Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4VCSGfaceted.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4VCSGfaceted implementation; a virtual class of a CSG type shape
 27 // that is built entirely out of G4VCSGface faces.
 28 //
 29 // Author: David C. Williams (davidw@scipp.ucsc.edu)
 30 // --------------------------------------------------------------------
 31 
 32 #include "G4VCSGfaceted.hh"
 33 #include "G4VCSGface.hh"
 34 #include "G4SolidExtentList.hh"
 35 
 36 #include "G4VoxelLimits.hh"
 37 #include "G4AffineTransform.hh"
 38 
 39 #include "Randomize.hh"
 40 
 41 #include "G4Polyhedron.hh"   
 42 #include "G4VGraphicsScene.hh"
 43 #include "G4VisExtent.hh"
 44 
 45 #include "G4AutoLock.hh"
 46 
 47 namespace
 48 {
 49   G4Mutex polyhedronMutex = G4MUTEX_INITIALIZER;
 50 }
 51 
 52 //
 53 // Constructor
 54 //
 55 G4VCSGfaceted::G4VCSGfaceted( const G4String& name )
 56   : G4VSolid(name),
 57     fStatistics(1000000), fCubVolEpsilon(0.001), fAreaAccuracy(-1.)
 58 {
 59 }
 60 
 61 
 62 //
 63 // Fake default constructor - sets only member data and allocates memory
 64 //                            for usage restricted to object persistency.
 65 //
 66 G4VCSGfaceted::G4VCSGfaceted( __void__& a )
 67   : G4VSolid(a),
 68     fStatistics(1000000), fCubVolEpsilon(0.001), fAreaAccuracy(-1.)
 69 {
 70 }
 71 
 72 //
 73 // Destructor
 74 //
 75 G4VCSGfaceted::~G4VCSGfaceted()
 76 {
 77   DeleteStuff();
 78   delete fpPolyhedron; fpPolyhedron = nullptr;
 79 }
 80 
 81 
 82 //
 83 // Copy constructor
 84 //
 85 G4VCSGfaceted::G4VCSGfaceted( const G4VCSGfaceted& source )
 86   : G4VSolid( source )
 87 {
 88   fStatistics = source.fStatistics;
 89   fCubVolEpsilon = source.fCubVolEpsilon;
 90   fAreaAccuracy = source.fAreaAccuracy;
 91 
 92   CopyStuff( source );
 93 }
 94 
 95 
 96 //
 97 // Assignment operator
 98 //
 99 G4VCSGfaceted& G4VCSGfaceted::operator=( const G4VCSGfaceted& source )
100 {
101   if (&source == this) { return *this; }
102   
103   // Copy base class data
104   //
105   G4VSolid::operator=(source);
106 
107   // Copy data
108   //
109   fStatistics = source.fStatistics;
110   fCubVolEpsilon = source.fCubVolEpsilon;
111   fAreaAccuracy = source.fAreaAccuracy;
112 
113   DeleteStuff();
114   CopyStuff( source );
115   
116   return *this;
117 }
118 
119 
120 //
121 // CopyStuff (protected)
122 //
123 // Copy the contents of source
124 //
125 void G4VCSGfaceted::CopyStuff( const G4VCSGfaceted& source )
126 {
127   numFace = source.numFace;
128   if (numFace == 0) { return; }    // odd, but permissable?
129   
130   faces = new G4VCSGface*[numFace];
131   
132   G4VCSGface **face = faces,
133        **sourceFace = source.faces;
134   do    // Loop checking, 13.08.2015, G.Cosmo
135   {
136     *face = (*sourceFace)->Clone();
137   } while( ++sourceFace, ++face < faces+numFace );
138   fCubicVolume = source.fCubicVolume;
139   fSurfaceArea = source.fSurfaceArea;
140   fRebuildPolyhedron = false;
141   fpPolyhedron = nullptr;
142 }
143 
144 
145 //
146 // DeleteStuff (protected)
147 //
148 // Delete all allocated objects
149 //
150 void G4VCSGfaceted::DeleteStuff()
151 {
152   if (numFace != 0)
153   {
154     G4VCSGface **face = faces;
155     do    // Loop checking, 13.08.2015, G.Cosmo
156     {
157       delete *face;
158     } while( ++face < faces + numFace );
159 
160     delete [] faces;
161   }
162   delete fpPolyhedron; fpPolyhedron = nullptr;
163 }
164 
165 
166 //
167 // CalculateExtent
168 //
169 G4bool G4VCSGfaceted::CalculateExtent( const EAxis axis,
170                                        const G4VoxelLimits& voxelLimit,
171                                        const G4AffineTransform& transform,
172                                              G4double& min,
173                                              G4double& max ) const
174 {
175   G4SolidExtentList  extentList( axis, voxelLimit );
176 
177   //
178   // Loop over all faces, checking min/max extent as we go.
