Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * * 21 // * Parts of this code which have been developed by QinetiQ Ltd * 22 // * under contract to the European Space Agency (ESA) are the * 23 // * intellectual property of ESA. Rights to use, copy, modify and * 24 // * redistribute this software for general public use are granted * 25 // * in compliance with any licensing, distribution and development * 26 // * policy adopted by the Geant4 Collaboration. This code has been * 27 // * written by QinetiQ Ltd for the European Space Agency, under ESA * 28 // * contract 17191/03/NL/LvH (Aurora Programme). * 29 // * * 30 // * By using, copying, modifying or distributing the software (or * 31 // * any work based on the software) you agree to acknowledge its * 32 // * use in resulting scientific publications, and indicate your * 33 // * acceptance of all terms of the Geant4 Software license. * 34 // ******************************************************************** 35 // 36 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 37 // 38 // MODULE: G4EMDissociation.cc 39 // 40 // Version: B.1 41 // Date: 15/04/04 42 // Author: P R Truscott 43 // Organisation: QinetiQ Ltd, UK 44 // Customer: ESA/ESTEC, NOORDWIJK 45 // Contract: 17191/03/NL/LvH 46 // 47 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 48 // 49 // CHANGE HISTORY 50 // -------------- 51 // 52 // 17 October 2003, P R Truscott, QinetiQ Ltd, UK 53 // Created. 54 // 55 // 15 March 2004, P R Truscott, QinetiQ Ltd, UK 56 // Beta release 57 // 58 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 59 //////////////////////////////////////////////////////////////////////////////// 60 // 61 #include "G4EMDissociation.hh" 62 #include "G4PhysicalConstants.hh" 63 #include "G4SystemOfUnits.hh" 64 #include "G4ParticleDefinition.hh" 65 #include "G4LorentzVector.hh" 66 #include "G4PhysicsFreeVector.hh" 67 #include "G4EMDissociationCrossSection.hh" 68 #include "G4Proton.hh" 69 #include "G4Neutron.hh" 70 #include "G4IonTable.hh" 71 #include "G4DecayProducts.hh" 72 #include "G4DynamicParticle.hh" 73 #include "G4Fragment.hh" 74 #include "G4ReactionProductVector.hh" 75 #include "Randomize.hh" 76 #include "globals.hh" 77 #include "G4PhysicsModelCatalog.hh" 78 79 G4EMDissociation::G4EMDissociation() : 80 G4HadronicInteraction("EMDissociation"), 81 secID_projectileDissociation(-1), secID_targetDissociation(-1) 82 { 83 // Send message to stdout to advise that the G4EMDissociation model is being 84 // used. 85 PrintWelcomeMessage(); 86 87 // No de-excitation handler has been supplied - define the default handler. 88 theExcitationHandler = new G4ExcitationHandler; 89 theExcitationHandler->SetMinEForMultiFrag(5.0*MeV); 90 handlerDefinedInternally = true; 91 92 // This EM dissociation model needs access to the cross-sections held in 93 // G4EMDissociationCrossSection. 94 dissociationCrossSection = new G4EMDissociationCrossSection; 95 thePhotonSpectrum = new G4EMDissociationSpectrum; 96 97 // Set the minimum and maximum range for the model (despite nomanclature, this 98 // is in energy per nucleon number). 99 SetMinEnergy(100.0*MeV); 100 SetMaxEnergy(500.0*GeV); 101 102 // Set the default verbose level to 0 - no output. 103 verboseLevel = 0; 104 105 // Creator model ID for the secondaries created by this model 106 secID_projectileDissociation = G4PhysicsModelCatalog::GetModelID( "model_projectile" + GetModelName() ); 107 secID_targetDissociation = G4PhysicsModelCatalog::GetModelID( "model_target" + GetModelName() ); 108 } 109 110 G4EMDissociation::G4EMDissociation (G4ExcitationHandler *aExcitationHandler) : 111 G4HadronicInteraction("EMDissociation"), 112 secID_projectileDissociation(-1), secID_targetDissociation(-1) 113 { 114 // Send message to stdout to advise that the G4EMDissociation model is being 115 // used. 116 PrintWelcomeMessage(); 117 118 theExcitationHandler = aExcitationHandler; 119 handlerDefinedInternally = false; 120 121 // This EM dissociation model needs access to the cross-sections held in 122 // G4EMDissociationCrossSection. 