Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/management/src/G4ReflectedSolid.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // Implementation for G4ReflectedSolid class
 27 //
 28 // Author: Vladimir Grichine, 23.07.01  (Vladimir.Grichine@cern.ch)
 29 // --------------------------------------------------------------------
 30 
 31 #include "G4ReflectedSolid.hh"
 32 
 33 #include <sstream>
 34 
 35 #include "G4Point3D.hh"
 36 #include "G4Vector3D.hh"
 37 
 38 #include "G4AffineTransform.hh"
 39 #include "G4Transform3D.hh"
 40 #include "G4VoxelLimits.hh"
 41 
 42 #include "G4VPVParameterisation.hh"
 43 
 44 #include "G4VGraphicsScene.hh"
 45 #include "G4Polyhedron.hh"
 46 
 47 /////////////////////////////////////////////////////////////////
 48 //
 49 // Constructor using HepTransform3D, in fact HepReflect3D
 50 
 51 G4ReflectedSolid::G4ReflectedSolid( const G4String& pName,
 52                                           G4VSolid* pSolid ,
 53                                     const G4Transform3D& transform )
 54   : G4VSolid(pName)
 55 {
 56   fPtrSolid = pSolid;
 57   fDirectTransform3D = new G4Transform3D(transform);
 58 }
 59 
 60 ///////////////////////////////////////////////////////////////////
 61 //
 62 
 63 G4ReflectedSolid::~G4ReflectedSolid() 
 64 {
 65   delete fDirectTransform3D; fDirectTransform3D = nullptr;
 66   delete fpPolyhedron; fpPolyhedron = nullptr;
 67 }
 68 
 69 ///////////////////////////////////////////////////////////////////
 70 //
 71 
 72 G4ReflectedSolid::G4ReflectedSolid(const G4ReflectedSolid& rhs)
 73   : G4VSolid(rhs), fPtrSolid(rhs.fPtrSolid)
 74 {
 75   fDirectTransform3D = new G4Transform3D(*rhs.fDirectTransform3D);
 76 }
 77 
 78 ///////////////////////////////////////////////////////////////////
 79 //
 80 
 81 G4ReflectedSolid& G4ReflectedSolid::operator=(const G4ReflectedSolid& rhs)
 82 {
 83   // Check assignment to self
 84   //
 85   if (this == &rhs)  { return *this; }
 86 
 87   // Copy base class data
 88   //
 89   G4VSolid::operator=(rhs);
 90 
 91   // Copy data
 92   //
 93   fPtrSolid = rhs.fPtrSolid;
 94   delete fDirectTransform3D;
 95   fDirectTransform3D = new G4Transform3D(*rhs.fDirectTransform3D);
 96   fRebuildPolyhedron = false;
 97   delete fpPolyhedron; fpPolyhedron = nullptr;
 98 
 99   return *this;
100 }
101 
102 ///////////////////////////////////////////////////////////////////
103 //
104 
105 G4GeometryType G4ReflectedSolid::GetEntityType() const 
106 {
107   return {"G4ReflectedSolid"};
108 }
109 
110 const G4ReflectedSolid* G4ReflectedSolid::GetReflectedSolidPtr() const   
111 {
112   return this;
113 }
114 
115 G4ReflectedSolid* G4ReflectedSolid::GetReflectedSolidPtr() 
116 {
117   return this;
118 }
119 
120 G4VSolid* G4ReflectedSolid::GetConstituentMovedSolid() const
121 { 
122   return fPtrSolid; 
123 } 
124 
125 /////////////////////////////////////////////////////////////////////////////
126 //
127 
128 G4Transform3D  G4ReflectedSolid::GetTransform3D() const
129 {
130   return fDirectTransform3D->inverse();
131 }
132 
133 G4Transform3D  G4ReflectedSolid::GetDirectTransform3D() const
134 {
135   G4Transform3D aTransform = *fDirectTransform3D;
136   return aTransform;
137 }
138 
139 void G4ReflectedSolid::SetDirectTransform3D(G4Transform3D& transform) 
