Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // $Id: G4NuElNucleusCcModel.cc 91806 2015-08-06 12:20:45Z gcosmo $ 27 // 28 // Geant4 Header : G4NuElNucleusCcModel 29 // 30 // Author : V.Grichine 12.2.19 31 // 32 33 #include <iostream> 34 #include <fstream> 35 #include <sstream> 36 37 #include "G4NuElNucleusCcModel.hh" 38 // #include "G4NuMuNuclCcDistrKR.hh" 39 40 // #include "G4NuMuResQX.hh" 41 42 #include "G4SystemOfUnits.hh" 43 #include "G4ParticleTable.hh" 44 #include "G4ParticleDefinition.hh" 45 #include "G4IonTable.hh" 46 #include "Randomize.hh" 47 #include "G4RandomDirection.hh" 48 // #include "G4Threading.hh" 49 50 // #include "G4Integrator.hh" 51 #include "G4DataVector.hh" 52 #include "G4PhysicsTable.hh" 53 /* 54 #include "G4CascadeInterface.hh" 55 // #include "G4BinaryCascade.hh" 56 #include "G4TheoFSGenerator.hh" 57 #include "G4LundStringFragmentation.hh" 58 #include "G4ExcitedStringDecay.hh" 59 #include "G4FTFModel.hh" 60 // #include "G4BinaryCascade.hh" 61 #include "G4HadFinalState.hh" 62 #include "G4HadSecondary.hh" 63 #include "G4HadronicInteractionRegistry.hh" 64 // #include "G4INCLXXInterface.hh" 65 #include "G4QGSModel.hh" 66 #include "G4QGSMFragmentation.hh" 67 #include "G4QGSParticipants.hh" 68 */ 69 #include "G4KineticTrack.hh" 70 #include "G4DecayKineticTracks.hh" 71 #include "G4KineticTrackVector.hh" 72 #include "G4Fragment.hh" 73 #include "G4NucleiProperties.hh" 74 #include "G4ReactionProductVector.hh" 75 76 #include "G4GeneratorPrecompoundInterface.hh" 77 #include "G4PreCompoundModel.hh" 78 #include "G4ExcitationHandler.hh" 79 80 81 #include "G4Electron.hh" 82 // #include "G4MuonPlus.hh" 83 #include "G4Nucleus.hh" 84 #include "G4LorentzVector.hh" 85 86 using namespace std; 87 using namespace CLHEP; 88 89 #ifdef G4MULTITHREADED 90 G4Mutex G4NuElNucleusCcModel::numuNucleusModel = G4MUTEX_INITIALIZER; 91 #endif 92 93 94 G4NuElNucleusCcModel::G4NuElNucleusCcModel(const G4String& name) 95 : G4NeutrinoNucleusModel(name) 96 { 97 theElectron = G4Electron::Electron(); 98 fData = fMaster = false; 99 fMel = electron_mass_c2; 100 InitialiseModel(); 101 } 102 103 104 G4NuElNucleusCcModel::~G4NuElNucleusCcModel() 105 {} 106 107 108 void G4NuElNucleusCcModel::ModelDescription(std::ostream& outFile) const 109 { 110 111 outFile << "G4NuElNucleusCcModel is a neutrino-nucleus (charge current) scattering\n" 112 << "model which uses the standard model \n" 113 << "transfer parameterization. The model is fully relativistic\n"; 114 115 } 116 117 ///////////////////////////////////////////////////////// 118 // 119 // Read data from G4PARTICLEXSDATA (locally PARTICLEXSDATA) 120 121 void G4NuElNucleusCcModel::InitialiseModel() 122 { 123 G4String pName = "nu_e"; 124 125 G4int nSize(0), i(0), j(0), k(0); 126 127 if(!fData) 128 { 129 #ifdef G4MULTITHREADED 130 G4MUTEXLOCK(&numuNucleusModel); 