Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4KL3DecayChannel class implementation 27 // 28 // Author: H.Kurashige, 30 May 1997 29 // -------------------------------------------------------------------- 30 31 #include "G4KL3DecayChannel.hh" 32 33 #include "G4DecayProducts.hh" 34 #include "G4LorentzRotation.hh" 35 #include "G4LorentzVector.hh" 36 #include "G4ParticleDefinition.hh" 37 #include "G4PhysicalConstants.hh" 38 #include "G4SystemOfUnits.hh" 39 #include "G4VDecayChannel.hh" 40 #include "Randomize.hh" 41 42 G4KL3DecayChannel::G4KL3DecayChannel(const G4String& theParentName, G4double theBR, 43 const G4String& thePionName, const G4String& theLeptonName, 44 const G4String& theNutrinoName) 45 : G4VDecayChannel("KL3 Decay", theParentName, theBR, 3, thePionName, theLeptonName, 46 theNutrinoName) 47 { 48 static const G4String K_plus("kaon+"); 49 static const G4String K_minus("kaon-"); 50 static const G4String K_L("kaon0L"); 51 static const G4String Mu_plus("mu+"); 52 static const G4String Mu_minus("mu-"); 53 static const G4String E_plus("e+"); 54 static const G4String E_minus("e-"); 55 56 // check modes 57 if (((theParentName == K_plus) && (theLeptonName == E_plus)) 58 || ((theParentName == K_minus) && (theLeptonName == E_minus))) 59 { 60 // K+- (Ke3) 61 pLambda = 0.0286; 62 pXi0 = -0.35; 63 } 64 else if (((theParentName == K_plus) && (theLeptonName == Mu_plus)) 65 || ((theParentName == K_minus) && (theLeptonName == Mu_minus))) 66 { 67 // K+- (Kmu3) 68 pLambda = 0.033; 69 pXi0 = -0.35; 70 } 71 else if ((theParentName == K_L) && ((theLeptonName == E_plus) || (theLeptonName == E_minus))) { 72 // K0L (Ke3) 73 pLambda = 0.0300; 74 pXi0 = -0.11; 75 } 76 else if ((theParentName == K_L) && ((theLeptonName == Mu_plus) || (theLeptonName == Mu_minus))) { 77 // K0L (Kmu3) 78 pLambda = 0.034; 79 pXi0 = -0.11; 80 } 81 else { 82 #ifdef G4VERBOSE 83 if (GetVerboseLevel() > 2) { 84 G4cout << "G4KL3DecayChannel:: constructor :"; 85 G4cout << "illegal arguments " << G4endl; 86 ; 87 DumpInfo(); 88 } 89 #endif 90 // set values for K0L (Ke3) temporarily 91 pLambda = 0.0300; 92 pXi0 = -0.11; 93 } 94 } 95 96 G4KL3DecayChannel& G4KL3DecayChannel::operator=(const G4KL3DecayChannel& right) 97 { 98 if (this != &right) { 99 kinematics_name = right.kinematics_name; 100 verboseLevel = right.verboseLevel; 101 rbranch = right.rbranch; 102 103 // copy parent name 104 parent_name = new G4String(*right.parent_name); 105 106 // clear daughters_name array 107 ClearDaughtersName(); 108 109 // recreate array 110 numberOfDaughters = right.numberOfDaughters; 111 if (numberOfDaughters > 0) { 112 if (daughters_name != nullptr) ClearDaughtersName(); 113 daughters_name = new G4String*[numberOfDaughters]; 114 // copy daughters name 115 for (G4int index = 0; index < numberOfDaughters; ++index) { 116 daughters_name[index] = new G4String(*right.daughters_name[index]); 117 } 118 } 119 pLambda = right.pLambda; 120 pXi0 = right.pXi0; 121 } 122 return *this; 123 } 124 125 G4DecayProducts* G4KL3DecayChannel::DecayIt(G4double) 126 { 127 // this version neglects muon polarization 128 // assumes the pure V-A coupling 129 // gives incorrect energy spectrum for Neutrinos 130 #ifdef G4VERBOSE 131 if (GetVerboseLevel() > 1) G4cout << "G4KL3DecayChannel::DecayIt " << G4endl; 132 #endif 133 134 // fill parent particle and its mass 135 CheckAndFillParent(); 136 G4double massK = G4MT_parent->GetPDGMass(); 137 138 // fill daughter particles and their mass 139 CheckAndFillDaughters(); 140 G4double daughterM[3]; 141 daughterM[idPi] = G4MT_daughters[idPi]->GetPDGMass(); 142 daughterM[idLepton] = G4MT_daughters[idLepton]->GetPDGMass(); 143 daughterM[idNutrino] = G4MT_daughters[idNutrino]->GetPDGMass(); 144 