Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/include/G4MicroElecInelasticModel_new.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // G4MicroElecInelasticModel_new.hh, 2011/08/29 A.Valentin, M. Raine are with CEA [a]
 28 //                          2020/05/20 P. Caron, C. Inguimbert are with ONERA [b] 
 29 //                   Q. Gibaru is with CEA [a], ONERA [b] and CNES [c]
 30 //                   M. Raine and D. Lambert are with CEA [a]
 31 //
 32 // A part of this work has been funded by the French space agency(CNES[c])
 33 // [a] CEA, DAM, DIF - 91297 ARPAJON, France
 34 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 Toulouse, France
 35 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CEDEX, France
 36 //
 37 // Based on the following publications
 38 //  - A.Valentin, M. Raine, 
 39 //    Inelastic cross-sections of low energy electrons in silicon
 40 //        for the simulation of heavy ion tracks with the Geant4-DNA toolkit,
 41 //        NSS Conf. Record 2010, pp. 80-85
 42 //             https://doi.org/10.1109/NSSMIC.2010.5873720
 43 //
 44 //      - A.Valentin, M. Raine, M.Gaillardin, P.Paillet
 45 //        Geant4 physics processes for microdosimetry simulation:
 46 //        very low energy electromagnetic models for electrons in Silicon,
 47 //             https://doi.org/10.1016/j.nimb.2012.06.007
 48 //        NIM B, vol. 288, pp. 66-73, 2012, part A
 49 //        heavy ions in Si, NIM B, vol. 287, pp. 124-129, 2012, part B
 50 //             https://doi.org/10.1016/j.nimb.2012.07.028
 51 //
 52 //  - M. Raine, M. Gaillardin, P. Paillet
 53 //        Geant4 physics processes for silicon microdosimetry simulation: 
 54 //        Improvements and extension of the energy-range validity up to 10 GeV/nucleon
 55 //        NIM B, vol. 325, pp. 97-100, 2014
 56 //             https://doi.org/10.1016/j.nimb.2014.01.014
 57 //
 58 //      - J. Pierron, C. Inguimbert, M. Belhaj, T. Gineste, J. Puech, M. Raine
 59 //        Electron emission yield for low energy electrons: 
 60 //        Monte Carlo simulation and experimental comparison for Al, Ag, and Si
 61 //        Journal of Applied Physics 121 (2017) 215107. 
 62 //               https://doi.org/10.1063/1.4984761
 63 //
 64 //      - P. Caron,
 65 //        Study of Electron-Induced Single-Event Upset in Integrated Memory Devices
 66 //        PHD, 16th October 2019
 67 //
 68 //  - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine, D.Lambert, J.Puech, 
 69 //        Geant4 physics processes for microdosimetry and secondary electron emission simulation : 
 70 //        Extension of MicroElec to very low energies and new materials
 71 //        NIM B, 2020, in review.
 72 //
 73 //
 74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 75 
 76 #ifndef G4MICROELECINELASTICMODEL_NEW_HH
 77 #define G4MICROELECINELASTICMODEL_NEW_HH 1
 78 
 79 #include "globals.hh"
 80 #include "G4VEmModel.hh"
 81 #include "G4ParticleChangeForGamma.hh"
 82 #include "G4ProductionCutsTable.hh"
 83 #include "G4MicroElecMaterialStructure.hh"
 84 #include "G4MicroElecCrossSectionDataSet_new.hh"
 85 #include "G4Electron.hh"
 86 #include "G4Proton.hh"
 87 #include "G4GenericIon.hh"
 88 #include "G4ParticleDefinition.hh"
 89 #include "G4LogLogInterpolation.hh"
 90 #include "G4VAtomDeexcitation.hh"
 91 #include "G4NistManager.hh"
 92 
 93 class G4MicroElecInelasticModel_new : public G4VEmModel
 94 {
 95 
 96 public:
 97   explicit G4MicroElecInelasticModel_new(const G4ParticleDefinition* p = nullptr,
 98         const G4String& nam = "MicroElecInelasticModel");
 99   ~G4MicroElecInelasticModel_new() override;
100   
101   void Initialise(const G4ParticleDefinition*, const G4DataVector&) override;
102 
103   G4double CrossSectionPerVolume(const G4Material* material,
104          const G4ParticleDefinition* p,
105          G4double ekin,
106          G4double emin,
107          G4double emax) override;
108 
109   void SampleSecondaries(std::vector<G4DynamicParticle*>*,
110        const G4MaterialCutsCouple*,
111        const G4DynamicParticle*,
112        G4double tmin,
