Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/lepto_nuclear/src/G4ANuTauNucleusCcModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // $Id: G4ANuTauNucleusCcModel.cc 91806 2015-08-06 12:20:45Z gcosmo $
 27 //
 28 // Geant4 Header : G4ANuTauNucleusCcModel
 29 //
 30 // Author : V.Grichine 12.2.19
 31 //  
 32 
 33 #include <iostream>
 34 #include <fstream>
 35 #include <sstream>
 36 
 37 #include "G4ANuTauNucleusCcModel.hh"
 38 // #include "G4NuMuNuclCcDistrKR.hh" 
 39 
 40 // #include "G4NuMuResQX.hh" 
 41 
 42 #include "G4SystemOfUnits.hh"
 43 #include "G4ParticleTable.hh"
 44 #include "G4ParticleDefinition.hh"
 45 #include "G4IonTable.hh"
 46 #include "Randomize.hh"
 47 #include "G4RandomDirection.hh"
 48 // #include "G4Threading.hh"
 49 
 50 // #include "G4Integrator.hh"
 51 #include "G4DataVector.hh"
 52 #include "G4PhysicsTable.hh"
 53 /*
 54 #include "G4CascadeInterface.hh"
 55 // #include "G4BinaryCascade.hh"
 56 #include "G4TheoFSGenerator.hh"
 57 #include "G4LundStringFragmentation.hh"
 58 #include "G4ExcitedStringDecay.hh"
 59 #include "G4FTFModel.hh"
 60 // #include "G4BinaryCascade.hh"
 61 #include "G4HadFinalState.hh"
 62 #include "G4HadSecondary.hh"
 63 #include "G4HadronicInteractionRegistry.hh"
 64 // #include "G4INCLXXInterface.hh"
 65 #include "G4QGSModel.hh"
 66 #include "G4QGSMFragmentation.hh"
 67 #include "G4QGSParticipants.hh"
 68 */
 69 #include "G4KineticTrack.hh"
 70 #include "G4DecayKineticTracks.hh"
 71 #include "G4KineticTrackVector.hh"
 72 #include "G4Fragment.hh"
 73 #include "G4NucleiProperties.hh"
 74 #include "G4ReactionProductVector.hh"
 75 
 76 #include "G4GeneratorPrecompoundInterface.hh"
 77 #include "G4PreCompoundModel.hh"
 78 #include "G4ExcitationHandler.hh"
 79 
 80 
 81 #include "G4TauMinus.hh"
 82 #include "G4TauPlus.hh"
 83 #include "G4Nucleus.hh"
 84 #include "G4LorentzVector.hh"
 85 
 86 using namespace std;
 87 using namespace CLHEP;
 88 
 89 #ifdef G4MULTITHREADED
 90     G4Mutex G4ANuTauNucleusCcModel::numuNucleusModel = G4MUTEX_INITIALIZER;
 91 #endif     
 92 
 93 
 94 G4ANuTauNucleusCcModel::G4ANuTauNucleusCcModel(const G4String& name) 
 95   : G4NeutrinoNucleusModel(name)
 96 {
 97   fData = fMaster = false;
 98   fMtau = 1.77686*GeV;
 99   theTauMinus = G4TauMinus::TauMinus();
100   theTauPlus = G4TauPlus::TauPlus();
101   InitialiseModel();  
102 }
103 
104 
105 G4ANuTauNucleusCcModel::~G4ANuTauNucleusCcModel()
106 {}
107 
108 
109 void G4ANuTauNucleusCcModel::ModelDescription(std::ostream& outFile) const
110 {
111 
112     outFile << "G4ANuTauNucleusCcModel is a anti tau neutrino-nucleus (charge current)  scattering\n"
113             << "model which uses the standard model \n"
114             << "transfer parameterization.  The model is fully relativistic\n";
115 
116 }
117 
118 /////////////////////////////////////////////////////////
119 //
120 // Read data from G4PARTICLEXSDATA (locally PARTICLEXSDATA)
121 
122 void G4ANuTauNucleusCcModel::InitialiseModel()
123 {
124   G4String pName  = "nu_mu";
125   // G4String pName  = "anti_nu_mu";
126   
127   G4int nSize(0), i(0), j(0), k(0);
128 
129   if(!fData)
130   { 
131 #ifdef G4MULTITHREADED
132     G4MUTEXLOCK(&numuNucleusModel);
133     if(!fData)
134     { 
135 #endif     
136       fMaster = true;
137 #ifdef G4MULTITHREADED
138     }
139     G4MUTEXUNLOCK(&numuNucleusModel);
140 #endif
141   }
142   
