Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/particle_hp/src/G4NeutronRadCaptureHP.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // Physics model class G4NeutronRadCaptureHP
 28 //         derived from G4NeutronRadCapture
 29 //
 30 // Created:  02 October 2023
 31 // Author  V.Ivanchenko
 32 //  
 33 // 
 34 
 35 #include "G4NeutronRadCaptureHP.hh"
 36 #include "G4HadronicInteractionRegistry.hh"
 37 #include "G4SystemOfUnits.hh"
 38 #include "G4ParticleDefinition.hh"
 39 #include "G4Fragment.hh"
 40 #include "G4FragmentVector.hh"
 41 #include "G4NucleiProperties.hh"
 42 #include "G4VPreCompoundModel.hh"
 43 #include "G4ExcitationHandler.hh"
 44 #include "G4VEvaporationChannel.hh"
 45 #include "G4PhotonEvaporation.hh"
 46 #include "G4DynamicParticle.hh"
 47 #include "G4ParticleTable.hh"
 48 #include "G4ParticleHPManager.hh"
 49 #include "G4IonTable.hh"
 50 #include "G4Electron.hh"
 51 #include "G4Deuteron.hh"
 52 #include "G4Triton.hh"
 53 #include "G4He3.hh"
 54 #include "G4Alpha.hh"
 55 #include "Randomize.hh"
 56 #include "G4RandomDirection.hh"
 57 #include "G4HadronicParameters.hh"
 58 #include "G4PhysicsModelCatalog.hh"
 59 
 60 G4NeutronRadCaptureHP::G4NeutronRadCaptureHP() 
 61   : G4HadronicInteraction("nRadCaptureHP"),
 62     electron(G4Electron::Electron()),
 63     fManagerHP(G4ParticleHPManager::GetInstance()),
 64     lowestEnergyLimit(1.0e-11*CLHEP::eV),
 65     minExcitation(0.1*CLHEP::keV),
 66     emax(20*CLHEP::MeV),
 67     emaxT(fManagerHP->GetMaxEnergyDoppler()),
 68     lab4mom(0.,0.,0.,0.)
 69 {
 70   SetMaxEnergy( G4HadronicParameters::Instance()->GetMaxEnergy() );
 71   theTableOfIons = G4ParticleTable::GetParticleTable()->GetIonTable();
 72 }
 73 
 74 G4NeutronRadCaptureHP::~G4NeutronRadCaptureHP()
 75 {
 76   if (fLocalPE) { delete photonEvaporation; }
 77 }
 78 
 79 void G4NeutronRadCaptureHP::BuildPhysicsTable(const G4ParticleDefinition&)
 80 {
 81   if (photonEvaporation != nullptr) { return; }
 82   G4HadronicInteraction* p =
 83     G4HadronicInteractionRegistry::Instance()->FindModel("PRECO");
 84   if (nullptr != p) {
 85     auto handler =
 86       (static_cast<G4VPreCompoundModel*>(p))->GetExcitationHandler();
 87     if (nullptr != handler)
 88       photonEvaporation = handler->GetPhotonEvaporation();
 89   }
 90   G4DeexPrecoParameters* param = 
 91     G4NuclearLevelData::GetInstance()->GetParameters();
 92   minExcitation = param->GetMinExcitation();
 93   icID = G4PhysicsModelCatalog::GetModelID("model_e-InternalConversion");
 94   secID = G4PhysicsModelCatalog::GetModelID("model_" + GetModelName());
 95   if (nullptr == photonEvaporation) {
 96     photonEvaporation = new G4PhotonEvaporation();
 97     fLocalPE = true;
 98   }
 99   photonEvaporation->Initialise();
100   photonEvaporation->SetICM(true);
101 }
102 
103 G4HadFinalState* G4NeutronRadCaptureHP::ApplyYourself(
104      const G4HadProjectile& aTrack, G4Nucleus& theNucleus)
105 {
106   theParticleChange.Clear();
107   G4double ekin = aTrack.GetKineticEnergy();
108   if (ekin > emax) {
109     return &theParticleChange;
110   }
111 
112   theParticleChange.SetStatusChange(stopAndKill);
113   G4double T = aTrack.GetMaterial()->GetTemperature();
114 
115   G4int A = theNucleus.GetA_asInt();
116   G4int Z = theNucleus.GetZ_asInt();
117 
118   G4double time = aTrack.GetGlobalTime();
119 
120   // Create initial state
121   G4double mass = G4NucleiProperties::GetNuclearMass(A, Z);
122 
123   // no Doppler broading
124   G4double factT = T/CLHEP::STP_Temperature; 
125 
126   if (ekin >= emaxT*factT || fManagerHP->GetNeglectDoppler()) {
127     lab4mom.set(0.,0.,0.,mass);
128   } else {
129     G4double lambda = 1.0/(CLHEP::k_Boltzmann*T);
130     G4double erand = G4RandGamma::shoot(2.0, lambda);
131     auto mom = G4RandomDirection()*std::sqrt(2*mass*erand);
132     lab4mom.set(mom.x(), mom.y(), mom.z(), mass + erand);
133   }
134 
135   lab4mom += aTrack.Get4Momentum();
136 
137   G4double M = lab4mom.mag();
138   ++A;
139   mass = G4NucleiProperties::GetNuclearMass(A, Z);
140   //G4cout << "Capture start: Z= " << Z << " A= " << A 
141   //   << " LabM= " << M << " Mcompound= " << mass << G4endl;
142 
143   // simplified method of 1 gamma emission
144   if (A <= 4) {
145  
146     if (verboseLevel > 1) {
147       G4cout << "G4NeutronRadCaptureHP::DoIt: Eini(MeV)=" 
148        << ekin/MeV << "  Eexc(MeV)= " 
