Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/particle_hp/src/G4NeutronHPCaptureData.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // neutron_hp -- source file
 27 // J.P. Wellisch, Nov-1996
 28 // A prototype of the low energy neutron transport model.
 29 //
 30 // 070523 add neglecting doppler broadening on the fly. T. Koi
 31 // 070613 fix memory leaking by T. Koi
 32 // 071002 enable cross section dump by T. Koi
 33 // 080428 change checking point of "neglecting doppler broadening" flag
 34 //        from GetCrossSection to BuildPhysicsTable by T. Koi
 35 // 081024 G4NucleiPropertiesTable:: to G4NucleiProperties::
 36 //
 37 // P. Arce, June-2014 Conversion neutron_hp to particle_hp
 38 // V. Ivanchenko July-2023 converted back
 39 //
 40 #include "G4NeutronHPCaptureData.hh"
 41 
 42 #include "G4ElementTable.hh"
 43 #include "G4HadronicParameters.hh"
 44 #include "G4Neutron.hh"
 45 #include "G4NucleiProperties.hh"
 46 #include "G4ParticleHPData.hh"
 47 #include "G4ParticleHPManager.hh"
 48 #include "G4Element.hh"
 49 #include "G4Material.hh"
 50 #include "G4ParticleDefinition.hh"
 51 #include "G4PhysicsTable.hh"
 52 #include "G4PhysicalConstants.hh"
 53 #include "G4Pow.hh"
 54 #include "G4SystemOfUnits.hh"
 55 #include "G4AutoLock.hh"
 56 
 57 G4bool G4NeutronHPCaptureData::fLock = true;
 58 G4PhysicsTable* G4NeutronHPCaptureData::theCrossSections = nullptr;
 59 
 60 namespace
 61 {
 62   G4Mutex theHPCaptureData = G4MUTEX_INITIALIZER;
 63 }
 64 
 65 G4NeutronHPCaptureData::G4NeutronHPCaptureData()
 66   : G4VCrossSectionDataSet("NeutronHPCaptureXS")
 67 {
 68   emax = 20.*CLHEP::MeV;
 69   fManager = G4ParticleHPManager::GetInstance();
 70 }
 71 
 72 G4NeutronHPCaptureData::~G4NeutronHPCaptureData()
 73 {
 74   if (isFirst) {
 75     if (nullptr != theCrossSections)
 76       theCrossSections->clearAndDestroy();
 77     delete theCrossSections;
 78     theCrossSections = nullptr;
 79   }
 80 }
 81 
 82 G4bool G4NeutronHPCaptureData::IsIsoApplicable(const G4DynamicParticle*,
 83                                                G4int, G4int,
 84                                                const G4Element*,
 85                                                const G4Material*)
 86 {
 87   return true;
 88 }
 89 
 90 G4double G4NeutronHPCaptureData::GetIsoCrossSection(const G4DynamicParticle* dp,
 91                                                     G4int /*Z*/, G4int /*A*/,
 92                                                     const G4Isotope* /*iso*/,
 93                                                     const G4Element* element,
 94                                                     const G4Material* material)
 95 {
 96   if (dp->GetKineticEnergy() == ke_cache && element == element_cache &&
 97       material == material_cache)
 98     return xs_cache;
 99 
100   ke_cache = dp->GetKineticEnergy();
101   element_cache = element;
102   material_cache = material;
103   G4double xs = GetCrossSection(dp, element, material->GetTemperature());
104   xs_cache = xs;
105   return xs;
106 }
107 
108 void G4NeutronHPCaptureData::BuildPhysicsTable(const G4ParticleDefinition& p)
109 {
110   // the choice of the first instance
111   if (fLock) {
112     G4AutoLock l(&theHPCaptureData);
113     if (fLock) {
114       isFirst = true;
115       fLock = false;
116     }
117     l.unlock();
118   }
119   if (!isFirst) { return; }
120   if (p.GetParticleName() != "neutron") { 
121     G4ExceptionDescription ed;
122     ed << p.GetParticleName() << " is a wrong particle type -"
123        << " only neutron is allowed";
124     G4Exception("G4NeutronHPCaptureData::BuildPhysicsTable(..)","had012",
125                 FatalException, ed, "");
126     return; 
127   }
128 
129   // initialisation for the first instance, others are locked
130   G4AutoLock l(&theHPCaptureData);
131   if (theCrossSections != nullptr) {
132     theCrossSections->clearAndDestroy();
133     delete theCrossSections;
134   }
135   std::size_t numberOfElements = G4Element::GetNumberOfElements();
136   theCrossSections = new G4PhysicsTable(numberOfElements);
137   
138   // make a PhysicsVector for each element
139   auto theElementTable = G4Element::GetElementTable();
140   for (std::size_t i = 0; i < numberOfElements; ++i) {
