Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/parton_string/qgsm/src/G4SingleDiffractiveExcitation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // ------------------------------------------------------------
 28 //      GEANT 4 class implemetation file
 29 //
 30 //      ---------------- G4SingleDiffractiveExcitation --------------
 31 //             by Gunter Folger, October 1998.
 32 //      diffractive Excitation used by strings models
 33 //  Take a projectile and a target
 34 //  excite the projectile and target
 35 // ------------------------------------------------------------
 36 
 37 #include "G4SingleDiffractiveExcitation.hh"
 38 #include "globals.hh"
 39 #include "G4PhysicalConstants.hh"
 40 #include "G4SystemOfUnits.hh"
 41 #include "Randomize.hh"
 42 #include "G4LorentzRotation.hh"
 43 #include "G4ThreeVector.hh"
 44 #include "G4ParticleDefinition.hh"
 45 #include "G4VSplitableHadron.hh"
 46 #include "G4ExcitedString.hh"
 47 
 48 #include "G4Log.hh"
 49 #include "G4Pow.hh"
 50 
 51 //#define debugSingleDiffraction
 52 
 53 G4SingleDiffractiveExcitation::G4SingleDiffractiveExcitation(){}
 54 
 55 G4SingleDiffractiveExcitation::~G4SingleDiffractiveExcitation(){}
 56 
 57 G4bool G4SingleDiffractiveExcitation::
 58 ExciteParticipants( G4VSplitableHadron *projectile, G4VSplitableHadron *target, 
 59                     G4bool ProjectileDiffraction ) const
 60 {
 61   #ifdef debugSingleDiffraction
 62     G4cout<<G4endl<<"G4SingleDiffractiveExcitation::ExciteParticipants"<<G4endl;
 63   #endif
 64 
 65   G4LorentzVector Pprojectile=projectile->Get4Momentum();
 66   G4double Mprojectile =    projectile->GetDefinition()->GetPDGMass();
 67   G4double Mprojectile2=sqr(projectile->GetDefinition()->GetPDGMass());
 68 
 69   G4LorentzVector Ptarget=target->Get4Momentum();
 70   G4double Mtarget =    target->GetDefinition()->GetPDGMass();
 71   G4double Mtarget2=sqr(target->GetDefinition()->GetPDGMass());
 72 
 73   #ifdef debugSingleDiffraction
 74     G4cout<<"Proj Targ "<<projectile->GetDefinition()->GetPDGEncoding()<<" "<<target->GetDefinition()->GetPDGEncoding()<<G4endl;
 75     G4cout<<"Pr Tr 4-Mom "<<Pprojectile<<" "<<Pprojectile.mag()<<G4endl
 76           <<"            "<<Ptarget    <<" "<<Ptarget.mag()   <<G4endl;
 77   #endif
 78 
 79   G4LorentzVector Psum=Pprojectile+Ptarget;
 80   G4double SqrtS=Psum.mag();
 81   G4double S    =Psum.mag2();
 82 
 83   #ifdef debugSingleDiffraction
 84     G4cout<<"SqrtS-Mprojectile-Mtarget "<<SqrtS<<" "<<Mprojectile<<" "<<Mtarget
 85           <<" "<<SqrtS-Mprojectile-Mtarget<<G4endl;
 86   #endif
 87   if (SqrtS-Mprojectile-Mtarget <= 250.0*MeV) {
 88     #ifdef debugSingleDiffraction
 89     G4cerr<<"Projectile: "<<projectile->GetDefinition()->GetPDGEncoding()<<" "
 90           <<Pprojectile<<" "<<Pprojectile.mag()<<G4endl;
 91     G4cerr<<"Target:     "<<target->GetDefinition()->GetPDGEncoding()<<" "
 92           <<Ptarget<<" "<<Ptarget.mag()<<G4endl; 
 93     G4cerr<<"sqrt(S) = "<<SqrtS<<" Mp + Mt = "<<Pprojectile.mag()+Ptarget.mag()<<G4endl;
 94     #endif
 95     return true;
 96   }
 97 
 98   G4LorentzRotation toCms(-1*Psum.boostVector());
 99 
100   G4LorentzVector Ptmp=toCms*Pprojectile;
101 
102   if ( Ptmp.pz() <= 0. )
103   {
104     // "String" moving backwards in  CMS, abort collision !!
