Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // ------------ G4GammaConversionToMuons physics process ------ 28 // by H.Burkhardt, S. Kelner and R. Kokoulin, April 2002 29 // ----------------------------------------------------------------------------- 30 // 31 // 05-08-04: suppression of .icc file (mma) 32 // 13-08-04, public ComputeCrossSectionPerAtom() and ComputeMeanFreePath() (mma) 33 // 34 // class description 35 // 36 // gamma ---> mu+ mu- 37 // inherit from G4VDiscreteProcess 38 // 39 40 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 41 42 #ifndef G4GammaConversionToMuons_h 43 #define G4GammaConversionToMuons_h 1 44 45 #include "G4ios.hh" 46 #include "globals.hh" 47 #include "Randomize.hh" 48 #include "G4VDiscreteProcess.hh" 49 #include "G4PhysicsTable.hh" 50 #include "G4PhysicsLogVector.hh" 51 #include "G4ParticleDefinition.hh" 52 #include "G4Element.hh" 53 #include "G4Step.hh" 54 #include <vector> 55 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 57 58 class G4LossTableManager; 59 class G4BetheHeitler5DModel; 60 61 class G4GammaConversionToMuons : public G4VDiscreteProcess 62 { 63 public: // with description 64 65 explicit G4GammaConversionToMuons( 66 const G4String& processName ="GammaToMuPair", 67 G4ProcessType type = fElectromagnetic); 68 69 ~G4GammaConversionToMuons() override; 70 71 G4bool IsApplicable(const G4ParticleDefinition&) override; 72 // true for Gamma only. 73 74 void BuildPhysicsTable(const G4ParticleDefinition&) override; 75 // here dummy, the total cross section parametrization is used rather 76 // than tables, just calling PrintInfoDefinition 77 78 void PrintInfoDefinition(); 79 // Print few lines of informations about the process: validity range, 80 // origine ..etc.. 81 // Invoked by BuildThePhysicsTable(). 82 83 void SetCrossSecFactor(G4double fac); 84 // Set the factor to artificially increase the crossSection (default 1) 85 86 inline G4double GetCrossSecFactor() const { return CrossSecFactor;} 87 // Get the factor to artificially increase the cross section 88 89 G4double GetMeanFreePath(const G4Track& aTrack, 90 G4double previousStepSize, 91 G4ForceCondition* condition) override; 92 // It returns the MeanFreePath of the process for the current track : 93 // (energy, material) 94 // The previousStepSize and G4ForceCondition* are not used. 95 // This function overloads a virtual function of the base class. 96 // It is invoked by the ProcessManager of the Particle. 97 98 G4double GetCrossSectionPerAtom(const G4DynamicParticle* aDynamicGamma, 99 const G4Element* anElement); 100 // It returns the total CrossSectionPerAtom of the process, 101 // for the current DynamicGamma (energy), in anElement. 102 103 G4VParticleChange* PostStepDoIt(const G4Track& aTrack, 104 const G4Step& aStep) override; 105 // It computes the final state of the process (at end of step), 106 // returned as a ParticleChange object. 107 // This function overloads a virtual function of the base class. 108 // It is invoked by the ProcessManager of the Particle. 109 110 G4double ComputeCrossSectionPerAtom(G4double GammaEnergy, G4int Z); 111 112 G4double ComputeMeanFreePath (G4double GammaEnergy, 113 const G4Material* aMaterial); 114 115 // hide assignment operator as private 116 G4GammaConversionToMuons& 117 operator=(const G4GammaConversionToMuons &right) = delete; 118 G4GammaConversionToMuons(const G4GammaConversionToMuons& ) = delete; 119 120 private: 121 122 const G4Element* SelectRandomAtom(const G4DynamicParticle* aDynamicGamma, 123 const G4Material* aMaterial); 124 125 G4double Mmuon; 126 G4double Rc; 127 G4double LimitEnergy; // energy limit for accurate x-section 128 G4double LowestEnergyLimit; // low energy limit of the model 129 G4double HighestEnergyLimit; // high energy limit of the model 130 G4double Energy5DLimit = 0.0; // high energy limit for 5D final state sampling 131 132 G4double MeanFreePath = DBL_MAX;// actual MeanFreePath (current medium) 133 G4double CrossSecFactor = 1.0; // factor to artificially increase 134 // the cross section 135 136 G4LossTableManager* fManager; 137 G4BetheHeitler5DModel* f5Dmodel = nullptr; 138 const G4ParticleDefinition* theGamma; 139 const G4ParticleDefinition* theMuonPlus; 140 const G4ParticleDefinition* theMuonMinus; 141 std::vector<G4double> temp; 142 }; 143 144 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 145 146 #endif 147 148