123 dissociationCrossSection = new G4EMDissociationCrossSection; 124 thePhotonSpectrum = new G4EMDissociationSpectrum; 125 126 // Set the minimum and maximum range for the model (despite nomanclature, this 127 // is in energy per nucleon number) 128 SetMinEnergy(100.0*MeV); 129 SetMaxEnergy(500.0*GeV); 130 verboseLevel = 0; 131 132 // Creator model ID for the secondaries created by this model 133 secID_projectileDissociation = G4PhysicsModelCatalog::GetModelID( "model_projectile" + GetModelName() ); 134 secID_targetDissociation = G4PhysicsModelCatalog::GetModelID( "model_target" + GetModelName() ); 135 } 136 137 138 G4EMDissociation::~G4EMDissociation() { 139 if (handlerDefinedInternally) delete theExcitationHandler; 140 // delete dissociationCrossSection; 141 // Cross section deleted by G4CrossSectionRegistry; don't do it here 142 // Bug reported by Gong Ding in Bug Report #1339 143 delete thePhotonSpectrum; 144 } 145 146 147 G4HadFinalState *G4EMDissociation::ApplyYourself 148 (const G4HadProjectile &theTrack, G4Nucleus &theTarget) 149 { 150 // The secondaries will be returned in G4HadFinalState &theParticleChange - 151 // initialise this. 152 153 theParticleChange.Clear(); 154 theParticleChange.SetStatusChange(stopAndKill); 155 156 // Get relevant information about the projectile and target (A, Z) and 157 // energy/nuc, momentum, velocity, Lorentz factor and rest-mass of the 158 // projectile. 159 160 const G4ParticleDefinition *definitionP = theTrack.GetDefinition(); 161 const G4double AP = definitionP->GetBaryonNumber(); 162 const G4double ZP = definitionP->GetPDGCharge(); 163 G4LorentzVector pP = theTrack.Get4Momentum(); 164 G4double E = theTrack.GetKineticEnergy()/AP; 165 G4double MP = theTrack.GetTotalEnergy() - E*AP; 166 G4double b = pP.beta(); 167 G4double AT = theTarget.GetA_asInt(); 168 G4double ZT = theTarget.GetZ_asInt(); 169 G4double MT = G4NucleiProperties::GetNuclearMass(AT,ZT); 170 171 // Depending upon the verbosity level, output the initial information on the 172 // projectile and target 173 if (verboseLevel >= 2) { 174 G4cout.precision(6); 175 G4cout <<"########################################" 176 <<"########################################" 177 <<G4endl; 178 G4cout <<"IN G4EMDissociation" <<G4endl; 179 G4cout <<"Initial projectile A=" <<AP 180 <<", Z=" <<ZP 181 <<G4endl; 182 G4cout <<"Initial target A=" <<AT 183 <<", Z=" <<ZT 184 <<G4endl; 185 G4cout <<"Projectile momentum and Energy/nuc = " <<pP <<" ," <<E <<G4endl; 186 } 187 188 // Initialise the variables which will be used with the phase-space decay and 189 // to boost the secondaries from the interaction. 190 191 G4ParticleDefinition *typeNucleon = NULL; 192 G4ParticleDefinition *typeDaughter = NULL; 193 G4double Eg = 0.0; 194 G4double mass = 0.0; 195 G4ThreeVector boost = G4ThreeVector(0.0, 0.0, 0.0); 196 197 // Determine the cross-sections at the giant dipole and giant quadrupole 198 // resonance energies for the projectile and then target. The information is 199 // initially provided in the G4PhysicsFreeVector individually for the E1 200 // and E2 fields. These are then summed. 201 202 G4double bmin = thePhotonSpectrum->GetClosestApproach(AP, ZP, AT, ZT, b); 203 G4PhysicsFreeVector *crossSectionP = dissociationCrossSection-> 204 GetCrossSectionForProjectile(AP, ZP, AT, ZT, b, bmin); 205 G4PhysicsFreeVector *crossSectionT = dissociationCrossSection-> 206 GetCrossSectionForTarget(AP, ZP, AT, ZT, b, bmin); 207 208 G4double totCrossSectionP = (*crossSectionP)[0]+(*crossSectionP)[1]; 209 G4double totCrossSectionT = (*crossSectionT)[0]+(*crossSectionT)[1]; 210 211 // Now sample whether the interaction involved EM dissociation of the projectile 212 // or the target. 