105     //         G4cout << " abort Collision!! " << G4endl;
106     return false;
107   }
108 
109   toCms.rotateZ(-1*Ptmp.phi());
110   toCms.rotateY(-1*Ptmp.theta());
111 
112   G4LorentzRotation toLab(toCms.inverse());
113 
114   Pprojectile.transform(toCms);
115   Ptarget.transform(toCms);
116   #ifdef debugSingleDiffraction
117     G4cout << "Pprojectile  in CMS " << Pprojectile << G4endl;
118     G4cout << "Ptarget      in CMS " << Ptarget     << G4endl;
119   #endif
120   G4double maxPtSquare=sqr(Ptarget.pz());
121 
122   G4double ProjectileMinDiffrMass(0.), TargetMinDiffrMass(0.);
123   G4double AveragePt2(0.);
124   G4int absPDGcode=std::abs(projectile->GetDefinition()->GetPDGEncoding()); 
125 
126   if ( ProjectileDiffraction ) {
127     if ( absPDGcode > 1000 )                            //------Projectile is baryon --------
128     {
129       if ( absPDGcode > 4000 && absPDGcode < 6000 )  // Projectile is a charm or bottom baryon
130       {
131         ProjectileMinDiffrMass = projectile->GetDefinition()->GetPDGMass()/CLHEP::GeV + 0.25;  // GeV
132         AveragePt2 = 0.3;                                                                      // GeV^2
133       }
134       else
135       {
136         ProjectileMinDiffrMass = 1.16;              // GeV
137         AveragePt2 = 0.3;                           // GeV^2
138       }
139     }
140     else if( absPDGcode == 211 || absPDGcode ==  111) //------Projectile is Pion -----------
141     {
142       ProjectileMinDiffrMass = 1.0;               // GeV
143       AveragePt2 = 0.3;                           // GeV^2
144     }
145     else if( absPDGcode == 321 || absPDGcode == 130 || absPDGcode == 310) //Projectile is Kaon
146     {
147       ProjectileMinDiffrMass = 1.1;               // GeV
148       AveragePt2 = 0.3;                           // GeV^2
149     }
150     else if( absPDGcode == 22)                        //------Projectile is Gamma -----------
151     {
152       ProjectileMinDiffrMass = 0.25;             // GeV
153       AveragePt2 = 0.36;                         // GeV^2
154     }
155     else if( absPDGcode > 400 && absPDGcode < 600)  // Projectile is a charm or bottom meson
156     {
157       ProjectileMinDiffrMass = projectile->GetDefinition()->GetPDGMass()/CLHEP::GeV + 0.25;  // GeV
158       AveragePt2 = 0.3;                                                                      // GeV^2
159     }
160     else                                             //------Projectile is undefined, Nucleon assumed
161     {
162       ProjectileMinDiffrMass = 1.1;              // GeV
163       AveragePt2 = 0.3;                          // GeV^2
164     };
165 
166     ProjectileMinDiffrMass = ProjectileMinDiffrMass * GeV;
167     Mprojectile2=sqr(ProjectileMinDiffrMass);
168   }
169   else
170   {
171     TargetMinDiffrMass = 1.16*GeV;                     // For target nucleon
172     Mtarget2 = sqr( TargetMinDiffrMass) ;
173     AveragePt2 = 0.3;                                  // GeV^2
174   }   // end of if ( ProjectileDiffraction )
175 
176   AveragePt2 = AveragePt2 * GeV*GeV;
177 
178   G4double Pt2, PZcms, PZcms2;
179   G4double ProjMassT2, ProjMassT;
180   G4double TargMassT2, TargMassT;
181   G4double PMinusMin, PMinusMax;
182   G4double TPlusMin, TPlusMax;
183   G4double PMinusNew, PPlusNew, TPlusNew, TMinusNew;
184 
185   G4LorentzVector Qmomentum;
186   G4double Qminus, Qplus;
187 
188   G4int whilecount=0;
189   do {
190     whilecount++;
191 
192     if (whilecount > 1000 )
193     {
194       Qmomentum=G4LorentzVector(0.,0.,0.,0.);
195       return false;     //  Ignore this interaction
196     }
197     
198     //  Generate pt
199     Qmomentum=G4LorentzVector(GaussianPt(AveragePt2,maxPtSquare),0);
200 
201     Pt2 = G4ThreeVector( Qmomentum.vect() ).mag2();
202 
203     ProjMassT2 = Mprojectile2 + Pt2;
204     ProjMassT = std::sqrt( ProjMassT2 );
205     TargMassT2 = Mtarget2 + Pt2;
206     TargMassT = std::sqrt( TargMassT2 );
207 
208     #ifdef debugSingleDiffraction
209       G4cout<<whilecount<<" "<<Pt2<<" "<<ProjMassT<<" "<<TargMassT<<" "<<SqrtS<<" "<<S<<" "<<ProjectileDiffraction<<G4endl;
210     #endif
211     if ( SqrtS < ProjMassT + TargMassT ) continue;
212 
213     PZcms2 = ( S*S + ProjMassT2*ProjMassT2 + TargMassT2*TargMassT2
214               - 2.0*S*ProjMassT2 - 2.0*S*TargMassT2 - 2.0*ProjMassT2*TargMassT2 ) / 4.0 / S;
215 
216     if ( PZcms2 < 0 ) continue;
217 
218     PZcms = std::sqrt( PZcms2 );
219 
220     if ( ProjectileDiffraction )
221     {       // The projectile will fragment, the target will saved.