140 {
141   fDirectTransform3D = &transform;
142   fRebuildPolyhedron = true;
143 }
144 
145 //////////////////////////////////////////////////////////////////////////
146 //
147 // Get bounding box
148 
149 void G4ReflectedSolid::BoundingLimits(G4ThreeVector& pMin,
150                                       G4ThreeVector& pMax) const
151 {
152   fPtrSolid->BoundingLimits(pMin,pMax);
153   G4double xmin = pMin.x(), ymin = pMin.y(), zmin = pMin.z();
154   G4double xmax = pMax.x(), ymax = pMax.y(), zmax = pMax.z();
155   G4double xx = fDirectTransform3D->xx();
156   G4double yy = fDirectTransform3D->yy();
157   G4double zz = fDirectTransform3D->zz();
158 
159   if (std::abs(xx) == 1 && std::abs(yy) == 1 && std::abs(zz) == 1)
160   {
161     // Special case of reflection in axis and pure translation
162     //
163     if (xx == -1) { G4double tmp = -xmin; xmin = -xmax; xmax = tmp; }
164     if (yy == -1) { G4double tmp = -ymin; ymin = -ymax; ymax = tmp; }
165     if (zz == -1) { G4double tmp = -zmin; zmin = -zmax; zmax = tmp; }
166     xmin += fDirectTransform3D->dx();
167     xmax += fDirectTransform3D->dx();
168     ymin += fDirectTransform3D->dy();
169     ymax += fDirectTransform3D->dy();
170     zmin += fDirectTransform3D->dz();
171     zmax += fDirectTransform3D->dz();
172   }
173   else
174   {
175     // Use additional reflection in Z to set up affine transformation
176     //
177     G4Transform3D transform3D = G4ReflectZ3D()*(*fDirectTransform3D);
178     G4AffineTransform transform(transform3D.getRotation().inverse(),
179                                 transform3D.getTranslation());
180   
181     // Find bounding box
182     //
183     G4VoxelLimits unLimit;
184     fPtrSolid->CalculateExtent(kXAxis,unLimit,transform,xmin,xmax);
185     fPtrSolid->CalculateExtent(kYAxis,unLimit,transform,ymin,ymax);
186     fPtrSolid->CalculateExtent(kZAxis,unLimit,transform,zmin,zmax); 
187   }
188 
189   pMin.set(xmin,ymin,-zmax);
190   pMax.set(xmax,ymax,-zmin);
191 
192   // Check correctness of the bounding box
193   //
194   if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
195   {
196     std::ostringstream message;
197     message << "Bad bounding box (min >= max) for solid: "
198             << GetName() << " !"
199             << "\npMin = " << pMin
200             << "\npMax = " << pMax;
201     G4Exception("G4ReflectedSolid::BoundingLimits()", "GeomMgt0001",
202                 JustWarning, message);
203     DumpInfo();
204   }
205 }
206 
207 //////////////////////////////////////////////////////////////////////////
208 //
209 // Calculate extent under transform and specified limit
210 
211 G4bool 
212 G4ReflectedSolid::CalculateExtent( const EAxis pAxis,
213                                    const G4VoxelLimits& pVoxelLimits,
214                                    const G4AffineTransform& pTransform,
215                                          G4double& pMin, 
216                                          G4double& pMax ) const 
217 {
218   // Separation of transformations. Calculation of the extent is done
219   // in a reflection of the global space. In such way, the voxel is
220   // reflected, but the solid is transformed just by G4AffineTransform.
221   // It allows one to use CalculateExtent() of the solid.
