Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/medical/dna/neuron/src/Run.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // This example is provided by the Geant4-DNA collaboration
 27 // Any report or published results obtained using the Geant4-DNA software
 28 // shall cite the following Geant4-DNA collaboration publication:
 29 // Med. Phys. 37 (2010) 4692-4708
 30 // and papers
 31 // M. Batmunkh et al. J Radiat Res Appl Sci 8 (2015) 498-507
 32 // O. Belov et al. Physica Medica 32 (2016) 1510-1520
 33 // The Geant4-DNA web site is available at http://geant4-dna.org
 34 //
 35 // -------------------------------------------------------------------
 36 // November 2016
 37 // -------------------------------------------------------------------
 38 //
 39 /// \file Run.cc
 40 /// \brief Implementation of the Run class
 41 
 42 #include "Run.hh"
 43 
 44 #include "DetectorConstruction.hh"
 45 #include "PrimaryGeneratorAction.hh"
 46 
 47 #include "G4AnalysisManager.hh"
 48 #include "G4EmCalculator.hh"
 49 #include "G4H2O.hh"
 50 #include "G4Molecule.hh"
 51 #include "G4MoleculeCounter.hh"
 52 #include "G4MoleculeGun.hh"
 53 #include "G4MoleculeTable.hh"
 54 #include "G4SystemOfUnits.hh"
 55 #include "G4UnitsTable.hh"
 56 #include "G4ios.hh"
 57 
 58 #include <G4Scheduler.hh>
 59 #include <iomanip>
 60 
 61 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 62 
 63 Run::Run(DetectorConstruction* det) : G4Run(), fDetector(det), fParticle(0)
 64 {
 65   fSoma3DEdep = new G4double[fDetector->GetnbSomacomp()];
 66   for (G4int i = 0; i < fDetector->GetnbSomacomp(); i++) {
 67     fSoma3DEdep[i] = 0.;
 68   }
 69   fDend3DEdep = new G4double[fDetector->GetnbDendritecomp()];
 70   for (G4int i = 0; i < fDetector->GetnbDendritecomp(); i++) {
 71     fDend3DEdep[i] = 0.;
 72   }
 73   fAxon3DEdep = new G4double[fDetector->GetnbAxoncomp()];
 74   for (G4int i = 0; i < fDetector->GetnbAxoncomp(); i++) {
 75     fAxon3DEdep[i] = 0.;
 76   }
 77 
 78   fEdepAll = fEdepAll_err = fEdepMedium = fEdepMedium_err = fEdepSlice = fEdepSlice_err =
 79     fEdepSoma = fEdepSoma_err = 0.;
 80   fEdepDend = fEdepDend_err = fEdepAxon = fEdepAxon_err = fEdepNeuron = fEdepNeuron_err = 0.;
 81 }
 82 
 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 84 
 85 Run::~Run()
 86 {
 87   delete[] fSoma3DEdep;
 88   delete[] fDend3DEdep;
 89   delete[] fAxon3DEdep;
 90 }
 91 
 92 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 93 
 94 void Run::SetPrimary(G4ParticleDefinition* particle, G4double energy)
 95 {
 96   fParticle = particle;
 97   fEkin = energy;
 98 }
 99 
100 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
101 
102 void Run::AddPrimaryLET(G4double let)
103 {
104   fLET += let;
105   fLET2 += let * let;
106 }
107 
108 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
109 
110 void Run::SetTrackLength(G4double t)
111 {
112   ftrackLength = t;
113   fTrackLen += t;
114   fTrackLen2 += t * t;
115 }
116 
117 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
118 
119 void Run::CountProcesses(const G4VProcess* process)
120 {
121   G4String procName = process->GetProcessName();
122   std::map<G4String, G4int>::iterator it = fProcCounter.find(procName);
123   if (it == fProcCounter.end()) {
124     fProcCounter[procName] = 1;
125   }
126   else {
127     fProcCounter[procName]++;
128   }
129 }
130 
131 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
132 
133 void Run::ParticleCount(G4String name, G4double Ekin)
134 {
135   std::map<G4String, ParticleData>::iterator it = fParticleDataMap1.find(name);
136   if (it == fParticleDataMap1.end()) {
137     fParticleDataMap1[name] = ParticleData(1, Ekin, Ekin, Ekin);
138   }
139   else {
140     ParticleData& data = it->second;