131 if(!fData) 132 { 133 #endif 134 fMaster = true; 135 #ifdef G4MULTITHREADED 136 } 137 G4MUTEXUNLOCK(&numuNucleusModel); 138 #endif 139 } 140 141 if(fMaster) 142 { 143 const char* path = G4FindDataDir("G4PARTICLEXSDATA"); 144 std::ostringstream ost1, ost2, ost3, ost4; 145 ost1 << path << "/" << "neutrino" << "/" << pName << "/xarraycckr"; 146 147 std::ifstream filein1( ost1.str().c_str() ); 148 149 // filein.open("$PARTICLEXSDATA/"); 150 151 filein1>>nSize; 152 153 for( k = 0; k < fNbin; ++k ) 154 { 155 for( i = 0; i <= fNbin; ++i ) 156 { 157 filein1 >> fNuMuXarrayKR[k][i]; 158 // G4cout<< fNuMuXarrayKR[k][i] << " "; 159 } 160 } 161 // G4cout<<G4endl<<G4endl; 162 163 ost2 << path << "/" << "neutrino" << "/" << pName << "/xdistrcckr"; 164 std::ifstream filein2( ost2.str().c_str() ); 165 166 filein2>>nSize; 167 168 for( k = 0; k < fNbin; ++k ) 169 { 170 for( i = 0; i < fNbin; ++i ) 171 { 172 filein2 >> fNuMuXdistrKR[k][i]; 173 // G4cout<< fNuMuXdistrKR[k][i] << " "; 174 } 175 } 176 // G4cout<<G4endl<<G4endl; 177 178 ost3 << path << "/" << "neutrino" << "/" << pName << "/q2arraycckr"; 179 std::ifstream filein3( ost3.str().c_str() ); 180 181 filein3>>nSize; 182 183 for( k = 0; k < fNbin; ++k ) 184 { 185 for( i = 0; i <= fNbin; ++i ) 186 { 187 for( j = 0; j <= fNbin; ++j ) 188 { 189 filein3 >> fNuMuQarrayKR[k][i][j]; 190 // G4cout<< fNuMuQarrayKR[k][i][j] << " "; 191 } 192 } 193 } 194 // G4cout<<G4endl<<G4endl; 195 196 ost4 << path << "/" << "neutrino" << "/" << pName << "/q2distrcckr"; 197 std::ifstream filein4( ost4.str().c_str() ); 198 199 filein4>>nSize; 200 201 for( k = 0; k < fNbin; ++k ) 202 { 203 for( i = 0; i <= fNbin; ++i ) 204 { 205 for( j = 0; j < fNbin; ++j ) 206 { 207 filein4 >> fNuMuQdistrKR[k][i][j]; 208 // G4cout<< fNuMuQdistrKR[k][i][j] << " "; 209 } 210 } 211 } 212 fData = true; 213 } 214 } 215 216 ///////////////////////////////////////////////////////// 217 218 G4bool G4NuElNucleusCcModel::IsApplicable(const G4HadProjectile & aPart, 219 G4Nucleus & ) 220 { 221 G4bool result = false; 222 G4String pName = aPart.GetDefinition()->GetParticleName(); 223 G4double energy = aPart.GetTotalEnergy(); 224 fMinNuEnergy = GetMinNuElEnergy(); 225 226 if( pName == "nu_e" 227 && 228 energy > fMinNuEnergy ) 229 { 230 result = true; 231 } 232 233 return result; 234 } 235 236 /////////////////////////////////////////// ClusterDecay //////////////////////////////////////////////////////////// 237 // 238 // 239 240 G4HadFinalState* G4NuElNucleusCcModel::ApplyYourself( 241 const G4HadProjectile& aTrack, G4Nucleus& targetNucleus) 242 { 243 theParticleChange.Clear(); 244 fProton = f2p2h = fBreak = false; 245 fCascade = fString = false; 246 fLVh = fLVl = fLVt = fLVcpi = G4LorentzVector(0.,0.,0.,0.); 247 248 const G4HadProjectile* aParticle = &aTrack; 249 G4double energy = aParticle->GetTotalEnergy(); 