213 214 G4int secID = -1; // Creator model ID for the secondaries 215 if (G4UniformRand() < 216 totCrossSectionP / (totCrossSectionP + totCrossSectionT)) { 217 218 // It was the projectile which underwent EM dissociation. Define the Lorentz 219 // boost to be applied to the secondaries, and sample whether a proton or a 220 // neutron was ejected. Then determine the energy of the virtual gamma ray 221 // which passed from the target nucleus ... this will be used to define the 222 // excitation of the projectile. 223 224 secID = secID_projectileDissociation; 225 mass = MP; 226 if (G4UniformRand() < dissociationCrossSection-> 227 GetWilsonProbabilityForProtonDissociation (AP, ZP)) 228 { 229 if (verboseLevel >= 2) 230 G4cout <<"Projectile underwent EM dissociation producing a proton" 231 <<G4endl; 232 typeNucleon = G4Proton::ProtonDefinition(); 233 typeDaughter = G4IonTable::GetIonTable()-> 234 GetIon((G4int) ZP-1, (G4int) AP-1, 0.0); 235 } 236 else 237 { 238 if (verboseLevel >= 2) 239 G4cout <<"Projectile underwent EM dissociation producing a neutron" 240 <<G4endl; 241 typeNucleon = G4Neutron::NeutronDefinition(); 242 typeDaughter = G4IonTable::GetIonTable()-> 243 GetIon((G4int) ZP, (G4int) AP-1, 0.0); 244 } 245 if (G4UniformRand() < (*crossSectionP)[0]/totCrossSectionP) 246 { 247 Eg = crossSectionP->GetLowEdgeEnergy(0); 248 if (verboseLevel >= 2) 249 G4cout <<"Transition type was E1" <<G4endl; 250 } 251 else 252 { 253 Eg = crossSectionP->GetLowEdgeEnergy(1); 254 if (verboseLevel >= 2) 255 G4cout <<"Transition type was E2" <<G4endl; 256 } 257 258 // We need to define a Lorentz vector with the original momentum, but total 259 // energy includes the projectile and virtual gamma. This is then used 260 // to calculate the boost required for the secondaries. 261 262 pP.setE( std::sqrt( pP.vect().mag2() + (mass + Eg)*(mass + Eg) ) ); 263 boost = pP.findBoostToCM(); 264 } 265 else 266 { 267 // It was the target which underwent EM dissociation. Sample whether a 268 // proton or a neutron was ejected. Then determine the energy of the virtual 269 // gamma ray which passed from the projectile nucleus ... this will be used to 270 // define the excitation of the target. 271 272 secID = secID_targetDissociation; 273 mass = MT; 274 if (G4UniformRand() < dissociationCrossSection-> 275 GetWilsonProbabilityForProtonDissociation (AT, ZT)) 276 { 277 if (verboseLevel >= 2) 278 G4cout <<"Target underwent EM dissociation producing a proton" 279 <<G4endl; 280 typeNucleon = G4Proton::ProtonDefinition(); 281 typeDaughter = G4IonTable::GetIonTable()-> 282 GetIon((G4int) ZT-1, (G4int) AT-1, 0.0); 283 } 284 else 285 { 286 if (verboseLevel >= 2) 287 G4cout <<"Target underwent EM dissociation producing a neutron" 288 <<G4endl; 289 typeNucleon = G4Neutron::NeutronDefinition(); 290 typeDaughter = G4IonTable::GetIonTable()-> 291 GetIon((G4int) ZT, (G4int) AT-1, 0.0); 292 } 293 if (G4UniformRand() < (*crossSectionT)[0]/totCrossSectionT) 294 { 295 Eg = crossSectionT->GetLowEdgeEnergy(0); 296 if (verboseLevel >= 2) 297 G4cout <<"Transition type was E1" <<G4endl; 298 } 299 else 300 { 301 Eg = crossSectionT->GetLowEdgeEnergy(1); 302 if (verboseLevel >= 2) 303 G4cout <<"Transition type was E2" <<G4endl; 304 } 305 306 // Add the projectile to theParticleChange, less the energy of the 307 // not-so-virtual gamma-ray. Not that at the moment, no lateral momentum 308 // is transferred between the projectile and target nuclei. 