Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // Implementation of methods for the class G4IntersectionSolid 27 // 28 // 22.07.11 T.Nikitina: added detection of infinite loop in DistanceToIn(p,v) 29 // 19.10.98 V.Grichine: new algorithm of DistanceToIn(p,v) 30 // 14.10.98 V.Grichine: implementation of the first version 31 // -------------------------------------------------------------------- 32 33 #include "G4SubtractionSolid.hh" 34 35 #include "G4SystemOfUnits.hh" 36 #include "G4VoxelLimits.hh" 37 #include "G4VPVParameterisation.hh" 38 #include "G4GeometryTolerance.hh" 39 40 #include "G4VGraphicsScene.hh" 41 #include "G4Polyhedron.hh" 42 #include "G4PolyhedronArbitrary.hh" 43 #include "HepPolyhedronProcessor.h" 44 45 #include "G4IntersectionSolid.hh" 46 47 #include <sstream> 48 49 ////////////////////////////////////////////////////////////////////////// 50 // 51 // Transfer all data members to G4BooleanSolid which is responsible 52 // for them. pName will be in turn sent to G4VSolid 53 54 G4SubtractionSolid::G4SubtractionSolid( const G4String& pName, 55 G4VSolid* pSolidA , 56 G4VSolid* pSolidB ) 57 : G4BooleanSolid(pName,pSolidA,pSolidB) 58 { 59 } 60 61 ////////////////////////////////////////////////////////////////////////// 62 // 63 // Constructor 64 65 G4SubtractionSolid::G4SubtractionSolid( const G4String& pName, 66 G4VSolid* pSolidA , 67 G4VSolid* pSolidB , 68 G4RotationMatrix* rotMatrix, 69 const G4ThreeVector& transVector ) 70 : G4BooleanSolid(pName,pSolidA,pSolidB,rotMatrix,transVector) 71 { 72 } 73 74 ////////////////////////////////////////////////////////////////////////// 75 // 76 // Constructor 77 78 G4SubtractionSolid::G4SubtractionSolid( const G4String& pName, 79 G4VSolid* pSolidA , 80 G4VSolid* pSolidB , 81 const G4Transform3D& transform ) 82 : G4BooleanSolid(pName,pSolidA,pSolidB,transform) 83 { 84 } 85 86 ////////////////////////////////////////////////////////////////////////// 87 // 88 // Fake default constructor - sets only member data and allocates memory 89 // for usage restricted to object persistency. 90 91 G4SubtractionSolid::G4SubtractionSolid( __void__& a ) 92 : G4BooleanSolid(a) 93 { 94 } 95 96 ////////////////////////////////////////////////////////////////////////// 97 // 98 // Destructor 99 100 G4SubtractionSolid::~G4SubtractionSolid() = default; 101 102 ////////////////////////////////////////////////////////////////////////// 103 // 104 // Copy constructor 105 106 G4SubtractionSolid::G4SubtractionSolid(const G4SubtractionSolid&) = default; 107 108 ////////////////////////////////////////////////////////////////////////// 109 // 110 // Assignment operator 111 112 G4SubtractionSolid& 113 G4SubtractionSolid::operator = (const G4SubtractionSolid& rhs) 114 { 115 // Check assignment to self 116 // 117 if (this == &rhs) { return *this; } 118 119 // Copy base class data 120 // 121 G4BooleanSolid::operator=(rhs); 122 123 return *this; 124 } 125 126 ////////////////////////////////////////////////////////////////////////// 127 // 128 // Get bounding box 129 130 void 131 G4SubtractionSolid::BoundingLimits(G4ThreeVector& pMin, 132 G4ThreeVector& pMax) const 133 { 134 // Since it is unclear how the shape of the first solid will be changed 135 // after subtraction, just return its original bounding box. 136 // 137 fPtrSolidA->BoundingLimits(pMin,pMax); 138 139 // Check correctness of the bounding box 140 // 141 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 142 { 143 std::ostringstream message; 144 message << "Bad bounding box (min >= max) for solid: " 145 << GetName() << " !" 