250 251 G4String pName = aParticle->GetDefinition()->GetParticleName(); 252 253 if( energy < fMinNuEnergy ) 254 { 255 theParticleChange.SetEnergyChange(energy); 256 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 257 return &theParticleChange; 258 } 259 260 SampleLVkr( aTrack, targetNucleus); 261 262 if( fBreak == true || fEmu < fMel ) // ~5*10^-6 263 { 264 // G4cout<<"ni, "; 265 theParticleChange.SetEnergyChange(energy); 266 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 267 return &theParticleChange; 268 } 269 270 // LVs of initial state 271 272 G4LorentzVector lvp1 = aParticle->Get4Momentum(); 273 G4LorentzVector lvt1( 0., 0., 0., fM1 ); 274 G4double mPip = G4ParticleTable::GetParticleTable()->FindParticle(211)->GetPDGMass(); 275 276 // 1-pi by fQtransfer && nu-energy 277 G4LorentzVector lvpip1( 0., 0., 0., mPip ); 278 G4LorentzVector lvsum, lv2, lvX; 279 G4ThreeVector eP; 280 G4double cost(1.), sint(0.), phi(0.), muMom(0.), massX2(0.), massX(0.), massR(0.), eCut(0.); 281 G4DynamicParticle* aLept = nullptr; // lepton lv 282 283 G4int Z = targetNucleus.GetZ_asInt(); 284 G4int A = targetNucleus.GetA_asInt(); 285 G4double mTarg = targetNucleus.AtomicMass(A,Z); 286 G4int pdgP(0), qB(0); 287 // G4double mSum = G4ParticleTable::GetParticleTable()->FindParticle(2212)->GetPDGMass() + mPip; 288 289 G4int iPi = GetOnePionIndex(energy); 290 G4double p1pi = GetNuMuOnePionProb( iPi, energy); 291 292 if( p1pi > G4UniformRand() && fCosTheta > 0.9 ) // && fQtransfer < 0.95*GeV ) // mu- & coherent pion + nucleus 293 { 294 // lvsum = lvp1 + lvpip1; 295 lvsum = lvp1 + lvt1; 296 // cost = fCosThetaPi; 297 cost = fCosTheta; 298 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) ); 299 phi = G4UniformRand()*CLHEP::twopi; 300 eP = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost ); 301 302 // muMom = sqrt(fEmuPi*fEmuPi-fMel*fMel); 303 muMom = sqrt(fEmu*fEmu-fMel*fMel); 304 305 eP *= muMom; 306 307 // lv2 = G4LorentzVector( eP, fEmuPi ); 308 // lv2 = G4LorentzVector( eP, fEmu ); 309 lv2 = fLVl; 310 311 // lvX = lvsum - lv2; 312 lvX = fLVh; 313 massX2 = lvX.m2(); 314 massX = lvX.m(); 315 massR = fLVt.m(); 316 317 if ( massX2 <= 0. ) // vmg: very rarely ~ (1-4)e-6 due to big Q2/x, to be improved 318 { 319 fCascade = true; 320 theParticleChange.SetEnergyChange(energy); 321 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 322 return &theParticleChange; 323 } 324 fW2 = massX2; 325 326 if( pName == "nu_e" ) aLept = new G4DynamicParticle( theElectron, lv2 ); 327 else 328 { 329 theParticleChange.SetEnergyChange(energy); 330 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 331 return &theParticleChange; 332 } 333 if( pName == "nu_e" ) pdgP = 211; 334 // else pdgP = -211; 335 // eCut = fMpi + 0.5*(fMpi*fMpi-massX2)/mTarg; // massX -> fMpi 336 337 if( A > 1 ) 338 { 339 eCut = (fMpi + mTarg)*(fMpi + mTarg) - (massX + massR)*(massX + massR); 340 eCut /= 2.