Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/im_r_matrix/src/G4XAnnihilationChannel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 #include "globals.hh"
 27 #include "G4ios.hh"
 28 #include "G4PhysicalConstants.hh"
 29 #include "G4XAnnihilationChannel.hh"
 30 #include "G4KineticTrack.hh"
 31 #include "G4ParticleDefinition.hh"
 32 #include "G4ResonanceWidth.hh"
 33 #include "G4ResonancePartialWidth.hh"
 34 #include "G4PhysicsVector.hh"
 35 #include "G4PartialWidthTable.hh"
 36 
 37 G4XAnnihilationChannel::G4XAnnihilationChannel(): resonance(0)
 38 {
 39   // As a first approximation the model is assumed to be valid over
 40     // the entire energy range
 41     lowLimit = 0.;
 42     highLimit = DBL_MAX;
 43     widthTable = 0;
 44     partWidthTable = 0;
 45 }
 46 
 47 G4XAnnihilationChannel::G4XAnnihilationChannel(const G4ParticleDefinition* resDefinition,
 48                  const G4ResonanceWidth& resWidths,
 49                  const G4ResonancePartialWidth& resPartWidths,
 50                  const G4String& partWidthLabel) 
 51   : resonance(resDefinition)
 52 { 
 53   // Get the tabulated mass-dependent widths for the resonance
 54   G4String resName = resonance->GetParticleName();
 55   // cout << "HPW "<<resName<<endl;
 56   G4String shortName = theNames.ShortName(resName);
 57   // cout << "HPW "<<shortName<<endl;
 58   // cout << "HPW "<<partWidthLabel<<endl;
 59 
 60   widthTable = resWidths.MassDependentWidth(shortName);
 61   partWidthTable = resPartWidths.MassDependentWidth(partWidthLabel);
 62 
 63   // As a first approximation the model is assumed to be valid over 
 64   // the entire energy range
 65   lowLimit = 0.;
 66   highLimit = DBL_MAX;
 67 }
 68 
 69 
 70 G4XAnnihilationChannel::~G4XAnnihilationChannel()
 71 {
 72   if (widthTable) delete widthTable;
 73   widthTable = 0;
 74   if (partWidthTable) delete partWidthTable;
 75   partWidthTable = 0;
 76  }
 77 
 78 
 79 G4bool G4XAnnihilationChannel::operator==(const G4XAnnihilationChannel &right) const
 80 {
 81   return (this == (G4XAnnihilationChannel *) &right);
 82 }
 83 
 84 
 85 G4bool G4XAnnihilationChannel::operator!=(const G4XAnnihilationChannel &right) const
 86 {
 87   return (this != (G4XAnnihilationChannel *) &right);
 88 }
 89 
 90 
 91 G4double G4XAnnihilationChannel::CrossSection(const G4KineticTrack& trk1, 
 92                 const G4KineticTrack& trk2) const
 93 {
 94   G4double sigma = 0.;
 95   G4double eCM = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag();
 96 
 97   const G4ParticleDefinition* def1 = trk1.GetDefinition();
 98   const G4ParticleDefinition* def2 = trk2.GetDefinition();
 99 
100   G4int J1 = def1->GetPDGiSpin();
101   G4int J2 = def2->GetPDGiSpin();
102   G4double m_1 = def1->GetPDGMass();
103   G4double m_2 = def2->GetPDGMass();
104 
105   G4int JRes = resonance->GetPDGiSpin();
106   G4double mRes = resonance->GetPDGMass();
107 
108   G4double branch = Branch(trk1,trk2);
109   G4double width = VariableWidth(trk1,trk2);
110   G4double cleb = NormalizedClebsch(trk1,trk2);
111 
112   G4double S = eCM * eCM;
113   if (S == 0.) throw G4HadronicException(__FILE__, __LINE__, "G4XAnnihilationChannel::CrossSection - eCM = 0");
114 
115   G4double pCM = std::sqrt((S-(m_1+m_2)*(m_1+m_2))*(S-(m_1-m_2)*(m_1-m_2))/(4.*S));
116 
117   sigma = ( (JRes + 1.) / ( (J1 + 1) * (J2 + 1) ) 
118       * pi / (pCM * pCM) * branch * width * width / 
119       ( (eCM - mRes) * (eCM - mRes) + width * width / 4.0) * cleb * hbarc_squared);
120 