143   if(fMaster)
144   {  
145     const char* path = G4FindDataDir("G4PARTICLEXSDATA");
146     std::ostringstream ost1, ost2, ost3, ost4;
147     ost1 << path << "/" << "neutrino" << "/" << pName << "/xarraycckr";
148 
149     std::ifstream filein1( ost1.str().c_str() );
150 
151     // filein.open("$PARTICLEXSDATA/");
152 
153     filein1>>nSize;
154 
155     for( k = 0; k < fNbin; ++k )
156     {
157       for( i = 0; i <= fNbin; ++i )
158       {
159         filein1 >> fNuMuXarrayKR[k][i];
160         // G4cout<< fNuMuXarrayKR[k][i] << "  ";
161       }
162     }
163     // G4cout<<G4endl<<G4endl;
164 
165     ost2 << path << "/" << "neutrino" << "/" << pName << "/xdistrcckr";
166     std::ifstream  filein2( ost2.str().c_str() );
167 
168     filein2>>nSize;
169 
170     for( k = 0; k < fNbin; ++k )
171     {
172       for( i = 0; i < fNbin; ++i )
173       {
174         filein2 >> fNuMuXdistrKR[k][i];
175         // G4cout<< fNuMuXdistrKR[k][i] << "  ";
176       }
177     }
178     // G4cout<<G4endl<<G4endl;
179 
180     ost3 << path << "/" << "neutrino" << "/" << pName << "/q2arraycckr";
181     std::ifstream  filein3( ost3.str().c_str() );
182 
183     filein3>>nSize;
184 
185     for( k = 0; k < fNbin; ++k )
186     {
187       for( i = 0; i <= fNbin; ++i )
188       {
189         for( j = 0; j <= fNbin; ++j )
190         {
191           filein3 >> fNuMuQarrayKR[k][i][j];
192           // G4cout<< fNuMuQarrayKR[k][i][j] << "  ";
193         }
194       }
195     }
196     // G4cout<<G4endl<<G4endl;
197 
198     ost4 << path << "/" << "neutrino" << "/" << pName << "/q2distrcckr";
199     std::ifstream  filein4( ost4.str().c_str() );
200 
201     filein4>>nSize;
202 
203     for( k = 0; k < fNbin; ++k )
204     {
205       for( i = 0; i <= fNbin; ++i )
206       {
207         for( j = 0; j < fNbin; ++j )
208         {
209           filein4 >> fNuMuQdistrKR[k][i][j];
210           // G4cout<< fNuMuQdistrKR[k][i][j] << "  ";
211         }
212       }
213     }
214     fData = true;
215   }
216 }
217 
218 /////////////////////////////////////////////////////////
219 
220 G4bool G4ANuTauNucleusCcModel::IsApplicable(const G4HadProjectile & aPart, 
221                   G4Nucleus & )
222 {
223   G4bool result  = false;
224   G4String pName = aPart.GetDefinition()->GetParticleName();
225   G4double energy = aPart.GetTotalEnergy();
226   
227   if(  pName == "anti_nu_tau"  // || pName == "anti_nu_tau" )  
228         &&
229         energy > fMinNuEnergy                                )
230   {
231     result = true;
232   }
233 
234   return result;
235 }
236 
237 /////////////////////////////////////////// ClusterDecay ////////////////////////////////////////////////////////////
238 //
239 //
240 
241 G4HadFinalState* G4ANuTauNucleusCcModel::ApplyYourself(
242      const G4HadProjectile& aTrack, G4Nucleus& targetNucleus)
243 {
244   theParticleChange.Clear();
245   fProton = f2p2h = fBreak = false;
246   fCascade = fString  = false;
247   fLVh = fLVl = fLVt = fLVcpi = G4LorentzVector(0.,0.,0.,0.);
248 
249   const G4HadProjectile* aParticle = &aTrack;
250   G4double energy = aParticle->GetTotalEnergy();
251 
252   G4String pName  = aParticle->GetDefinition()->GetParticleName();
253 
254   if( energy < fMinNuEnergy ) 
255   {
256     theParticleChange.SetEnergyChange(energy);
257     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