141     auto elm = (*theElementTable)[i];
142 #ifdef G4VERBOSE
143     if (fManager->GetDEBUG()) {
144       G4cout << "ElementIndex " << elm->GetIndex() << "  " 
145              << elm->GetName() << G4endl;
146     }
147 #endif
148     G4PhysicsVector* physVec =
149       G4ParticleHPData::Instance(G4Neutron::Neutron())->MakePhysicsVector(elm, this);
150     theCrossSections->push_back(physVec);
151   }
152   fManager->RegisterCaptureCrossSections(theCrossSections);
153   l.unlock();
154 }
155 
156 void G4NeutronHPCaptureData::DumpPhysicsTable(const G4ParticleDefinition&)
157 {
158 #ifdef G4VERBOSE
159   if (fManager->GetVerboseLevel() == 0) return;
160 
161   //
162   // Dump element based cross section
163   // range 10e-5 eV to 20 MeV
164   // 10 point per decade
165   // in barn
166   //
167 
168   G4cout << G4endl;
169   G4cout << G4endl;
170   G4cout << "Capture Cross Section of Neutron HP" << G4endl;
171   G4cout << "(Pointwise cross-section at 0 Kelvin.)" << G4endl;
172   G4cout << G4endl;
173   G4cout << "Name of Element" << G4endl;
174   G4cout << "Energy[eV]  XS[barn]" << G4endl;
175   G4cout << G4endl;
176 
177   std::size_t numberOfElements = G4Element::GetNumberOfElements();
178   auto theElementTable = G4Element::GetElementTable();
179 
180   for (std::size_t i = 0; i < numberOfElements; ++i) {
181     G4cout << (*theElementTable)[i]->GetName() << G4endl;
182     G4cout << *((*theCrossSections)(i)) << G4endl;
183   }
184 #endif
185 }
186 
187 G4double G4NeutronHPCaptureData::GetCrossSection(const G4DynamicParticle* aP,
188                                                  const G4Element* anE,
189                                                  G4double aT)
190 {
191   G4double result = 0;
192   auto idx = (G4int)anE->GetIndex();
193 
194   // prepare neutron
195   G4double eKinetic = aP->GetKineticEnergy();
196   if (eKinetic >= emax) { return 0.0; }
197 
198   // NEGLECT_DOPPLER
199   if (fManager->GetNeglectDoppler()) {
200     return (*((*theCrossSections)(idx))).Value(eKinetic);
201   }
202 
203   G4ReactionProduct theNeutron(aP->GetDefinition());
204   theNeutron.SetMomentum(aP->GetMomentum());
205   theNeutron.SetKineticEnergy(eKinetic);
206 
207   // prepare thermal nucleus
208   G4Nucleus aNuc;
209   G4int theA = anE->GetN();
210   G4int theZ = anE->GetZasInt();
211   G4double eleMass = G4NucleiProperties::GetNuclearMass(theA, theZ)
212     / CLHEP::neutron_mass_c2;
213 
214   G4ReactionProduct boosted;
215   G4double aXsection;
216 
217   // MC integration loop
218   G4int counter = 0;
219   G4double buffer = 0;
220   G4int size = G4int(std::max(10., aT / 60 * kelvin));
221   G4ThreeVector neutronVelocity =
222     1. / G4Neutron::Neutron()->GetPDGMass() * theNeutron.GetMomentum();
223   G4double neutronVMag = neutronVelocity.mag();
224 
225   while (counter == 0 ||
226          std::abs(buffer - result / std::max(1, counter)) > 0.03 * buffer)
227   // Loop checking, 11.05.2015, T. Koi
228   {
229     if (counter != 0) buffer = result / counter;
230     while (counter < size)  // Loop checking, 11.05.2015, T. Koi
231     {
232       ++counter;
233       G4ReactionProduct aThermalNuc = aNuc.GetThermalNucleus(eleMass, aT);
234       boosted.Lorentz(theNeutron, aThermalNuc);
235       G4double theEkin = boosted.GetKineticEnergy();
236       aXsection = (*((*theCrossSections)(idx))).Value(theEkin);
237       // velocity correction, or luminosity factor...
238       G4ThreeVector targetVelocity = 1. / aThermalNuc.GetMass() * aThermalNuc.GetMomentum();
239       aXsection *= (targetVelocity - neutronVelocity).mag() / neutronVMag;
240       result += aXsection;
241     }
242     size += size;
243   }
244   result /= counter;
245   /*
246     // Checking impact of  G4NEUTRONHP_NEGLECT_DOPPLER
247     G4cout << " result " << result << " "
248            << (*((*theCrossSections)(index))).Value(eKinetic) << " "
249            << (*((*theCrossSections)(index))).Value(eKinetic) /result << G4endl;
250   */
251   return result;
252 }
253 
254 void G4NeutronHPCaptureData::CrossSectionDescription(std::ostream& outF) const
255 {
256   outF << "High Precision cross data based on Evaluated Nuclear Data Files"
257        << " (ENDF) for radiative capture reaction of neutrons below 20 MeV";
258 }
259