145 // determine momentum/energy of daughters according to DalitzDensity 146 G4double daughterP[3], daughterE[3]; 147 G4double w; 148 G4double r; 149 const size_t MAX_LOOP = 10000; 150 for (std::size_t loop_counter = 0; loop_counter < MAX_LOOP; ++loop_counter) { 151 r = G4UniformRand(); 152 PhaseSpace(massK, &daughterM[0], &daughterE[0], &daughterP[0]); 153 w = DalitzDensity(massK, daughterE[idPi], daughterE[idLepton], daughterE[idNutrino], 154 daughterM[idPi], daughterM[idLepton], daughterM[idNutrino]); 155 if (r <= w) break; 156 } 157 158 // output message 159 #ifdef G4VERBOSE 160 if (GetVerboseLevel() > 1) { 161 G4cout << *daughters_name[0] << ":" << daughterP[0] / GeV << "[GeV/c]" << G4endl; 162 G4cout << *daughters_name[1] << ":" << daughterP[1] / GeV << "[GeV/c]" << G4endl; 163 G4cout << *daughters_name[2] << ":" << daughterP[2] / GeV << "[GeV/c]" << G4endl; 164 } 165 #endif 166 167 // create parent G4DynamicParticle at rest 168 auto direction = new G4ThreeVector(1.0, 0.0, 0.0); 169 auto parentparticle = new G4DynamicParticle(G4MT_parent, *direction, 0.0); 170 delete direction; 171 172 // create G4Decayproducts 173 auto products = new G4DecayProducts(*parentparticle); 174 delete parentparticle; 175 176 // create daughter G4DynamicParticle 177 G4double costheta, sintheta, phi, sinphi, cosphi; 178 G4double costhetan, sinthetan, phin, sinphin, cosphin; 179 180 // pion 181 costheta = 2. * G4UniformRand() - 1.0; 182 sintheta = std::sqrt((1.0 - costheta) * (1.0 + costheta)); 183 phi = twopi * G4UniformRand() * rad; 184 sinphi = std::sin(phi); 185 cosphi = std::cos(phi); 186 direction = new G4ThreeVector(sintheta * cosphi, sintheta * sinphi, costheta); 187 G4ThreeVector momentum0 = (*direction) * daughterP[0]; 188 auto daughterparticle = new G4DynamicParticle(G4MT_daughters[0], momentum0); 189 products->PushProducts(daughterparticle); 190 191 // neutrino 192 costhetan = 193 (daughterP[1] * daughterP[1] - daughterP[2] * daughterP[2] - daughterP[0] * daughterP[0]) 194 / (2.0 * daughterP[2] * daughterP[0]); 195 sinthetan = std::sqrt((1.0 - costhetan) * (1.0 + costhetan)); 196 phin = twopi * G4UniformRand() * rad; 197 sinphin = std::sin(phin); 198 cosphin = std::cos(phin); 199 direction->setX(sinthetan * cosphin * costheta * cosphi - sinthetan * sinphin * sinphi 200 + costhetan * sintheta * cosphi); 201 direction->setY(sinthetan * cosphin * costheta * sinphi + sinthetan * sinphin * cosphi 202 + costhetan * sintheta * sinphi); 203 direction->setZ(-sinthetan * cosphin * sintheta + costhetan * costheta); 204 205 G4ThreeVector momentum2 = (*direction) * daughterP[2]; 206 daughterparticle = new G4DynamicParticle(G4MT_daughters[2], momentum2); 207 products->PushProducts(daughterparticle); 208 209 // lepton 210 G4ThreeVector momentum1 = (momentum0 + momentum2) * (-1.0); 211 daughterparticle = new G4DynamicParticle(G4MT_daughters[1], momentum1); 212 products->PushProducts(daughterparticle); 213 214 #ifdef G4VERBOSE 215 if (GetVerboseLevel() > 1) { 216 G4cout << "G4KL3DecayChannel::DecayIt "; 217 G4cout << " create decay products in rest frame " << G4endl; 218 G4cout << " decay products address=" << products << G4endl; 219 products->DumpInfo(); 220 } 221 #endif 222 delete direction; 223 return products; 224 } 225 226 void G4KL3DecayChannel::PhaseSpace(G4double parentM, const G4double* M, G4double* E, G4double* P) 227 { 228 // Algorithm in this code was originally written in GDECA3 in GEANT3 229 230 // sum of daughters'mass 231 G4double sumofdaughtermass = 0.0; 232 G4int index; 233 const G4int N_DAUGHTER = 3; 234 235 for (index = 0; index < N_DAUGHTER; ++index) { 236 sumofdaughtermass += M[index]; 237 } 238 239 // calculate daughter momentum. Generate two 