258     return &theParticleChange;
259   }
260 
261   SampleLVkr( aTrack, targetNucleus);
262 
263   if( fBreak == true || fEmu < fMtau ) // ~5*10^-6
264   {
265     // G4cout<<"ni, ";
266     theParticleChange.SetEnergyChange(energy);
267     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
268     return &theParticleChange;
269   }
270 
271   // LVs of initial state
272 
273   G4LorentzVector lvp1 = aParticle->Get4Momentum();
274   G4LorentzVector lvt1( 0., 0., 0., fM1 );
275   G4double mPip = G4ParticleTable::GetParticleTable()->FindParticle(211)->GetPDGMass();
276 
277   // 1-pi by fQtransfer && nu-energy
278   G4LorentzVector lvpip1( 0., 0., 0., mPip );
279   G4LorentzVector lvsum, lv2, lvX;
280   G4ThreeVector eP;
281   G4double cost(1.), sint(0.), phi(0.), muMom(0.), massX2(0.), massX(0.), massR(0.), eCut(0.);
282   G4DynamicParticle* aLept = nullptr; // lepton lv
283 
284   G4int Z = targetNucleus.GetZ_asInt();
285   G4int A = targetNucleus.GetA_asInt();
286   G4double  mTarg = targetNucleus.AtomicMass(A,Z);
287   G4int pdgP(0), qB(0);
288   // G4double mSum = G4ParticleTable::GetParticleTable()->FindParticle(2212)->GetPDGMass() + mPip;
289 
290   G4int iPi     = GetOnePionIndex(energy);
291   G4double p1pi = GetNuMuOnePionProb( iPi, energy);
292 
293   if( p1pi > G4UniformRand()  && fCosTheta > 0.9  ) // && fQtransfer < 0.95*GeV ) // mu- & coherent pion + nucleus
294   {
295     // lvsum = lvp1 + lvpip1;
296     lvsum = lvp1 + lvt1;
297     // cost = fCosThetaPi;
298     cost = fCosTheta;
299     sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
300     phi  = G4UniformRand()*CLHEP::twopi;
301     eP   = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
302 
303     // muMom = sqrt(fEmuPi*fEmuPi-fMtau*fMtau);
304     muMom = sqrt(fEmu*fEmu-fMtau*fMtau);
305 
306     eP *= muMom;
307 
308     // lv2 = G4LorentzVector( eP, fEmuPi );
309     // lv2 = G4LorentzVector( eP, fEmu );
310     lv2 = fLVl;
311 
312     // lvX = lvsum - lv2;
313     lvX = fLVh;
314     massX2 = lvX.m2();
315     massX = lvX.m();
316     massR = fLVt.m();
317     
318     if ( massX2 <= 0. ) // vmg: very rarely ~ (1-4)e-6 due to big Q2/x, to be improved
319     {
320       fCascade = true;
321       theParticleChange.SetEnergyChange(energy);
322       theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
323       return &theParticleChange;
324     }
325     fW2 = massX2;
326 
327     if(  pName == "anti_nu_tau" )         aLept = new G4DynamicParticle( theTauPlus, lv2 );  
328     // else if( pName == "anti_nu_tau") aLept = new G4DynamicParticle( theTauPlus,  lv2 );
329     else
330     {
331       theParticleChange.SetEnergyChange(energy);
332       theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
333       return &theParticleChange;
334     }
335     if( pName == "anti_nu_tau" ) pdgP =  211;
336     // else                   pdgP = -211;
337     // eCut = fMpi + 0.5*(fMpi*fMpi-massX2)/mTarg; // massX -> fMpi
338 
339     if( A > 1 )
340     {
341       eCut = (fMpi + mTarg)*(fMpi + mTarg) - (massX + massR)*(massX + massR);
342       eCut /= 2.*massR;
343       eCut += massX;
344     }
345     else  eCut = fM1 + fMpi;
346 
347     if ( lvX.e() > eCut ) // && sqrt( GetW2() ) < 1.4*GeV ) // 
348     {
349       CoherentPion( lvX, pdgP, targetNucleus);
350     }
351     else
352     {
353       fCascade = true;