141     data.fCount++;
142     data.fEmean += Ekin;
143     // update min max
144     G4double emin = data.fEmin;
145     if (Ekin < emin) data.fEmin = Ekin;
146     G4double emax = data.fEmax;
147     if (Ekin > emax) data.fEmax = Ekin;
148   }
149 }
150 
151 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
152 
153 void Run::ParticleCountNeuron(G4String name, G4double Ekin)
154 {
155   std::map<G4String, ParticleData>::iterator it = fParticleDataMap2.find(name);
156   if (it == fParticleDataMap2.end()) {
157     fParticleDataMap2[name] = ParticleData(1, Ekin, Ekin, Ekin);
158   }
159   else {
160     ParticleData& data = it->second;
161     data.fCount++;
162     data.fEmean += Ekin;
163     // update min max
164     G4double emin = data.fEmin;
165     if (Ekin < emin) data.fEmin = Ekin;
166     G4double emax = data.fEmax;
167     if (Ekin > emax) data.fEmax = Ekin;
168   }
169 }
170 
171 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
172 /*
173 void Run::MoleculeCount(G4String, G4double)
174 {
175 //fMoleculeNumber = G4MoleculeCounter::Instance()
176 //                  ->GetNMoleculesAtTime(moleculename, Gtime);
177 }
178 */
179 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
180 
181 void Run::MoleculeCountNeuron(G4Molecule* molecule)
182 {
183   G4String moleculename = molecule->GetName();
184   std::map<G4String, G4int>::iterator it = fMoleculeNumber.find(moleculename);
185   if (it == fMoleculeNumber.end()) {
186     fMoleculeNumber[moleculename] = 1;
187   }
188   else {
189     fMoleculeNumber[moleculename]++;
190   }
191 }
192 
193 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
194 
195 void Run::AddEflow(G4double eflow)
196 {
197   fEnergyFlow += eflow;
198   fEnergyFlow2 += eflow * eflow;
199 }
200 
201 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
202 
203 void Run::Merge(const G4Run* run)
204 {
205   const Run* localRun = static_cast<const Run*>(run);
206 
207   // primary particle info
208   //
209   fParticle = localRun->fParticle;
210   fEkin = localRun->fEkin;
211   ftrackLength = localRun->ftrackLength;
212   fTrackLen += localRun->fTrackLen;
213   fTrackLen2 += localRun->fTrackLen2;
214   fLET += localRun->fLET;
215   fLET2 += localRun->fLET2;
216 
217   // map: processes count in simulation medium
218   std::map<G4String, G4int>::const_iterator itp;
219   for (itp = localRun->fProcCounter.begin(); itp != localRun->fProcCounter.end(); ++itp) {
220     G4String procName = itp->first;
221     G4int localCount = itp->second;
222     if (fProcCounter.find(procName) == fProcCounter.end()) {
223       fProcCounter[procName] = localCount;
224     }
225     else {
226       fProcCounter[procName] += localCount;
227     }
228   }
229 
230   // map: created particles count outside neuron structure
231   std::map<G4String, ParticleData>::const_iterator itc;
232   for (itc = localRun->fParticleDataMap1.begin(); itc != localRun->fParticleDataMap1.end(); ++itc) {
233     G4String name = itc->first;
234     const ParticleData& localData = itc->second;
235     if (fParticleDataMap1.find(name) == fParticleDataMap1.end()) {
236       fParticleDataMap1[name] =
237         ParticleData(localData.fCount, localData.fEmean, localData.fEmin, localData.fEmax);
238     }
239     else {
240       ParticleData& data = fParticleDataMap1[name];
241       data.fCount += localData.fCount;
242       data.fEmean += localData.fEmean;
243       G4double emin = localData.fEmin;
244       if (emin < data.fEmin) data.fEmin = emin;
245       G4double emax = localData.fEmax;
246       if (emax > data.fEmax) data.fEmax = emax;
247     }
248   }
249 
250   // map: created particles count inside neuron structure
251   std::map<G4String, ParticleData>::const_iterator itn;