146 << "\npMin = " << pMin 147 << "\npMax = " << pMax; 148 G4Exception("G4SubtractionSolid::BoundingLimits()", "GeomMgt0001", 149 JustWarning, message); 150 DumpInfo(); 151 } 152 } 153 154 ////////////////////////////////////////////////////////////////////////// 155 // 156 // Calculate extent under transform and specified limit 157 158 G4bool 159 G4SubtractionSolid::CalculateExtent( const EAxis pAxis, 160 const G4VoxelLimits& pVoxelLimit, 161 const G4AffineTransform& pTransform, 162 G4double& pMin, 163 G4double& pMax ) const 164 { 165 // Since we cannot be sure how much the second solid subtracts 166 // from the first, we must use the first solid's extent! 167 168 return fPtrSolidA->CalculateExtent( pAxis, pVoxelLimit, 169 pTransform, pMin, pMax ); 170 } 171 172 ////////////////////////////////////////////////////////////////////////// 173 // 174 // Touching ? Empty subtraction ? 175 176 EInside G4SubtractionSolid::Inside( const G4ThreeVector& p ) const 177 { 178 EInside positionA = fPtrSolidA->Inside(p); 179 if (positionA == kOutside) return positionA; // outside A 180 181 EInside positionB = fPtrSolidB->Inside(p); 182 if (positionB == kOutside) return positionA; 183 184 if (positionB == kInside) return kOutside; 185 if (positionA == kInside) return kSurface; // surface B 186 187 // Point is on both surfaces 188 // 189 static const G4double rtol = 1000*kCarTolerance; 190 191 return ((fPtrSolidA->SurfaceNormal(p) - 192 fPtrSolidB->SurfaceNormal(p)).mag2() > rtol) ? kSurface : kOutside; 193 } 194 195 ////////////////////////////////////////////////////////////////////////// 196 // 197 // SurfaceNormal 198 199 G4ThreeVector 200 G4SubtractionSolid::SurfaceNormal( const G4ThreeVector& p ) const 201 { 202 G4ThreeVector normal; 203 204 EInside InsideA = fPtrSolidA->Inside(p); 205 EInside InsideB = fPtrSolidB->Inside(p); 206 207 if( InsideA == kOutside ) 208 { 209 #ifdef G4BOOLDEBUG 210 G4cout << "WARNING - Invalid call [1] in " 211 << "G4SubtractionSolid::SurfaceNormal(p)" << G4endl 212 << " Point p is outside !" << G4endl; 213 G4cout << " p = " << p << G4endl; 214 G4cerr << "WARNING - Invalid call [1] in " 215 << "G4SubtractionSolid::SurfaceNormal(p)" << G4endl 216 << " Point p is outside !" << G4endl; 217 G4cerr << " p = " << p << G4endl; 218 #endif 219 normal = fPtrSolidA->SurfaceNormal(p) ; 220 } 221 else if( InsideA == kSurface && 222 InsideB != kInside ) 223 { 224 normal = fPtrSolidA->SurfaceNormal(p) ; 225 } 226 else if( InsideA == kInside && 227 InsideB != kOutside ) 228 { 229 normal = -fPtrSolidB->SurfaceNormal(p) ; 230 } 231 else 232 { 233 if ( fPtrSolidA->DistanceToOut(p) <= fPtrSolidB->DistanceToIn(p) ) 234 { 235 normal = fPtrSolidA->SurfaceNormal(p) ; 236 } 237 else 238 { 239 normal = -fPtrSolidB->SurfaceNormal(p) ; 240 } 241 #ifdef G4BOOLDEBUG 242 if(Inside(p) == kInside) 243 { 244 G4cout << "WARNING - Invalid call [2] in " 245 << "G4SubtractionSolid::SurfaceNormal(p)" << G4endl 246 << " Point p is inside !" << G4endl; 247 G4cout << " p = " << p << G4endl; 248 G4cerr << "WARNING - Invalid call [2] in " 249 << "G4SubtractionSolid::SurfaceNormal(p)" << G4endl 250 << " Point p is inside !" << G4endl; 251 G4cerr << " p = " << p << G4endl; 252 } 253 #endif 254 } 255 return normal; 256 } 257 258 ////////////////////////////////////////////////////////////////////////// 259 // 