compute the value of the screening function 3*PHI1(delta) - PHI2(delta):
141 inline G4double G4BetheHeitlerModel::ScreenFunction1(const G4double delta)
142 {
143   return (delta > 1.4) ? 42.038 - 8.29*G4Log(delta + 0.958) 
144                        : 42.184 - delta*(7.444 - 1.623*delta);
145 }
146 
147 // Compute the value of the screening function 1.5*PHI1(delta) +0.5*PHI2(delta):
148 inline G4double G4BetheHeitlerModel::ScreenFunction2(const G4double delta)
149 {
150   return (delta > 1.4) ? 42.038 - 8.29*G4Log(delta + 0.958)
151                        : 41.326 - delta*(5.848 - 0.902*delta);
152 }
153 
154 // Same as ScreenFunction1 and ScreenFunction2 but computes them at once
155 inline void G4BetheHeitlerModel::ScreenFunction12(const G4double delta, 
156                                                   G4double &f1, G4double &f2)
157 {
158   if (delta > 1.4) {
159     f1 = 42.038 - 8.29*G4Log(delta + 0.958);
160     f2 = f1;
161   } else {
162     f1 = 42.184 - delta*(7.444 - 1.623*delta);
163     f2 = 41.326 - delta*(5.848 - 0.902*delta); 
164   }
165 }
166 
167 #endif
168