*massR; 341 eCut += massX; 342 } 343 else eCut = fM1 + fMpi; 344 345 if ( lvX.e() > eCut ) // && sqrt( GetW2() ) < 1.4*GeV ) // 346 { 347 CoherentPion( lvX, pdgP, targetNucleus); 348 } 349 else 350 { 351 fCascade = true; 352 theParticleChange.SetEnergyChange(energy); 353 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 354 return &theParticleChange; 355 } 356 theParticleChange.AddSecondary( aLept, fSecID ); 357 358 return &theParticleChange; 359 } 360 else // lepton part in lab 361 { 362 lvsum = lvp1 + lvt1; 363 cost = fCosTheta; 364 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) ); 365 phi = G4UniformRand()*CLHEP::twopi; 366 eP = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost ); 367 368 muMom = sqrt(fEmu*fEmu-fMel*fMel); 369 370 eP *= muMom; 371 372 lv2 = G4LorentzVector( eP, fEmu ); 373 lv2 = fLVl; 374 lvX = lvsum - lv2; 375 lvX = fLVh; 376 massX2 = lvX.m2(); 377 378 if ( massX2 <= 0. ) // vmg: very rarely ~ (1-4)e-6 due to big Q2/x, to be improved 379 { 380 fCascade = true; 381 theParticleChange.SetEnergyChange(energy); 382 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 383 return &theParticleChange; 384 } 385 fW2 = massX2; 386 387 if( pName == "nu_e" ) aLept = new G4DynamicParticle( theElectron, lv2 ); 388 else 389 { 390 theParticleChange.SetEnergyChange(energy); 391 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 392 return &theParticleChange; 393 } 394 theParticleChange.AddSecondary( aLept, fSecID ); 395 } 396 397 // hadron part 398 399 fRecoil = nullptr; 400 401 if( A == 1 ) 402 { 403 if( pName == "nu_e" ) qB = 2; 404 // else qB = 0; 405 406 // if( G4UniformRand() > 0.1 ) // > 0.9999 ) // > 0.0001 ) // 407 { 408 ClusterDecay( lvX, qB ); 409 } 410 return &theParticleChange; 411 } 412 /* 413 // else 414 { 415 if( pName == "nu_mu" ) pdgP = 211; 416 else pdgP = -211; 417 418 419 if ( fQtransfer < 0.95*GeV ) // < 0.35*GeV ) // 420 { 421 if( lvX.m() > mSum ) CoherentPion( lvX, pdgP, targetNucleus); 422 } 423 } 424 return &theParticleChange; 425 } 426 */ 427 G4Nucleus recoil; 428 G4double rM(0.), ratio = G4double(Z)/G4double(A); 429 430 if( ratio > G4UniformRand() ) // proton is excited 431 { 432 fProton = true; 433 recoil = G4Nucleus(A-1,Z-1); 434 fRecoil = &recoil; 435 rM = recoil.AtomicMass(A-1,Z-1); 436 437 if( pName == "nu_e" ) // (++) state -> p + pi+ 438 { 439 fMt = G4ParticleTable::GetParticleTable()->FindParticle(2212)->GetPDGMass() 440 + G4ParticleTable::GetParticleTable()->FindParticle(211)->GetPDGMass(); 441 } 442 else // (0) state -> p + pi-, n + pi0 443 { 444 // fMt = G4ParticleTable::GetParticleTable()->FindParticle(2212)->GetPDGMass() 445 // + G4ParticleTable::GetParticleTable()->FindParticle(-211)->GetPDGMass(); 446 } 447 } 448 else // excited neutron 449 { 450 fProton = false; 