252   for (itn = localRun->fParticleDataMap2.begin(); itn != localRun->fParticleDataMap2.end(); ++itn) {
253     G4String name = itn->first;
254     const ParticleData& localData = itn->second;
255     if (fParticleDataMap2.find(name) == fParticleDataMap2.end()) {
256       fParticleDataMap2[name] =
257         ParticleData(localData.fCount, localData.fEmean, localData.fEmin, localData.fEmax);
258     }
259     else {
260       ParticleData& data = fParticleDataMap2[name];
261       data.fCount += localData.fCount;
262       data.fEmean += localData.fEmean;
263       G4double emin = localData.fEmin;
264       if (emin < data.fEmin) data.fEmin = emin;
265       G4double emax = localData.fEmax;
266       if (emax > data.fEmax) data.fEmax = emax;
267     }
268   }
269 
270   std::map<G4String, G4int>::const_iterator itm;
271   for (itm = localRun->fMoleculeNumber.begin(); itm != localRun->fMoleculeNumber.end(); ++itm) {
272     G4String moleculeName = itm->first;
273     G4int localCount = itm->second;
274     if (fMoleculeNumber.find(moleculeName) == fMoleculeNumber.end()) {
275       fMoleculeNumber[moleculeName] = localCount;
276     }
277     else {
278       fMoleculeNumber[moleculeName] += localCount;
279     }
280   }
281 
282   // hits compartments in neuron compartments
283   //
284   for (G4int i = 0; i < fDetector->GetnbSomacomp(); i++) {
285     fSoma3DEdep[i] += localRun->fSoma3DEdep[i];
286   }
287   for (G4int i = 0; i < fDetector->GetnbDendritecomp(); i++) {
288     fDend3DEdep[i] += localRun->fDend3DEdep[i];
289   }
290   for (G4int i = 0; i < fDetector->GetnbAxoncomp(); i++) {
291     fAxon3DEdep[i] += localRun->fAxon3DEdep[i];
292   }
293 
294   // accumulate sums
295   //
296   fEdepAll += localRun->fEdepAll;
297   fEdepAll_err += localRun->fEdepAll_err;
298   fEdepMedium += localRun->fEdepMedium;
299   fEdepMedium_err += localRun->fEdepMedium_err;
300   fEdepSlice += localRun->fEdepSlice;
301   fEdepSlice_err += localRun->fEdepSlice_err;
302   fEdepSoma += localRun->fEdepSoma;
303   fEdepSoma_err += localRun->fEdepSoma_err;
304   fEdepDend += localRun->fEdepDend;
305   fEdepDend_err += localRun->fEdepDend_err;
306   fEdepAxon += localRun->fEdepAxon;
307   fEdepAxon_err += localRun->fEdepAxon_err;
308   fEdepNeuron += localRun->fEdepNeuron;
309   fEdepNeuron_err += localRun->fEdepNeuron_err;
310 
311   fEnergyFlow += localRun->fEnergyFlow;
312   fEnergyFlow2 += localRun->fEnergyFlow2;
313 
314   G4Run::Merge(run);
315 }
316 
317 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
318 
319 void Run::EndOfRun()
320 {
321   G4int prec = 5, wid = prec + 2;
322   G4int dfprec = G4cout.precision(prec);
323 
324   // Characteristics of Primary particle
325   G4String Particle = fParticle->GetParticleName();
326   G4double GunArea;
327 
328   G4Material* material = fDetector->GetTargetMaterial();
329 
330   // compute track length of primary track
331   //
332   fTrackLen /= numberOfEvent;
333   fTrackLen2 /= numberOfEvent;
334   G4double rms = fTrackLen2 - fTrackLen * fTrackLen;
335   if (rms > 0.)
336     rms = std::sqrt(rms);
337   else
338     rms = 0.;
339 
340   G4int TotNbofEvents = numberOfEvent;
341   G4double EdepTotal = fEdepAll;
342   G4double EdepTotal2 = fEdepAll_err;
343   EdepTotal /= TotNbofEvents;
344   EdepTotal2 /= TotNbofEvents;
345   G4double rmst = EdepTotal2 - EdepTotal * EdepTotal;
346   if (rmst > 0.)
347     rmst = std::sqrt(rmst);
348   else
349     rmst = 0.;
350 
351   // Stopping Power from input Table.
352   G4EmCalculator emCalculator;
353   G4double dEdxFull = 0.;
354   if (fParticle->GetPDGCharge() != 0.) {
355     dEdxFull = emCalculator.ComputeTotalDEDX(fEkin, fParticle, material);
356   }
357 
358   // Stopping Power from simulation.