240 G4double rd1, rd2, rd; 241 G4double momentummax = 0.0, momentumsum = 0.0; 242 G4double energy; 243 const size_t MAX_LOOP = 10000; 244 for (std::size_t loop_counter = 0; loop_counter < MAX_LOOP; ++loop_counter) { 245 rd1 = G4UniformRand(); 246 rd2 = G4UniformRand(); 247 if (rd2 > rd1) { 248 rd = rd1; 249 rd1 = rd2; 250 rd2 = rd; 251 } 252 momentummax = 0.0; 253 momentumsum = 0.0; 254 // daughter 0 255 energy = rd2 * (parentM - sumofdaughtermass); 256 P[0] = std::sqrt(energy * energy + 2.0 * energy * M[0]); 257 E[0] = energy; 258 if (P[0] > momentummax) momentummax = P[0]; 259 momentumsum += P[0]; 260 // daughter 1 261 energy = (1. - rd1) * (parentM - sumofdaughtermass); 262 P[1] = std::sqrt(energy * energy + 2.0 * energy * M[1]); 263 E[1] = energy; 264 if (P[1] > momentummax) momentummax = P[1]; 265 momentumsum += P[1]; 266 // daughter 2 267 energy = (rd1 - rd2) * (parentM - sumofdaughtermass); 268 P[2] = std::sqrt(energy * energy + 2.0 * energy * M[2]); 269 E[2] = energy; 270 if (P[2] > momentummax) momentummax = P[2]; 271 momentumsum += P[2]; 272 if (momentummax <= momentumsum - momentummax) break; 273 } 274 #ifdef G4VERBOSE 275 if (GetVerboseLevel() > 2) { 276 G4cout << "G4KL3DecayChannel::PhaseSpace "; 277 G4cout << "Kon mass:" << parentM / GeV << "GeV/c/c" << G4endl; 278 for (index = 0; index < 3; ++index) { 279 G4cout << index << " : " << M[index] / GeV << "GeV/c/c "; 280 G4cout << " : " << E[index] / GeV << "GeV "; 281 G4cout << " : " << P[index] / GeV << "GeV/c " << G4endl; 282 } 283 } 284 #endif 285 } 286 287 G4double G4KL3DecayChannel::DalitzDensity(G4double massK, G4double Epi, G4double El, G4double Enu, 288 G4double massPi, G4double massL, G4double massNu) 289 { 290 // KL3 decay - Dalitz Plot Density, see Chounet et al Phys. Rep. 4, 201 291 // Arguments 292 // Epi: kinetic enregy of pion 293 // El: kinetic enregy of lepton (e or mu) 294 // Enu: kinetic energy of nutrino 295 // Constants 296 // pLambda : linear energy dependence of f+ 297 // pXi0 : = f+(0)/f- 298 // pNorm : normalization factor 299 // Variables 300 // Epi: total energy of pion 301 // El: total energy of lepton (e or mu) 302 // Enu: total energy of nutrino 303 304 // calculate total energy 305 Epi = Epi + massPi; 306 El = El + massL; 307 Enu = Enu + massNu; 308 309 G4double Epi_max = (massK * massK + massPi * massPi - massL * massL) / 2.0 / massK; 310 G4double E = Epi_max - Epi; 311 G4double q2 = massK * massK + massPi * massPi - 2.0 * massK * Epi; 312 313 G4double F = 1.0 + pLambda * q2 / massPi / massPi; 314 G4double Fmax = 1.0; 315 if (pLambda > 0.0) Fmax = (1.0 + pLambda * (massK * massK / massPi / massPi + 1.0)); 316 317 G4double Xi = pXi0 * (1.0 + pLambda * q2 / massPi / massPi); 318 319 G4double coeffA = massK * (2.0 * El * Enu - massK * E) + massL * massL * (E / 4.0 - Enu); 320 G4double coeffB = massL * massL * (Enu - E / 2.0); 321 G4double coeffC = massL * massL * E / 4.0; 322 323 G4double RhoMax = (Fmax * Fmax) * (massK * massK * massK / 8.0); 324 325 G4double Rho = (F * F) * (coeffA + coeffB * Xi + coeffC * Xi * Xi); 326 327 #ifdef G4VERBOSE 328 if (GetVerboseLevel() > 2) { 329 G4cout << "G4KL3DecayChannel::DalitzDensity " << G4endl; 330 G4cout << " Pi[" << massPi / GeV << "GeV/c/c] :" << Epi / GeV << "GeV" << G4endl; 331 G4cout << " L[" << massL / GeV << "GeV/c/c] :" << El / GeV << "GeV" << G4endl; 332 G4cout << " Nu[" << massNu / GeV << "GeV/c/c] :" << Enu / GeV << "GeV" << G4endl; 333 G4cout << " F :" << F << " Fmax :" << Fmax << " Xi :" << Xi << G4endl; 334 G4cout << " A :" << coeffA << " B :" << coeffB << " C :" << coeffC << G4endl; 335 G4cout << " Rho :" << Rho << " RhoMax :" << RhoMax << G4endl; 336 } 337 #endif 338 return (Rho / RhoMax); 339 } 340