Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // G4MicroElecInelasticModel_new.hh, 2011/08/29 A.Valentin, M. Raine are with CEA [a] 28 // 2020/05/20 P. Caron, C. Inguimbert are with ONERA [b] 29 // Q. Gibaru is with CEA [a], ONERA [b] and CNES [c] 30 // M. Raine and D. Lambert are with CEA [a] 31 // 32 // A part of this work has been funded by the French space agency(CNES[c]) 33 // [a] CEA, DAM, DIF - 91297 ARPAJON, France 34 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 Toulouse, France 35 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CEDEX, France 36 // 37 // Based on the following publications 38 // - A.Valentin, M. Raine, 39 // Inelastic cross-sections of low energy electrons in silicon 40 // for the simulation of heavy ion tracks with the Geant4-DNA toolkit, 41 // NSS Conf. Record 2010, pp. 80-85 42 // https://doi.org/10.1109/NSSMIC.2010.5873720 43 // 44 // - A.Valentin, M. Raine, M.Gaillardin, P.Paillet 45 // Geant4 physics processes for microdosimetry simulation: 46 // very low energy electromagnetic models for electrons in Silicon, 47 // https://doi.org/10.1016/j.nimb.2012.06.007 48 // NIM B, vol. 288, pp. 66-73, 2012, part A 49 // heavy ions in Si, NIM B, vol. 287, pp. 124-129, 2012, part B 50 // https://doi.org/10.1016/j.nimb.2012.07.028 51 // 52 // - M. Raine, M. Gaillardin, P. Paillet 53 // Geant4 physics processes for silicon microdosimetry simulation: 54 // Improvements and extension of the energy-range validity up to 10 GeV/nucleon 55 // NIM B, vol. 325, pp. 97-100, 2014 56 // https://doi.org/10.1016/j.nimb.2014.01.014 57 // 58 // - J. Pierron, C. Inguimbert, M. Belhaj, T. Gineste, J. Puech, M. Raine 59 // Electron emission yield for low energy electrons: 60 // Monte Carlo simulation and experimental comparison for Al, Ag, and Si 61 // Journal of Applied Physics 121 (2017) 215107. 62 // https://doi.org/10.1063/1.4984761 63 // 64 // - P. Caron, 65 // Study of Electron-Induced Single-Event Upset in Integrated Memory Devices 66 // PHD, 16th October 2019 67 // 68 // - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine, D.Lambert, J.Puech, 69 // Geant4 physics processes for microdosimetry and secondary electron emission simulation : 70 // Extension of MicroElec to very low energies and new materials 71 // NIM B, 2020, in review. 72 // 73 // 74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 75 76 #ifndef G4MICROELECINELASTICMODEL_NEW_HH 77 #define G4MICROELECINELASTICMODEL_NEW_HH 1 78 79 #include "globals.hh" 80 #include "G4VEmModel.hh" 81 #include "G4ParticleChangeForGamma.hh" 82 #include "G4ProductionCutsTable.hh" 83 #include "G4MicroElecMaterialStructure.hh" 84 #include "G4MicroElecCrossSectionDataSet_new.hh" 85 #include "G4Electron.hh" 86 #include "G4Proton.hh" 87 #include "G4GenericIon.hh" 88 #include "G4ParticleDefinition.hh" 89 #include "G4LogLogInterpolation.hh" 90 #include "G4VAtomDeexcitation.hh" 91 #include "G4NistManager.hh" 92 93 class G4MicroElecInelasticModel_new : public G4VEmModel 94 { 95 96 public: 97 explicit G4MicroElecInelasticModel_new(const G4ParticleDefinition* p = nullptr, 98 const G4String& nam = "MicroElecInelasticModel"); 99 ~G4MicroElecInelasticModel_new() override; 100 101 void Initialise(const G4ParticleDefinition*, const G4DataVector&) override; 102 103 G4double CrossSectionPerVolume(const G4Material* material, 104 const G4ParticleDefinition* p, 105 G4double ekin, 106 G4double emin, 107 G4double emax) override; 108 109 void SampleSecondaries(std::vector<G4DynamicParticle*>*, 110 const G4MaterialCutsCouple*, 111 const G4DynamicParticle*, 112 G4double tmin, 113 G4double maxEnergy) override; 114 115 G4double DifferentialCrossSection(const G4ParticleDefinition * aParticleDefinition, 116 