354       theParticleChange.SetEnergyChange(energy);
355       theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
356       return &theParticleChange;
357     } 
358     theParticleChange.AddSecondary( aLept, fSecID );
359 
360     return &theParticleChange;
361   }
362   else // lepton part in lab
363   { 
364     lvsum = lvp1 + lvt1;
365     cost = fCosTheta;
366     sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
367     phi  = G4UniformRand()*CLHEP::twopi;
368     eP   = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
369 
370     muMom = sqrt(fEmu*fEmu-fMtau*fMtau);
371 
372     eP *= muMom;
373 
374     lv2 = G4LorentzVector( eP, fEmu );
375     lv2 = fLVl;
376     lvX = lvsum - lv2;
377     lvX = fLVh;
378     massX2 = lvX.m2();
379 
380     if ( massX2 <= 0. ) // vmg: very rarely ~ (1-4)e-6 due to big Q2/x, to be improved
381     {
382       fCascade = true;
383       theParticleChange.SetEnergyChange(energy);
384       theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
385       return &theParticleChange;
386     }
387     fW2 = massX2;
388 
389     if(  pName == "anti_nu_tau" )         aLept = new G4DynamicParticle( theTauPlus, lv2 );  
390     // else if( pName == "anti_nu_tau") aLept = new G4DynamicParticle( theTauPlus,  lv2 );
391     else
392     {
393       theParticleChange.SetEnergyChange(energy);
394       theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
395       return &theParticleChange;
396     }
397     theParticleChange.AddSecondary( aLept, fSecID );
398   }
399 
400   // hadron part
401 
402   fRecoil  = nullptr;
403   
404   if( A == 1 )
405   {
406     if( pName == "anti_nu_tau" ) qB = 2;
407     // else                   qB = 0;
408 
409     // if( G4UniformRand() > 0.1 ) //  > 0.9999 ) // > 0.0001 ) //
410     {
411       ClusterDecay( lvX, qB );
412     }
413     return &theParticleChange;
414   }
415     /*
416     // else
417     {
418       if( pName == "anti_nu_tau" ) pdgP =  211;
419       else                   pdgP = -211;
420 
421 
422       if ( fQtransfer < 0.95*GeV ) // < 0.35*GeV ) //
423       {
424   if( lvX.m() > mSum ) CoherentPion( lvX, pdgP, targetNucleus);
425       }
426     }
427     return &theParticleChange;
428   }
429   */
430   G4Nucleus recoil;
431   G4double rM(0.), ratio = G4double(Z)/G4double(A);
432 
433   if( ratio > G4UniformRand() ) // proton is excited
434   {
435     fProton = true;
436     recoil = G4Nucleus(A-1,Z-1);
437     fRecoil = &recoil;
438     rM = recoil.AtomicMass(A-1,Z-1);
439 
440     if( pName == "anti_nu_tau" ) // (++) state -> p + pi+
441     { 
442       fMt = G4ParticleTable::GetParticleTable()->FindParticle(2212)->GetPDGMass()
443           + G4ParticleTable::GetParticleTable()->FindParticle(211)->GetPDGMass();
444     }
445     else // (0) state -> p + pi-, n + pi0
446     {
447       // fMt = G4ParticleTable::GetParticleTable()->FindParticle(2212)->GetPDGMass()
448       //     + G4ParticleTable::GetParticleTable()->FindParticle(-211)->GetPDGMass();
449     } 
450   }
451   else // excited neutron
452   {
453     fProton = false;
454     recoil = G4Nucleus(A-1,Z);
455     fRecoil = &recoil;
456     rM = recoil.AtomicMass(A-1,Z);
457 
458     if( pName == "anti_nu_tau" ) // (+) state -> n + pi+
459     {      
460       fMt = G4ParticleTable::GetParticleTable()->FindParticle(2112)->GetPDGMass()