179   //
180   G4VCSGface **face = faces;
181   do    // Loop checking, 13.08.2015, G.Cosmo
182   {
183     (*face)->CalculateExtent( axis, voxelLimit, transform, extentList );
184   } while( ++face < faces + numFace );
185   
186   //
187   // Return min/max value
188   //
189   return extentList.GetExtent( min, max );
190 }
191 
192 
193 //
194 // Inside
195 //
196 // It could be a good idea to override this virtual
197 // member to add first a simple test (such as spherical
198 // test or whatnot) and to call this version only if
199 // the simplier test fails.
200 //
201 EInside G4VCSGfaceted::Inside( const G4ThreeVector& p ) const
202 {
203   EInside answer=kOutside;
204   G4VCSGface **face = faces;
205   G4double best = kInfinity;
206   do    // Loop checking, 13.08.2015, G.Cosmo
207   {
208     G4double distance;
209     EInside result = (*face)->Inside( p, kCarTolerance/2, &distance );
210     if (result == kSurface) { return kSurface; }
211     if (distance < best)
212     {
213       best = distance;
214       answer = result;
215     }
216   } while( ++face < faces + numFace );
217 
218   return answer;
219 }
220 
221 
222 //
223 // SurfaceNormal
224 //
225 G4ThreeVector G4VCSGfaceted::SurfaceNormal( const G4ThreeVector& p ) const
226 {
227   G4ThreeVector answer;
228   G4VCSGface **face = faces;
229   G4double best = kInfinity;
230   do    // Loop checking, 13.08.2015, G.Cosmo
231   {
232     G4double distance = kInfinity;
233     G4ThreeVector normal = (*face)->Normal( p, &distance );
234     if (distance < best)
235     {
236       best = distance;
237       answer = normal;
238     }
239   } while( ++face < faces + numFace );
240 
241   return answer;
242 }
243 
244 
245 //
246 // DistanceToIn(p,v)
247 //
248 G4double G4VCSGfaceted::DistanceToIn( const G4ThreeVector& p,
249                                       const G4ThreeVector& v ) const
250 {
251   G4double distance = kInfinity;
252   G4double distFromSurface = kInfinity;
253   G4VCSGface **face = faces;
254   G4VCSGface *bestFace = *face;
255   do    // Loop checking, 13.08.2015, G.Cosmo
256   {
257     G4double   faceDistance,
258                faceDistFromSurface;
259     G4ThreeVector   faceNormal;
260     G4bool    faceAllBehind;
261     if ((*face)->Intersect( p, v, false, kCarTolerance/2,
262                 faceDistance, faceDistFromSurface,
263                 faceNormal, faceAllBehind ) )
264     {
265       //
266       // Intersecting face
267       //
268       if (faceDistance < distance)
269       {
270         distance = faceDistance;
271         distFromSurface = faceDistFromSurface;
272         bestFace = *face;
273         if (distFromSurface <= 0) { return 0; }
274       }
275     }
276   } while( ++face < faces + numFace );
277   
278   if (distance < kInfinity && distFromSurface<kCarTolerance/2)
279   {
280     if (bestFace->Distance(p,false) < kCarTolerance/2)  { distance = 0; }
281   }
282 
283   return distance;
284 }
285 
286 
287 //
288 // DistanceToIn(p)
289 //
290 G4double G4VCSGfaceted::DistanceToIn( const G4ThreeVector& p ) const
291 {
292   return DistanceTo( p, false );
293 }
294 
295 
296 //
297 // DistanceToOut(p,v)
298 //
299 G4double G4VCSGfaceted::DistanceToOut( const G4ThreeVector& p,
300                                        const G4ThreeVector& v,
301                                        const G4bool calcNorm,
302                                              G4bool* validNorm,
303                                              G4ThreeVector* n ) const
304 {
305   G4bool allBehind = true;
306   G4double distance = kInfinity;
307   G4double distFromSurface = kInfinity;
308   G4ThreeVector normal;
309   
310   G4VCSGface **face = faces;
311   G4VCSGface *bestFace = *face;
312   do    // Loop checking, 13.08.2015, G.Cosmo
313   {
314     G4double  faceDistance,
315               faceDistFromSurface;
316     G4ThreeVector  faceNormal;
317     G4bool    faceAllBehind;
318     if ((*face)->Intersect( p, v, true, kCarTolerance/2,
319                 faceDistance, faceDistFromSurface,
320                 faceNormal, faceAllBehind ) )
321     {
322       //
323       // Intersecting face
324       //
325       if ( (distance < kInfinity) || (!faceAllBehind) )  { allBehind = false; }
326       if (faceDistance < distance)
327       {
328         distance = faceDistance;
329         distFromSurface = faceDistFromSurface;
330         normal = faceNormal;
331         bestFace = *face;
332         if (distFromSurface <= 0.)  { break; }
333       }
334     }
335   } while( ++face < faces + numFace );
336   
337   if (distance < kInfinity)
338   {
339     if (distFromSurface <= 0.)