451 recoil = G4Nucleus(A-1,Z); 452 fRecoil = &recoil; 453 rM = recoil.AtomicMass(A-1,Z); 454 455 if( pName == "nu_e" ) // (+) state -> n + pi+ 456 { 457 fMt = G4ParticleTable::GetParticleTable()->FindParticle(2112)->GetPDGMass() 458 + G4ParticleTable::GetParticleTable()->FindParticle(211)->GetPDGMass(); 459 } 460 else // (-) state -> n + pi-, // n + pi0 461 { 462 // fMt = G4ParticleTable::GetParticleTable()->FindParticle(2112)->GetPDGMass() 463 // + G4ParticleTable::GetParticleTable()->FindParticle(-211)->GetPDGMass(); 464 } 465 } 466 // G4int index = GetEnergyIndex(energy); 467 G4int nepdg = aParticle->GetDefinition()->GetPDGEncoding(); 468 469 G4double qeTotRat; // = GetNuMuQeTotRat(index, energy); 470 qeTotRat = CalculateQEratioA( Z, A, energy, nepdg); 471 472 G4ThreeVector dX = (lvX.vect()).unit(); 473 G4double eX = lvX.e(); // excited nucleon 474 G4double mX = sqrt(massX2); 475 // G4double pX = sqrt( eX*eX - mX*mX ); 476 // G4double sumE = eX + rM; 477 478 if( qeTotRat > G4UniformRand() || mX <= fMt ) // || eX <= 1232.*MeV) // QE 479 { 480 fString = false; 481 482 if( fProton ) 483 { 484 fPDGencoding = 2212; 485 fMr = proton_mass_c2; 486 recoil = G4Nucleus(A-1,Z-1); 487 fRecoil = &recoil; 488 rM = recoil.AtomicMass(A-1,Z-1); 489 } 490 else 491 { 492 fPDGencoding = 2112; 493 fMr = G4ParticleTable::GetParticleTable()-> 494 FindParticle(fPDGencoding)->GetPDGMass(); // 939.5654133*MeV; 495 recoil = G4Nucleus(A-1,Z); 496 fRecoil = &recoil; 497 rM = recoil.AtomicMass(A-1,Z); 498 } 499 // sumE = eX + rM; 500 G4double eTh = fMr + 0.5*(fMr*fMr - mX*mX)/rM; 501 502 if( eX <= eTh ) // vmg, very rarely out of kinematics 503 { 504 fString = true; 505 theParticleChange.SetEnergyChange(energy); 506 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 507 return &theParticleChange; 508 } 509 // FinalBarion( fLVh, 0, fPDGencoding ); // p(n)+deexcited recoil 510 FinalBarion( lvX, 0, fPDGencoding ); // p(n)+deexcited recoil 511 } 512 else // if ( eX < 9500000.*GeV ) // < 25.*GeV) // < 95.*GeV ) // < 2.5*GeV ) //cluster decay 513 { 514 if ( fProton && pName == "nu_e" ) qB = 2; 515 else if( !fProton && pName == "nu_e" ) qB = 1; 516 517 ClusterDecay( lvX, qB ); 518 } 519 return &theParticleChange; 520 } 521 522 523 ///////////////////////////////////////////////////////////////////// 524 //////////////////////////////////////////////////////////////////// 525 /////////////////////////////////////////////////////////////////// 526 527 ///////////////////////////////////////////////// 528 // 529 // sample x, then Q2 530 531 void G4NuElNucleusCcModel::SampleLVkr(const G4HadProjectile & aTrack, G4Nucleus& targetNucleus) 532 { 533 fBreak = false; 534 G4int A = targetNucleus.GetA_asInt(), iTer(0), iTerMax(100); 535 G4int Z = targetNucleus.GetZ_asInt(); 536 G4double e3(0.), pMu2(0.), pX2(0.), nMom(0.), rM(0.), hM(0.), tM = targetNucleus.AtomicMass(A,Z); 537 G4double Ex(0.), ei(0.), nm2(0.); 538 G4double cost(1.), sint(0.), phi(0.), muMom(0.); 539 G4ThreeVector eP, bst; 540 const G4HadProjectile* aParticle = &aTrack; 541 G4LorentzVector lvp1 = aParticle->Get4Momentum(); 542 543 if( A == 1 ) // hydrogen, no Fermi motion ??? 