G4double k, G4double energyTransfer, G4int shell); 117 118 G4double ComputeRelativistVelocity(G4double E, G4double mass); 119 120 G4double ComputeElasticQmax(G4double T1i, G4double T2i, G4double m1, G4double m2); 121 122 G4double BKZ(G4double Ep, G4double mp, G4int Zp, G4double EF); 123 // compute the effective charge according Brandt et Kitagawa theory 124 125 G4double stepFunc(G4double x); 126 G4double vrkreussler(G4double v, G4double vF); 127 128 G4MicroElecInelasticModel_new & operator=(const G4MicroElecInelasticModel_new &right) = delete; 129 G4MicroElecInelasticModel_new(const G4MicroElecInelasticModel_new&) = delete; 130 131 private: 132 // 133 // private methods 134 // 135 G4int RandomSelect(G4double energy,const G4String& particle, G4double originalMass, G4int originalZ ); 136 137 G4double RandomizeCreatedElectronEnergy(G4double secondaryKinetic); 138 139 G4double RandomizeEjectedElectronEnergy(const G4ParticleDefinition * aParticleDefinition, 140 G4double incomingParticleEnergy, G4int shell, 141 G4double originalMass, G4int originalZ) ; 142 143 G4double RandomizeEjectedElectronEnergyFromCumulatedDcs(const G4ParticleDefinition*, 144 G4double k, G4int shell); 145 146 G4double TransferedEnergy(const G4ParticleDefinition*, G4double k, 147 G4int ionizationLevelIndex, G4double random); 148 149 G4double Interpolate(G4double e1, G4double e2, G4double e, G4double xs1, G4double xs2); 150 151 G4double QuadInterpolator( G4double e11, G4double e12, G4double e21, G4double e22, 152 G4double x11, G4double x12, G4double x21, G4double x22, 153 G4double t1, G4double t2, G4double t, G4double e); 154 // 155 // private elements 156 // 157 G4ParticleChangeForGamma* fParticleChangeForGamma = nullptr; 158 159 //deexcitation manager to produce fluo photns and e- 160 G4VAtomDeexcitation* fAtomDeexcitation = nullptr; 161 G4Material* nistSi = nullptr; 162 G4MicroElecMaterialStructure* currentMaterialStructure = nullptr; 163 164 typedef std::map<G4String,G4String,std::less<G4String> > MapFile; 165 typedef std::map<G4String,G4MicroElecCrossSectionDataSet_new*,std::less<G4String> > MapData; 166 typedef std::map<G4double, std::map<G4double, G4double> > TriDimensionMap; 167 typedef std::map<G4double, std::vector<G4double> > VecMap; 168 169 //Tables for multilayers 170 typedef std::map<G4String, MapData*, std::less<G4String> > TCSMap; 171 TCSMap tableTCS; //TCS tables by particle 172 typedef std::map<G4String, std::vector<TriDimensionMap>* > dataDiffCSMap; 173 dataDiffCSMap eDiffDatatable, pDiffDatatable; //Transfer probabilities (for slower code) 174 dataDiffCSMap eNrjTransStorage, pNrjTransStorage; //Transfered energies and corresponding probability (faster code) 175 typedef std::map<G4String, std::vector<VecMap>* > dataProbaShellMap; 176 dataProbaShellMap eProbaShellStorage, pProbaShellStorage; //Cumulated Transfer probabilities (faster code) 177 typedef std::map<G4String, std::vector<G4double>* > incidentEnergyMap; 178 incidentEnergyMap eIncidentEnergyStorage, pIncidentEnergyStorage; //Incident energies for interpolation (faster code) 179 typedef std::map<G4String, VecMap* > TranfEnergyMap; 180 TranfEnergyMap eVecmStorage, pVecmStorage; //Transfered energy for interpolation (slower code) 181 typedef std::map<G4String, G4MicroElecMaterialStructure*, std::less<G4String> > MapStructure; 182 MapStructure tableMaterialsStructures; //Structures of all materials simulated 183 184 G4String currentMaterial = ""; 185 std::map<G4String,G4double,std::less<G4String> > lowEnergyLimit; 186 std::map<G4String,G4double,std::less<G4String> > highEnergyLimit; 187 188 G4int verboseLevel; 189 G4bool isInitialised ; 190 G4bool fasterCode; 191 G4bool SEFromFermiLevel; 192 193 }; 194 195 #endif 196