149        << (M - mass)/MeV 
150        << "  Z= " << Z << "  A= " << A << G4endl;
151     }
152     if (M - mass > lowestEnergyLimit) {
153       G4ThreeVector bst = lab4mom.boostVector();
154       G4double e1 = (M - mass)*(M + mass)/(2*M);
155       G4LorentzVector lv2(e1*G4RandomDirection(),e1);
156       lv2.boost(bst);
157       if (verboseLevel > 1) {
158         G4cout << "Gamma 4-mom: " << lv2 << " Escm(MeV)=" << e1/CLHEP::MeV << G4endl;
159       }
160       lab4mom -= lv2; 
161       G4HadSecondary* news = 
162   new G4HadSecondary(new G4DynamicParticle(G4Gamma::Gamma(), lv2));
163       news->SetTime(time);
164       news->SetCreatorModelID(secID);
165       theParticleChange.AddSecondary(*news);
166       delete news;
167     }
168 
169     const G4ParticleDefinition* theDef = nullptr;
170 
171     if      (Z == 1 && A == 2) {theDef = G4Deuteron::Deuteron(); }
172     else if (Z == 1 && A == 3) {theDef = G4Triton::Triton(); }
173     else if (Z == 2 && A == 3) {theDef = G4He3::He3(); }
174     else if (Z == 2 && A == 4) {theDef = G4Alpha::Alpha(); }
175     else { theDef = theTableOfIons->GetIon(Z, A, 0.0, noFloat, 0); }
176 
177     if (nullptr != theDef) {
178       G4HadSecondary* news =
179         new G4HadSecondary(new G4DynamicParticle(theDef, lab4mom));
180       news->SetTime(time);
181       news->SetCreatorModelID(secID);
182       theParticleChange.AddSecondary(*news);
183       delete news;
184     }
185  
186   // Use photon evaporation  
187   } else {
188  
189     // protection against wrong kinematic 
190     if (M < mass) {
191       G4double etot = std::max(mass, lab4mom.e());
192       G4double ptot = std::sqrt((etot - mass)*(etot + mass));
193       G4ThreeVector v = lab4mom.vect().unit();
194       lab4mom.set(v.x()*ptot,v.y()*ptot,v.z()*ptot,etot);
195     }
196 
197     G4Fragment* aFragment = new G4Fragment(A, Z, lab4mom);
198 
199     if (verboseLevel > 1) {
200       G4cout << "G4NeutronRadCaptureHP::ApplyYourself initial G4Fragmet:" 
201        << G4endl;
202       G4cout << aFragment << G4endl;
203     }
204 
205     //
206     // Sample final state
207     //
208     G4FragmentVector* fv = photonEvaporation->BreakUpFragment(aFragment);
209     if (nullptr == fv) { fv = new G4FragmentVector(); }
210     fv->push_back(aFragment);
211 
212     if (verboseLevel > 1) {
213       G4cout << "G4NeutronRadCaptureHP: " << fv->size() << " final particle icID= "
214        << icID << G4endl;
215     }
216     for (auto const & f : *fv) {
217       G4double etot = f->GetMomentum().e();
218 
219       Z = f->GetZ_asInt();
220       A = f->GetA_asInt();
221 
222       const G4ParticleDefinition* theDef;
223       if (0 == Z && 0 == A) { theDef =  f->GetParticleDefinition(); }
224       else if (Z == 1 && A == 2) { theDef = G4Deuteron::Deuteron(); }
225       else if (Z == 1 && A == 3) { theDef = G4Triton::Triton(); }
226       else if (Z == 2 && A == 3) { theDef = G4He3::He3(); }
227       else if (Z == 2 && A == 4) { theDef = G4Alpha::Alpha(); }
228       else {
229         G4double eexc = f->GetExcitationEnergy();
230   if (eexc <= minExcitation) { eexc = 0.0; }
231   theDef = theTableOfIons->GetIon(Z, A, eexc, noFloat, 0);
232   /*  
233   G4cout << "### NC Find ion Z= " << Z << " A= " << A
234          << " Eexc(MeV)= " << eexc/MeV << "  " 
235          << theDef << G4endl;
236   */
237       }
238       ekin = std::max(0.0, etot - theDef->GetPDGMass());
239       if (verboseLevel > 1) {
240   G4cout << theDef->GetParticleName()
241          << " Ekin(MeV)= " << ekin/MeV
242          << " p: " << f->GetMomentum().vect() 
243          << G4endl;
244       }
245       G4HadSecondary* news =
246         new G4HadSecondary(new G4DynamicParticle(theDef,
247                                                  f->GetMomentum().vect().unit(),
248                                                  ekin));
249       G4double timeF = std::max(f->GetCreationTime(), 0.0);
250       news->SetTime(time + timeF);
251       if (theDef == electron) { 
252         news->SetCreatorModelID(icID); 
253       } else {
254         news->SetCreatorModelID(secID);
255       }
256       theParticleChange.AddSecondary(*news);
257       delete news;
258       delete f;
259     }
260     delete fv;
261   }
262   //G4cout << "Capture done" << G4endl;
263   return &theParticleChange;
264 }
265 
266