Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/particles/management/src/G4MuonDecayChannel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4MuonDecayChannel class implementation
 27 //
 28 // Author: H.Kurashige, 30 May 1997
 29 // Contributions:
 30 // - 2005 - M.Melissas, J.Brunner CPPM/IN2P3
 31 //   Added V-A fluxes for neutrinos using a new algorithm, 2005
 32 // --------------------------------------------------------------------
 33 
 34 #include "G4MuonDecayChannel.hh"
 35 
 36 #include "G4DecayProducts.hh"
 37 #include "G4LorentzRotation.hh"
 38 #include "G4LorentzVector.hh"
 39 #include "G4ParticleDefinition.hh"
 40 #include "G4PhysicalConstants.hh"
 41 #include "G4RotationMatrix.hh"
 42 #include "G4SystemOfUnits.hh"
 43 #include "G4VDecayChannel.hh"
 44 #include "Randomize.hh"
 45 
 46 G4MuonDecayChannel::G4MuonDecayChannel(const G4String& theParentName, G4double theBR)
 47   : G4VDecayChannel("Muon Decay", 1)
 48 {
 49   // set names for daughter particles
 50   if (theParentName == "mu+") {
 51     SetBR(theBR);
 52     SetParent("mu+");
 53     SetNumberOfDaughters(3);
 54     SetDaughter(0, "e+");
 55     SetDaughter(1, "nu_e");
 56     SetDaughter(2, "anti_nu_mu");
 57   }
 58   else if (theParentName == "mu-") {
 59     SetBR(theBR);
 60     SetParent("mu-");
 61     SetNumberOfDaughters(3);
 62     SetDaughter(0, "e-");
 63     SetDaughter(1, "anti_nu_e");
 64     SetDaughter(2, "nu_mu");
 65   }
 66   else {
 67 #ifdef G4VERBOSE
 68     if (GetVerboseLevel() > 0) {
 69       G4cout << "G4MuonDecayChannel:: constructor :";
 70       G4cout << " parent particle is not muon but ";
 71       G4cout << theParentName << G4endl;
 72     }
 73 #endif
 74   }
 75 }
 76 
 77 G4MuonDecayChannel& G4MuonDecayChannel::operator=(const G4MuonDecayChannel& right)
 78 {
 79   if (this != &right) {
 80     kinematics_name = right.kinematics_name;
 81     verboseLevel = right.verboseLevel;
 82     rbranch = right.rbranch;
 83 
 84     // copy parent name
 85     parent_name = new G4String(*right.parent_name);
 86 
 87     // clear daughters_name array
 88     ClearDaughtersName();
 89 
 90     // recreate array
 91     numberOfDaughters = right.numberOfDaughters;
 92     if (numberOfDaughters > 0) {
 93       if (daughters_name != nullptr) ClearDaughtersName();
 94       daughters_name = new G4String*[numberOfDaughters];
 95       // copy daughters name
 96       for (G4int index = 0; index < numberOfDaughters; ++index) {
 97         daughters_name[index] = new G4String(*right.daughters_name[index]);
 98       }
 99     }
100   }
101   return *this;
102 }
103 
104 G4DecayProducts* G4MuonDecayChannel::DecayIt(G4double)
105 {
106   // this version neglects muon polarization,and electron mass
107   //              assumes the pure V-A coupling
108   //              the Neutrinos are correctly V-A
109 
110 #ifdef G4VERBOSE
111   if (GetVerboseLevel() > 1) G4cout << "G4MuonDecayChannel::DecayIt ";
112 #endif
113 
114   CheckAndFillParent();
115   CheckAndFillDaughters();
116 
117   // parent mass
118   G4double parentmass = G4MT_parent->GetPDGMass();
119   const G4int N_DAUGHTER = 3;
120 
121   // daughters'mass
122   G4double daughtermass[N_DAUGHTER];
123   // G4double sumofdaughtermass = 0.0;