340     {
341       distance = 0.;
342     }
343     else if (distFromSurface<kCarTolerance/2)
344     {
345       if (bestFace->Distance(p,true) < kCarTolerance/2)  { distance = 0.; }
346     }
347 
348     if (calcNorm)
349     {
350       *validNorm = allBehind;
351       *n = normal;
352     }
353   }
354   else
355   { 
356     if (Inside(p) == kSurface)  { distance = 0.; }
357     if (calcNorm)  { *validNorm = false; }
358   }
359 
360   return distance;
361 }
362 
363 
364 //
365 // DistanceToOut(p)
366 //
367 G4double G4VCSGfaceted::DistanceToOut( const G4ThreeVector& p ) const
368 {
369   return DistanceTo( p, true );
370 }
371 
372 
373 //
374 // DistanceTo
375 //
376 // Protected routine called by DistanceToIn and DistanceToOut
377 //
378 G4double G4VCSGfaceted::DistanceTo( const G4ThreeVector& p,
379                                     const G4bool outgoing ) const
380 {
381   G4VCSGface **face = faces;
382   G4double best = kInfinity;
383   do    // Loop checking, 13.08.2015, G.Cosmo
384   {
385     G4double distance = (*face)->Distance( p, outgoing );
386     if (distance < best)  { best = distance; }
387   } while( ++face < faces + numFace );
388 
389   return (best < 0.5*kCarTolerance) ? 0. : best;
390 }
391 
392 
393 //
394 // DescribeYourselfTo
395 //
396 void G4VCSGfaceted::DescribeYourselfTo( G4VGraphicsScene& scene ) const
397 {
398    scene.AddSolid( *this );
399 }
400 
401 
402 //
403 // GetExtent
404 //
405 // Define the sides of the box into which our solid instance would fit.
406 //
407 G4VisExtent G4VCSGfaceted::GetExtent() const 
408 {
409   static const G4ThreeVector xMax(1,0,0), xMin(-1,0,0),
410                              yMax(0,1,0), yMin(0,-1,0),
411                              zMax(0,0,1), zMin(0,0,-1);
412   static const G4ThreeVector *axes[6] =
413      { &xMin, &xMax, &yMin, &yMax, &zMin, &zMax };
414   
415   G4double answers[6] =
416      {-kInfinity, -kInfinity, -kInfinity, -kInfinity, -kInfinity, -kInfinity};
417 
418   G4VCSGface **face = faces;
419   do    // Loop checking, 13.08.2015, G.Cosmo
420   {    
421     const G4ThreeVector **axis = axes+5 ;
422     G4double* answer = answers+5;
423     do    // Loop checking, 13.08.2015, G.Cosmo
424     {
425       G4double testFace = (*face)->Extent( **axis );
426       if (testFace > *answer)  { *answer = testFace; }
427     }
428     while( --axis, --answer >= answers );
429     
430   } while( ++face < faces + numFace );
431   
432   return { -answers[0], answers[1], 
433            -answers[2], answers[3],
434            -answers[4], answers[5]  };
435 }
436 
437 
438 //
439 // GetEntityType
440 //
441 G4GeometryType G4VCSGfaceted::GetEntityType() const
442 {
443   return {"G4CSGfaceted"};
444 }
445 
446 
447 //
448 // Stream object contents to an output stream
449 //
450 std::ostream& G4VCSGfaceted::StreamInfo( std::ostream& os ) const
451 {
452   os << "-----------------------------------------------------------\n"
453      << "    *** Dump for solid - " << GetName() << " ***\n"
454      << "    ===================================================\n"
455      << " Solid type: G4VCSGfaceted\n"
456      << " Parameters: \n"
457      << "    number of faces: " << numFace << "\n"
458      << "-----------------------------------------------------------\n";
459 
460   return os;
461 }
462 
463 
464 //
465 // GetCubVolStatistics
466 //