544 { 545 fNuEnergy = aParticle->GetTotalEnergy(); 546 iTer = 0; 547 548 do 549 { 550 fXsample = SampleXkr(fNuEnergy); 551 fQtransfer = SampleQkr(fNuEnergy, fXsample); 552 fQ2 = fQtransfer*fQtransfer; 553 554 if( fXsample > 0. ) 555 { 556 fW2 = fM1*fM1 - fQ2 + fQ2/fXsample; // sample excited hadron mass 557 fEmu = fNuEnergy - fQ2/2./fM1/fXsample; 558 } 559 else 560 { 561 fW2 = fM1*fM1; 562 fEmu = fNuEnergy; 563 } 564 e3 = fNuEnergy + fM1 - fEmu; 565 566 if( e3 < sqrt(fW2) ) G4cout<<"energyX = "<<e3/GeV<<", fW = "<<sqrt(fW2)/GeV<<G4endl; 567 568 pMu2 = fEmu*fEmu - fMel*fMel; 569 570 if(pMu2 < 0.) { fBreak = true; return; } 571 572 pX2 = e3*e3 - fW2; 573 574 fCosTheta = fNuEnergy*fNuEnergy + pMu2 - pX2; 575 fCosTheta /= 2.*fNuEnergy*sqrt(pMu2); 576 iTer++; 577 } 578 while( ( abs(fCosTheta) > 1. || fEmu < fMel ) && iTer < iTerMax ); 579 580 if( iTer >= iTerMax ) { fBreak = true; return; } 581 582 if( abs(fCosTheta) > 1.) // vmg: due to big Q2/x values. To be improved ... 583 { 584 G4cout<<"H2: fCosTheta = "<<fCosTheta<<", fEmu = "<<fEmu<<G4endl; 585 // fCosTheta = -1. + 2.*G4UniformRand(); 586 if(fCosTheta < -1.) fCosTheta = -1.; 587 if(fCosTheta > 1.) fCosTheta = 1.; 588 } 589 // LVs 590 591 G4LorentzVector lvt1 = G4LorentzVector( 0., 0., 0., fM1 ); 592 G4LorentzVector lvsum = lvp1 + lvt1; 593 594 cost = fCosTheta; 595 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) ); 596 phi = G4UniformRand()*CLHEP::twopi; 597 eP = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost ); 598 muMom = sqrt(fEmu*fEmu-fMel*fMel); 599 eP *= muMom; 600 fLVl = G4LorentzVector( eP, fEmu ); 601 602 fLVh = lvsum - fLVl; 603 fLVt = G4LorentzVector( 0., 0., 0., 0. ); // no recoil 604 } 605 else // Fermi motion, Q2 in nucleon rest frame 606 { 607 G4Nucleus recoil1( A-1, Z ); 608 rM = recoil1.AtomicMass(A-1,Z); 609 do 610 { 611 // nMom = NucleonMomentumBR( targetNucleus ); // BR 612 nMom = GgSampleNM( targetNucleus ); // Gg 613 Ex = GetEx(A-1, fProton); 614 ei = tM - sqrt( (rM + Ex)*(rM + Ex) + nMom*nMom ); 615 // ei = 0.5*( tM - s2M - 2*eX ); 616 617 nm2 = ei*ei - nMom*nMom; 618 iTer++; 619 } 620 while( nm2 < 0. && iTer < iTerMax ); 621 622 if( iTer >= iTerMax ) { fBreak = true; return; } 623 624 G4ThreeVector nMomDir = nMom*G4RandomDirection(); 625 626 if( !f2p2h || A < 3 ) // 1p1h 627 { 628 // hM = tM - rM; 629 630 fLVt = G4LorentzVector( -nMomDir, sqrt( (rM + Ex)*(rM + Ex) + nMom*nMom ) ); // rM ); // 631 fLVh = G4LorentzVector( nMomDir, ei ); // hM); // 632 } 633 else // 2p2h 634 { 635 G4Nucleus recoil(A-2,Z-1); 636 rM = recoil.AtomicMass(A-2,Z-1)+sqrt(nMom*nMom+fM1*fM1); 637 hM = tM - rM; 638 639 fLVt = G4LorentzVector( nMomDir, sqrt( rM*rM+nMom*nMom ) ); 640 fLVh = G4LorentzVector(-nMomDir, sqrt( hM*hM+nMom*nMom ) ); 641 } 642 // G4cout<<hM<<", "; 643 // bst = fLVh.boostVector(); 644 645 // lvp1.boost(-bst); // -> nucleon rest system, where Q2 transfer is ??? 