113        G4double maxEnergy) override;
114 
115   G4double DifferentialCrossSection(const G4ParticleDefinition * aParticleDefinition, 
116                                     G4double k, G4double energyTransfer, G4int shell);
117 
118   G4double ComputeRelativistVelocity(G4double E, G4double mass);
119 
120   G4double ComputeElasticQmax(G4double T1i, G4double T2i, G4double m1, G4double m2);
121 
122   G4double BKZ(G4double Ep, G4double mp, G4int Zp, G4double EF);
123   // compute the effective charge according Brandt et Kitagawa theory
124 
125   G4double stepFunc(G4double x);
126   G4double vrkreussler(G4double v, G4double vF);
127 
128   G4MicroElecInelasticModel_new & operator=(const  G4MicroElecInelasticModel_new &right) = delete;
129   G4MicroElecInelasticModel_new(const  G4MicroElecInelasticModel_new&) = delete;
130 
131 private:
132   //
133   // private methods
134   //  
135   G4int RandomSelect(G4double energy,const G4String& particle, G4double originalMass, G4int originalZ );
136 
137   G4double RandomizeCreatedElectronEnergy(G4double secondaryKinetic);
138   
139   G4double RandomizeEjectedElectronEnergy(const G4ParticleDefinition * aParticleDefinition,
140             G4double incomingParticleEnergy, G4int shell,
141             G4double originalMass, G4int originalZ) ;
142   
143   G4double RandomizeEjectedElectronEnergyFromCumulatedDcs(const G4ParticleDefinition*,
144                 G4double k, G4int shell);
145 
146   G4double TransferedEnergy(const G4ParticleDefinition*, G4double k,
147           G4int ionizationLevelIndex, G4double random);
148 
149   G4double Interpolate(G4double e1, G4double e2, G4double e, G4double xs1, G4double xs2);
150    
151   G4double QuadInterpolator( G4double e11, G4double e12, G4double e21, G4double e22, 
152            G4double x11, G4double x12, G4double x21, G4double x22, 
153            G4double t1,  G4double t2,  G4double t,  G4double e);
154   //
155   // private elements
156   //  
157   G4ParticleChangeForGamma* fParticleChangeForGamma = nullptr;
158   
159   //deexcitation manager to produce fluo photns and e-
160   G4VAtomDeexcitation* fAtomDeexcitation = nullptr;
161   G4Material* nistSi = nullptr;
162   G4MicroElecMaterialStructure* currentMaterialStructure = nullptr;
163 
164   typedef std::map<G4String,G4String,std::less<G4String> > MapFile;
165   typedef std::map<G4String,G4MicroElecCrossSectionDataSet_new*,std::less<G4String> > MapData;
166   typedef std::map<G4double, std::map<G4double, G4double> > TriDimensionMap; 
167   typedef std::map<G4double, std::vector<G4double> > VecMap;
168 
169   //Tables for multilayers
170   typedef std::map<G4String, MapData*, std::less<G4String> > TCSMap;
171   TCSMap tableTCS; //TCS tables by particle
172   typedef std::map<G4String, std::vector<TriDimensionMap>* > dataDiffCSMap;
173   dataDiffCSMap eDiffDatatable, pDiffDatatable; //Transfer probabilities (for slower code)
174   dataDiffCSMap eNrjTransStorage, pNrjTransStorage; //Transfered energies and corresponding probability (faster code)
175   typedef std::map<G4String, std::vector<VecMap>* > dataProbaShellMap;
176   dataProbaShellMap eProbaShellStorage, pProbaShellStorage; //Cumulated Transfer probabilities (faster code)
177   typedef std::map<G4String, std::vector<G4double>* > incidentEnergyMap;
178   incidentEnergyMap eIncidentEnergyStorage, pIncidentEnergyStorage; //Incident energies for interpolation (faster code)
179   typedef std::map<G4String, VecMap* > TranfEnergyMap;
180   TranfEnergyMap eVecmStorage, pVecmStorage; //Transfered energy for interpolation (slower code)
181   typedef std::map<G4String, G4MicroElecMaterialStructure*, std::less<G4String> > MapStructure;
182   MapStructure tableMaterialsStructures; //Structures of all materials simulated
183 
184   G4String currentMaterial = "";
185   std::map<G4String,G4double,std::less<G4String> > lowEnergyLimit;
186   std::map<G4String,G4double,std::less<G4String> > highEnergyLimit;
187  
188   G4int verboseLevel;  
189   G4bool isInitialised ;
190   G4bool fasterCode;
191   G4bool SEFromFermiLevel;
192 
193 };
194 
195 #endif
196