260 // The same algorithm as in DistanceToIn(p) 261 262 G4double 263 G4SubtractionSolid::DistanceToIn( const G4ThreeVector& p, 264 const G4ThreeVector& v ) const 265 { 266 G4double dist = 0.0, dist2 = 0.0, disTmp = 0.0; 267 268 #ifdef G4BOOLDEBUG 269 if( Inside(p) == kInside ) 270 { 271 G4cout << "WARNING - Invalid call in " 272 << "G4SubtractionSolid::DistanceToIn(p,v)" << G4endl 273 << " Point p is inside !" << G4endl; 274 G4cout << " p = " << p << G4endl; 275 G4cout << " v = " << v << G4endl; 276 G4cerr << "WARNING - Invalid call in " 277 << "G4SubtractionSolid::DistanceToIn(p,v)" << G4endl 278 << " Point p is inside !" << G4endl; 279 G4cerr << " p = " << p << G4endl; 280 G4cerr << " v = " << v << G4endl; 281 } 282 #endif 283 284 // if( // ( fPtrSolidA->Inside(p) != kOutside) && // case1:p in both A&B 285 if ( fPtrSolidB->Inside(p) != kOutside ) // start: out of B 286 { 287 dist = fPtrSolidB->DistanceToOut(p,v) ; // ,calcNorm,validNorm,n) ; 288 289 if( fPtrSolidA->Inside(p+dist*v) != kInside ) 290 { 291 G4int count1=0; 292 do // Loop checking, 13.08.2015, G.Cosmo 293 { 294 disTmp = fPtrSolidA->DistanceToIn(p+dist*v,v) ; 295 296 if(disTmp == kInfinity) 297 { 298 return kInfinity ; 299 } 300 dist += disTmp ; 301 302 if( Inside(p+dist*v) == kOutside ) 303 { 304 disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v) ; 305 dist2 = dist+disTmp; 306 if (dist == dist2) { return dist; } // no progress 307 dist = dist2 ; 308 ++count1; 309 if( count1 > 1000 ) // Infinite loop detected 310 { 311 G4String nameB = fPtrSolidB->GetName(); 312 if(fPtrSolidB->GetEntityType()=="G4DisplacedSolid") 313 { 314 nameB = (dynamic_cast<G4DisplacedSolid*>(fPtrSolidB)) 315 ->GetConstituentMovedSolid()->GetName(); 316 } 317 std::ostringstream message; 318 message << "Illegal condition caused by solids: " 319 << fPtrSolidA->GetName() << " and " << nameB << G4endl; 320 message.precision(16); 321 message << "Looping detected in point " << p+dist*v 322 << ", from original point " << p 323 << " and direction " << v << G4endl 324 << "Computed candidate distance: " << dist << "*mm. "; 325 message.precision(6); 326 DumpInfo(); 327 G4Exception("G4SubtractionSolid::DistanceToIn(p,v)", 328 "GeomSolids1001", JustWarning, message, 329 "Returning candidate distance."); 330 return dist; 331 } 332 } 333 } 334 while( Inside(p+dist*v) == kOutside ) ; 335 } 336 } 337 else // p outside A, start in A 338 { 339 dist = fPtrSolidA->DistanceToIn(p,v) ; 340 341 if( dist == kInfinity ) // past A, hence past A\B 342 { 343 return kInfinity ; 344 } 345 else 346 { 347 G4int count2=0; 348 while( Inside(p+dist*v) == kOutside ) // pushing loop 349 { 350 disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v) ; 351 dist += disTmp ; 352 353 if( Inside(p+dist*v) == kOutside ) 354 { 355 disTmp = fPtrSolidA->DistanceToIn(p+dist*v,v) ; 356 357 if(disTmp == kInfinity) // past A, hence past A\B 358 { 359 return kInfinity ; 360 } 361 dist2 = dist+disTmp; 362 if (dist == dist2) { return dist; } // no progress 363 dist = dist2 ; 364 ++count2; 365 if( count2 > 1000 ) // Infinite loop detected 366 { 367 G4String nameB = fPtrSolidB->GetName(); 368 if(fPtrSolidB->GetEntityType()=="G4DisplacedSolid") 369 { 370 nameB = (dynamic_cast<G4DisplacedSolid*>(fPtrSolidB)) 371 ->GetConstituentMovedSolid()->GetName(); 372 } 373 std::ostringstream message; 374 message << "Illegal condition caused by solids: " 375 << fPtrSolidA->GetName() << " and " << nameB << G4endl; 376 