359   G4double meandEdx = (EdepTotal / fTrackLen) / (keV / um);
360   G4double meandEdxerr = (rmst / fTrackLen) / (keV / um);
361   G4int ncols = 0;
362   G4float tmp, En;
363   G4int Ntrav = 0;
364   FILE* fp = fopen("OutputPerEvent.out", "r");
365   while (1) {
366     ncols = fscanf(fp, " %f %f %f %f %f %f %f %f", &tmp, &tmp, &tmp, &tmp, &En, &tmp, &tmp, &tmp);
367     if (ncols < 0) break;
368     if (En > 0) Ntrav++;
369   }
370   fclose(fp);
371   // The surface area is calculated as spherical medium
372   GunArea = fDetector->GetTotSurfMedium();
373   // Fluence dose of single paticle track
374   G4double FluenceDoseperBeam = 0.160218 * (dEdxFull) / (GunArea * std::pow(10, 18));
375 
376   G4cout << "\n ======= The summary of simulation results 'neuron' ========\n";
377   G4cout << "\n  Primary particle               = " << Particle
378          << "\n  Kinetic energy of beam         = " << fEkin / MeV << " A*MeV"
379          << "\n  Particle traversals the neuron = " << Ntrav << " of " << numberOfEvent
380          << "\n  Full LET of beam as formulas   = " << dEdxFull / (keV / um) << " keV/um"
381          << "\n  Mean LET of beam as simulation = " << meandEdx << " +- " << meandEdxerr
382          << " keV/um"
383          << "\n  Mean track length of beam      = " << fTrackLen / um << " +- " << rms << " um"
384          << "\n  Particle fluence               = " << numberOfEvent / (GunArea / (cm * cm))
385          << " particles/cm^2"
386          << "\n  Fluence dose (full)            = "
387          << numberOfEvent * FluenceDoseperBeam / (joule / kg) << " Gy"
388          << "\n  Fluence dose ber beam          = " << FluenceDoseperBeam / (joule / kg) << " Gy"
389          << G4endl;
390 
391   if (numberOfEvent == 0) {
392     G4cout.precision(dfprec);
393     return;
394   }
395 
396   // frequency of processes in all volume
397   //
398   G4cout << "\n List of generated physical process:" << G4endl;
399 
400   G4int index = 0;
401   std::map<G4String, G4int>::iterator it;
402   for (it = fProcCounter.begin(); it != fProcCounter.end(); it++) {
403     G4String procName = it->first;
404     G4int count = it->second;
405     G4String space = " ";
406     if (++index % 1 == 0) space = "\n";
407     G4cout << " " << std::setw(20) << procName << "=" << std::setw(7) << count << space;
408   }
409   G4cout << G4endl;
410 
411   // particles count outside neuron structure
412   //
413   G4cout << "\n List of generated particles outside neuron structure:" << G4endl;
414 
415   std::map<G4String, ParticleData>::iterator itc;
416   for (itc = fParticleDataMap1.begin(); itc != fParticleDataMap1.end(); itc++) {
417     G4String name = itc->first;
418     ParticleData data = itc->second;
419     G4int count = data.fCount;
420     G4double eMean = data.fEmean / count;
421     G4double eMin = data.fEmin;
422     G4double eMax = data.fEmax;
423     //-----> secondary particles flux
424     G4double Eflow = data.fEmean / TotNbofEvents;
425 
426     G4cout << "  " << std::setw(13) << name << " : " << std::setw(7) << count
427            << "  Emean = " << std::setw(wid) << G4BestUnit(eMean, "Energy") << "\t( "
428            << G4BestUnit(eMin, "Energy") << " --> " << G4BestUnit(eMax, "Energy")
429            << ") \tEflow/event = " << G4BestUnit(Eflow, "Energy") << G4endl;
430   }
431 
432   // particles count inside neuron structure
433   //
434   G4cout << "\n Number of secondary particles inside neuron structure:" << G4endl;
435 
436   std::map<G4String, ParticleData>::iterator itn;
437   for (itn = fParticleDataMap2.begin(); itn != fParticleDataMap2.end(); itn++) {
438     G4String name = itn->first;
439     ParticleData data = itn->second;
440     G4int count = data.fCount;
441 
442     G4cout << "  " << std::setw(13) << name << " : " << std::setw(7) << count << G4endl;
443   }
444 
445   // molecules count inside neuron
446   //  Time cut (from 1 ps to 10 ps) in class ITTrackingAction.cc
447   G4cout << "\n Number of molecular products inside neuron structure:"
448          << "\n    time: 1 ps - 10 ps " << G4endl;
449   // if (1 ns < time <= 10 ns ) MoleculeCount(molname, time) ;
450   G4int ind = 0;
451   std::map<G4String, G4int>::iterator itm;