121 //   G4cout << "SS " << branch<<" "<<sigma<<" "
122 //          << J1 <<" "
123 //   <<J2<<" "
124 //   <<m1<<" "
125 //   <<m2<<" "
126 //   <<JRes<<" "
127 //   <<mRes<<" "
128 //   <<wRes<<" "
129 //   <<width<<" "
130 //   <<cleb<<" "
131 //   <<G4endl;
132   return sigma;
133 }
134 
135 
136 G4String G4XAnnihilationChannel::Name() const
137 {
138   G4String name("XAnnihilationChannelCrossSection");
139   return name;
140 }
141 
142 
143 
144 G4bool G4XAnnihilationChannel::IsValid(G4double e) const
145 {
146   G4bool answer = InLimits(e,lowLimit,highLimit);
147 
148   return answer;
149 }
150 
151 
152 G4double G4XAnnihilationChannel::Branch(const G4KineticTrack& trk1, 
153                                         const G4KineticTrack& trk2) const
154 {
155   G4double w=VariableWidth(trk1,trk2);
156   if(w==0) return 0;
157   return VariablePartialWidth(trk1,trk2) / VariableWidth(trk1,trk2);
158 }
159 
160 G4double G4XAnnihilationChannel::VariableWidth(const G4KineticTrack& trk1, 
161                                                const G4KineticTrack& trk2) const
162 {
163   // actual production width of resonance, depending on available energy.
164 
165   G4double width = resonance->GetPDGWidth();
166   G4bool dummy = false;
167   G4double sqrtS = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag();
168   if (widthTable != 0) 
169     {
170       width = widthTable->GetValue(sqrtS,dummy);
171     }
172   return width;
173 }
174 
175 
176 G4double G4XAnnihilationChannel::VariablePartialWidth(const G4KineticTrack& trk1, 
177                                                       const G4KineticTrack& trk2) const
178 {
179   // Calculate mass dependent partial width of resonance, 
180   // based on UrQMD tabulations
181 
182   G4double width(0);
183 
184   if (partWidthTable != 0)
185   {
186     G4double sqrtS = 0;
187     G4bool dummy = false;
188     sqrtS = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag();
189     width = partWidthTable->GetValue(sqrtS,dummy);
190   }
191   else
192   {
193     width = resonance->GetPDGWidth();
194   }
195   return width;
196 }
197 
198 
199 G4double G4XAnnihilationChannel::NormalizedClebsch(const G4KineticTrack& trk1, 
200                                                    const G4KineticTrack& trk2) const
201 {
202   G4double cleb = 0.;
203   const G4ParticleDefinition* def1 = trk1.GetDefinition();
204   const G4ParticleDefinition* def2 = trk2.GetDefinition();
205 
206   G4int iso31 = def1->GetPDGiIsospin3();
207   G4int iso32 = def2->GetPDGiIsospin3();
208   G4int iso3 = iso31 + iso32;
209   G4int iso1 = def1->GetPDGiIsospin();
210   G4int iso2 = def2->GetPDGiIsospin();
211 
212   G4int isoRes = resonance->GetPDGiIsospin();
213   
214   if (isoRes < iso3) return 0.;
215   if ((iso1*iso2) == 0) return 1.;
216 
217   cleb = clebsch.NormalizedClebschGordan(isoRes,iso3,iso1,iso2,iso31,iso32);
218 
219   // Special case: particle-antiparticle, charge-conjugated states have the same weight
220   G4String type1 = def1->GetParticleType();
221   G4String type2 = def2->GetParticleType();
222   G4int anti = def1->GetPDGEncoding() * def2->GetPDGEncoding();
223   G4int strangeness = resonance->GetQuarkContent(3) + resonance->GetAntiQuarkContent(3);
224   if ( ((type1 == "baryon" && type2 == "baryon") ||(type1 == "meson" && type2 == "meson")) &&
225        anti < 0 && strangeness == 0) 
226     {
227       if (def1->GetPDGEncoding() != -(def2->GetPDGEncoding())) cleb = 0.5 * cleb;
228     }
229        
230   return cleb;
231 }
232 
233 
234 
235 
236 
237