message.precision(16); 377 message << "Looping detected in point " << p+dist*v 378 << ", from original point " << p 379 << " and direction " << v << G4endl 380 << "Computed candidate distance: " << dist << "*mm. "; 381 message.precision(6); 382 DumpInfo(); 383 G4Exception("G4SubtractionSolid::DistanceToIn(p,v)", 384 "GeomSolids1001", JustWarning, message, 385 "Returning candidate distance."); 386 return dist; 387 } 388 } 389 } // Loop checking, 13.08.2015, G.Cosmo 390 } 391 } 392 393 return dist ; 394 } 395 396 ////////////////////////////////////////////////////////////////////////// 397 // 398 // Approximate nearest distance from the point p to the intersection of 399 // two solids. It is usually underestimated from the point of view of 400 // isotropic safety 401 402 G4double 403 G4SubtractionSolid::DistanceToIn( const G4ThreeVector& p ) const 404 { 405 G4double dist = 0.0; 406 407 #ifdef G4BOOLDEBUG 408 if( Inside(p) == kInside ) 409 { 410 G4cout << "WARNING - Invalid call in " 411 << "G4SubtractionSolid::DistanceToIn(p)" << G4endl 412 << " Point p is inside !" << G4endl; 413 G4cout << " p = " << p << G4endl; 414 G4cerr << "WARNING - Invalid call in " 415 << "G4SubtractionSolid::DistanceToIn(p)" << G4endl 416 << " Point p is inside !" << G4endl; 417 G4cerr << " p = " << p << G4endl; 418 } 419 #endif 420 421 if( ( fPtrSolidA->Inside(p) != kOutside) && // case 1 422 ( fPtrSolidB->Inside(p) != kOutside) ) 423 { 424 dist = fPtrSolidB->DistanceToOut(p); 425 } 426 else 427 { 428 dist = fPtrSolidA->DistanceToIn(p); 429 } 430 431 return dist; 432 } 433 434 ////////////////////////////////////////////////////////////////////////// 435 // 436 // The same algorithm as DistanceToOut(p) 437 438 G4double 439 G4SubtractionSolid::DistanceToOut( const G4ThreeVector& p, 440 const G4ThreeVector& v, 441 const G4bool calcNorm, 442 G4bool* validNorm, 443 G4ThreeVector* n ) const 444 { 445 #ifdef G4BOOLDEBUG 446 if( Inside(p) == kOutside ) 447 { 448 G4cout << "Position:" << G4endl << G4endl; 449 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl; 450 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl; 451 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl; 452 G4cout << "Direction:" << G4endl << G4endl; 453 G4cout << "v.x() = " << v.x() << G4endl; 454 G4cout << "v.y() = " << v.y() << G4endl; 455 G4cout << "v.z() = " << v.z() << G4endl << G4endl; 456 G4cout << "WARNING - Invalid call in " 457 << "G4SubtractionSolid::DistanceToOut(p,v)" << G4endl 458 << " Point p is outside !" << G4endl; 459 G4cout << " p = " << p << G4endl; 460 G4cout << " v = " << v << G4endl; 461 G4cerr << "WARNING - Invalid call in " 462 << "G4SubtractionSolid::DistanceToOut(p,v)" << G4endl 463 << " Point p is outside !" << G4endl; 464 G4cerr << " p = " << p << G4endl; 465 G4cerr << " v = " << v << G4endl; 466 } 467 #endif 468 469 G4double distout; 470 G4double distA = fPtrSolidA->DistanceToOut(p,v,calcNorm,validNorm,n) ; 471 G4double distB = fPtrSolidB->DistanceToIn(p,v) ; 472 if(distB < distA) 473 { 474 if(calcNorm) 475 { 476 *n = -(fPtrSolidB->SurfaceNormal(p+distB*v)) ; 477 *validNorm = false ; 478 } 479 distout= distB ; 480 } 481 else 482 { 483 distout= distA ; 484 } 485 return distout; 486 } 487 488 ////////////////////////////////////////////////////////////////////////// 489 // 490 // Inverted algorithm of DistanceToIn(p) 491 492 G4double 493 G4SubtractionSolid::DistanceToOut( const G4ThreeVector& p ) const 494 { 495 G4double dist=0.0; 