461           + G4ParticleTable::GetParticleTable()->FindParticle(211)->GetPDGMass();
462     }
463     else // (-) state -> n + pi-, // n + pi0
464     {
465       // fMt = G4ParticleTable::GetParticleTable()->FindParticle(2112)->GetPDGMass()
466       //     + G4ParticleTable::GetParticleTable()->FindParticle(-211)->GetPDGMass();
467     } 
468   }
469   // G4int       index = GetEnergyIndex(energy);
470   G4int nepdg = aParticle->GetDefinition()->GetPDGEncoding();
471 
472   G4double qeTotRat; // = GetNuMuQeTotRat(index, energy);
473   qeTotRat = CalculateQEratioA( Z, A, energy, nepdg);
474 
475   G4ThreeVector dX = (lvX.vect()).unit();
476   G4double eX   = lvX.e();  // excited nucleon
477   G4double mX   = sqrt(massX2);
478   // G4double pX   = sqrt( eX*eX - mX*mX );
479   // G4double sumE = eX + rM;
480 
481   if( qeTotRat > G4UniformRand() || mX <= fMt ) // || eX <= 1232.*MeV) // QE
482   {  
483     fString = false;
484 
485     if( fProton ) 
486     {  
487       fPDGencoding = 2212;
488       fMr =  proton_mass_c2;
489       recoil = G4Nucleus(A-1,Z-1);
490       fRecoil = &recoil;
491       rM = recoil.AtomicMass(A-1,Z-1);
492     } 
493     else // if( pName == "anti_nu_tau" ) 
494     {  
495       fPDGencoding = 2112;
496       fMr =   G4ParticleTable::GetParticleTable()->
497   FindParticle(fPDGencoding)->GetPDGMass(); // 939.5654133*MeV;
498       recoil = G4Nucleus(A-1,Z);
499       fRecoil = &recoil;
500       rM = recoil.AtomicMass(A-1,Z);
501     } 
502     // sumE = eX + rM;   
503     G4double eTh = fMr + 0.5*(fMr*fMr - mX*mX)/rM;
504 
505     if( eX <= eTh ) // vmg, very rarely out of kinematics
506     {
507       fString = true;
508       theParticleChange.SetEnergyChange(energy);
509       theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
510       return &theParticleChange;
511     }
512     // FinalBarion( fLVh, 0, fPDGencoding ); // p(n)+deexcited recoil
513     FinalBarion( lvX, 0, fPDGencoding ); // p(n)+deexcited recoil
514   }
515   else // if ( eX < 9500000.*GeV ) // <  25.*GeV) // < 95.*GeV ) // < 2.5*GeV ) //cluster decay
516   {  
517     if     (  fProton && pName == "anti_nu_tau" )      qB =  2;
518     // else if(  fProton && pName == "anti_nu_tau" ) qB =  0;
519     else if( !fProton && pName == "anti_nu_tau" )      qB =  1;
520     // else if( !fProton && pName == "anti_nu_tau" ) qB = -1;
521 
522 
523       ClusterDecay( lvX, qB );
524   }
525   return &theParticleChange;
526 }
527 
528 
529 /////////////////////////////////////////////////////////////////////
530 ////////////////////////////////////////////////////////////////////
531 ///////////////////////////////////////////////////////////////////
532 
533 /////////////////////////////////////////////////
534 //
535 // sample x, then Q2
536 
537 void G4ANuTauNucleusCcModel::SampleLVkr(const G4HadProjectile & aTrack, G4Nucleus& targetNucleus)
538 {
539   fBreak = false;
540   G4int A = targetNucleus.GetA_asInt(), iTer(0), iTerMax(100); 
541   G4int Z = targetNucleus.GetZ_asInt(); 
542   G4double e3(0.), pMu2(0.), pX2(0.), nMom(0.), rM(0.), hM(0.), tM = targetNucleus.AtomicMass(A,Z);
543   G4double Ex(0.), ei(0.), nm2(0.);
544   G4double cost(1.), sint(0.), phi(0.), muMom(0.); 
545   G4ThreeVector eP, bst;
546   const G4HadProjectile* aParticle = &aTrack;
547   G4LorentzVector lvp1 = aParticle->Get4Momentum();
548 
549   if( A == 1 ) // hydrogen, no Fermi motion ???