124   for (G4int index = 0; index < N_DAUGHTER; ++index) {
125     daughtermass[index] = G4MT_daughters[index]->GetPDGMass();
126     // sumofdaughtermass += daughtermass[index];
127   }
128 
129   // create parent G4DynamicParticle at rest
130   G4ThreeVector dummy;
131   auto parentparticle = new G4DynamicParticle(G4MT_parent, dummy, 0.0);
132   // create G4Decayproducts
133   auto products = new G4DecayProducts(*parentparticle);
134   delete parentparticle;
135 
136   // calculate daughter momentum
137   G4double daughtermomentum[N_DAUGHTER];
138   // calculate electron energy
139   G4double xmax = (1.0 + daughtermass[0] * daughtermass[0] / parentmass / parentmass);
140   G4double x;
141 
142   G4double Ee, Ene;
143 
144   G4double gam;
145   G4double EMax = parentmass / 2 - daughtermass[0];
146 
147   const std::size_t MAX_LOOP = 1000;
148   // Generating Random Energy
149   for (std::size_t loop1 = 0; loop1 < MAX_LOOP; ++loop1) {
150     Ee = G4UniformRand();
151     for (std::size_t loop2 = 0; loop2 < MAX_LOOP; ++loop2) {
152       x = xmax * G4UniformRand();
153       gam = G4UniformRand();
154       if (gam <= x * (1. - x)) break;
155       x = xmax;
156     }
157     Ene = x;
158     if (Ene >= (1. - Ee)) break;
159     Ene = 1. - Ee;
160   }
161   G4double Enm = (2. - Ee - Ene);
162 
163   // initialisation of rotation parameters
164 
165   G4double costheta, sintheta, rphi, rtheta, rpsi;
166   costheta = 1. - 2. / Ee - 2. / Ene + 2. / Ene / Ee;
167   sintheta = std::sqrt(1. - costheta * costheta);
168 
169   rphi = twopi * G4UniformRand() * rad;
170   rtheta = (std::acos(2. * G4UniformRand() - 1.));
171   rpsi = twopi * G4UniformRand() * rad;
172 
173   G4RotationMatrix rot;
174   rot.set(rphi, rtheta, rpsi);
175 
176   // electron 0
177   daughtermomentum[0] = std::sqrt(Ee * Ee * EMax * EMax + 2.0 * Ee * EMax * daughtermass[0]);
178   G4ThreeVector direction0(0.0, 0.0, 1.0);
179 
180   direction0 *= rot;
181 
182   auto daughterparticle =
183     new G4DynamicParticle(G4MT_daughters[0], direction0 * daughtermomentum[0]);
184 
185   products->PushProducts(daughterparticle);
186 
187   // electronic neutrino  1
188 
189   daughtermomentum[1] = std::sqrt(Ene * Ene * EMax * EMax + 2.0 * Ene * EMax * daughtermass[1]);
190   G4ThreeVector direction1(sintheta, 0.0, costheta);
191 
192   direction1 *= rot;
193 
194   auto daughterparticle1 =
195     new G4DynamicParticle(G4MT_daughters[1], direction1 * daughtermomentum[1]);
196   products->PushProducts(daughterparticle1);
197 
198   // muonnic neutrino 2
199 
200   daughtermomentum[2] = std::sqrt(Enm * Enm * EMax * EMax + 2.0 * Enm * EMax * daughtermass[2]);
201   G4ThreeVector direction2(-Ene / Enm * sintheta, 0, -Ee / Enm - Ene / Enm * costheta);
202 
203   direction2 *= rot;
204 
205   auto daughterparticle2 =
206     new G4DynamicParticle(G4MT_daughters[2], direction2 * daughtermomentum[2]);
207   products->PushProducts(daughterparticle2);
208 
209   // output message
210 #ifdef G4VERBOSE
211   if (GetVerboseLevel() > 1) {
212     G4cout << "G4MuonDecayChannel::DecayIt()";
213     G4cout << " create decay products in rest frame " << G4endl;
214     products->DumpInfo();
215   }
216 #endif
217   return products;
218 }
219