646 647 fNuEnergy = lvp1.e(); 648 // G4double mN = fLVh.m(); // better mN = fM1 !? vmg 649 iTer = 0; 650 651 do // no FM!?, 5.4.20 vmg 652 { 653 fXsample = SampleXkr(fNuEnergy); 654 fQtransfer = SampleQkr(fNuEnergy, fXsample); 655 fQ2 = fQtransfer*fQtransfer; 656 657 // G4double mR = mN + fM1*(A-1.)*std::exp(-2.0*fQtransfer/mN); // recoil mass in+el 658 659 if( fXsample > 0. ) 660 { 661 fW2 = fM1*fM1 - fQ2 + fQ2/fXsample; // sample excited hadron mass 662 663 // fW2 = mN*mN - fQ2 + fQ2/fXsample; // sample excited hadron mass 664 // fEmu = fNuEnergy - fQ2/2./mR/fXsample; // fM1->mN 665 666 fEmu = fNuEnergy - fQ2/2./fM1/fXsample; // fM1->mN 667 } 668 else 669 { 670 // fW2 = mN*mN; 671 672 fW2 = fM1*fM1; 673 fEmu = fNuEnergy; 674 } 675 // if(fEmu < 0.) G4cout<<"fEmu = "<<fEmu<<" hM = "<<hM<<G4endl; 676 // e3 = fNuEnergy + mR - fEmu; 677 678 e3 = fNuEnergy + fM1 - fEmu; 679 680 // if( e3 < sqrt(fW2) ) G4cout<<"energyX = "<<e3/GeV<<", fW = "<<sqrt(fW2)/GeV<<G4endl; 681 682 pMu2 = fEmu*fEmu - fMel*fMel; 683 pX2 = e3*e3 - fW2; 684 685 if(pMu2 < 0.) { fBreak = true; return; } 686 687 fCosTheta = fNuEnergy*fNuEnergy + pMu2 - pX2; 688 fCosTheta /= 2.*fNuEnergy*sqrt(pMu2); 689 iTer++; 690 } 691 while( ( abs(fCosTheta) > 1. || fEmu < fMel ) && iTer < iTerMax ); 692 693 if( iTer >= iTerMax ) { fBreak = true; return; } 694 695 if( abs(fCosTheta) > 1.) // vmg: due to big Q2/x values. To be improved ... 696 { 697 G4cout<<"FM: fCosTheta = "<<fCosTheta<<", fEmu = "<<fEmu<<G4endl; 698 // fCosTheta = -1. + 2.*G4UniformRand(); 699 if( fCosTheta < -1.) fCosTheta = -1.; 700 if( fCosTheta > 1.) fCosTheta = 1.; 701 } 702 // LVs 703 // G4LorentzVector lvt1 = G4LorentzVector( 0., 0., 0., mN ); // fM1 ); 704 705 G4LorentzVector lvt1 = G4LorentzVector( 0., 0., 0., fM1 ); // fM1 ); 706 G4LorentzVector lvsum = lvp1 + lvt1; 707 708 cost = fCosTheta; 709 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) ); 710 phi = G4UniformRand()*CLHEP::twopi; 711 eP = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost ); 712 muMom = sqrt(fEmu*fEmu-fMel*fMel); 713 eP *= muMom; 714 fLVl = G4LorentzVector( eP, fEmu ); 715 fLVh = lvsum - fLVl; 716 717 // if( fLVh.e() < mN || fLVh.m2() < 0.) { fBreak = true; return; } 718 719 if( fLVh.e() < fM1 || fLVh.m2() < 0.) { fBreak = true; return; } 720 721 // back to lab system 722 723 // fLVl.boost(bst); 724 // fLVh.boost(bst); 725 } 726 //G4cout<<iTer<<", "<<fBreak<<"; "; 727 } 728 729 // 730 // 731 /////////////////////////// 732