222 
223   // Reflect voxel limits in Z
224   //
225   G4VoxelLimits limits;
226   limits.AddLimit(kXAxis, pVoxelLimits.GetMinXExtent(),
227                           pVoxelLimits.GetMaxXExtent());
228   limits.AddLimit(kYAxis, pVoxelLimits.GetMinYExtent(),
229                           pVoxelLimits.GetMaxYExtent());
230   limits.AddLimit(kZAxis,-pVoxelLimits.GetMaxZExtent(),
231                          -pVoxelLimits.GetMinZExtent());
232 
233   // Set affine transformation
234   //
235   G4Transform3D transform3D = G4ReflectZ3D()*pTransform*(*fDirectTransform3D);
236   G4AffineTransform transform(transform3D.getRotation().inverse(),
237                               transform3D.getTranslation());
238 
239   // Find extent
240   //
241   if (!fPtrSolid->CalculateExtent(pAxis, limits, transform, pMin, pMax))
242   {
243     return false;
244   }
245   if (pAxis == kZAxis)
246   {
247     G4double tmp= -pMin; pMin= -pMax; pMax= tmp;
248   }
249 
250   return true;
251 }
252 
253 //////////////////////////////////////////////////////////////
254 //
255 // 
256 
257 EInside G4ReflectedSolid::Inside(const G4ThreeVector& p ) const
258 {
259   G4ThreeVector newPoint = (*fDirectTransform3D)*G4Point3D(p);
260   return fPtrSolid->Inside(newPoint); 
261 }
262 
263 //////////////////////////////////////////////////////////////
264 //
265 //
266 
267 G4ThreeVector 
268 G4ReflectedSolid::SurfaceNormal( const G4ThreeVector& p ) const 
269 {
270   G4ThreeVector newPoint = (*fDirectTransform3D)*G4Point3D(p);
271   G4Vector3D normal = fPtrSolid->SurfaceNormal(newPoint);
272   return (*fDirectTransform3D)*normal;    
273 }
274 
275 /////////////////////////////////////////////////////////////
276 //
277 // The same algorithm as in DistanceToIn(p)
278 
279 G4double 
280 G4ReflectedSolid::DistanceToIn( const G4ThreeVector& p,
281                                 const G4ThreeVector& v ) const 
282 {    
283   G4ThreeVector newPoint     = (*fDirectTransform3D)*G4Point3D(p);
284   G4ThreeVector newDirection = (*fDirectTransform3D)*G4Vector3D(v);
285   return fPtrSolid->DistanceToIn(newPoint,newDirection);   
286 }
287 
288 ////////////////////////////////////////////////////////
289 //
290 // Approximate nearest distance from the point p to the intersection of
291 // two solids
292 
293 G4double 
294 G4ReflectedSolid::DistanceToIn( const G4ThreeVector& p ) const 
295 {
296   G4ThreeVector newPoint = (*fDirectTransform3D)*G4Point3D(p);
297   return fPtrSolid->DistanceToIn(newPoint);   
298 }
299 
300 //////////////////////////////////////////////////////////
301 //
302 // The same algorithm as DistanceToOut(p)
303 
304 G4double 
305 G4ReflectedSolid::DistanceToOut( const G4ThreeVector& p,
306                                  const G4ThreeVector& v,
307                                  const G4bool calcNorm,
308                                        G4bool* validNorm,
309                                        G4ThreeVector* n ) const 
310 {
311   G4ThreeVector solNorm; 
312 
313   G4ThreeVector newPoint     = (*fDirectTransform3D)*G4Point3D(p);
314   G4ThreeVector newDirection = (*fDirectTransform3D)*G4Vector3D(v);
315 
316   G4double dist = fPtrSolid->DistanceToOut(newPoint, newDirection,
317                                            calcNorm, validNorm, &solNorm);
318   if(calcNorm)
319   { 
320     *n = (*fDirectTransform3D)*G4Vector3D(solNorm);
321   }
322   return dist;  
323 }
324 
325 //////////////////////////////////////////////////////////////
326 //
327 // Inverted algorithm of DistanceToIn(p)
328 
329 G4double 
330 G4ReflectedSolid::DistanceToOut( const G4ThreeVector& p ) const 
331 {
332   G4ThreeVector newPoint = (*fDirectTransform3D)*G4Point3D(p);
333   return fPtrSolid->DistanceToOut(newPoint);   
334 }
335 
336 //////////////////////////////////////////////////////////////
337 //
338 //
339 
340 void 
341 G4ReflectedSolid::ComputeDimensions(       G4VPVParameterisation*,
342                                      const G4int,
343                                      const G4VPhysicalVolume* ) 
344 {
345   DumpInfo();
346   G4Exception("G4ReflectedSolid::ComputeDimensions()",
347                "GeomMgt0001", FatalException,