222       PMinusMin = std::sqrt( ProjMassT2 + PZcms2 ) - PZcms;
223       PMinusMax = SqrtS - TargMassT;
224 
225       PMinusNew = ChooseX( PMinusMin, PMinusMax );
226       TMinusNew = SqrtS - PMinusNew;
227 
228       Qminus = Ptarget.minus() - TMinusNew;
229       TPlusNew = TargMassT2 / TMinusNew;
230       Qplus = Ptarget.plus() - TPlusNew;
231 
232     } else {  // The target will fragment, the projectile will saved.
233       TPlusMin = std::sqrt( TargMassT2 + PZcms2 ) - PZcms;
234       TPlusMax = SqrtS - ProjMassT;
235   
236       TPlusNew = ChooseX( TPlusMin, TPlusMax );
237       PPlusNew = SqrtS - TPlusNew;
238 
239       Qplus = PPlusNew - Pprojectile.plus();
240       PMinusNew = ProjMassT2 / PPlusNew;
241       Qminus = PMinusNew - Pprojectile.minus();
242     }
243   
244     Qmomentum.setPz( (Qplus - Qminus)/2 );
245     Qmomentum.setE(  (Qplus + Qminus)/2 );
246 
247     #ifdef debugSingleDiffraction
248       G4cout<<ProjectileDiffraction<<" "<<( Pprojectile + Qmomentum ).mag2()<<" "<< Mprojectile2<<G4endl;
249       G4cout<<!ProjectileDiffraction<<" "<<( Ptarget    - Qmomentum ).mag2()<<" "<< Mtarget2<<G4endl;
250     #endif
251 
252   } while ( ( ProjectileDiffraction&&( Pprojectile + Qmomentum ).mag2() <  Mprojectile2 ) ||
253             (!ProjectileDiffraction&&( Ptarget     - Qmomentum ).mag2() <  Mtarget2       )   ); 
254     // Repeat the sampling because there was not any excitation
255 
256   Pprojectile += Qmomentum;
257 
258   Ptarget     -= Qmomentum;
259 
260   // Transform back and update SplitableHadron Participant.
261   Pprojectile.transform(toLab);
262   Ptarget.transform(toLab);
263 
264   #ifdef debugSingleDiffraction
265     G4cout << "Pprojectile  in Lab. " << Pprojectile << G4endl;
266     G4cout << "Ptarget      in Lab. " << Ptarget     << G4endl;
267     G4cout << "G4SingleDiffractiveExcitation- Projectile mass  " <<  Pprojectile.mag() << G4endl;
268     G4cout << "G4SingleDiffractiveExcitation- Target mass      " <<  Ptarget.mag() << G4endl;
269   #endif
270 
271   target->Set4Momentum(Ptarget);
272   projectile->Set4Momentum(Pprojectile);
273 
274   return true;
275 }
276 
277 // --------- private methods ----------------------
278 
279 G4double G4SingleDiffractiveExcitation::ChooseX(G4double Xmin, G4double Xmax) const
280 {
281   // choose an x between Xmin and Xmax with P(x) ~ 1/x
282   G4double range=Xmax-Xmin;
283 
284   if ( Xmin <= 0. || range <=0. ) 
285   {
286     G4cout << " Xmin, range : " << Xmin << " , " << range << G4endl;
287     throw G4HadronicException(__FILE__, __LINE__, "G4SingleDiffractiveExcitation::ChooseX : Invalid arguments ");
288   }
289 
290   G4double x = Xmin*G4Pow::GetInstance()->powA(Xmax/Xmin, G4UniformRand() );
291   // G4double x = 1.0/sqr(1.0/std::sqrt(Xmin) - G4UniformRand() * (1.0/std::sqrt(Xmin) - 1.0/std::sqrt(Xmax)));
292   return x;
293 }
294 
295 
296 G4ThreeVector G4SingleDiffractiveExcitation::GaussianPt(G4double widthSquare, G4double maxPtSquare) const
297 {            //  @@ this method is used in FTFModel as well. Should go somewhere common!
298 
299   G4double pt2;
300 
301   const G4int maxNumberOfLoops = 1000;
302   G4int loopCounter = 0;
303   do {
304     pt2=-widthSquare * G4Log( G4UniformRand() );
305   } while ( ( pt2 > maxPtSquare) && ++loopCounter < maxNumberOfLoops );  /* Loop checking, 07.08.2015, A.Ribon */
306   if ( loopCounter >= maxNumberOfLoops ) {
307     pt2 = 0.99*maxPtSquare;  // Just an acceptable value, without any physics consideration. 
308   }
309 
310   pt2=std::sqrt(pt2);
311 
312   G4double phi=G4UniformRand() * twopi;
313 
314   return G4ThreeVector (pt2*std::cos(phi), pt2*std::sin(phi), 0.);    
315 }
316 
317