309 310 G4ThreeVector v = pP.vect(); 311 v.setMag(1.0); 312 G4DynamicParticle *changedP = new G4DynamicParticle (definitionP, v, E*AP-Eg); 313 theParticleChange.AddSecondary (changedP, secID); 314 if (verboseLevel >= 2) 315 { 316 G4cout <<"Projectile change:" <<G4endl; 317 changedP->DumpInfo(); 318 } 319 } 320 321 // Perform a two-body decay based on the restmass energy of the parent and 322 // gamma-ray, and the masses of the daughters. In the frame of reference of 323 // the nucles, the angular distribution is sampled isotropically, but the 324 // the nucleon and secondary nucleus are boosted if they've come from the 325 // projectile. 326 327 G4double e = mass + Eg; 328 G4double mass1 = typeNucleon->GetPDGMass(); 329 G4double mass2 = typeDaughter->GetPDGMass(); 330 G4double pp = (e+mass1+mass2)*(e+mass1-mass2)* 331 (e-mass1+mass2)*(e-mass1-mass2)/(4.0*e*e); 332 if (pp < 0.0) { 333 pp = 1.0*eV; 334 // if (verboseLevel >`= 1) 335 // { 336 // G4cout <<"IN G4EMDissociation::ApplyYoursef" <<G4endl; 337 // G4cout <<"Error in mass of secondaries compared with primary:" <<G4endl; 338 // G4cout <<"Rest mass of primary = " <<mass <<" MeV" <<G4endl; 339 // G4cout <<"Virtual gamma energy = " <<Eg <<" MeV" <<G4endl; 340 // G4cout <<"Rest mass of secondary #1 = " <<mass1 <<" MeV" <<G4endl; 341 // G4cout <<"Rest mass of secondary #2 = " <<mass2 <<" MeV" <<G4endl; 342 // } 343 } 344 else 345 pp = std::sqrt(pp); 346 G4double costheta = 2.*G4UniformRand()-1.0; 347 G4double sintheta = std::sqrt((1.0 - costheta)*(1.0 + costheta)); 348 G4double phi = 2.0*pi*G4UniformRand()*rad; 349 G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta); 350 G4DynamicParticle *dynamicNucleon = 351 new G4DynamicParticle(typeNucleon, direction*pp); 352 dynamicNucleon->Set4Momentum(dynamicNucleon->Get4Momentum().boost(-boost)); 353 G4DynamicParticle *dynamicDaughter = 354 new G4DynamicParticle(typeDaughter, -direction*pp); 355 dynamicDaughter->Set4Momentum(dynamicDaughter->Get4Momentum().boost(-boost)); 356 357 // The "decay" products have to be transferred to the G4HadFinalState object. 358 // Furthermore, the residual nucleus should be de-excited. 359 360 theParticleChange.AddSecondary (dynamicNucleon, secID); 361 if (verboseLevel >= 2) { 362 G4cout <<"Nucleon from the EMD process:" <<G4endl; 363 dynamicNucleon->DumpInfo(); 364 } 365 366 G4Fragment* theFragment = new 367 G4Fragment(typeDaughter->GetBaryonNumber(), 368 G4lrint(typeDaughter->GetPDGCharge()/CLHEP::eplus), 369 dynamicDaughter->Get4Momentum()); 370 371 if (verboseLevel >= 2) { 372 G4cout <<"Dynamic properties of the prefragment:" <<G4endl; 373 G4cout.precision(6); 374 dynamicDaughter->DumpInfo(); 375 G4cout <<"Nuclear properties of the prefragment:" <<G4endl; 376 G4cout <<theFragment <<G4endl; 377 } 378 379 G4ReactionProductVector* products = 380 theExcitationHandler->BreakItUp(*theFragment); 381 delete theFragment; 382 theFragment = NULL; 383 384 G4DynamicParticle* secondary = 0; 385 G4ReactionProductVector::iterator iter; 386 for (iter = products->begin(); iter != products->end(); ++iter) { 387 secondary = new G4DynamicParticle((*iter)->GetDefinition(), 388 (*iter)->GetTotalEnergy(), (*iter)->GetMomentum()); 389 theParticleChange.AddSecondary (secondary, secID); 390 } 391 delete products; 392 393 delete crossSectionP; 394 delete crossSectionT; 395 396 if (verboseLevel >= 2) 397 G4cout <<"########################################" 398 <<"########################################" 399 <<G4endl; 400 401 return &theParticleChange; 402 } 403 404 405 void G4EMDissociation::PrintWelcomeMessage () 406 { 407 G4cout <<G4endl; 408 G4cout <<" ****************************************************************" 409 <<G4endl; 410 G4cout <<" EM dissociation model for nuclear-nuclear interactions activated" 411 <<G4endl; 412 G4cout <<" (Written by QinetiQ Ltd for the European Space Agency)" 413 <<G4endl; 414 G4cout <<" ****************************************************************" 415 <<G4endl; 416 G4cout << G4endl; 417 418 return; 419 } 420 421