452   for (itm = fMoleculeNumber.begin(); itm != fMoleculeNumber.end(); itm++) {
453     G4String moleculeName = itm->first;
454     G4int count = itm->second;
455     G4String space = " ";
456     if (++ind % 3 == 0) space = "\n";
457 
458     G4cout << "  " << std::setw(13) << moleculeName << " : " << std::setw(7) << count << G4endl;
459   }
460 
461   // compute total Energy and Dose deposited for all events
462   G4cout << "\n Total energy (MeV) deposition :" << G4endl;
463 
464   G4cout << "  " << std::setw(13) << "All volume:  " << std::setw(7) << fEdepAll / MeV << "\n "
465          << "  " << std::setw(13) << "Bounding slice: " << std::setw(7)
466          << (fEdepSlice + fEdepNeuron) / MeV << "\n "
467          << "  " << std::setw(13) << "Neuron:   " << std::setw(7) << fEdepNeuron / MeV << "\n "
468          << "  " << std::setw(13) << "Soma:   " << std::setw(7) << fEdepSoma / MeV << "\n "
469          << "  " << std::setw(13) << "Dendrites:  " << std::setw(7) << fEdepDend / MeV << "\n "
470          << "  " << std::setw(13) << "Axon:   " << std::setw(7) << fEdepAxon / MeV << G4endl;
471 
472   // compute mean Energy and Dose deposited in hit compartments
473   //
474   // G4AnalysisManager* analys = G4AnalysisManager::Instance();
475   G4int somaCompHit = 0;
476   G4double somaCompEdep = 0.;
477   G4double somaCompDose = 0.;
478   G4double somaCompEdep2 = 0.;
479   G4double somaCompDose2 = 0.;
480   // Remove old outputs
481   remove("Soma3DEdep.out");
482   for (G4int i = 0; i < fDetector->GetnbSomacomp(); i++) {
483     if (fSoma3DEdep[i] > 0.0) {
484       somaCompHit++;
485       somaCompEdep += fSoma3DEdep[i];
486       somaCompEdep2 += fSoma3DEdep[i] * fSoma3DEdep[i];
487 
488       std::ofstream WriteDataInSoma("Soma3DEdep.out", std::ios::app);
489       // Index of targeted compartments
490       WriteDataInSoma << fDetector->GetPosSomacomp(i).x() << '\t' << "   "
491                       << fDetector->GetPosSomacomp(i).y() << '\t' << "   "
492                       << fDetector->GetPosSomacomp(i).z() << '\t'
493                       << "   "
494                       // Edep in compartments
495                       << fSoma3DEdep[i] / keV << '\t' << "   " << G4endl;
496     }
497   }
498   // compute mean Energy and Dose deposited in compartments;
499   // +- RMS : Root Mean Square
500   G4double rmsEdepS = 0.;
501   G4double rmsDoseS = 0.;
502   if (somaCompHit > 0) {
503     somaCompEdep /= somaCompHit;
504     somaCompEdep2 /= somaCompHit;
505     rmsEdepS = somaCompEdep2 - somaCompEdep * somaCompEdep;
506     if (rmsEdepS > 0.)
507       rmsEdepS = std::sqrt(rmsEdepS);
508     else
509       rmsEdepS = 0.;
510     somaCompDose /= somaCompHit;
511     somaCompDose2 /= somaCompHit;
512     rmsDoseS = somaCompDose2 - somaCompDose * somaCompDose;
513     if (rmsDoseS > 0.)
514       rmsDoseS = std::sqrt(rmsDoseS);
515     else
516       rmsDoseS = 0.;
517   }
518 
519   G4int DendCompHit = 0;
520   G4double DendCompEdep = 0.;
521   G4double DendCompDose = 0.;
522   G4double DendCompEdep2 = 0.;
523   G4double DendCompDose2 = 0.;
524   remove("Dend3DEdep.out");
525   std::ofstream WriteDataInDend("Dend3DEdep.out", std::ios::app);
526   for (G4int i = 0; i < fDetector->GetnbDendritecomp(); i++) {
527     if (fDend3DEdep[i] > 0.0) {
528       DendCompHit++;
529       DendCompEdep += fDend3DEdep[i];
530       DendCompEdep2 += fDend3DEdep[i] * fDend3DEdep[i];
531 
532       WriteDataInDend  //<<   i+1            << '\t' << "   "
533                        // position of compartments
534         << fDetector->GetPosDendcomp(i).x() << '\t' << "   " << fDetector->GetPosDendcomp(i).y()
535         << '\t' << "   " << fDetector->GetPosDendcomp(i).z() << '\t' << "   "
536         << fDetector->GetDistADendSoma(i) << '\t' << "   " << fDetector->GetDistBDendSoma(i) << '\t'
537         << "   " << fDend3DEdep[i] / keV << '\t' << "   " << G4endl;
538     }
539   }
540   // +- RMS : Root Mean Square
541   G4double rmsEdepD = 0.;
542   G4double rmsDoseD = 0.;
543   if (DendCompHit > 0) {
544     DendCompEdep /= DendCompHit;
545     DendCompEdep2 /= DendCompHit;
546     rmsEdepD = DendCompEdep2 - DendCompEdep * DendCompEdep;
547     if (rmsEdepD > 0.)
