Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 //--------------------------------------------------------------------------- 28 // 29 // ClassName: G4EmExtraPhysics 30 // 31 // Author: 2002 J.P. Wellisch 32 // 33 // Modified: 34 // 35 // 10.11.2005 V.Ivanchenko edit to provide a standard 36 // 19.06.2006 V.Ivanchenko add mu-nuclear process 37 // 16.10.2012 A.Ribon: renamed G4EmExtraBertiniPhysics as G4EmExtraPhysics 38 // 10.04.2014 A.Dotti: Add MT functionality for messenger 39 // 24.04.2014 A.Ribon: switched on muon-nuclear by default 40 // 29.01.2018 V.Grichine, adding neutrinos 41 // 07.05.2019 V.Grichine, adding muon neutrino nucleus interactions 42 // 03.11.2022 V. Grichne update for tau-neutrino nucleus processes 43 // 44 /////////////////////////////////////////////////////////////// 45 46 #include "G4EmExtraPhysics.hh" 47 48 #include "G4SystemOfUnits.hh" 49 50 #include "G4ParticleDefinition.hh" 51 #include "G4ParticleTable.hh" 52 #include "G4Gamma.hh" 53 #include "G4Electron.hh" 54 #include "G4Positron.hh" 55 #include "G4MuonPlus.hh" 56 #include "G4MuonMinus.hh" 57 58 #include "G4Proton.hh" 59 #include "G4AntiProton.hh" 60 #include "G4PionPlus.hh" 61 #include "G4PionMinus.hh" 62 #include "G4GenericIon.hh" 63 64 #include "G4SynchrotronRadiation.hh" 65 #include "G4MuonNuclearProcess.hh" 66 #include "G4MuonVDNuclearModel.hh" 67 #include "G4ElectroVDNuclearModel.hh" 68 #include "G4TheoFSGenerator.hh" 69 #include "G4GeneratorPrecompoundInterface.hh" 70 #include "G4QGSModel.hh" 71 #include "G4GammaParticipants.hh" 72 #include "G4QGSMFragmentation.hh" 73 #include "G4ExcitedStringDecay.hh" 74 #include "G4CascadeInterface.hh" 75 #include "G4LowEGammaNuclearModel.hh" 76 77 #include "G4LENDorBERTModel.hh" 78 #include "G4LENDCombinedCrossSection.hh" 79 80 #include "G4GammaConversionToMuons.hh" 81 #include "G4AnnihiToMuPair.hh" 82 #include "G4eeToHadrons.hh" 83 #include "G4MuonToMuonPairProduction.hh" 84 85 #include "G4HadronInelasticProcess.hh" 86 #include "G4ElectronNuclearProcess.hh" 87 #include "G4PositronNuclearProcess.hh" 88 89 #include "G4GammaGeneralProcess.hh" 90 #include "G4LossTableManager.hh" 91 #include "G4PhotoNuclearCrossSection.hh" 92 #include "G4GammaNuclearXS.hh" 93 94 #include "G4HadronicParameters.hh" 95 #include "G4PhysicsListHelper.hh" 96 #include "G4BuilderType.hh" 97 #include "G4CrossSectionDataSetRegistry.hh" 98 99 // factory 100 #include "G4PhysicsConstructorFactory.hh" 101 // 102 G4_DECLARE_PHYSCONSTR_FACTORY(G4EmExtraPhysics); 103 104 ////////////////////////////////////// 105 106 G4EmExtraPhysics::G4EmExtraPhysics(G4int ver): 107 G4VPhysicsConstructor("G4GammaLeptoNuclearPhys"), 108 fGNLowEnergyLimit(200*CLHEP::MeV), 109 verbose(ver) 110 { 111 theMessenger = new G4EmMessenger(this); 112 SetPhysicsType(bEmExtra); 113 if (verbose > 1) G4cout << "### G4EmExtraPhysics" << G4endl; 114 } 115 116 