550   {
551     fNuEnergy = aParticle->GetTotalEnergy();
552     iTer = 0;
553 
554     do
555     {
556       fXsample = SampleXkr(fNuEnergy);
557       fQtransfer = SampleQkr(fNuEnergy, fXsample);
558       fQ2 = fQtransfer*fQtransfer;
559 
560      if( fXsample > 0. )
561       {
562         fW2 = fM1*fM1 - fQ2 + fQ2/fXsample; // sample excited hadron mass
563         fEmu = fNuEnergy - fQ2/2./fM1/fXsample;
564       }
565       else
566       {
567         fW2 = fM1*fM1;
568         fEmu = fNuEnergy;
569       }
570       e3 = fNuEnergy + fM1 - fEmu;
571 
572       if( e3 < sqrt(fW2) )  G4cout<<"energyX = "<<e3/GeV<<", fW = "<<sqrt(fW2)/GeV<<G4endl;
573     
574       pMu2 = fEmu*fEmu - fMtau*fMtau;
575 
576       if(pMu2 < 0.) { fBreak = true; return; }
577 
578       pX2  = e3*e3 - fW2;
579 
580       fCosTheta  = fNuEnergy*fNuEnergy  + pMu2 - pX2;
581       fCosTheta /= 2.*fNuEnergy*sqrt(pMu2);
582       iTer++;
583     }
584     while( ( abs(fCosTheta) > 1. || fEmu < fMtau ) && iTer < iTerMax );
585 
586     if( iTer >= iTerMax ) { fBreak = true; return; }
587 
588     if( abs(fCosTheta) > 1.) // vmg: due to big Q2/x values. To be improved ...
589     { 
590       G4cout<<"H2: fCosTheta = "<<fCosTheta<<", fEmu = "<<fEmu<<G4endl;
591       // fCosTheta = -1. + 2.*G4UniformRand(); 
592       if(fCosTheta < -1.) fCosTheta = -1.;
593       if(fCosTheta >  1.) fCosTheta =  1.;
594     }
595     // LVs
596 
597     G4LorentzVector lvt1  = G4LorentzVector( 0., 0., 0., fM1 );
598     G4LorentzVector lvsum = lvp1 + lvt1;
599 
600     cost = fCosTheta;
601     sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
602     phi  = G4UniformRand()*CLHEP::twopi;
603     eP   = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
604     muMom = sqrt(fEmu*fEmu-fMtau*fMtau);
605     eP *= muMom;
606     fLVl = G4LorentzVector( eP, fEmu );
607 
608     fLVh = lvsum - fLVl;
609     fLVt = G4LorentzVector( 0., 0., 0., 0. ); // no recoil
610   }
611   else // Fermi motion, Q2 in nucleon rest frame
612   {
613     G4Nucleus recoil1( A-1, Z );
614     rM = recoil1.AtomicMass(A-1,Z);   
615     do
616     {
617       // nMom = NucleonMomentumBR( targetNucleus ); // BR
618       nMom = GgSampleNM( targetNucleus ); // Gg
619       Ex = GetEx(A-1, fProton);
620       ei = tM - sqrt( (rM + Ex)*(rM + Ex) + nMom*nMom );
621       //   ei = 0.5*( tM - s2M - 2*eX );
622     
623       nm2 = ei*ei - nMom*nMom;
624       iTer++;
625     }
626     while( nm2 < 0. && iTer < iTerMax ); 
627 
628     if( iTer >= iTerMax ) { fBreak = true; return; }
629     
630     G4ThreeVector nMomDir = nMom*G4RandomDirection();
631 
632     if( !f2p2h || A < 3 ) // 1p1h
633     {
634       // hM = tM - rM;
635 
636       fLVt = G4LorentzVector( -nMomDir, sqrt( (rM + Ex)*(rM + Ex) + nMom*nMom ) ); // rM ); //
637       fLVh = G4LorentzVector(  nMomDir, ei ); // hM); //
638     }
639     else // 2p2h
640     {
641       G4Nucleus recoil(A-2,Z-1);
642       rM = recoil.AtomicMass(A-2,Z-1)+sqrt(nMom*nMom+fM1*fM1);
643       hM = tM - rM;
644 
645       fLVt = G4LorentzVector( nMomDir, sqrt( rM*rM+nMom*nMom ) );
646       fLVh = G4LorentzVector(-nMomDir, sqrt( hM*hM+nMom*nMom )  ); 
647     }
648     // G4cout<<hM<<", ";
649     // bst = fLVh.boostVector();
650 
651     // lvp1.boost(-bst); // -> nucleon rest system, where Q2 transfer is ???