548       rmsEdepD = std::sqrt(rmsEdepD);
549     else
550       rmsEdepD = 0.;
551     DendCompDose /= DendCompHit;
552     DendCompDose2 /= DendCompHit;
553     rmsDoseD = DendCompDose2 - DendCompDose * DendCompDose;
554     if (rmsDoseD > 0.)
555       rmsDoseD = std::sqrt(rmsDoseD);
556     else
557       rmsDoseD = 0.;
558   }
559 
560   G4int AxonCompHit = 0;
561   G4double AxonCompEdep = 0.;
562   G4double AxonCompDose = 0.;
563   G4double AxonCompEdep2 = 0.;
564   G4double AxonCompDose2 = 0.;
565   remove("Axon3DEdep.out");
566   std::ofstream WriteDataInAxon("Axon3DEdep.out", std::ios::app);
567   for (G4int i = 0; i < fDetector->GetnbAxoncomp(); i++) {
568     if (fAxon3DEdep[i] > 0.0) {
569       AxonCompHit++;
570       AxonCompEdep += fAxon3DEdep[i];
571       AxonCompEdep2 += fAxon3DEdep[i] * fAxon3DEdep[i];
572 
573       WriteDataInAxon  //<<   i+1            << '\t' << "   "
574                        // position of compartments
575         << fDetector->GetPosAxoncomp(i).x() << '\t' << "   " << fDetector->GetPosAxoncomp(i).y()
576         << '\t' << "   " << fDetector->GetPosAxoncomp(i).z() << '\t' << "   "
577         << fDetector->GetDistAxonsoma(i) << '\t' << "   " << fAxon3DEdep[i] / keV << '\t' << "   "
578         << G4endl;
579     }
580   }
581   // +- RMS : Root Mean Square
582   G4double rmsEdepA = 0.;
583   G4double rmsDoseA = 0.;
584   if (AxonCompHit > 0) {
585     AxonCompEdep /= AxonCompHit;
586     AxonCompEdep2 /= AxonCompHit;
587     rmsEdepA = AxonCompEdep2 - AxonCompEdep * AxonCompEdep;
588     if (rmsEdepA > 0.)
589       rmsEdepA = std::sqrt(rmsEdepA);
590     else
591       rmsEdepA = 0.;
592     AxonCompDose /= AxonCompHit;
593     AxonCompDose2 /= AxonCompHit;
594     rmsDoseA = AxonCompDose2 - AxonCompDose * AxonCompDose;
595     if (rmsDoseA > 0.)
596       rmsDoseA = std::sqrt(rmsDoseA);
597     else
598       rmsDoseA = 0.;
599   }
600 
601   G4cout << "\n Number of compartments traversed by particle tracks :" << G4endl;
602   G4cout << "  " << std::setw(13) << "Soma:  " << std::setw(7) << somaCompHit
603          << " of total: " << fDetector->GetnbSomacomp() << "\n "
604          << "  " << std::setw(13) << "Dendrites: " << std::setw(7) << DendCompHit
605          << " of total: " << fDetector->GetnbDendritecomp() << "\n "
606          << "  " << std::setw(13) << "Axon: " << std::setw(7) << AxonCompHit
607          << " of total: " << fDetector->GetnbAxoncomp() << "\n " << G4endl;
608   G4cout << "\n Dendritic (or Axon) compartmental energy deposits \n"
609          << " at the distance from Soma have been written into *.out files:"
610          << "\n Dend3DEdep.out, Axon3DEdep.out, Soma3DEdep.out"
611          << "\n Outputs of energy deposition per event written in data file:"
612          << "\n OutputPerEvent.out" << G4endl;
613 
614   // remove all contents in fProcCounter, fCount
615   fProcCounter.clear();
616   fParticleDataMap2.clear();
617 
618   // restore default format
619   G4cout.precision(dfprec);
620 }
621 
622 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
623