G4EmExtraPhysics::G4EmExtraPhysics(const G4String&) 117 : G4EmExtraPhysics(1) 118 {} 119 120 G4EmExtraPhysics::~G4EmExtraPhysics() 121 { 122 delete theMessenger; 123 } 124 125 void G4EmExtraPhysics::Synch(G4bool val) 126 { 127 synActivated = val; 128 } 129 130 void G4EmExtraPhysics::SynchAll(G4bool val) 131 { 132 synActivatedForAll = val; 133 if (synActivatedForAll) { synActivated = true; } 134 } 135 136 void G4EmExtraPhysics::GammaNuclear(G4bool val) 137 { 138 gnActivated = val; 139 } 140 141 void G4EmExtraPhysics::LENDGammaNuclear(G4bool val) 142 { 143 gLENDActivated = val; 144 // LEND cannot be used with low-energy model 145 if (val) { fGNLowEnergyLimit = 0.0; } 146 } 147 148 void G4EmExtraPhysics::ElectroNuclear(G4bool val) 149 { 150 eActivated = val; 151 } 152 153 void G4EmExtraPhysics::MuonNuclear(G4bool val) 154 { 155 munActivated = val; 156 } 157 158 void G4EmExtraPhysics::GammaToMuMu(G4bool val) 159 { 160 gmumuActivated = val; 161 } 162 163 void G4EmExtraPhysics::MuonToMuMu(G4bool val) 164 { 165 mmumuActivated = val; 166 } 167 168 void G4EmExtraPhysics::PositronToMuMu(G4bool val) 169 { 170 pmumuActivated = val; 171 } 172 173 void G4EmExtraPhysics::PositronToHadrons(G4bool val) 174 { 175 phadActivated = val; 176 } 177 178 void G4EmExtraPhysics::GammaToMuMuFactor(G4double val) 179 { 180 if(val > 0.0) gmumuFactor = val; 181 } 182 183 void G4EmExtraPhysics::PositronToMuMuFactor(G4double val) 184 { 185 if(val > 0.0) pmumuFactor = val; 186 } 187 188 void G4EmExtraPhysics::PositronToHadronsFactor(G4double val) 189 { 190 if(val > 0.0) phadFactor = val; 191 } 192 193 void G4EmExtraPhysics::SetUseGammaNuclearXS(G4bool val) 194 { 195 fUseGammaNuclearXS = val; 196 } 197 198 void G4EmExtraPhysics::GammaNuclearLEModelLimit(G4double val) 199 { 200 // lowenergy model should not be applied at high energy 201 // no sense set this low limit below 1 MeV 202 if (val <= CLHEP::MeV) { 203 fGNLowEnergyLimit = 0.0; 204 205 } else if (val <= CLHEP::GeV) { 206 fGNLowEnergyLimit = val; 207 gLENDActivated = false; 208 } 209 } 210 211 ///////////////////////////////////////////////// 212 213 void G4EmExtraPhysics::ConstructParticle() 214 { 215 G4Gamma::Gamma(); 216 G4Electron::Electron(); 217 G4Positron::Positron(); 218 G4MuonPlus::MuonPlus(); 219 G4MuonMinus::MuonMinus(); 220 } 221 222 void G4EmExtraPhysics::ConstructProcess() 223 { 224 G4ParticleDefinition* gamma = G4Gamma::Gamma(); 225 G4ParticleDefinition* electron = G4Electron::Electron(); 226 G4ParticleDefinition* positron = G4Positron::Positron(); 227 G4ParticleDefinition* muonplus = G4MuonPlus::MuonPlus(); 228 G4ParticleDefinition* muonminus = G4MuonMinus::MuonMinus(); 229 230 G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper(); 231 G4LossTableManager* emManager = G4LossTableManager::Instance(); 232 233 if (gnActivated) { ConstructGammaElectroNuclear(); } 234 235 if (munActivated) { 