467 G4int G4VCSGfaceted::GetCubVolStatistics() const
468 {
469   return fStatistics;
470 }
471 
472 
473 //
474 // GetCubVolEpsilon
475 //
476 G4double G4VCSGfaceted::GetCubVolEpsilon() const
477 {
478   return fCubVolEpsilon;
479 }
480 
481 
482 //
483 // SetCubVolStatistics
484 //
485 void G4VCSGfaceted::SetCubVolStatistics(G4int st)
486 {
487   fCubicVolume=0.;
488   fStatistics=st;
489 }
490 
491 
492 //
493 // SetCubVolEpsilon
494 //
495 void G4VCSGfaceted::SetCubVolEpsilon(G4double ep)
496 {
497   fCubicVolume=0.;
498   fCubVolEpsilon=ep;
499 }
500 
501 
502 //
503 // GetAreaStatistics
504 //
505 G4int G4VCSGfaceted::GetAreaStatistics() const
506 {
507   return fStatistics;
508 }
509 
510 
511 //
512 // GetAreaAccuracy
513 //
514 G4double G4VCSGfaceted::GetAreaAccuracy() const
515 {
516   return fAreaAccuracy;
517 }
518 
519 
520 //
521 // SetAreaStatistics
522 //
523 void G4VCSGfaceted::SetAreaStatistics(G4int st)
524 {
525   fSurfaceArea=0.;
526   fStatistics=st;
527 }
528 
529 
530 //
531 // SetAreaAccuracy
532 //
533 void G4VCSGfaceted::SetAreaAccuracy(G4double ep)
534 {
535   fSurfaceArea=0.;
536   fAreaAccuracy=ep;
537 }
538 
539 
540 //
541 // GetCubicVolume
542 //
543 G4double G4VCSGfaceted::GetCubicVolume()
544 {
545   if(fCubicVolume != 0.) {;}
546   else   { fCubicVolume = EstimateCubicVolume(fStatistics,fCubVolEpsilon); }
547   return fCubicVolume;
548 }
549 
550 
551 //
552 // GetSurfaceArea
553 //
554 G4double G4VCSGfaceted::GetSurfaceArea()
555 {
556   if(fSurfaceArea != 0.) {;}
557   else   { fSurfaceArea = EstimateSurfaceArea(fStatistics,fAreaAccuracy); }
558   return fSurfaceArea;
559 }
560 
561 
562 //
563 // GetPolyhedron
564 //
565 G4Polyhedron* G4VCSGfaceted::GetPolyhedron () const
566 {
567   if (fpPolyhedron == nullptr ||
568       fRebuildPolyhedron ||
569       fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() !=
570       fpPolyhedron->GetNumberOfRotationSteps())
571   {
572     G4AutoLock l(&polyhedronMutex);
573     delete fpPolyhedron;
574     fpPolyhedron = CreatePolyhedron();
575     fRebuildPolyhedron = false;
576     l.unlock();
577   }
578   return fpPolyhedron;
579 }
580 
581 
582 //
583 // GetPointOnSurfaceGeneric proportional to Areas of faces
584 // in case of GenericPolycone or GenericPolyhedra
585 //
586 G4ThreeVector G4VCSGfaceted::GetPointOnSurfaceGeneric( ) const
587 {
588   // Preparing variables
589   //
590   G4ThreeVector answer=G4ThreeVector(0.,0.,0.);
591   G4VCSGface **face = faces;
592   G4double area = 0.;
593   G4int i;
594   std::vector<G4double> areas; 
595 
596   // First step: calculate surface areas
597   //
598   do    // Loop checking, 13.08.2015, G.Cosmo
599   {
600     G4double result = (*face)->SurfaceArea( );
601     areas.push_back(result);
602     area=area+result;
603   } while( ++face < faces + numFace );
604 
605   // Second Step: choose randomly one surface
606   //
607   G4VCSGface **face1 = faces;
608   G4double chose = area*G4UniformRand();
609   G4double Achose1, Achose2;
610   Achose1=0.; Achose2=0.; 
611   i=0;
612 
613   do
614   {
615     Achose2+=areas[i];
616     if(chose>=Achose1 && chose<Achose2)
617     {
618       G4ThreeVector point;
619       point= (*face1)->GetPointOnFace();
620       return point;
621     }
622     ++i;
623     Achose1=Achose2;
624   } while( ++face1 < faces + numFace );
625 
626   return answer;
627 }
628