496 497 if( Inside(p) == kOutside ) 498 { 499 #ifdef G4BOOLDEBUG 500 G4cout << "WARNING - Invalid call in " 501 << "G4SubtractionSolid::DistanceToOut(p)" << G4endl 502 << " Point p is outside" << G4endl; 503 G4cout << " p = " << p << G4endl; 504 G4cerr << "WARNING - Invalid call in " 505 << "G4SubtractionSolid::DistanceToOut(p)" << G4endl 506 << " Point p is outside" << G4endl; 507 G4cerr << " p = " << p << G4endl; 508 #endif 509 } 510 else 511 { 512 dist= std::min(fPtrSolidA->DistanceToOut(p), 513 fPtrSolidB->DistanceToIn(p) ) ; 514 } 515 return dist; 516 } 517 518 ////////////////////////////////////////////////////////////////////////// 519 // 520 // 521 522 G4GeometryType G4SubtractionSolid::GetEntityType() const 523 { 524 return {"G4SubtractionSolid"}; 525 } 526 527 ////////////////////////////////////////////////////////////////////////// 528 // 529 // Make a clone of the object 530 531 G4VSolid* G4SubtractionSolid::Clone() const 532 { 533 return new G4SubtractionSolid(*this); 534 } 535 536 ////////////////////////////////////////////////////////////////////////// 537 // 538 // ComputeDimensions 539 540 void 541 G4SubtractionSolid::ComputeDimensions( G4VPVParameterisation*, 542 const G4int, 543 const G4VPhysicalVolume* ) 544 { 545 } 546 547 ////////////////////////////////////////////////////////////////////////// 548 // 549 // DescribeYourselfTo 550 551 void 552 G4SubtractionSolid::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 553 { 554 scene.AddSolid (*this); 555 } 556 557 ////////////////////////////////////////////////////////////////////////// 558 // 559 // CreatePolyhedron 560 561 G4Polyhedron* G4SubtractionSolid::CreatePolyhedron () const 562 { 563 if (fExternalBoolProcessor == nullptr) 564 { 565 HepPolyhedronProcessor processor; 566 // Stack components and components of components recursively 567 // See G4BooleanSolid::StackPolyhedron 568 G4Polyhedron* top = StackPolyhedron(processor, this); 569 auto result = new G4Polyhedron(*top); 570 if (processor.execute(*result)) 571 { 572 return result; 573 } 574 else 575 { 576 return nullptr; 577 } 578 } 579 else 580 { 581 return fExternalBoolProcessor->Process(this); 582 } 583 } 584 585 ////////////////////////////////////////////////////////////////////////// 586 // 587 // GetCubicVolume 588 // 589 590 G4double G4SubtractionSolid::GetCubicVolume() 591 { 592 if( fCubicVolume >= 0. ) 593 { 594 return fCubicVolume; 595 } 596 G4ThreeVector bminA, bmaxA, bminB, bmaxB; 597 fPtrSolidA->BoundingLimits(bminA, bmaxA); 598 fPtrSolidB->BoundingLimits(bminB, bmaxB); 599 G4bool noIntersection = 600 bminA.x() >= bmaxB.x() || bminA.y() >= bmaxB.y() || bminA.z() >= bmaxB.z() || 601 bminB.x() >= bmaxA.x() || bminB.y() >= bmaxA.y() || bminB.z() >= bmaxA.z(); 602 603 if (noIntersection) 604 { 605 fCubicVolume = fPtrSolidA->GetCubicVolume(); 606 } 607 else 608 { 609 if (GetNumOfConstituents() > 10) 610 { 611 fCubicVolume = G4BooleanSolid::GetCubicVolume(); 612 } 613 else 614 { 615 G4IntersectionSolid intersectVol("Temporary-Intersection-for-Subtraction", 616 fPtrSolidA, fPtrSolidB); 617 intersectVol.SetCubVolStatistics(GetCubVolStatistics()); 618 intersectVol.SetCubVolEpsilon(GetCubVolEpsilon()); 619 620 G4double cubVolumeA = fPtrSolidA->GetCubicVolume(); 621 fCubicVolume = cubVolumeA - intersectVol.GetCubicVolume(); 622 if (fCubicVolume < 0.01*cubVolumeA) fCubicVolume = G4BooleanSolid::GetCubicVolume(); 623 } 624 } 625 return fCubicVolume; 626 } 627