236 G4MuonNuclearProcess* muNucProcess = new G4MuonNuclearProcess(); 237 G4MuonVDNuclearModel* muNucModel = new G4MuonVDNuclearModel(); 238 muNucProcess->RegisterMe(muNucModel); 239 ph->RegisterProcess( muNucProcess, muonplus); 240 ph->RegisterProcess( muNucProcess, muonminus); 241 } 242 if (gmumuActivated) { 243 G4GammaConversionToMuons* theGammaToMuMu = new G4GammaConversionToMuons(); 244 theGammaToMuMu->SetCrossSecFactor(gmumuFactor); 245 G4GammaGeneralProcess* sp = 246 dynamic_cast<G4GammaGeneralProcess*>(emManager->GetGammaGeneralProcess()); 247 if (nullptr != sp) { 248 sp->AddMMProcess(theGammaToMuMu); 249 } else { 250 ph->RegisterProcess(theGammaToMuMu, gamma); 251 } 252 } 253 if (mmumuActivated) { 254 auto proc = new G4MuonToMuonPairProduction(); 255 ph->RegisterProcess(proc, muonplus); 256 ph->RegisterProcess(proc, muonminus); 257 } 258 if (pmumuActivated) { 259 G4AnnihiToMuPair* thePosiToMuMu = new G4AnnihiToMuPair(); 260 thePosiToMuMu->SetCrossSecFactor(pmumuFactor); 261 ph->RegisterProcess(thePosiToMuMu, positron); 262 G4AnnihiToMuPair* thePosiToTauTau = new G4AnnihiToMuPair("AnnihiToTauPair"); 263 thePosiToTauTau->SetCrossSecFactor(pmumuFactor); 264 ph->RegisterProcess(thePosiToTauTau, positron); 265 } 266 if (phadActivated) { 267 G4eeToHadrons* thePosiToHadrons = new G4eeToHadrons(); 268 thePosiToHadrons->SetCrossSecFactor(phadFactor); 269 ph->RegisterProcess(thePosiToHadrons, positron); 270 } 271 if (synActivated) { 272 G4SynchrotronRadiation* theSynchRad = new G4SynchrotronRadiation(); 273 ph->RegisterProcess( theSynchRad, electron); 274 ph->RegisterProcess( theSynchRad, positron); 275 if (synActivatedForAll) { 276 ph->RegisterProcess( theSynchRad, muonplus); 277 ph->RegisterProcess( theSynchRad, muonminus); 278 279 ph->RegisterProcess( theSynchRad, G4Proton::Proton()); 280 ph->RegisterProcess( theSynchRad, G4AntiProton::AntiProton()); 281 ph->RegisterProcess( theSynchRad, G4PionPlus::PionPlus()); 282 ph->RegisterProcess( theSynchRad, G4PionMinus::PionMinus()); 283 ph->RegisterProcess( theSynchRad, G4GenericIon::GenericIon()); 284 } 285 } 286 } 287 288 void G4EmExtraPhysics::ConstructGammaElectroNuclear() 289 { 290 G4HadronicParameters* param = G4HadronicParameters::Instance(); 291 G4LossTableManager* emManager = G4LossTableManager::Instance(); 292 G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper(); 293 294 G4HadronInelasticProcess* gnuc = 295 new G4HadronInelasticProcess( "photonNuclear", G4Gamma::Gamma() ); 296 auto xsreg = G4CrossSectionDataSetRegistry::Instance(); 297 G4VCrossSectionDataSet* xs = nullptr; 298 if (fUseGammaNuclearXS) { 299 xs = xsreg->GetCrossSectionDataSet("GammaNuclearXS"); 300 if (nullptr == xs) xs = new G4GammaNuclearXS(); 301 } else { 302 xs = xsreg->GetCrossSectionDataSet("PhotoNuclearXS"); 303 if (nullptr == xs) xs = new G4PhotoNuclearCrossSection(); 304 } 305 