652 
653     fNuEnergy  = lvp1.e();
654     // G4double mN = fLVh.m(); // better mN = fM1 !? vmg
655     iTer = 0;
656 
657     do // no FM!?, 5.4.20 vmg
658     {
659       fXsample = SampleXkr(fNuEnergy);
660       fQtransfer = SampleQkr(fNuEnergy, fXsample);
661       fQ2 = fQtransfer*fQtransfer;
662 
663       // G4double mR = mN + fM1*(A-1.)*std::exp(-2.0*fQtransfer/mN); // recoil mass in+el
664 
665       if( fXsample > 0. )
666       {
667         fW2 = fM1*fM1 - fQ2 + fQ2/fXsample; // sample excited hadron mass
668 
669         // fW2 = mN*mN - fQ2 + fQ2/fXsample; // sample excited hadron mass
670         // fEmu = fNuEnergy - fQ2/2./mR/fXsample; // fM1->mN
671 
672         fEmu = fNuEnergy - fQ2/2./fM1/fXsample; // fM1->mN
673       }
674       else
675       {
676         // fW2 = mN*mN;
677 
678         fW2 = fM1*fM1; 
679         fEmu = fNuEnergy;
680       }
681       // if(fEmu < 0.) G4cout<<"fEmu = "<<fEmu<<" hM = "<<hM<<G4endl;
682       // e3 = fNuEnergy + mR - fEmu;
683 
684       e3 = fNuEnergy + fM1 - fEmu;
685 
686       // if( e3 < sqrt(fW2) )  G4cout<<"energyX = "<<e3/GeV<<", fW = "<<sqrt(fW2)/GeV<<G4endl;
687     
688       pMu2 = fEmu*fEmu - fMtau*fMtau;
689       pX2  = e3*e3 - fW2;
690 
691       if(pMu2 < 0.) { fBreak = true; return; }
692 
693       fCosTheta  = fNuEnergy*fNuEnergy  + pMu2 - pX2;
694       fCosTheta /= 2.*fNuEnergy*sqrt(pMu2);
695       iTer++;
696     }
697     while( ( abs(fCosTheta) > 1. || fEmu < fMtau ) && iTer < iTerMax );
698 
699     if( iTer >= iTerMax ) { fBreak = true; return; }
700 
701     if( abs(fCosTheta) > 1.) // vmg: due to big Q2/x values. To be improved ...
702     { 
703       G4cout<<"FM: fCosTheta = "<<fCosTheta<<", fEmu = "<<fEmu<<G4endl;
704       // fCosTheta = -1. + 2.*G4UniformRand(); 
705       if( fCosTheta < -1.) fCosTheta = -1.;
706       if( fCosTheta >  1.) fCosTheta =  1.;
707     }
708     // LVs
709     // G4LorentzVector lvt1  = G4LorentzVector( 0., 0., 0., mN ); // fM1 );
710 
711     G4LorentzVector lvt1  = G4LorentzVector( 0., 0., 0., fM1 ); // fM1 );
712     G4LorentzVector lvsum = lvp1 + lvt1;
713 
714     cost = fCosTheta;
715     sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
716     phi  = G4UniformRand()*CLHEP::twopi;
717     eP   = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
718     muMom = sqrt(fEmu*fEmu-fMtau*fMtau);
719     eP *= muMom;
720     fLVl = G4LorentzVector( eP, fEmu );
721     fLVh = lvsum - fLVl;
722 
723     // if( fLVh.e() < mN || fLVh.m2() < 0.) { fBreak = true; return; }
724 
725     if( fLVh.e() < fM1 || fLVh.m2() < 0.) { fBreak = true; return; }
726 
727     // back to lab system
728 
729     // fLVl.boost(bst);
730     // fLVh.boost(bst);
731   }
732   //G4cout<<iTer<<", "<<fBreak<<"; ";
733 }
734 
735 //
736 //
737 ///////////////////////////
738