348                "Method not applicable in this context!");
349 }
350 
351 //////////////////////////////////////////////////////////////
352 //
353 // Return volume
354 
355 G4double G4ReflectedSolid::GetCubicVolume()
356 {
357   return fPtrSolid->GetCubicVolume();
358 }
359 
360 //////////////////////////////////////////////////////////////
361 //
362 // Return surface area
363 
364 G4double G4ReflectedSolid::GetSurfaceArea()
365 {
366   return fPtrSolid->GetSurfaceArea();
367 }
368 
369 //////////////////////////////////////////////////////////////
370 //
371 // Return a point (G4ThreeVector) randomly and uniformly selected
372 // on the solid surface
373 
374 G4ThreeVector G4ReflectedSolid::GetPointOnSurface() const
375 {
376   G4ThreeVector p  =  fPtrSolid->GetPointOnSurface();
377   return (*fDirectTransform3D)*G4Point3D(p);
378 }
379 
380 //////////////////////////////////////////////////////////////
381 //
382 // Return the number of constituents used for construction
383 // of the solid
384 
385 G4int G4ReflectedSolid::GetNumOfConstituents() const
386 {
387   return fPtrSolid->GetNumOfConstituents();
388 }
389 
390 //////////////////////////////////////////////////////////////
391 //
392 // Return true if the reflected solid has only planar faces
393 
394 G4bool G4ReflectedSolid::IsFaceted() const
395 {
396   return fPtrSolid->IsFaceted();
397 }
398 
399 //////////////////////////////////////////////////////////////////////////
400 //
401 // Make a clone of this object
402 
403 G4VSolid* G4ReflectedSolid::Clone() const
404 {
405   return new G4ReflectedSolid(*this);
406 }
407 
408 //////////////////////////////////////////////////////////////////////////
409 //
410 // Stream object contents to an output stream
411 
412 std::ostream& G4ReflectedSolid::StreamInfo(std::ostream& os) const
413 {
414   os << "-----------------------------------------------------------\n"
415      << "    *** Dump for Reflected solid - " << GetName() << " ***\n"
416      << "    ===================================================\n"
417      << " Solid type: " << GetEntityType() << "\n"
418      << " Parameters of constituent solid: \n"
419      << "===========================================================\n";
420   fPtrSolid->StreamInfo(os);
421   os << "===========================================================\n"
422      << " Transformations: \n"
423      << "    Direct transformation - translation : \n"
424      << "           " << fDirectTransform3D->getTranslation() << "\n"
425      << "                          - rotation    : \n"
426      << "           ";
427   fDirectTransform3D->getRotation().print(os);
428   os << "\n"
429      << "===========================================================\n";
430 
431   return os;
432 }
433 
434 /////////////////////////////////////////////////
435 //
436 //                    
437 
438 void 
439 G4ReflectedSolid::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 
440 {
441   scene.AddSolid (*this);
442 }
443 
444 ////////////////////////////////////////////////////
445 //
446 //
447 
448 G4Polyhedron* 
449 G4ReflectedSolid::CreatePolyhedron () const 
450 {
451   G4Polyhedron* polyhedron = fPtrSolid->CreatePolyhedron();
452   if (polyhedron != nullptr)
453   {
454     polyhedron->Transform(*fDirectTransform3D);
455     return polyhedron;
456   }
457   else
458   {
459     std::ostringstream message;
460     message << "Solid - " << GetName()
461             << " - original solid has no" << G4endl
462             << "corresponding polyhedron. Returning NULL!";
463     G4Exception("G4ReflectedSolid::CreatePolyhedron()",
464                 "GeomMgt1001", JustWarning, message);
465     return nullptr;
466   }
467 }
468 
469 /////////////////////////////////////////////////////////
470 //
471 //
472 
473 G4Polyhedron*
474 G4ReflectedSolid::GetPolyhedron () const
475 {
476   if ((fpPolyhedron == nullptr) || fRebuildPolyhedron ||
477       (fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() !=
478        fpPolyhedron->GetNumberOfRotationSteps()))
479     {
480       fpPolyhedron = CreatePolyhedron();
481       fRebuildPolyhedron = false;
482     }
483   return fpPolyhedron;
484 }
485