gnuc->AddDataSet(xs); 306 307 G4QGSModel< G4GammaParticipants >* theStringModel = 308 new G4QGSModel< G4GammaParticipants >; 309 auto theStringDecay = new G4ExcitedStringDecay(new G4QGSMFragmentation()); 310 theStringModel->SetFragmentationModel(theStringDecay); 311 312 auto theCascade = new G4GeneratorPrecompoundInterface(); 313 auto theModel = new G4TheoFSGenerator(); 314 theModel->SetTransport(theCascade); 315 theModel->SetHighEnergyGenerator(theStringModel); 316 317 // Bertini cascade for moderate energies 318 auto cascade = new G4CascadeInterface(); 319 320 // added low-energy gamma nuclear model LEND disabled 321 if (fGNLowEnergyLimit > 0.0) { 322 G4LowEGammaNuclearModel* lemod = new G4LowEGammaNuclearModel(); 323 lemod->SetMaxEnergy(fGNLowEnergyLimit); 324 gnuc->RegisterMe(lemod); 325 cascade->SetMinEnergy(fGNLowEnergyLimit - CLHEP::MeV); 326 } 327 cascade->SetMaxEnergy(param->GetMaxEnergyTransitionFTF_Cascade()); 328 gnuc->RegisterMe(cascade); 329 theModel->SetMinEnergy(param->GetMinEnergyTransitionFTF_Cascade()); 330 theModel->SetMaxEnergy(param->GetMaxEnergy()); 331 gnuc->RegisterMe(theModel); 332 333 auto gproc = 334 dynamic_cast<G4GammaGeneralProcess*>(emManager->GetGammaGeneralProcess()); 335 336 // LEND may be activated if the general process is not activated 337 if (gproc != nullptr) { 338 gproc->AddHadProcess(gnuc); 339 } else { 340 ph->RegisterProcess(gnuc, G4Gamma::Gamma()); 341 if (gLENDActivated) { ConstructLENDGammaNuclear(cascade, gnuc); } 342 } 343 344 if (eActivated) { 345 auto enuc = new G4ElectronNuclearProcess(); 346 auto pnuc = new G4PositronNuclearProcess(); 347 auto eModel = new G4ElectroVDNuclearModel(); 348 349 enuc->RegisterMe(eModel); 350 pnuc->RegisterMe(eModel); 351 ph->RegisterProcess(enuc, G4Electron::Electron()); 352 ph->RegisterProcess(pnuc, G4Positron::Positron()); 353 } 354 } 355 356 void G4EmExtraPhysics::ConstructLENDGammaNuclear( 357 G4CascadeInterface* cascade, G4HadronInelasticProcess* gnuc) 358 { 359 if (G4FindDataDir("G4LENDDATA") == nullptr ) { 360 G4String message = "\n Skipping activation of Low Energy Nuclear Data (LEND) model for gamma nuclear interactions.\n The LEND model needs data files and they are available from ftp://gdo-nuclear.ucllnl.org/GND_after2013/GND_v1.3.tar.gz.\n Please set the environment variable G4LENDDATA to point to the directory named v1.3 extracted from the archive file.\n"; 361 G4Exception( "G4EmExtraPhysics::ConstructLENDGammaNuclear()" 362 , "G4LENDBertiniGammaElectroNuclearBuilder001" 363 , JustWarning , message); 364 return; 365 } 366 367 cascade->SetMinEnergy(19.9*MeV); 368 auto theLowE = new G4LENDorBERTModel( G4Gamma::Gamma() ); 369 theLowE->DumpLENDTargetInfo(true); 370 theLowE->SetMaxEnergy(20*MeV); 371 gnuc->RegisterMe(theLowE); 372 auto theXSLowE = new G4LENDCombinedCrossSection( G4Gamma::Gamma() ); 373 gnuc->AddDataSet(theXSLowE); 374 } 375